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Andreev tunneling in quantum dots: A slave-boson approach
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We study a strongly interacting quantum dot connected to a normal and to a superconducting lead. By means
of the slave-boson technique we investigate the low-temperature regime and discuss electrical transport
through the dot. At the level of mean-field approximation we are able to discuss both limits of small and large
D/TK , whereD is the superconducting gap andTK is the Kondo temperature. We also find that the zero-bias
anomaly in the current-voltage characteristics, which is associated with the occurrence of the Kondo resonance
in the quantum dot, is enhanced in the presence of superconductivity, due to resonant Andreev scattering.
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With the advent of nanotechnology, recent years h
witnessed an impressive experimental activity, studying v
ous properties of small mesoscopic structures. In particu
the transport properties of hybrid superconducting structu
and the associated Andreev scattering mechanism have
investigated intensively after observing several n
phenomena.1 Many of these phenomena have been succ
fully explained in terms of a one-particle picture essentia
based on the BCS theory either via the Bogolubov–
Gennes equations or via quasiclassical Green’s-func
methods, as documented by various review articles.1

Besides this, electrical transport through small confin
regions, where electron-electron interactions are strong,
also attracted a lot of interest. Such experimental setups,
quantum dots~QDs!, allows one to investigate in a con
trolled way the interplay of the electron-electron interacti
and disorder. In particular it has been pointed out that a
attached to two metallic leads resembles an impurity leve
a metal. As a consequence, even when the dot level is
from the Fermi energy of the leads, transport will occur d
to the Kondo effect.2 This is due to the formation of a spi
singlet between the impurity level and the conduction el
trons, which gives rise to a quasiparticle peak at the Fe
energy in the dot spectral function. This suggestion has b
explored theoretically by several groups3–7 and leads to the
prediction that one should observe a zero-bias anomaly in
current voltage characteristics. Such an anomaly has b
indeed observed in different QD systems.8,9

In a recent letter,10 it has been suggested that, if the QD
coupled to two different types of leads, i.e., a normal an
superconducting lead, resonant Andreev tunneling yield
stronger zero-bias anomaly with a broader temperature
gion where the effect occurs. In the analysis of Ref. 10
approach based on the equation-of-motion method, whic
mainly valid at high temperature, was used. In this paper,
extend the analysis of Ref. 10 to the extreme lo
temperature regime. To this end, we use slave-boson m
field theory. This approach has been successfully applie
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the low-temperature properties of a Kondo impurity in t
presence of normal11,12 as well as for superconducting con
duction electrons.13 Despite its simplicity, this method cap
tures the main physical aspects of the Fermi-liquid regime
low temperatures, i.e., the formation of a many-body re
nance at the Fermi energy. For this reason it presents a
venient framework in which to study the interplay betwe
Andreev scattering and Coulomb interactions.

We model theN-QD-S system with the Hamiltonian

H5HN1HS1HD1HT,N1HT,S, ~1!

where HN5(ksekcN,ks
† cN,ks , HS5(ksekcS,ks

† cS,ks

1(k(DcS,k↑
† cS,2k↓

† 1c.c.), andHD5edds
†ds1Und↑nd↓ are

the Hamiltonians of the normal lead, the superconduct
lead (D is the superconducting gap! and the dot, respec
tively. The single-particle energyed is double degenerate in
the spin indexs and the interaction is included through th
on-site repulsionU. The position of the dot level can b
modulated by an external gate voltage. Tunneling betw
the leads and the dot is described byHT,a

5(ks(Vaca,ks
† ds1c.c.) wherea5N, S, andVa is the tun-

neling amplitude. For simplicity we assumedVa independent
from k ands.

In the following, we consider that the on-site repulsionU
is infinite, so processes where the dot level is doubly oc
pied are excluded. This condition allows us to apply t
slave-boson technique.11 The dot level is represented asds

†

5 f s
†b, where the fermionf s and the bosonb describe the

singly occupied and empty dot states. Since the dot is ei
empty or singly occupied, the constraintb†b1(s f s

† f s51
has to be fulfilled.

In the mean-field approximation, the operatorb is re-
placed by ac numberb0 , and the constraint is fulfilled only
on average. This is achieved by introducing a chemical
tential l0 for the pseudoparticles. Notice that one ends
with a noninteractinglike problem with renormalized para
1637 ©1999 The American Physical Society



fir
e

he
iv

u
t

gl
rg
is

ed

os
e

t

y

by
e
th

m

ting

he
all

n to
me.
the

ys
is

rons

s,

gy
al-

ed
t be

an-
f-

1638 PRB 59BRIEF REPORTS
eters, i.e., an energy shift for the dot leveled→ed1l05 ẽd
and a multiplicatively renormalized tunnelingVa→b0Va .

We discuss the mean-field equations and its solution
in equilibrium and then generalize to nonequilibrium. W
start from the impurity part of the free energy, which in t
presence of both normal and superconducting leads is g
by

F52T(
en

Trln@ i enŝ02 ẽdŝ
z2b0

2Ĝ~ i en!#1l0b0
21ed2m,

~2!

where en is a fermionic Matsubara frequency,ŝ i are the
Pauli matrices, and

Ĝ~ i en!5(
k,a

uVau2ŝzĝk,a~ i en!ŝz ~3!

with ĝk,a being the Green’s function of the leada.
By minimizing the free energy with respect tol0 andb0

we find the equations

b0
21T(

en

Tr@ Ĝ~ i en!ŝz#50, ~4!

b0l01b0T(
en

Tr@ Ĝ~ i en!Ĝ~ i en!#50, ~5!

which have to be solved self-consistently.Ĝ( i en) is the

pseudofermion Green function given byĜ( i en)5@ i enŝ0

2 ẽdŝz2b0
2Ĝ( i en)#21.

Before presenting a numerical solution of the above eq
tions, it is useful to get some insight from an approxima
analytical treatment. The first equation, Eq.~4!, is the con-
straint. Since the pseudofermion level is at maximum sin
occupied, the renormalized level is above the Fermi ene
In the Kondo limit, where the occupancy is nearly one, it
found 0, ẽd,b0

2(GN1GS), i.e, l0'uedu and ẽd'0. The
renormalization of the tunneling amplitude is determin
from Eq. ~5!. A trivial solution b050 always exists. The
solutions that minimize the free energy, however, are th
with b0Þ0. By introducing a flat density of states in th
leads and the tunnelling ratesGa5pN0auVau2, the elements

of the matrix Ĝ( i en) are G115G2252 ig1 and G125G21*
5g2 , where

g15sgn~en!GN1GS

en

Aen
21uDu2

, g25GS

D

Aen
21uDu2

.

~6!

Restricting ourselves to zero temperature, we replace
Matsubara sum in Eq.~5! by an integral and obtain

uedu54E
0

W de

2p

g1~e1b0
2g1!1b0

2ug2u2

~e1b0
2g1!21b0

4ug2u2 , ~7!

whereW is a cutoff of order of the band width. We simplif
the integral by approximatingg1 andg2 as
st

en

a-
e

y
y.

e

he

g15H GN for e,D

GN1GS for e.D,
g25H GS for e,D

0 for e.D
. ~8!

The result is

uedu5
GN

p
ln

~D1b0
2GN!21b0

4GS
2

b0
4~GN

2 1GS
2!

1
GN1GS

p
ln

W2

~D1b0
2GS1b0

2GN!2
, ~9!

where we neglect a term proportional toGS, but without any
logarithmic factor. For small superconducting gap, i.e.,D
much smaller than the Kondo temperature which is given
TK5b0

2GN1b0
2GS,D is negligible. One can then easily solv

Eq. ~9! for b0
2 and obtain the result for two normal leads wi

total tunneling rateGN1GS:

b0
2~GN1GS!5WexpS 2

p

2

uedu
GN1GS

D . ~10!

In the opposite limit, whereD is much larger than the Kondo
temperature, we find

b0
2AGN

2 1GS
25WexpF2

p

2

uedu2~2GS/p!ln~W/D!

GN
G .

~11!

The results agree qualitatively with what we expect fro
scaling arguments for the Anderson model.14 In the pertur-
bative regime, a logarithmic correction toed has been found.
In the case of a large gap scaling due to the superconduc
electrons stop at energies of the orderD, giving rise to a
finite renormalization ofed , as seen in Eq.~11!. A similar
shift in the dot level has also been reported within t
equation-of-motion approach of Ref. 10. In case of a sm
gap, the superconducting lead contributes to scaling dow
low energies, where one enters the strong coupling regi
Presumably, the fixed point is still reached for energies of
order of TK , much greater thanD, so that the Kondo tem-
perature does not depend onD, compare Eq.~10!.

Notice that in presence of normal electrons, we alwa
find a nontrivial solution of the mean-field equations. This
to be contrasted with the case of superconducting elect
only, GN50, where for large gap only the solutionb050
exists, and there is no Kondo effect.13

In Fig. 1 we report numerical results forb0
2 , which is

proportional to the Kondo temperatureTK;b0
2GN , as a func-

tion of D. Instead of a sharp cutoff in the density of state
we used an exponential, exp(2e2/W2), in our numerics. The
bared level is ed52W/3. For GN1GS50.15W and D50
the Kondo temperature is approximately given byTK
'0.03W. As long as the gap remains below this ener
scale, the Kondo temperature of the system with gap is
most constant. It drops quickly forTK,D,W, with a re-
gion, where lnb0

2 decreases linearly in lnD, in agreement
with Eq. ~11!.

In a nonequilibrium situation, when a voltage is appli
between the two leads, the mean-field parameters canno
obtained by minimizing the free energy. However the me
field Eqs. ~4! and ~5! can also be derived using a sel
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consistent diagrammatic method, following the argume
given in Ref. 15. These impose the vanishing of so-ca
tadpole diagrams order by order in perturbation theory. T
it is straightforward to generalize to nonequilibrium. Th
equations read

b0
22 i E de

2p
Tr@ Ĝ,~e!ŝz#50, ~12!

l0b02 ib0E de

2p
Tr@ ĜR~e!Ĝ,~e!1Ĝ,~e!ĜA~e!#50,

~13!

where the lesser Green’s functionĜ,(t,t8)5 i ^f†(t8)f(t)&
has been introduced, withf5( f ↑ , f ↓

†). The lesser and ad

vanced matrixĜ is defined in analogy to its equilibrium ver

sion in Eq.~3!. To obtain Ĝ,, we use the general relatio

Ĝ,5ĜRŜ,ĜA, where at mean-field levelŜ,5b0
2Ĝ, and

Ĝ,~e!52(
a,k

uVau2ŝz@ ĝa,k
R ~e! f̂ a~e!2 f̂ a~e!ĝa,k

A ~e!#ŝz.

~14!

If the chemical potential of the normal electrode differs

eV from that of the superconductor, the matricesf̂ a have
elements f a,115 f (e1eVa

x ) and f a,22512 f (2e1eVa
x ),

with VN
x 5V, VS

x50 andf (e) being the Fermi function. Note
that the superconducting lead does not contribute toS,(e)
for e,D.

The solution of the mean-field equations, in presence
an external voltage, can then be obtained along the line
the equilibrium case. As long asueVu,TK the solution is
almost independent of the voltage. For large voltage,ueVu
@TK , we found the Kondo peak pinned to the chemic

potential at the normal side, i.e.,ẽd→ ẽd2eV, with a de-
creased width.

Following Ref. 10, the Andreev current through an inte
acting quantum dot is

FIG. 1. The mean-field parameterb0
2 , which is proportional to

the Kondo temperatureTK;b0
2GN , as a function of the supercon

ducting gap. For both curves the energy of the dot level ised5
2W/3 and the total tunneling rateGS1GN50.15W. The Kondo
temperature forD50 estimated from these parameters isTK

'0.03W.
ts
d
n

f
of

l

-

I 52ieE de

2p
GNTr$ŝzĜR~e!@ŜR~e!, f̂ N~e!#ĜA~e!%,

~15!

whereĜ and Ŝ are the Green’s function and self-energy
the dot electrons. Within the present mean-field approa

Ĝ5b0
2Ĝ. Explicitly, the Andreev current is given by

I ~V!5
4e2

h E
2`

`

de
f ~e2eV!2 f ~e1eV!

2e
GNS~e! ~16!

with

GNS~e!5
4~ G̃NG̃S!2

~ ẽ22 ẽd
22G̃N

2 2G̃S
2!214G̃N

2 ẽ2
. ~17!

Here, the tunneling ratesG̃S,N5b0
2GS,N and ẽ5e(1

1b0
2GS/D). Then one recovers the current formula for

noninteracting quantum dot,16 with renormalized parameter
that are voltage dependent. We see that on resonance,
ẽd'0 ande50, the small renormalization factorb0 drops

out. The peak strength becomes maximal whenG̃N5G̃S with
GNS,max51, twice the maximum for aN-QD-N system. For
large voltageGNS drops fast, since the resonance mov
away from zero energyu ẽdu'ueVu.GNS as a function of en-
ergy is proportional to (eV)22 near ẽ'6 ẽd and propor-
tional to (eV)24 near e50. As a consequence the curre
decreases with increasing voltage, leading to a negative
ferential conductance.

Finally, we want to comment on the reliability of ou
results. The success of slave-boson mean-field theory s
from the fact that it captures the Fermi-liquid regime at lo
temperature. If theN-QD-S system scales to a Fermi liquid a
low temperature,GNS as given in Eq.~17! is exact in the
low-temperature, low-voltage limit. Since it is known th
slave-boson mean-field theory has problems in describ
dynamical properties, the results far away from equilibriu
need caution.

Within the Fermi-liquid point of view, the present mea
field approach allows us to estimate the parameters ente
Eq. ~17!. In particular, we found thatGN andGS renormalize
equally, although this may no longer be the case when c
sidering higher-order corrections. For illustration, we es
mate the effect of residual quasiparticle interaction in
limit D!TK . By assuming an effective quasiparticle inte

action of the formH int5Ũn↑n↓ , we find to first order inŨ

no corrections toG̃N , while, as one could have expecte

repulsive quasiparticle interaction suppressesG̃S5b0
2GS@1

2(Ũ/pTK)(D/TK)lnTK /D#.
We studied Andreev tunneling through a strongly inte

acting quantum dot, focusing on the extreme lo
temperature limit. In agreement with a previous study,
found an enhanced Andreev current at low-bias voltage,
to the Kondo effect. The zero-bias conductance is maxim
with the universal valueGNS51 when the renormalized tun
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neling ratesG̃N and G̃S are equal. We identified the rati
D/TK as an important parameter. In the caseD!TK , the
Kondo resonance forms as for two normal leads. The co

tion G̃N5G̃S coincides with equal bare tunneling ratesGN
5GS. In case of large gap, quasiparticle interacti

suppressesG̃S, nevertheless the conductance maximu
,

x,

v.
i-

-

condition may be achieved with large bare tunneling r
GS.GN .
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