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Emission of the second sound with an expandingHe-concentrated droplet and phase-separation
kinetics in a superfluid *He-*He mixture

Serguei N. Burmistrov and Takeo Satoh
Department of Physics, Faculty of Science, Tohoku University, Sendai 980, Japan
(Received 15 April 1998

We study the growth kinetics of a droplet of tHéle-concentrated phase in a superfldide-*He super-
saturated mixture. The growth equation, which generalizes the Rayleigh-Plesset equation for a radial expansion
of bubbles in the normal fluids, is derived under the assumption of an arbitrary boundary condition for the
normal velocity. The total intensity of the first- and second-sound emissions for a droplet expanding in the
superfluid mixture is calculated. The emission of the second-sound mode is found to be predominant due to the
smallness of the second-sound velocity compared with the velocity of the first sound. In contrast to demixing
normal mixtures the diffusion and heat conduction processes play a minor role in the phase-separation kinetics
of the supersaturatetHe-*He superfluid mixtures.
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The supersaturatetHe-*He superfluid mixtures, separat- superfluid one has two types of sound propagation in contrast
ing into the *He-concentrated andHe-dilute phases, pro- to normal liquids. The velocity of the first sound, associated
vide us a unique possibility for investigating the phase sepamainly with the pressure oscillations, is large enough and, in
ration kinetics in binary mixtures at very low temperaturesprinciple, the incompressible liquid approximation can be
down to absolute zero. In this connection a great portion ofustified in the phase-separation experiments.
recent interest both experimeritaland theoreticdr® has As concerns the second-sound mode, the situation is not

been focused on the problems associated with the separati§f ransparent. The point s that the second-sound velocity in
of a mixture via macroscopic quantum tunneling. However @ Saturated’He-‘He mixture is relatively small compared

much less work has been done for the clarification and unith the case of puréHe, being about 10 m/sThus the
ondition for the slowness of the growth rate ot-ghase

derstanding of the physical processes accompanying sepal oo .
tion of a sgperfluid ?‘ni))/(ture P panying sep roplet should be much stronger and more difficult to satisfy,
Unlike the case of a superfluid mixture the study of theespecially, for the Iarg_e supersatura?ions and _small draplets
phase separation in the classical mixtures has a very lon§hich play a.|||<eykrolt.a in the nuclefﬁlonhexper]!fments_. In a‘zj‘
history and it is a fact of common knowledge that the diffu- 91O, we will take into account the heat effects ignore

sion processes play a significant role in the phase separati etr?/vpelgae%én f}:ﬁ_ p;ﬁ\é'osuescxcgfoﬁgg 'rg\écélgg :zgucl:tci)rlljpll‘rrlgm
kinetics. The separation of the superfliile*He mixtures . 3 9
the dependence of densityon the "He mass concentration

should have a series of specific features compared with th% The single approximation we use is that the growth rate of

of the classical mixtures. In fact, besides the usual diffusior{hec phase does not exceed the both sound velocities
the 3He impurities in a superfluid liquid can also be trans- So, let us consider a-phase droplet of radiug(t) ex.-

ferred in a convective way together with the flow of the . . . . .

normal component. Such c{)nvgctive flow of thide impu- panding §pher|c_:all3_/ at the,fam) in the superﬂum_d phase:

rities can provide an expandirggphase droplet with a nec- %r”tﬁgargnge?f?m; ;SHgijlénﬁ”tzerigys\;gdZ?srgﬁ e;gu_ar\]tmns

essary amount ofHe atoms and replace the diffusion flows uperfiuic IXres. ploying
IJihese equations in order to describe the state and the motion

responsible for the separation of the classical mixtures. | : ,
addition, the flow of the normal component will take care ofOf the d-phase surroundmg th_e_phase drop_let. At t'he. f|rs.t
tage, for the sake of simplicity, we omit the dissipative

carrying away the latent heat released in the course of th ows. Then the general solution of these equations repre-

h transition. ; . .
phase fransitio sents two spherically divergent waves of the first- and

The aim of the work is to derive a correct equation WhiChsecond—sound modes propagating away from ehEhase
the c-phase droplet expanding in the environment of the su- propagating y

perfluidd-phase obeys. So far all the effdti3to derive such c_iroplet at the velocitiesl, and uy, respe_ctlvely. _The rela-

a growth equation were made under the assumption of absgpn.S be“’vee’? the normal and superfluid velocities and the
lute incompressibility of a superfluidHe-*He mixture. Two \{arlable amplitudes of pressure, temperatureF?and concentra-
factors are in favor of this approximation. The first one istIon for t_he plane waves can be found elsewere.

trivial and connected with the negligible thermal expansion E_xplomng the spherical symmetry of the problem, We can
of a mixture at low temperatures. The second is completelﬁtr"’“ghtforwa.r(.jly EXpress the normay(r, ) gnd Supe.rflwd
associated with the assumption of a sufficiently low grovvthvS(r 1) velocities in terms of the two velocity potentials as
rate of a droplet. This means the slowness of the growth rate,

at least, with the respect to the sound velocity, i.e., suffi- oo(r t)=—<1—ﬂ&)v (Al(t_r/ul)) @
ciently small supersaturations of a mixture. However, in a me pn) " 47rr
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A (t—r/uy) phase droplety being (1-p’c’/pc) for the dissipationless
_(1+,8)Vr(4—7ﬂ,)1 case andy=1 for the second assumption.
To determine the unknown amplitudés and A, within
Ay (t—rluy) our approximation, it is sufficient to restrict ourselves by
v(r,t)= —(1+,8)Vr( yp ) first-order time derivative alone. Then we have
4 1_3&)@Vr(M)_ A (t):_73+(1+B)Ap/pV(t)
Pn/ Ps Amrr 1 2 ’
1+ B%pslpn
Here, as usuap, andp, are the normal and superfluid den-
sities ando = o —cda/ic whereo is the entropy of a mix- y+(1—Bpslpn)Aplp .
ture per unit mass. The coefficiegt=(c/p)dp/dc, which As(t)= 5 V(1), 3
determines the coupling between the first- and second-sound 1+B%ps/pn
modes, should be involved since, in general, it is not small in . .
the concentratedHe*He mixtures. where V(t)=47R3(t)/3 is the volume of an expanding

Correspondingly, we have for the deviations of the pres‘_droplet. Thus we arrived at the full description of the state of

sure SP(r,t), temperature ST(r,t), and concentration the superfluidd phase. _ _
sc(r,t) from their valuesP,, Ty, andc, at infinity We are now in the position to derive the growth equation,

using, e.g., the law of the energy conservation. The total
A (t—rluy) Ay(t—r/uy) energy of the system is a sum of the surface enefgy

+ , =4maR? and bulkE' andE energies of the andd phases.
Obviously, one can write the time derivative for the total
energy of the system

6P(r,t)=p

47r P 4y

ps o dT Aj(t—rlu;) o dT Ax(t—r/uy)
OO~ Gac dm tgia amr
Pnug 90 m u; o0 ™ I(E'+E+Ey)/it=Q'-Q
2
. . or, identically, as a boundary condition rat R
Ps 1 Al(t—l’/ul) n 1 Az(t—l’/UQ)
C_

5C(I‘,t)=—CBEu—§ 4ar u% 4qr

’ 2 1 1 2 - 2a 2r
(Q'—47R*p'€'R)—(Q—4nR peR)——R 477R“R=0.
The unknown amplituded,; and A, must be determined

from the two boundary conditions at the interface of the Herep'e' andpe are the energies of theandd phases per
andd phases. The most convenient way is to match the masg .; volume,  is the surface tension. The fluxé€ =0 and

flow j=pv,t+ psvs and the normal velocity , at the inter- 2
. o ) =47R re the energy flux r the droplet surf
face. The first condition is obvious and expresses the conse(rg— mR°q are the energy fluxes across the droplet surface

vation law of the total mass and the density of the energy fluxis given by

J(R(1),t)=—ApR(t). q=3(¢+022)+(poT+pCZ)vy+ pavn: (V4= V)V, + Ugis.

Here Ap=p'—p is the difference in the densities of tle
andd phases at the interface.

As it concerns the second boundary condition for the no
mal velocity, the well-defined point of view is absent. One
approach, based on the dissipationless model of the demixi : . .
kinetics>® derives the boundary condition under assumption d thermodynamic potential qf a mixture. .
of the lack of any®*He diffusion flow. But within the frame- In the course of the calcula_tlon of the energy flux we will
work of this model there arises a problem associated with thmit the terms proportional t&° and higher orders. Thus,
impossibility to satisfy simultaneously one more necessargince the energy flux vanishesR 0, it is sufficient to take
requirement due to nonzero latent heat, namely, the contindnto account only the first correction for the deviations of the
ity of the entropy flow across the interface. The otherthermodynamic quantities from their values at infinity. For
approacf’*is based on the assumption that the normal comealculating the dissipative contribution into the total energy
ponent of a superfluid liquid, connected with the normal ex-flux at the droplet surface, it is convenient to use the dissi-
citations, should stick to the surface of the normglhase pative function of a mixture and estimate the total dissipative
droplet. Unfortunately, present experiments cannot suppoftux Qg.=47R2qgs as an integral over the whole bulk of the
any point of view. That is why we impose the boundaryd phase from the dissipative function
condition for the normal velocity in a general form in order
to embrace any case

Hereqys is an additional dissipative flux associated with the
(Processes of viscosity, diffusion, and heat conduction in the
d phase,¢p=u,/m, is the ratio of the chemical potential of

“He atom to its mass, anfl= u3/mz— u,/m, is the sec-

. Qdis:f Wyis4mrr2dr, (4)
v(R(1),0)=yR(1). F>R(1)

Herey is the accommodation coefficient which describes thewvhere the dissipative functiolVy;s is equal to the energy
sticking of the normal component to the surface of the dissipation per unit volume and unit time reéds
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nldvni a2 dup)? The second term describes the emission of the first- and
Wdis:§ &TkJr?— 3 iké,_rl second-sound waves from a spherical droplet expanding at
' ) ) the rateR(t) in the superfluid liquid. The total intensity of
9z ke kp (VT) the emission is determined by the effective velogity de-
TpD | Ver FVT+ 5 VP] 4« - pending on both sound velocities andus:

Here 7 is the viscosityD, k;D, andkpD are the coefficients 5 _4 Pn 5
of the diffusion, thermo-, and barodiffusion, ards the heat (11 B8°ps/pn)Uegs :p—[7+ (1= Bps!/pn)Aplp]
conductivity. In the above expression we consciously omit- s

ted the three terms proportional to the second coefficignts ( (1+B)? psoT+cZ 1
X[ 1+ — 5

of viscosity since these terms, arising from nonzeroujv 1+ 820 /0. P 2 u;
and diy, will give no contribution within the accuracy of Bpslpn Pn U
our approximation. +(yB+(1+ B)Aplp)?
Let the index ‘0" refer to the equilibrium values of the Y8 A)llp
all thermodynamic qua_ntities t_aken away at infinity. Involv- (1+B8)(1—Bps/pn)
ing the thermodynamic relatiope=P+poT+pcZ+ped X1 1= 1+ B2polp
S n

and boundary conditions valid for first-order approximation

in the slowness oR(t), y+(1-Bps/pn)Aplp oT+cZ| |

' 6'R=poCy(v—R), yB+(1+B)Aplp u3 -
_ _ (8
—p'0'R=pooo(va—R), This sound emission term becomes comparable with the ki-
we arrive at the following equation: netic energy term at the growth ratBg~ (pe/p)Uet. In @
saturated®He-*He mixture owing to the inequality,<u,
du/dt=—Q"”~Qg. the main contribution is connected with the second-sound

mode andR,=u,. Only if the excitation of the second-
sound mode is suppressed, i#2<(ps/pn)(Aplp)% R, ex-
U(R)=4maR?+[p'(¢'— ¢o)—(P'=Po)+p'ad'(T=To)  ceedsu, and fory=0 one hak,~u,p/p,. In any case the
Pt 3 involvement of the sound emission becomes significant if
Tp'Cl (2! =20)]4TR3 © one deals with the damping of the radial pulsations of a

and the fluxQ(® across the droplat=R surface equals droplet.
Let us turn now to evaluating the dissipative fl6;s EQ.

Q@ =[)5¢+v,8(paT+pcZ)+Repydp—RS(pe)]4mR2. (4) which can be represented as a sum of three contributions
due to viscosity, diffusion, and heat conduction

Omitting the algebraic calculations, we find using Egs. B
(1), (2), and(3) that Q®) can be represented as Quis=Q,+ Qo+ Qx-
The simple calculation, using Eg&), (1), and(2), yields

HereU is the energy of the formation of a droplet

2 d(1 VA3(t) . VA(t) _
U=t 2P 2R | T PO Ty Q,=16my? 7R,
The effective density; of a droplet is given by the expres- This viscous flux corresponds completely to the usual Stokes
sion in which, for brevity, we omit the index0” force which hinders the radial expansion of a droplet in the
superfluid liquid.
peii [Ap\? pn Ap\? The last two contributions int@s have the same struc-
7= (7) p—( Y —) ture and can be represented using the absorption coefficients
s al? andal™? in the sound dampingy-?=al-?w?/2 due
y+(1—Bps/pn)Aplp o T+cZ to diffusion and heat conduction in the first and second
+(1+B)(y—1) 1+ B e modes, respectively,
Ps!Pn 2
(7 Qo+Q,=p[(bsVag u;+byvag up,/ps)?
As expected, in thai,=o limit the effective density of a 0 o) ) VA(1)
droplet goes over into the expression found in the model of +(byvalPuy+byvaluypn/p) 7R
an absolutely incompressible mixtutewithin the latter
model this term, considered as a kinetic energy of a droplet, 9

can be estimated as an integral of the kinetic energy denSitMerebl andb, denote
over the whole bulk of a mixture. Note only that, if the

accommodation coefficieny differs noticeably from unity, yB+(1+ B)Aplp y+(1—Bpslp)Aplp
the correction from the second-sound mode becomes of the b, = ; = .

’ 2
order of unity. V1+B%pslpy V1+B%ps/py
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The expressions foyg'ﬁ) can be found, e.g., in Ref. 11. The in the limit of large droplets these energy losses are of minor

second-sound mode plays a main role in the heat conductidmportance due to the hydrodynamic inequalRy/(T).

flux Q,. The latter circumstance is in drastic contrast to normal liquid
To conclude, the growth equation for the evolution of amixtures where the diffusion and heat-conduction energy

spherical droplet in a superfluidHe*He mixture can be !0sses dominate over the sound emission in the hydrody-

represented in the following general form: namicR>/(T) limit. _ _
Essentially, the equatiofiL0) for a radial expansion of a

d 3R2(t) droplet represents a generalization of the well-known
gl 4mPerR"— +U(R) Rayleigh-Plesset equatitifor the bubble growth in a nor-
mal fluid to the case of a superfluid mixture. On the appro-
\2 e NP2 priate choice of the potential energy(R) of a droplet the
= — 16wy’ 7RR—p _ et , (10) growth equation(10) can also be used for studying, e.g.,
A7 Uit 2. 4mR dynamics of the formation of electron bubbigsr, if Ap

=—p and U(R)=4maR?+47PR%3 whereP is the ap-
lied external pressure, for studying pulsation dynamics of
he cavitation bubbles in superfluftHe * The parameters of

where the physical parameters are given by Egjs.(7), (8),
and the last term is given by a sum of the diffusion and hea

conduction fluxeqg9). The physical meaning of the growth Eq. (10) can be found experimentally by studying the time

Egzgtlsoig elsé ;t;\r/;gﬁ]se' ST;[eWﬂliiﬁ?Z:gfh;ugfg&gt%nné?gyr'ggitr']dependence of the droplet radius under various conditions, in
a sum of the kinetic and potential energies, dissipates. Thgarncular, by measuring frequency and damping of the drop-

. . S . ._lét pulsations in the ultrasound field. This can give certain
first term in the dissipative function corresponds to the vis-. . ; .

. . . information on the value of the accommodation coefficignt
cous Stokes force. The second is an intensity of the soun

S ) ; . ; ) g’mce the other physical quantities determining parameters in
emission prowded a body, 'm’.“ersed into a superfluid mlX'Eq. (10) are known. For sufficiently low temperatures, when
tnuorrer;]glhﬁmgizs tlrt1$e Yr?tlgrrrs?t %?I'tl;ee tehr?]is\ivs?(lnlhkgzwgn?jzsgnotfha}he c-phase droplet undergoes the transition into the super-

quid, ' y - P Suid state, one may expect a variation of the accommodation
both second- and first-sound velocitie3.

The last term is responsible for the irreversible energycoemment'

losses due to diffusion and heat-conduction processes in the The work is supported by Grant-in-Aid for Scientific Re-
bulk of a mixture. From the dimensional speculations onesearch(No. 08240203 from the Ministry of Education, Sci-
may expecive; U/ (T) where/(T) is the mean free path ence and Culture. S.B. is grateful to the Japan Society for the
of excitations. Compared with the sound emission intensityPromotion of Science for support.
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