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Emission of the second sound with an expanding3He-concentrated droplet and phase-separation
kinetics in a superfluid 3He-4He mixture

Serguei N. Burmistrov and Takeo Satoh
Department of Physics, Faculty of Science, Tohoku University, Sendai 980, Japan

~Received 15 April 1998!

We study the growth kinetics of a droplet of the3He-concentrated phase in a superfluid3He-4He super-
saturated mixture. The growth equation, which generalizes the Rayleigh-Plesset equation for a radial expansion
of bubbles in the normal fluids, is derived under the assumption of an arbitrary boundary condition for the
normal velocity. The total intensity of the first- and second-sound emissions for a droplet expanding in the
superfluid mixture is calculated. The emission of the second-sound mode is found to be predominant due to the
smallness of the second-sound velocity compared with the velocity of the first sound. In contrast to demixing
normal mixtures the diffusion and heat conduction processes play a minor role in the phase-separation kinetics
of the supersaturated3He-4He superfluid mixtures.
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The supersaturated3He-4He superfluid mixtures, separa
ing into the 3He-concentrated and3He-dilute phases, pro
vide us a unique possibility for investigating the phase se
ration kinetics in binary mixtures at very low temperatur
down to absolute zero. In this connection a great portion
recent interest both experimental1,2 and theoretical3–6 has
been focused on the problems associated with the separ
of a mixture via macroscopic quantum tunneling. Howev
much less work has been done for the clarification and
derstanding of the physical processes accompanying se
tion of a superfluid mixture.

Unlike the case of a superfluid mixture the study of t
phase separation in the classical mixtures has a very
history and it is a fact of common knowledge that the diff
sion processes play a significant role in the phase separ
kinetics. The separation of the superfluid3He-4He mixtures
should have a series of specific features compared with
of the classical mixtures. In fact, besides the usual diffus
the 3He impurities in a superfluid liquid can also be tran
ferred in a convective way together with the flow of th
normal component. Such convective flow of the3He impu-
rities can provide an expandingc-phase droplet with a nec
essary amount of3He atoms and replace the diffusion flow
responsible for the separation of the classical mixtures
addition, the flow of the normal component will take care
carrying away the latent heat released in the course of
phase transition.

The aim of the work is to derive a correct equation whi
the c-phase droplet expanding in the environment of the
perfluidd-phase obeys. So far all the efforts3–5 to derive such
a growth equation were made under the assumption of a
lute incompressibility of a superfluid3He-4He mixture. Two
factors are in favor of this approximation. The first one
trivial and connected with the negligible thermal expans
of a mixture at low temperatures. The second is comple
associated with the assumption of a sufficiently low grow
rate of a droplet. This means the slowness of the growth r
at least, with the respect to the sound velocity, i.e., su
ciently small supersaturations of a mixture. However, in
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superfluid one has two types of sound propagation in cont
to normal liquids. The velocity of the first sound, associa
mainly with the pressure oscillations, is large enough and
principle, the incompressible liquid approximation can
justified in the phase-separation experiments.

As concerns the second-sound mode, the situation is
so transparent. The point is that the second-sound velocit
a saturated3He-4He mixture is relatively small compare
with the case of pure4He, being about 10 m/s.7 Thus the
condition for the slowness of the growth rate of ac-phase
droplet should be much stronger and more difficult to satis
especially, for the large supersaturations and small dropl5

which play a key role in the nucleation experiments. In a
dition, we will take into account the heat effects ignor
completely in the previous works and involve the coupli
between the first- and second-sound modes resulting f
the dependence of densityr on the 3He mass concentration
c. The single approximation we use is that the growth rate
the c phase does not exceed the both sound velocities.

So, let us consider ac-phase droplet of radiusR(t), ex-
panding spherically at the rateṘ(t) in the superfluidd phase.
Our starting point is the linearized hydrodynamic equatio
for the superfluid 3He-4He mixtures.8 We are employing
these equations in order to describe the state and the mo
of the d-phase surrounding thec-phase droplet. At the firs
stage, for the sake of simplicity, we omit the dissipati
flows. Then the general solution of these equations rep
sents two spherically divergent waves of the first- a
second-sound modes propagating away from thec-phase
droplet at the velocitiesu1 and u2 , respectively. The rela-
tions between the normal and superfluid velocities and
variable amplitudes of pressure, temperature, and conce
tion for the plane waves can be found elsewhere.9

Exploiting the spherical symmetry of the problem, we c
straightforwardly express the normalvn(r ,t) and superfluid
vs(r ,t) velocities in terms of the two velocity potentials a

vn~r ,t !52S 12b
rs

rn
D¹ r S A1~ t2r /u1!

4pr D ~1!
161 ©1999 The American Physical Society
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2~11b!¹ r S A2~ t2r /u2!

4pr D ,

vs~r ,t !52~11b!¹ r S A1~ t2r /u1!

4pr D
1S 12b

rs

rn
D rn

rs
¹ r S A2~ t2r /u2!

4pr D .

Here, as usual,rn andrs are the normal and superfluid de
sities ands̄5s2c]s/]c wheres is the entropy of a mix-
ture per unit mass. The coefficientb5(c/r)]r/]c, which
determines the coupling between the first- and second-so
modes, should be involved since, in general, it is not sma
the concentrated3He-4He mixtures.

Correspondingly, we have for the deviations of the pr
sure dP(r ,t), temperature dT(r ,t), and concentration
dc(r ,t) from their valuesP0 , T0 , andc0 at infinity

dP~r ,t !5r
Ȧ1~ t2r /u1!

4pr
1br

Ȧ2~ t2r /u2!

4pr
,

dT~r ,t !52b
rs

rn

s̄

u1
2

]T

]s

Ȧ1~ t2r /u1!

4pr
1

s̄

u2
2

]T

]s

Ȧ2~ t2r /u2!

4pr
,

~2!

dc~r ,t !52cb
rs

rn

1

u1
2

Ȧ1~ t2r /u1!

4pr
1c

1

u2
2

Ȧ2~ t2r /u2!

4pr
.

The unknown amplitudesA1 andA2 must be determined
from the two boundary conditions at the interface of thec
andd phases. The most convenient way is to match the m
flow 5rnvn1rsvs and the normal velocityvn at the inter-
face. The first condition is obvious and expresses the con
vation law of the total mass

„R~ t !,t…52DrṘ~ t !.

Here Dr5r82r is the difference in the densities of thec
andd phases at the interface.

As it concerns the second boundary condition for the n
mal velocity, the well-defined point of view is absent. O
approach, based on the dissipationless model of the demi
kinetics,3,5 derives the boundary condition under assumpt
of the lack of any3He diffusion flow. But within the frame-
work of this model there arises a problem associated with
impossibility to satisfy simultaneously one more necess
requirement due to nonzero latent heat, namely, the cont
ity of the entropy flow across the interface. The oth
approach10,4 is based on the assumption that the normal co
ponent of a superfluid liquid, connected with the normal e
citations, should stick to the surface of the normalc-phase
droplet. Unfortunately, present experiments cannot sup
any point of view. That is why we impose the bounda
condition for the normal velocity in a general form in ord
to embrace any case

vn„R~ t !,t…5gṘ~ t !.

Hereg is the accommodation coefficient which describes
sticking of the normal component to the surface of thec-
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phase droplet,g being (12r8c8/rc) for the dissipationless
case andg51 for the second assumption.

To determine the unknown amplitudesA1 andA2 within
our approximation, it is sufficient to restrict ourselves
first-order time derivative alone. Then we have

A1~ t !52
gb1~11b!Dr/r

11b2rs /rn

V̇~ t !,

A2~ t !5
g1~12brs /rn!Dr/r

11b2rs /rn

V̇~ t !, ~3!

where V(t)54pR3(t)/3 is the volume of an expandin
droplet. Thus we arrived at the full description of the state
the superfluidd phase.

We are now in the position to derive the growth equatio
using, e.g., the law of the energy conservation. The to
energy of the system is a sum of the surface energyEs
54paR2 and bulkE8 andE energies of thec andd phases.
Obviously, one can write the time derivative for the tot
energy of the system

]~E81E1Es!/]t5Q82Q

or, identically, as a boundary condition atr 5R

~Q824pR2r8e8Ṙ!2~Q24pR2reṘ!2
2a

R
4pR2Ṙ50.

Herer8e8 andre are the energies of thec andd phases per
unit volume,a is the surface tension. The fluxesQ8[0 and
Q54pR2q are the energy fluxes across the droplet surf
and the density of the energy fluxq is given by8

q5¤~f1vs
2/2!1~rsT1rcZ!vn1rnvn•~vn2vs!vn1qdis.

Hereqdis is an additional dissipative flux associated with t
processes of viscosity, diffusion, and heat conduction in
d phase,f5m4 /m4 is the ratio of the chemical potential o
a 4He atom to its mass, andZ5m3 /m32m4 /m4 is the sec-
ond thermodynamic potential of a mixture.

In the course of the calculation of the energy flux we w
omit the terms proportional toṘ3 and higher orders. Thus
since the energy flux vanishes atṘ50, it is sufficient to take
into account only the first correction for the deviations of t
thermodynamic quantities from their values at infinity. F
calculating the dissipative contribution into the total ener
flux at the droplet surface, it is convenient to use the dis
pative function of a mixture and estimate the total dissipat
flux Qdis54pR2qdis as an integral over the whole bulk of th
d phase from the dissipative function

Qdis5E
r .R~ t !

Wdis4pr 2 dr, ~4!

where the dissipative functionWdis is equal to the energy
dissipation per unit volume and unit time reads8
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Wdis5
h

2S ]vni

]r k
1

]vnk

]r i
2

2

3
d ik

]vnl

]r l
D 2

1rD
]Z

]cS ¹c1
kT

T
¹T1

kP

P
¹PD 2

1k
~¹T!2

T
. ~5!

Hereh is the viscosity,D, kTD, andkPD are the coefficients
of the diffusion, thermo-, and barodiffusion, andk is the heat
conductivity. In the above expression we consciously om
ted the three terms proportional to the second coefficientz ı
of viscosity since these terms, arising from nonzero divvn
and div¤, will give no contribution within the accuracy o
our approximation.

Let the index ‘‘0’’ refer to the equilibrium values of the
all thermodynamic quantities taken away at infinity. Invol
ing the thermodynamic relationre5P1rsT1rcZ1rf
and boundary conditions valid for first-order approximati
in the slowness ofṘ(t),

2r8c8Ṙ5r0c0~vn2Ṙ!,

2r8s8Ṙ5r0s0~vn2Ṙ!,

we arrive at the following equation:

dU/dt52Q~2!2Qdis.

HereU is the energy of the formation of a droplet

U~R!54paR21@r8~f82f0!2~P82P0!1r8s8~T2T0!

1r8c8~Z82Z0!#4pR3/3 ~6!

and the fluxQ(2) across the dropletr 5R surface equals

Q~2!5@df1vnd~rsT1rcZ!1Ṙf0dr2Ṙd~re!#4pR2.

Omitting the algebraic calculations, we find using Eq
~1!, ~2!, and~3! that Q(2) can be represented as

Q~2!5
d

dt
S 1

2
reff

V̇2~ t !

4pR~ t !
D 1r0

V̈2~ t !

4pueff
.

The effective densityreff of a droplet is given by the expres
sion in which, for brevity, we omit the index ‘‘0’’

reff

r
5S Dr

r D 2

1
rn

rs
S g1

Dr

r D 2

1~11b!~g21!
g1~12brs /rn!Dr/r

11b2rs /rn

sT1cZ

u2
2

.

~7!

As expected, in theu25` limit the effective density of a
droplet goes over into the expression found in the mode
an absolutely incompressible mixture.3 Within the latter
model this term, considered as a kinetic energy of a drop
can be estimated as an integral of the kinetic energy den
over the whole bulk of a mixture. Note only that, if th
accommodation coefficientg differs noticeably from unity,
the correction from the second-sound mode becomes of
order of unity.
t-
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The second term describes the emission of the first-
second-sound waves from a spherical droplet expandin
the rateṘ(t) in the superfluid liquid. The total intensity o
the emission is determined by the effective velocityueff de-
pending on both sound velocitiesu1 andu2 :

~11b2rs /rn!ueff
215

rn

rs
@g1~12brs /rn!Dr/r#2

3S 11
~11b!2

11b2rs /rn

rs

rn

sT1cZ

u2
2 D u2

21

1„gb1~11b!Dr/r…2

3S 12
~11b!~12brs /rn!

11b2rs /rn

3
g1~12brs /rn!Dr/r

gb1~11b!Dr/r

sT1cZ

u2
2 D u1

21 .

~8!

This sound emission term becomes comparable with the
netic energy term at the growth ratesṘu;(reff /r)ueff . In a
saturated3He-4He mixture owing to the inequalityu2!u1
the main contribution is connected with the second-sou
mode andṘu5u2 . Only if the excitation of the second
sound mode is suppressed, i.e.,g2,(rs /rn)(Dr/r)2, Ṙu ex-
ceedsu2 and forg50 one hasṘu'u2r/rn . In any case the
involvement of the sound emission becomes significan
one deals with the damping of the radial pulsations o
droplet.

Let us turn now to evaluating the dissipative flowQdis Eq.
~4! which can be represented as a sum of three contribut
due to viscosity, diffusion, and heat conduction

Qdis5Qh1QD1Qk .

The simple calculation, using Eqs.~5!, ~1!, and~2!, yields

Qh516pg2hRṘ2.

This viscous flux corresponds completely to the usual Sto
force which hinders the radial expansion of a droplet in
superfluid liquid.

The last two contributions intoQdis have the same struc
ture and can be represented using the absorption coeffic
aD

(1,2) andak
(1,2) in the sound dampinggD,k

(1,2)5aD,k
(1,2)v2/2 due

to diffusion and heat conduction in the first and seco
modes, respectively,

QD1Qk5r@~b1AaD
~1!u11b2AaD

~2!u2rn /rs!
2

1~b1Aak
~1!u11b2Aak

~2!u2rn /rs!
2#

V̈2~ t !

4pR
.

~9!

Hereb1 andb2 denote

b15
gb1~11b!Dr/r

A11b2rs /rn

; b25
g1~12brs /rn!Dr/r

A11b2rs /rn

.
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The expressions forgD,k
(1,2) can be found, e.g., in Ref. 11. Th

second-sound mode plays a main role in the heat conduc
flux Qk .

To conclude, the growth equation for the evolution of
spherical droplet in a superfluid3He-4He mixture can be
represented in the following general form:

d

dt
S 4preffR

3
Ṙ2~ t !

2
1U~R! D

5216pg2hRṘ22r
V̈2

4pueff
2r

neff

ueff
2

V̈2

4pR
, ~10!

where the physical parameters are given by Eqs.~6!, ~7!, ~8!,
and the last term is given by a sum of the diffusion and h
conduction fluxes~9!. The physical meaning of the growt
equation is obvious. The dissipative function on the rig
hand side determines at which rate the droplet energy, b
a sum of the kinetic and potential energies, dissipates.
first term in the dissipative function corresponds to the v
cous Stokes force. The second is an intensity of the so
emission provided a body, immersed into a superfluid m
ture, changes its volume. Unlike the well-known case o
normal liquid, the intensity of the emission depends on
both second- and first-sound velocities~8!.

The last term is responsible for the irreversible ene
losses due to diffusion and heat-conduction processes in
bulk of a mixture. From the dimensional speculations o
may expectneff}ueffl (T) wherel (T) is the mean free path
of excitations. Compared with the sound emission intens
et
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in the limit of large droplets these energy losses are of mi
importance due to the hydrodynamic inequalityR@l (T).
The latter circumstance is in drastic contrast to normal liq
mixtures where the diffusion and heat-conduction ene
losses dominate over the sound emission in the hydro
namicR@l (T) limit.

Essentially, the equation~10! for a radial expansion of a
droplet represents a generalization of the well-kno
Rayleigh-Plesset equation12 for the bubble growth in a nor-
mal fluid to the case of a superfluid mixture. On the app
priate choice of the potential energyU(R) of a droplet the
growth equation~10! can also be used for studying, e.g
dynamics of the formation of electron bubbles13 or, if Dr
52r and U(R)54paR214pPR3/3 where P is the ap-
plied external pressure, for studying pulsation dynamics
the cavitation bubbles in superfluid4He.14 The parameters o
Eq. ~10! can be found experimentally by studying the tim
dependence of the droplet radius under various condition
particular, by measuring frequency and damping of the dr
let pulsations in the ultrasound field. This can give cert
information on the value of the accommodation coefficieng
since the other physical quantities determining parameter
Eq. ~10! are known. For sufficiently low temperatures, wh
the c-phase droplet undergoes the transition into the sup
fluid state, one may expect a variation of the accommoda
coefficient.
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