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Bond-order potential based on the Lanczos basis
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A general recursion method for tight-binding molecular dynamics simulations is described in terms of a
bond-order potential based on the Lanczos basis. The simple recursive algorithm for calculating the band
energy and the forces is intrinsically linear in the scaling of the computational efforts for large systems and
very suitable for parallel computation. As a test of this method, constant energy molecular dynamics simula-
tions are performed for carbon materials. The conserved total energy indicates that the forces are of good
quality. @S0163-1829~99!06623-0#
r
n

va
TB
m
rm
th

lu
fo
th
l
se
v

th
n
ty
.

er
on
in
ac

hm
it
th
r
u
u

ng

to
on
he
p
o
ff

hm
d
th
om

ous
om

sily
he

are
.
zos

es.
en-
ion
ver,

o-
r
OP
ics

n-
er-
an-
ly
can
the

d

nn-
The tight-binding~TB! model is practically invaluable fo
the simultaneous investigation of electronic structure a
molecular dynamics in a wide range of systems from co
lent materials to transition metals. In order to apply the
model to real complex systems, for example, disordered
terials, liquids, and large molecules, we need to perfo
simulations on very large systems. However, it exceeds
capacity of modern computers to treat large systems, inc
ing thousands of atoms, using widely known methods
solving the electronic structure problem, such as
conjugate-gradient method, because the computationa
forts scale as the third power of system size. Therefore,
eral efficient schemes with linear scaling algorithms ha
been proposed during the last decade.1–8 Among them, the
bond-order potential~BOP! method1–4 can give insight into
bonding and structure of molecules and solids. Also
method has an advantage in terms of parallel computatio
the same way as otherO(N) methods such as the densi
matrix method and the Fermi operator expansion method6–8

The BOP method derives the local density of states~LDOS!
and the bond orders, which are related to the band en
and the forces, respectively, from the local atomic envir
ment. We can easily parallelize the BOP program code, s
the calculation of the band energy and the forces of e
atom is highly independent.

However, the BOP method has a complicate algorit
compared with conventional recursion methods, because
a delicate problem to evaluate off-diagonal elements of
Green’s-function matrix which are related to the bond orde
To calculate the bond orders, the method adopts proced
where the off-diagonal elements, obtained by means of a
iliary Hilbert space, are corrected by sum rules followi
from the identity (ZI2H)G(Z)5I .2–4 Therefore it is obvi-
ous that the complexity will place hurdles on the road
applications for large scale molecular dynamics simulati
in spite of its role as a tool to analyze the origin of t
bonding and structure and the advantage for parallel com
tation. A new BOP formalism should be derived in terms
the simplicity and the accuracy in the evaluation of the o
diagonal elements.

One of the key concepts in developing the BOP algorit
is a change of basis. A bond-order expansion represente
a new basis can provide a turning point in the progress to
BOP, though the BOP formalism has not been derived fr
PRB 590163-1829/99/59~24!/16061~4!/$15.00
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another basis instead of the atomic basis. Among vari
bases, I focus particularly on the Lanczos basis derived fr
the Lanczos algorithm for the following reasons:~1! the off-
diagonal elements of the Green’s function matrix are ea
evaluated by the recurrence relation which follows from t
tri-diagonalized Hamiltonian and the identity (ZI2H)G(Z)
5I , and ~2! the energy and forces on the central atom
calculated simultaneously at one Lanczos transformation

In this paper I derive a BOP method based on the Lanc
basis within the two-center orthogonal TB model,9 and show
that the representation simplifies the evaluation of the forc
The method, which is an attempt to adopt another repres
tation for the bond-order expansion, is a general recurs
method to obtain the band energy and the forces. Moreo
as a test of the quality of this method, constant energy m
lecular dynamics~CEMD! simulations are carried out fo
carbon materials. The results of CEMD show that the B
forces have sufficient accuracy in the molecular dynam
simulations.

Within the TB model,9 the total potential energyEpot of a
system is a sum of band energyEband and repulsive energy
Erep, whereErep is the sum of suitable repulsive pair pote
tials. The band energy in the BOP is described in two diff
ent terms of the LDOS and the bond order; these two qu
tities are not only formally identical, but also exact
identical in this presented BOP, as explained later. We
evaluate the force as the Hellmann-Feynman force from
latter rather than trying to differentiate the former.3,4

Assuming that the electrons are at a finite temperatureT,
the band energyEband derived from the LDOS is expresse
as follows:

Eband52(
ia

E Enia~E! f S E2m

kBT DdE, ~1!

wherenia(E) is the density of states projected ontoa atomic
orbital u ia& in atom i, and the function f (x)51/@1
1exp(x)# is the Fermi function.

On the other hand, the band energy and the Hellma
Feynman forces are written in terms of the bond ordersu:

Eband5 (
ia, j b

u ia, j b
a H j b,ia,

a ~2a!
16 061 ©1999 The American Physical Society
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Fk52 (
ia, j b

u ia, j b
a

]H j b,ia
a

]r k
, ~2b!

whereH j b,ia
a 5^ j buĤu ia& is an element of the TB Hamil

tonian matrixH, and the indexa indicates the representatio
based on the atomic basis.

Consider a change of representation, from the atomic
sis into the Lanczos basis, by the block Lanczos algorithm10

The algorithm which is an efficient way for block tridiago
nalizing a matrix is also the first step in calculating the dia
onal elements of the Green’s-function matrix. The cen
equation is

ĤuUn)5uUn)An1uUn21)Bn
†1uUn11)Bn11 . ~3!

TheAn andBn are recursion block coefficients withp3p in
size, wherep is the number of atomic orbitals on the startin
atomi. The statesuUn) are constructed by the Lanczos bas
which are orthonormal and block tridiagonalize the Ham
tonian, asuUn)5(uLn1&,uLn2&, . . . ,uLnp&). The representa
tion based on atomic basisTa is transformed into that of the
Lanczos basisTL by a matrixU:

TL5U†TaU, ~4!

whereU is defined byUia,nm5^ iauLnm&, andT is the Hamil-
tonian H, the derivative of the Hamiltonian with respect
atomic coordinate]H/]r i , the bond orderu, or the Green’s-
function G(Z) matrix.

It is essential to choose a starting stateuU0) in the block
Lanczos algorithm as follows:

uU0)5~ u i1&,u i2&, . . . ,u ip&). ~5!

Then considering Eq.~4! and the orthonormality of the Lanc
zos basis we have

u ia, j b
a 5(

nm
u0a,nm

L Unm, j b
† , ~6!

whereUnm, j b
† is a (nm, j b) element in theU† matrix. From

Eq. ~6! the bond orders based on the Lanczos basis are
lated to that by the atomic basis, which allows us to evalu
the bond order in the Lanczos representation. Let us in
duce the block elementTmn

L 5(UmuT̂uUn), whereT̂ is an ar-
bitrary operator, the size of the block element isp3p, and
the (a,b) element ofTmn

L is described asTma,nb
L . Then the

block elements which are needed for evaluating the b
orders based on the atomic basis in Eq.~6! are written as
u0n

L . Therefore, starting the recursion with Eq.~5!, we have
only to evaluate the zeroth block line of the bond-order m
trix. If the conventional scalar Lanczos algorithm11–13 is
applied for a change of representation, Eq.~6! is not simpli-
fied for other nonzero derivatives of the Hamiltonian w
respect to atomic coordinate. Though it is also possible
start the recursion with a cluster containing a neighbor s
of atoms, the choice is not suitable for computer time.

The bond-order matrix can be related to the Green’s fu
tion through the following equation:

u0n
L 52

2

p
ImH E G0n

L ~E1 i01! f S E2m

kBT DdEJ , ~7!
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where 01 shows a positive infinitesimal. The integration
the Green’s function with the Fermi function can be carri
out in the complex plane by summing up an infinite ser
over the modified Matsubara poles.3,4,14 This modified Mat-
subara summation converges rapidly with about 40 comp
poles under a high electron temperature (*1000 K) though
it often diverges under a lower electron temperature. T
modified Matsubara summation is also employed for integ
tions of other Green’s functions with the Fermi function.

The block element of the Green’s functionG00
L (Z) is cal-

culated by the recursion block coefficientsAn and Bn as a
multiple inverse:

G00
L ~Z!5@ZI 2A02B1

†@ZI 2A12B2
†@•••#21B2#21B1#21.

~8!

The G00
L (Z) is equal to a block element represented by

atomic basisGkk
a (Z), since we have started the block Lan

zos algorithm with Eq.~5!. Thus imaginary parts of Eq.~8!
give the LDOS on atomi.

Moreover, by taking account of the block tridiagonalize
Hamiltonian and the identity (ZI2H)G(Z)5I in the Lanc-
zos basis representation, the off-diagonal block element
Green’s function matrixG0n

L (Z) are obtained from a recur
rence relation:

G0n
L ~Z!5@G0n21

L ~Z!~ZI 2An21!2G0n22
L ~Z!Bn21

†

2d1nI #Bn
21 , ~9!

whered is the Kronecker’s delta, andG021
L and B0

† are 0,

respectively. All the off-diagonal block elementsG0n
L (Z) are

related to the diagonal block elementG00
L (Z). OnceG00

L (Z)
has been obtained, the off-diagonal block elements are ea
evaluated from the recursive calculation. The facility for t
evaluation of the off-diagonal block elements is an import
benefit produced by the Lanczos basis representation. Th
fore the computational effort for the evaluation of the force
the same as that for the band energy. The diagonal elem
and the off-diagonal elements obtained from Eq.~8! and Eq.
~9! are exact Green’s functions in the recursion chain clus
block tridiagonalized with the Lanczos transformation, a
the bond orders for the atomi are evaluated through thes
Green’s functions and Eq.~6!. This means that Eq.~1! and
Eq. ~2a! are manifestly identical, since Eq.~2a! can be di-
vided into contributions for each atom. On the other ha
Eq. ~2b! is an approximate force for Eq.~1! or Eq. ~2a!. As
the number of recursion levels increases, the Hellm
Feynman force Eq.~2b! converges the exact force.

In a series of the block Lanczos transformation, the La
zos vectors hop from the central atom to the outside ato
reflecting the local atomic environment. Since the Lancz
bases play the role of a perturbing medium for the cen
atom, for an infinite system, as the number of recursion l
els in Eq.~8! increases, a good convergence is given for b
band energy and the forces. However, we have to take on
finite number of levels for the recursion in Eq.~8! because of
the computational effort, and then estimate the further lev
There are two simple ways of termination.3 One is to take
many levels on a cluster of small size without any termin
tor, and the other is to use a square root term
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nator which is derived assuming that the further block rec
sion coefficients are constant. I have adopted the forme
this study.

In order to keep the number of electrons and to cancel
Madelung energy, though local charge neutrality~LCN! is
often imposed as the simplest form of self-consistency in
usual BOP, the LCN is not an appropriate assumption wit
physical meaning particularly for systems with the cha
transfer. The LCN breaks even in a carbon trimer with
bond length of 1.3 Å , where the excess charge of a midd
carbon is about 0.1. In this study, I have employed to
charge neutrality~TCN! to perform molecular dynamic
simulations while keeping the number of electrons. If t
total excess charge on a system isQ, then a good estimate o
the shift of the chemical potential is

D5l
Q

X
, ~10!

wherel is a parameter to accelerate the convergence,
generally is 1.0. The total response functionX is given as
follows:

X52
2

p
ImH(

ia
E @Gia,ia

a ~E1 i01!#2f S E2m

kBT DdEJ . ~11!

Usually no more than three or four iterations are required
achieve the convergence that the absolute value ofQ/atom is
below 1025. The TCN reduces the separability of individu
atoms in the calculation of the band energy and the forc
and complicates slightly the parallelizability of the progra
code as compared with the LCN. However, the evaluat
and the integration of the Green’s function, which are tim
consuming steps, are separately performed. Therefore
TCN retains the advantage of the BOP.

As a test of the consistency between the band energy
the forces, constant energy molecular dynamics simulat
have been performed for a carbon trimer and diamon15

First, as an example of the finite system, a carbon trimer
been examined in CEMD using a time step of 0.5 fs. H
both Eqs.~8! and~9! are calculated with three recursion le
els, the electron temperaturekBT is 0.2 eV, 40 poles are use
on the integration of the Green’s function, and each atom
given an initial velocity corresponding to 1300 K. Figure

FIG. 1. The potential energy, kinetic energy, and total energy
a function of time for a constant energy molecular dynamics sim
lation of a carbon trimer.
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shows the energy of the carbon trimer as a function of tim
The conserved total energy within 1025 eV/atom indicates
that the forces are of good quality.

In a similar way, CEMD simulations have been carri
out for diamond at 300 K using five and ten recursion lev
on a small cluster without any terminator. The cutoff radi
of the small cluster is 4.2 Å , which is sufficient for including
the fifth neighbor atoms in a perfect lattice. In Fig. 2 t
energy is shown for diamond in CEMD as a function of tim
The fluctuation of the total energy decreases with increas
the number of recursion levels. For five recursion levels,
total energy shows an oscillation with amplitude
1022 eV/atom, while for ten recursion levels, the total e
ergy is conserved within 1023 eV/atom. The BOP with ap-
propriate recursion levels provides an accurate band en
and forces in molecular dynamics simulations of a finite a
infinite systems.

However, as the number of recursion levels increases,
computational effort becomes larger. Computer time and
curacy as a function of the number of recursion levels h
been examined for the above CEMD of diamond on an IB
RS6000/SP2, where a cutoff radius was fixed at 4.2 Å , in all
the number of recursion levels. Figure 3 shows the tim
results for one time step and the amplitude for the total
ergy. The computer time is approximately proportional to t
number of recursion levels, while the error for the total e
ergy decreases rapidly.

Moreover, the method has been compared with direct
agonalization of the Hamiltonian with respect to compu
time. Figure 4 shows the time for one step of the CEMD
diamond as a function of the number of atoms in the cell,
five levels, ten levels, andk space (G). The computer time of
the presented BOP method scales linearly with the numbe
atoms, and results in a smaller computer time than that of
diagonalization when the number of atoms exceeds ab
100. Finally, I have performed parallel computation on a S
Star Fire which is a parallel machine with 32 processors. I
observed that the scalability of the algorithm is almost ide

In the moment-based methods, it is well known that t
vacancy formation energies of covalent materials such
carbon and silicon are not reproduced.16,17However, the pre-

s
- FIG. 2. The potential energy, kinetic energy, and total energy
a unit cell containing 64 atoms for constant energy molecular
namics simulations of diamond at 300 K as a function of time.
~a! the results are for five recursion levels, and in~b! for ten recur-
sion levels.
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16 064 PRB 59TAISUKE OZAKI
sented BOP has reproduced the vacancy formation energ
preliminary calculations, which suggests that the method
an accuracy compared with the former moment-based m
ods. I plan to discuss details in the future.

FIG. 3. ~a! One atom energy and force calculation time.~b! The
magnitude of total energy oscillation in diamond for constant
ergy molecular dynamics calculations as a function of the num
of recursion levels~using a unit cell of 64 atoms at 300 K!. The
calculations were performed on an IBM RS6000/SP2 using
CPU.
i,

d

in
as
h-

In conclusion, I have presented a general recurs
method, which is intrinsically linear in the scaling for larg
systems and very suitable for parallel computation, for c
culating the band energy and the forces in tight-binding m
lecular dynamics simulations in terms of the bond ord
based on the Lanczos basis. From practical applications
carbon materials, it has been demonstrated that the force
of good quality.

I thank Y. Iwasa, T. Mitani, and N. Suzuki for encourag
ment and many enlightening discussions. I am grateful to
Aoki for useful discussions and many comments.
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FIG. 4. Comparison between k space (G point! and the BOP in
terms of calculation time for the energy and force evaluation a
function of number of atoms in a unit cell for diamond. The calc
lations were carried out on an IBM RS6000/SP2 using one CP
.
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