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Green’s function approach for a dynamical study of transport in metal/organic/metal structures

Z. G. Yu, D. L. Smith, A. Saxena, and A. R. Bishop
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 5 November 1998; revised manuscript received 15 January 1999!

We develop an efficient Green’s function formalism to study transport in organic tunneling devices. We find
a crossover behavior of the transport from free-electron-like to polaronlike as the ratio between the electronic
and organic lattice vibration time scales is varied. If the electronic time scale is fast compared to the lattice
vibration time scale, the lattice motion lags behind the incoming wave packet and the transmission is similar
to that in a static case where the lattice is frozen. In the opposite limit, the lattice follows the electron and the
first transmission peak shifts from the conduction-band edge toward the self-trapped polaron level. We inves-
tigate the transmission coefficient, the transfer of energy between the incident electron and the lattice, and the
time evolution of the electron energy distribution function as the ratio of these time scales is changed. To
simulate lattice fluctuations we study a preexisting lattice distortion and find enhanced subgap transmission.
Our results are important for understanding electrical injection in polymer light-emitting diodes and other
organic-based electronic device structures, and electrical transport in molecular wires.
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I. INTRODUCTION

Recently, conjugated organic materials have attrac
much theoretical and experimental interest both becaus
the novel physics that occurs in these materials and bec
of the technological potential of electronic devices fabrica
from them.1–14 In organic-based electronic devices such
polymer light-emitting diodes~PLED’s!, metal contacts are
attached to the conjugated organic material for electron
jection. This injection process plays an important role in
operation of organic electronic devices and is not curren
well understood. Self-assembled monolayers chemic
bonded to the metal contacts have been used to contro
injection properties in these devices.5 Self-assembled mono
layers with dipole moments were used to change the en
barrier to injection. The electrons conduct through the m
ecules making up the self-assembled monolayer which ac
an array of molecular wires. The electrical transport in in
vidual molecular wires either contacted by metal pads or
a scanning tunnel microscope tip and a back me
contact7–10 is a closely related subject also of current intere
A common characteristic of these structures is that an e
tron is transferred from a metal, where the electron-latt
coupling is weak, to a conjugated organic material, where
electron-lattice coupling is very strong. In conjugated org
ics, because of the strong electron-lattice coupling, the
mary single-particle excitation is not the free electron but
self-trapped polaron, in which a lattice distortion is localiz
around the electron.15 Therefore in organic injection struc
tures, polaron formation and lattice fluctuation effects m
play a significant role in the electrical transport.16,17 As a
specific structure to investigate transport from a we
electron-lattice coupling material to a strong one, we c
sider metal/organic/metal tunnel structures. We construc
electron wave packet in one of the metal leads, allow it
impact on the organic region, and study the dynamics of
transport of the wave packet.

Many current studies of electrical injection in organ
PRB 590163-1829/99/59~24!/16001~10!/$15.00
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structures borrow ideas developed for inorganic semicond
tor tunneling structures.18–20 In the description of electrica
transport in molecular wires, for example, the organic m
lecular chain is often treated as an inorganic semicondu
with a rigid lattice.11–13 Dynamical wave packet evolution
approaches have been used to study the transport in
ganic devices.21 Because of the different nature of intera
tions in the organic and inorganic materials, it is difficult
extend these approaches to the metal/organic/metal s
tures, which requires the self-consistent solution of the w
packet plus the lattice problem. Because of the stro
electron-lattice interaction and the importance of the latt
configuration to the electronic motion, electrical transport
these structures is an intrinsically dynamical problem, i
the evolution of both the incoming electron and organic l
tice must be determined self-consistently. Therefore a st
study may not be sufficient to obtain a complete understa
ing of electrical transport in these organic structures. Ho
ever, due to the complexity and numerical intensity of t
dynamical calculations, only static studies have been car
out to date.11–14

There have been several studies on the soliton/pola
dynamics in a homogeneous finite polymer chain.22–27 In
these studies, dynamical evolution approaches were de
oped, which successfully addressed interesting bulk trans
questions such as how a preformed soliton/polaron move
the presence of an external field and how an optically g
erated electronic excitation evolves into a stable polar
soliton. The system we study here is intrinsically inhomog
neous in that it consists of two kinds of material region
weak-coupling metal leads and the strong-coupling con
gated organic material. We are interested in the reflec
and transmission coefficients for an electron wave pac
incident from the metal, the wave-packet behavior in t
lattice ~free-electron vs polaron!, and lattice fluctuation ef-
fects on the electronic transmission. Infinite metal leads
required in order to eliminate the spurious multiscatter
that would result from the boundary of a finite system. B
16 001 ©1999 The American Physical Society
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cause of the infinite metal leads the energy spectrum is c
tinuous rather than discrete as is the case for a finite sys
Because we are considering an infinite system with a c
tinuous energy spectrum, the previous mathematical
proaches used to describe the dynamics for a finite hom
neous polymer are not suitable to study the transport in
metal/organic/metal structure. We therefore develop
Green’s function formalism to study electrical transport
the metal/organic/metal structures. The formalism takes
account the infinite metal leads, possible electrical bias,
purities, the possibility of asymmetric metal contacts, a
extrinsic ~cis-like conformation! contribution to the elec-
tronic energy gap, and can be readily extended to other
ganic structures and device configurations. Using t
Green’s function formalism, we find that the electron tran
port behavior indeed depends on the ratio between electr
and lattice time scales. For fixed electronic structure, a cr
over behavior from free-electron to polaronlike transport
found with increasing phonon frequency. In the former,
lattice lags behind the incoming wave packet and the tra
mission is close to that of the static case; whereas, in
latter, the lattice follows the injected electron forming a la
tice distortion cloud around the electron, and the transm
sion peak shifts toward a polaron level in the oligomer.

The paper is organized as follows. In Sec. II, we pres
the details of the Green’s function formalism. Section
contains results on the time evolution of a wave packet a
traverses the oligomer, electronic transmission as a func
of energy, energy distribution between the wave packet
the lattice as a function of time, and charge density in
oligomer as a function of time. In Sec. IV, we summarize o
conclusions.

II. MODEL AND FORMALISM

We consider a one-dimensional structure in which an
gomer chain is sandwiched between two metal contacts.
metals attached to the oligomer may be different and th
may be a bias between the metal leads~Fig. 1!. To avoid the
spurious multiscattering that would result from the bound
in a finite system, we take infinitely long metal leads. B
cause the system is infinite the energy spectrum is cont
ous.

The Hamiltonian consists of four parts:

H5Hmet
L 1Hmet

R 1Holi1H int . ~1!

We describe the metals by using a one-dimensional~1D!
tight-binding model, for the left lead,

Hmet
L 52t0 (

l 52`

21

~cl
†cl 111H.c.!1V1 (

l 52`

0

cl
†cl , ~2!

and for the right lead,

FIG. 1. Schematic diagram showing metal and oligomer site
a chain forN58.
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Hmet
R 52t0 (

l 5N11

`

~cl
†cl 111H.c.!1V2 (

l 5N11

`

cl
†cl , ~3!

wherecl (cl
†) annihilates~creates! an electron at sitel, and

V1 andV2 are the electrostatic potentials of the left lead a
the right lead, respectively. The oligomer is described
using the Su-Schrieffer-Heeger~SSH! model:15

Holi5Holi
e 1H latt , ~4!

Holi
e 52 (

l 51

N21

$@ t2a~ul 112ul !#~cl
†cl 111H.c.!1Vlcl

†cl%,

~5!

H latt5
K

2 (
l 51

N21

D l
21 (

l 52

N21 pl
2

2M
. ~6!

Hereul is the lattice displacement of sitel, D l5ul 112ul , a
the electron-lattice coupling,K the spring constant of the
oligomer, andM the mass of the oligomer atom. The ter
Vlcl

†cl represents the site energy change due to a poss
electrical bias. This term can also be used to simulate di
der due to impurities. The coupling between the oligom
and the metals is described by hopping at the ends of
oligomer:

H int52t1~c0
†c11cN

† cN111H.c.!. ~7!

The left metal lead extends froml 52` to l 50 and the
right metal lead extends froml 5N11 to l 5`. The oligo-
mer extends froml 51 to l 5N. The position of the sitesl
51 and l 5N are fixed and the position of the otherN22
sites in the oligomer can vary. The integerN is even.

We explicitly include the valence electrons in the olig
mer and the electrons below the Fermi energy in the met
In the ground state the oligomer is dimerized and polar
are the primary single-particle excitations. In the polaron,
charge is localized and surrounded by a lattice distortion

We neglect electron-electron interactions and assume
energy of the incoming wave packet is far above the Fe
energy so that all the states of the outgoing electron are
occupied. We consider both the metal and the me
oligomer contact as ideal one-dimensional structure. T
transmission features depend weakly on the detailed st
ture of the metal/contacts and the dimensionality of the m
als. In our static study, we systematically studied 1D/2D/
structures and found that they have similar transp
features.14

We regard the decoupled metals and oligomer to be
scribed by the unperturbed Hamiltonian

H05Hmet
L 1Hmet

R 1Holi
e . ~8!

The Green’s function ofH0 is calculated from

G̃ll 8
0

~E!5(
i

^ l uf i&^f i u l 8&

E2Ei1 i01
. ~9!

Because the oligomer and the two metal contacts are de
pled in H0 this Green’s function for each of these regio
can be calculated separately. Since the oligomer is sm
uf i& and Ei can be obtained by direct diagonalization of

in
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small matrix. For the left metal, because of the bound
condition, the eigenfunctions are

ufk&5
1

AN (
l

@eikl2e2 ik( l 22)#u l &. ~10!

Thus the Green’s function at the left metal is (l ,l 8,0),

G̃ll 8
0

~E!5
1

2pE2p

p

dk
eik( l 2 l 8)2eik( l 1 l 822)

E1 i012V112t0cosk
. ~11!

Similarly, at the right metal (l ,l 8.N),

G̃ll 8
0

~E!5
1

2pE2p

p

dk
eik( l 2 l 8)2eik( l 1 l 822N)

E1 i012V212t0cosk
. ~12!

Since our model includes two semi-infinite metal leads,
energy spectrum of the system is continuous. We calcu
the energy change of the system after turning on the coup
between the metals and the oligomer by integrating over
whole energy spectrum,

dE5E dEEdr~E!, ~13!

wheredr(E) is the change in the density of states that
sults from turning on the coupling. Usingt-matrix theory,28 it
can be written as

dr~E!5
21

p
Im

d

dE
ln D~E!, ~14!

where

D~E!5det@12G̃0~E!H int#. ~15!

D(E) is easy to calculate becauseH int is short range; non-
zero only at the two interfaces between the oligomer and
metal. The nonzero elements ofH int form two 232 subma-
trices,

H int5S 0 2t1 0 0

2t1 0 0 0

0 0 0 2t1

0 0 2t1 0

D . ~16!

We have two interface couplings between the metals and
oligomer H int5H int

L 1H int
R . There is no correlation betwee

these two couplings, so we have

det@12G̃0~E!H int#5det@12G̃0~E!H int
L #det@12G̃0~E!H int

R #

[D1~E!D2~E!. ~17!

Thus we can separate the contribution todE from the two
interface couplings

dE5dE L1dER, ~18!

where
y

e
te
g
e

-

e

he

dE L52
2

p
E Im ln D1~E!u

22t01V1

EF
L

1
2

pE22t01V1

EF
L

Im ln D1~E!dE, ~19!

dER52
2

p
E Im ln D2~E!u

22t01V2

EF
R

1
2

pE22t01V2

EF
R

Im ln D2~E!dE, ~20!

and whereEF
L (EF

R) is the Fermi energy of the left~right!
metal and

D1~E!5 ln@12t1
2G̃00

0 ~E!G̃11
0 ~E!#, ~21!

D2~E!5 ln@12t1
2G̃NN

0 ~E!G̃N11N11
0 ~E!#. ~22!

Here the Green’s functions for the metals are

G̃00
0 ~E!5

2 i

A4t0
22~E2V1!2 F22

~E2V1!2

2t0
2

1 i
~E2V1!

2t0
2

A4t0
22~E2V1!2G , ~23!

G̃N11N11
0 ~E!5

2 i

A4t0
22~E2V2!2 F22

~E2V2!2

2t0
2

1 i
~E2V2!

2t0
2

A4t0
22~E2V2!2G . ~24!

The short range ofH int enables us to treat it rigorously rathe
than perturbatively. We included all orders of the interacti
t1.

When the band bottom of the metals is below the low
level in the oligomer, the interface coupling will not intro
duce any new localized states because, in this case,D(E) is
always positive and there is no solution that satisfiesD(E)
50.

The ground-state configuration of the oligomer is det
mined by

d^H&
dul

5
d^Holi&

dul
1

dE
dul

50. ~25!

When the oligomer is attached to the metals, the lattice c
figuration will deviate from its isolated one.

We introduce an incoming wave packet, which is taken
have a Gaussian profile,

c l~t0!5C expF ik0~ l 2 l 0!2
~ l 2 l 0!2

4~d l !2 G , ~26!

wherek0 is the average wave number of the wave packetl 0
its center location,d l its width, andC the normalization
constant. To study the dynamics of this incoming wa
packet, we solve the time-dependent Schro¨dinger equation:
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F i\
]

]t
2H0~t!Gc~t!5H intc~t!. ~27!

HereH0 implicitly depends on time through the lattice co
figuration of the oligomer, which evolves after the electr
impacts the left interface. We use the Green’s function
update the wave function of the incoming wave packet. T
Green’s function ofH0 at timet is

Gll 8
0

~dt;t![2 i ^ l ueiH 0(t)dtu l 8&

5
1

2pE2`

`

dEG̃ll 8
0

~E;t!e2 iEdt/\, ~28!

whereG̃ll 8
0 (E;t) is the Green’s function ofH0 at timet in

the energy space which can be calculated from Eq.~9!. Thus
for the left metal,

Gll 8
0

~dt;t!5~2 i !e2 iV1dt/\@ i u l 2 l 8uJu l 2 l 8u~2dtt0 /\!

2 i u l 1 l 822uJu l 1 l 822u~2dtt0 /\!#, ~29!

and for the right metal

Gll 8
0

~dt;t!5~2 i !e2 iV2dt/\@ i u l 2 l 8uJu l 2 l 8u~2dtt0 /\!

2 i u l 1 l 822NuJu l 1 l 822Nu~2dtt0 /\!#, ~30!

whereJl is thel th Bessel function of the first kind, and in th
oligomer

Gll 8
0

~dt;t!52 i(
i

^ l uf i~t!&^f i~t!u l 8&e2 iEidt/\. ~31!

The updated wave function of the incoming wave pac
after a small time interval29 dt is obtained through the evo
lution equation

c l~t1dt!5 i(
l

Gll 8
0

~dt;t!c l 8~t!

1
1

\E0

dt

dt8(
l 8 l 9

Gll 8
0

~t8;t!H int
l 8 l 9c l 9~t!.

~32!

Defining

Sll 8~dt;t!5E
0

dt

dt8Gll 8
0

~dt2t8;t!, ~33!

we have

c l~t1dt!5 i(
l 8

Gll 8
0

~dt;t!c l 8~t!

1(
l 8 l 9

Sll 8~dt;t!H int
l 8 l 9c l 9~t!. ~34!

In the above equations, the scattering potential is short ra
and therefore the evolution equation contains only one s
mation. Thus our Green’s function approach is efficient
studying the dynamics of transport in organic devices. O
o
e

t

ge
-

r
r

formalism is also easy to extend to other metal and oligom
structures by substituting the appropriate Green’s function
the present formula.

Due to the strong electron-lattice coupling in the olig
mer, when the incoming wave packet is passing through
oligomer, the lattice will be distorted from its equilibrium
position and this distortion in turn changes the electro
structure in the oligomer. Thus we must determine the lat
and the wave packet motion self-consistently. The latt
motion is calculated from the classical equation

M
d2ul

dt2
5Fl~t![2

d^H~t!&
dul

, ~35!

where d^H(t)&/dul consists of the contribution from bot
d^Holi(t)&/dul and dE(t)/dul . Now d^Holi(t)& contains
contributions from both the valence electrons and the inco
ing wave packet.

The updated lattice configuration and momentum afte
small intervaldt is obtained by integrating Eq.~35! over
time,

ul~t1dt!5ul~t!1
pl~t!

M
dt, ~36!

pl~t1dt!5pl~t!1Fl~t!dt. ~37!

To describe the dynamics of the wave packet tunnel
through the organic polymer, it is useful to examine the tim
dependent energy of the wave packet and of the lattice.
also useful to analyze the time-dependent energy distribu
of the wave packet. From this analysis, we can underst
how the energy is exchanged between the incoming w
packet and the lattice dynamically. The energy in the olig
mer is the summation of the lattice kinetic and elastic en
gies and the energies of valence electrons. Before the w
packet impacts the interface, the lattice stays in its equi
rium position and both the lattice kinetic and elastic ene
are zero. If we denote the energy change due to the inter
couplings in the ground state bydE0 initially, the energy in
the lattice at timet is calculated from

Elatt~t!5 (
l 52

N21 pl
2~t!

2M
1

K

2 (
l 51

N21

D l
2~t!

1(
i 51

N/2

@2Ei~t!22Ei
0#1@dE~t!2dE0#. ~38!

Here,Ei(t) is the i th eigenvalue of the oligomer electron
Hamiltonian at timet and Ei

0 the eigenvalue for the initia
condition. The expectation value of the energy of the wa
packet with the normalized wave functionc(t) at timet is
obtained from

Ewav~t!5^c~t!uHeuc~t!&, ~39!

where He5Hmet
L 1Hmet

R 1Holi1H int is the total electronic
Hamiltonian.

The total energy of the system which includes the wa
packet, all valence electrons, and the lattice elastic and
netic contributions can be written as
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E~t!5^c~t!uHeuc~t!&1(
i

^f i uHeuf i&1Hela

1
1

2
M(

l
u̇l

2 . ~40!

HereHela[K/2( lD l
2 is the lattice elastic energy. Sincec(t)

satisfies the time-dependent Schro¨dinger equation, by using
the Feynman-Hellman theorem, the time-derivative of
energy is

dE

dt
5^c~t!u

dHe

dt
uc~t!&1(

i
^f i u

dHe

dt
uf i&1

dHela

dt

1M(
l

dul

dt

d2ul

dt2
. ~41!

Since the Hamiltonian only depends ont implicitly through
ul , we have

dE

dt
5(

l

dul

dt FM
d2ul

dt2
1^c~t!u

dHe

dul
uc~t!&

1(
i

^f i u
dHe

dul
uf i&1

dHela

dul
G . ~42!

The summation of the last three terms in the above equa
is simply 2Fl(t). Thus the total energy of the system
conserved.

Since the electronic spectrum in our system is continuo
the wave packet has a continuous energy distribution, wh
is also a function of time. The time-dependent energy dis
bution of the wave packet is

d~E;t!5(
i

z^f i uc~t!& z2d~E2Ei !. ~43!

Here f i is the eigenfunction of the total electronic Ham
tonian andEi is the corresponding eigenvalue. We can c
culated(E;t) from the Green’s functions

d~E;t!52
1

p
Im (

i
^c~t!uf i&

1

E2Ei1 i01
^f i uc~t!&

52
1

p
Im^c~t!u

1

E2H1 i01
uc~t!&

52
1

p
Im (

l l 8
c l* ~t!c l 8~t!G̃ll 8~E!, ~44!

whereG̃ll 8 is the Green’s function of the electronic Ham
tonian in real space G̃ll 8(E)5^ l u(E2H1 i01)21u l 8&,
which, in our case, can be calculated exactly because o
short range ofH int

G̃~E!5G̃0~E!1G̃0~E!T~E!G̃0~E!, ~45!

where

T~E!5H int@12G̃0~E!H int#
21. ~46!
e

on

s,
h
i-

-

he

The transmission and reflection coefficients can be
tained by integrating the current over time. The current in
metal is defined as

j l5 i t 0~c l 11* c l2c l* c l 11!, ~47!

and the coefficients for the normalized incoming wa
packet are

T5E
t0

`

dt j R~t!;R5E
t0

`

dt j L~t!, ~48!

where we use currents far from the metal/oligomer int
faces,

j L~t!5 i t 0~c l* c l 112c l 11* c l !, l !0, ~49!

j R~t!5 i t 0~c l 11* c l2c l* c l 11!, l @N. ~50!

III. RESULTS

A. Wave-packet evolution and transmission

We present results of our dynamical study using
Green’s function formalism. We fix the electronic paramet
of the metal and the oligomer and vary the lattice vibrati
frequency by changing the mass of the oligomer atoms.
electronic parameters of the oligomer are:a57 eV/Å, K
540 eV/Å2, t052.6 eV, t52.5 eV, and t151.5 eV,
which are typical parameters in conjugated polymers.15 Be-
cause the molecules used for molecular wires are also
jugated, these parameters should be also be reasonab
describing these systems. The vibration frequencyv
52AK/M is tuned by changing the massM of the oligomer
atom. Using a value ofM corresponding to trans
polyacetylene givesv5v050.22 eV. We present result
for an eight atom oligomer,N58. Figures 2 and 3 are snap
shots of the incoming wave packet at different times. Fig
2 is for a small transmission~off-resonance! case and Fig. 3
is for a high transmission~resonance! case. Before the wave
packet enters the oligomer, the wave packet has a Gaus
profile. While the wave packet is in the oligomer, the wav
packet profile is severely distorted due to the scattering
the interface and the oligomer. Eventually part of the wa
packet is reflected and part is transmitted, and the profile
the wave packet splits into several subwave packets.

From our dynamical calculations, we can determine
time duration over which the wave packet stays in the olig
mer ~dwell time!. In Fig. 4, we plot the total charge densit
in the oligomer as a function of time. We find that when t
energy of the wave packet coincides with that of the discr
energy levels in the oligomer, the wave packet stays in
oligomer for a much longer time than the wave packet w
other energies.

Figure 5 describes the transmission as a function of
energy of the incoming electron. The dashed line is the st
case, i.e., the oligomer atoms are fixed at their equilibri
positions. The peaks in the transmission spectrum co
spond to the discrete energy levels in the oligomer. The fi
peak indicates the lowest unoccupied level in the oligom
For finite vibration frequencies, because of the electr
lattice coupling, the lattice will move away from its equilib
rium position after the electron wave packet impacts the
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terface between the oligomer and the metal. The solid lin
for the case ofv5v0. We find that the transmission is sim
lar to that of the static case. For the casev510v0, as illus-
trated by the dot-dashed lines, the transmission is dram
cally different from that of thev5v0 case, especially below
the conduction-band edge. The first transmission peak s
toward lower energy, which indicates some subgap elec
levels.

In inorganic double barrier tunneling structures, phono
assisted tunneling and phonon side peaks in the transmis
spectrum have been observed.18–20 In the organic-based de
vices, since the lattice is described classically, the energ
the lattice is not quantized and we do not observe the pho
side peaks. However, because the self-trapped polaron
be formed, which is below the conduction-band edge, we
observe that the peak in transmission shifts toward the
laron level.

To more clearly illustrate the different transmission b
havior for the different lattice vibrational frequencies, w
examined the evolution of the wave function of the incomi
wave packet and the lattice configuration. We calculate
charge density of the incoming electron and the lattice c
figuration in the oligomer for different time to study the co
relation between the electronic and the lattice motion
these two cases. Figure 6 illustrates the case in the l
frequency regime,v5v0. The circles, squares, and triangl
correspond tot56, 8, and 10 fs. Figure 6~a! shows that from
6–10 fs, the wave packet is moving from the left interface

FIG. 2. Snapshots of the wave packet at different times fo
small ~off-resonant! transmission case (E51.2 eV). The five pan-
els correspond tot51,4,8,12, and 16 fs, respectively. The oligom
is between the two dashed lines. The lattice vibration frequenc
v0.
is
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the right one. Because of the electron-lattice coupling,
lattice moves away from its equilibrium configuration as
Fig. 6~b!. However, duringt56 to t510 fs the lattice mo-
tion is within its first vibrational period and lags far behin
the incoming electron. Thus the carrier is like a free elect
and the transmission is almost the same as that in the s
case.

The high-frequencyv510v0 results are shown in Fig. 7
The lattice behavior is quite different from that forv5v0.
During the period from 6–10 fs, as the wave packet mo
from the left interface to the right one, the profile of th
lattice distortion also moves through the oligomer, followin
the wave packet motion. In other words, the carrier in t
case is no longer a free electron but rather the electro
surrounded by the lattice distortion, like a self-trapped p
laron. This carrier behavior leads to the first transmiss
peak shifting toward the polaron level in the oligomer, whi
lies below the energy gap, as shown in Fig. 5.

B. Energy exchange between wave packet and lattice

The transport behavior in various frequency regimes
also be studied by focusing on the evolution of the energy
the wave packet and the energy in the oligomer. Figur
depicts the energy of the incoming wave packet and tha
the oligomer as a function of time for the case ofv5v0.
The energy in the oligomer consists of three parts: latt
kinetic and elastic energy, valence electron energy, anddE
due to the interface couplings. In the low-frequency regim
after the wave packet enters the oligomer, the wave pa

a

is

FIG. 3. Snapshots of the wave packet at different times fo
large ~resonant! transmission case (E52.2 eV). Other parameter
and symbols are the same as in Fig. 2.
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loses some energy gradually and at the same time the la
gains some energy; the total energy of the wave packet
the lattice is conserved. In the lattice, the energy increa
monotonically and saturates when the wave packet
passed through the oligomer. This is to be expected since
incoming electron causes the lattice motion when it pas
through the oligomer, and in this case the lattice motion l
behind the electron. This lattice motion has no correlat
with the electron: the wave packet just excites the latt

FIG. 4. The total charge density in the oligomer as a function
time. In panel~a!, the solid line is for a small~off-resonant! trans-
mission ~Fig. 2! and the dashed one is for the large~resonant!
transmission~Fig. 3!. Parameters are the same as in Fig. 2. In pa
~b!, the interface coupling is small (t150.5 eV) and the width of
the initial wave packet is large (d l 520 lattice constants! so as to
manifest the resonant tunneling effects.

FIG. 5. Electronic transmission as a function of the incom
wave-packet energy fora57 eV/Å. The dashed, solid, and do
dashed lines correspond tov50, v5v0, and v510v0, respec-
tively. The inset shows schematically the electronic levels of
oligomer; dashed lines denote polaron levels.
ice
nd
es
as
he
es
s
n
e

motion through the electron-lattice coupling, but cannot o
tain the feedback from the lattice. Thus the energy in
lattice is monotonic.

In the high-frequency regime, as shown in Fig. 9, t
energy in the lattice is localized for some period when
incoming wave packet is in the oligomer, indicating th
highly correlated motion between the incoming wave pac
and the lattice. Since in this case, the lattice distortion
localized around the wave packet, the peak correspond
the whole wave packet being in the oligomer, which has
largest lattice distortion and therefore the largest energy
change in lattice.

To obtain more detailed information about the energy
change occurring when the wave packet passes through
oligomer, we show in Figs. 10 and 11 the energy distribut
of the wave packet for different times. We see that the ini
wave packet has a Gaussian distribution around

f

l

e

FIG. 6. Snapshot of~a! charge density of the wave packet an
~b! magnitude of the lattice distortion in the oligomer forv5v0.
The circles, squares, and triangles correspond tot56, 8, and 10 fs.
The energy of the incoming wave packet is 2.1 eV.

FIG. 7. Snapshot of~a! charge density of the wave packet an
~b! magnitude of the lattice distortion in the oligomer forv
510v0. Symbols and the energy of wave packet are the same a
Fig. 6.
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FIG. 8. Energy of the wave packet~a! and the lattice~b! as a
function of time forv5v0. The dashed line in panel~a! is the total
energy of the wave packet and the lattice. The energy of the inc
ing wave packet isE52.2 eV.

FIG. 9. Energy of the wave packet~a! and the lattice~b! as a
function of time forv510v0. The symbols and the energy of th
wave packet are the same as in Fig. 8.
average energy. While the wave packet is in the oligom
the energy distribution changes dramatically with some sh
peaks, which correspond to the discrete levels of the oli
mer. Because the wave-packet tail stays in the oligomer f
long time, the peaked structure of the energy distribution
maintained for a long time. Eventually the energy distrib
tion is restored to a smooth one. By comparing the fi
energy distribution to the initial one, we find different beha
ior of the wave-packet energy distribution for the two vibr

-

FIG. 10. Energy distribution of the incoming wave packet
different times forv5v0. Panels~a!–~d! correspond tot50,8,16,
and 40 fs, respectively. The dashed line in panel~d! is identical to
panel~a! for reference purposes. The energy of the incoming wa
packet isE52.2 eV.

FIG. 11. Energy distribution of the incoming wave packet
different times forv510v0. Symbols and the energy of the wav
packet are the same as in Fig. 10.
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tional frequencies. In the low-frequency regime (v5v0),
the final distribution becomes asymmetric and the wa
packet gains some weight below the distribution peak,
though the location of the peak does not change significan
This result is consistent with the picture that the wave pac
loses energy in the lattice and lattice excitations are left
hind the wave packet in this regime. In the high-frequen
regime, however, the final distribution is nearly symmet
and is simply broadened compared to the initial one. T
energy of the final wave packet is nearly the same as tha
the initial one. This result is consistent with the picture
highly correlated electron and lattice motion in this regim
after the wave packet has passed through the oligomer
lattice stays near its equilibrium position and little energy
transferred to the lattice.

The energy left in the lattice after the wave packet h
passed through the oligomer depends on the phonon
quency. We plot in Fig. 12 the energy left in the lattice a
function of the phonon frequency of the oligomer. We s
that in both low- and high-frequency limits, the energy in t
lattice approaches zero. This is expected because, in the
frequency limit, the lattice cannot move and the lattice c
not be excited; whereas in the high-frequency limit, the m
tion of the electron and lattice are highly correlated and a
the wave packet has passed through the oligomer, the la
stays near its equilibrium position and little energy is tra
ferred to the lattice. The difference between these two lim
is that in the high-frequency limit, the energy in the latti
changes with time when the wave packet is moving throu
the oligomer.

We also find a similar crossover behavior for a fixed
brational frequencyv5v0 by tuning the electronic time
scale. The electronic scale is determined by its moment
In the one-dimensional tight-binding model of the metal, t
dispersion is E5V122t0cosk and the time scale is
\/u2t0sinku. Thus for an incoming electron with a fixed en
ergy, we can changeV1 to obtain different momenta of th
electron. Thus whether the carrier is like a free electron o
polaron depends on the ratio between the electron time s
and the lattice time scale.

FIG. 12. The energy left in the lattice as a function of the latt
vibrational frequency. The energy of the incoming wave packe
fixed atE52.2 eV.
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C. Lattice fluctuation effects: a preexisting polaron

Strong lattice fluctuations may significantly influenc
electronic transmission through the organic segment. Du
the low dimensionality of polymers, lattice fluctuations c
be sufficiently strong to produce some transient solitonlike
polaronlike lattice distortion.30,31 Since the polaron configu
ration has the most important contribution to lattice fluctu
tions in oligomers, we consider a preexisting polaron latt
distortion and calculate the wave-packet transmission
study fluctuation effects. In Fig. 13, we show the transm
sion as a function of the energy of the incoming wave pac
with a preexisting polaronlike lattice distortion. The dash
and dot-dashed lines correspond tov50 and v5v0. For
v50, because the lattice does not move, the first reson
tunneling peak is from the polaron level in the oligomer. F
v5v0, although the first transmission peak shifts from t
polaron level toward higher energy compared to the cas
v50, it is still much lower than the energy gap~first peak of
the solid line!. This indicates that the wave packet can us
‘‘partially formed’’ polaron level produced by lattice fluctua
tions to tunnel through the oligomer, although the carr
behavior here is more like a free electron. Thus polaron
fects may be important even in the low-frequency regi
due to the presence of strong lattice fluctuations in olig
mers. The present realization of lattice fluctuations is m
realistic compared to the previous approximation treated
static disorder.14 The subgap transmission is enhanced
both cases, although at somewhat different energies.

IV. SUMMARY AND CONCLUSION

In this paper, we have studied the dynamics of cha
transport in metal/organic/metal tunneling structures. W
have introduced a model which consists of two semi-infin
metal contacts attached to the polymer chain. Conjuga
organic materials are quite different from inorganic semico
ductors in that the lattice in organics is flexible and read
distorted and there is a strong electron-lattice coupling.
understand the transport in these devices, it is necessa
solve both the electronic and lattice motions se

s

FIG. 13. Electronic transmission as a function of the incom
wave-packet energy with a pre-existing polaronlike lattice dist
tion. The electron-lattice coupling isa55.6 eV/Å. Dashed and
dot-dashed lines correspond tov50 andv5v0. The solid line is
for reference purpose, obtained by using the equilibrium lattice c
figuration andv5v0.
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consistently. Existing dynamical approaches used for fin
homogeneous polymer models are not suitable to study t
organic tunneling structures. To this end, we develope
physically intuitive and numerically efficient Green’s fun
tion approach to investigate the dynamics of transport
organic-based devices. In this formalism, we have treated
coupling between the oligomer and metals as the interact
The short range of this interaction enabled us to treat it
orously rather than perturbatively and to study the dynam
very efficiently. The formalism is readily extended to oth
organic structures where a dynamical study would also
appropriate.

The transport behavior in the metal/organic/metal str
tures depends on the ratio between the electronic and la
time scales. For fixed electronic structure, by increasing
lattice vibrational frequency, the carrier behavior chang
from free-electron-like to polaronlike. In the former, the la
tice motion lags behind the incoming wave packet and
transmission is very close to that in the rigid-lattice case
contrast, in the latter case, the lattice follows the electr
forming a lattice distortion cloud, and the first transmissi
peak shifts from the conduction-band edge to the s
.
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trapped polaron level. We also observed this crossover f
fixed lattice vibrational frequency by tuning the velocity
the incoming wave packet. We have investigated the tra
mission properties, the transfer of energy between the i
dent electron and the oligomer, and the time evolution of
electron energy distribution, as the ratio of these time sca
is changed. We have calculated the dynamical electro
transmission with a preexisting lattice distortion to simula
lattice fluctuations. Strong lattice fluctuations in on
dimensional oligomers may lead to transient polaronlike
tice distortions, which change the transmission of these t
nel structures substantially even in the low phonon freque
regime. Our microscopic results should provide valuable
put to macroscopic device models, e.g., cross sections
scattering events and carrier mobilities.

ACKNOWLEDGMENTS

This work was supported by the LDRD program on M
lecularly Engineered Electronics Materials at LANL and t
U.S. Department of Energy.
c.
1See, e.g., J.H. Burrougheset al., Nature ~London! 347, 539
~1990!.

2P.L. Burnet al., Nature~London! 347 539 ~1990!.
3G. Gustaffsonet al., Nature~London! 357, 477 ~1992!.
4L.A. Bumm et al., Science272, 1323~1996!.
5 I.H. Campbellet al., Phys. Rev. B54, R14 321~1996!.
6F. Nueschet al., Adv. Mater.9, 222 ~1997!.
7R.P. Andreset al., Science273, 1690~1996!.
8S. Dattaet al., Phys. Rev. Lett.79, 2530~1997!; W.D. Tianet al.,

J. Chem. Phys.109, 2874~1998!.
9C. Boulaset al., Phys. Rev. Lett.76, 4797~1996!.

10A. Yazdaniet al., Science272, 1921~1996!.
11C. Joachim and J.F. Vinuesa, Europhys. Lett.33, 635 ~1996!.
12S. Datta and W. Tian, Phys. Rev. B55, R1914~1997!.
13M.P. Samantaet al., Phys. Rev. B53, R7626~1996!.
14Z.G. Yu et al., Phys. Rev. B56, 6494~1997!; J. Phys.: Condens

Matter 10, 617 ~1998!.
15A.J. Heegeret al., Rev. Mod. Phys.60, 781 ~1988!.
16A. Kadyshevitch and R. Naaman, Surf. Interface Anal.25, 71

~1997!; Phys. Rev. Lett.74, 3443~1995!.
17A. Haranet al., Chem. Phys. Lett.268, 475 ~1997!.
18F.F. Oualiet al., Phys. Rev. Lett.75, 308 ~1995!.
19C. Zhanget al., Phys. Rev. Lett.72, 3397~1994!.
20W. Cai et al., Phys. Rev. Lett.65, 104 ~1990!.
21F. Rossi, A.D. Carlo, and P. Lugli, Phys. Rev. Lett.80, 3348

~1998!.
22Y. Ono and A. Terai, J. Phys. Soc. Jpn.59, 2893~1990!.
23M. Kuwabara, Y. Ono, and A. Terai, J. Phys. Soc. Jpn.60, 1286

~1991!; Y. Ono, M. Kuwabara, and A. Terai,ibid. 60, 3120
~1991!; M. Kuwabara, Y. Ono, and A. Terai,ibid. 61, 2412
~1992!.

24M. Kuwabara, A. Terai, and Y. Ono, J. Phys. Soc. Jpn.65, 992
~1996!.

25Y. Arikabe, M. Kuwabara, and Y. Ono, J. Phys. Soc. Jpn.65,
1317 ~1996!.

26M. Kinoshita, Y. Hirano, M. Kuwabara, and Y. Ono, J. Phys. So
Jpn.66, 703 ~1997!.

27A. Yamashiro and A. Takahashi, J. Phys. Soc. Jpn.67, 2938
~1998!.

28See, e.g., J. Callaway,Quantum Theory of the Solid State, 2nd ed.
~Academic Press, San Diego, 1991!.

29We use a very smalldt ~0.01 fs! in our calculations to ensure
reliable results.

30R.H. McKenzie and J.W. Wilkins, Phys. Rev. Lett.71, 4015
~1993!.

31F.H. Longet al., Phys. Rev. Lett.71, 762 ~1993!.


