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Green’s function approach for a dynamical study of transport in metal/organic/metal structures
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We develop an efficient Green’s function formalism to study transport in organic tunneling devices. We find
a crossover behavior of the transport from free-electron-like to polaronlike as the ratio between the electronic
and organic lattice vibration time scales is varied. If the electronic time scale is fast compared to the lattice
vibration time scale, the lattice motion lags behind the incoming wave packet and the transmission is similar
to that in a static case where the lattice is frozen. In the opposite limit, the lattice follows the electron and the
first transmission peak shifts from the conduction-band edge toward the self-trapped polaron level. We inves-
tigate the transmission coefficient, the transfer of energy between the incident electron and the lattice, and the
time evolution of the electron energy distribution function as the ratio of these time scales is changed. To
simulate lattice fluctuations we study a preexisting lattice distortion and find enhanced subgap transmission.
Our results are important for understanding electrical injection in polymer light-emitting diodes and other
organic-based electronic device structures, and electrical transport in  molecular wires.
[S0163-18209)04223-X]

I. INTRODUCTION structures borrow ideas developed for inorganic semiconduc-
tor tunneling structure¥-2° In the description of electrical
Recently, conjugated organic materials have attractetransport in molecular wires, for example, the organic mo-
much theoretical and experimental interest both because décular chain is often treated as an inorganic semiconductor
the novel physics that occurs in these materials and becauséth a rigid lattice!'~** Dynamical wave packet evolution
of the technological potential of electronic devices fabricatecapproaches have been used to study the transport in inor-
from them!~2* In organic-based electronic devices such asganic device$! Because of the different nature of interac-
polymer light-emitting diodesPLED’s), metal contacts are tions in the organic and inorganic materials, it is difficult to
attached to the conjugated organic material for electron inextend these approaches to the metal/organic/metal struc-
jection. This injection process plays an important role in thetures, which requires the self-consistent solution of the wave
operation of organic electronic devices and is not currentlypacket plus the lattice problem. Because of the strong
well understood. Self-assembled monolayers chemicallglectron-lattice interaction and the importance of the lattice
bonded to the metal contacts have been used to control trenfiguration to the electronic motion, electrical transport in
injection properties in these deviceSelf-assembled mono- these structures is an intrinsically dynamical problem, i.e.,
layers with dipole moments were used to change the energfye evolution of both the incoming electron and organic lat-
barrier to injection. The electrons conduct through the moltice must be determined self-consistently. Therefore a static
ecules making up the self-assembled monolayer which act agudy may not be sufficient to obtain a complete understand-
an array of molecular wires. The electrical transport in indi-ing of electrical transport in these organic structures. How-
vidual molecular wires either contacted by metal pads or byever, due to the complexity and numerical intensity of the
a scanning tunnel microscope tip and a back metatlynamical calculations, only static studies have been carried
contacf s a closely related subject also of current interestout to datet!~
A common characteristic of these structures is that an elec- There have been several studies on the soliton/polaron
tron is transferred from a metal, where the electron-latticedlynamics in a homogeneous finite polymer cHairf! In
coupling is weak, to a conjugated organic material, where théhese studies, dynamical evolution approaches were devel-
electron-lattice coupling is very strong. In conjugated organ-oped, which successfully addressed interesting bulk transport
ics, because of the strong electron-lattice coupling, the priguestions such as how a preformed soliton/polaron moves in
mary single-particle excitation is not the free electron but thehe presence of an external field and how an optically gen-
self-trapped polaron, in which a lattice distortion is localizederated electronic excitation evolves into a stable polaron/
around the electrof?. Therefore in organic injection struc- soliton. The system we study here is intrinsically inhomoge-
tures, polaron formation and lattice fluctuation effects mayneous in that it consists of two kinds of material regions,
play a significant role in the electrical transpttt’ As a  weak-coupling metal leads and the strong-coupling conju-
specific structure to investigate transport from a weakgated organic material. We are interested in the reflection
electron-lattice coupling material to a strong one, we conand transmission coefficients for an electron wave packet
sider metal/organic/metal tunnel structures. We construct amcident from the metal, the wave-packet behavior in the
electron wave packet in one of the metal leads, allow it tdattice (free-electron vs polargnand lattice fluctuation ef-
impact on the organic region, and study the dynamics of théects on the electronic transmission. Infinite metal leads are
transport of the wave packet. required in order to eliminate the spurious multiscattering
Many current studies of electrical injection in organic that would result from the boundary of a finite system. Be-
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Metal (V, ) Oligomer Metal (V,) © ©
Hiem —to 2 (clcitHe)+Vo X cle, (3)
I=N+1 I=N+1

8
— I=N+1 . .
=0 ¥ wherec, (c/) annihilates(createy an electron at sité, and

. . ) ..V, andV, are the electrostatic potentials of the left lead and
FI(_S. 1. Schematic diagram showing metal and oligomer sites Nhe right lead, respectively. The oligomer is described by
a chain forN=8. using the Su-Schrieffer-Heeg&8SH model!®

cause of the infinite metal leads the energy spectrum is con- Hoi=HE+H o, 4)
tinuous rather than discrete as is the case for a finite system.

Because we are considering an infinite system with a con- N-1

tinuous energy spectrum, the previous mathematical ap-Hi=— 2 {[t—a(u|+1—U|)](C|TC|+1+ H.c.)+V|c|Tc|},
proaches used to describe the dynamics for a finite homoge- =1

neous polymer are not suitable to study the transport in the ®

metal/organic/metal structure. We therefore develop a
Green'’s function formalism to study electrical transport in
the metal/organic/metal structures. The formalism takes into
account the infinite metal leads, possible electrical bias, im- ) ) . ]
purities, the possibility of asymmetric metal contacts, andi€reu; is the lattice displacement of siteA;=u,; —u;, @
extrinsic (cis-like conformation contribution to the elec- the electron-lattice coupling< the spring constant of the
tronic energy gap, and can be readily extended to other oRligomer, andM the mass of the oligomer atom. The term
ganic structures and device configurations. Using this/iCICi represents the site energy change due to a possible
Green’s function forma"sm, we find that the electron trans_electrical bias. This term can also be used to simulate disor-
port behavior indeed depends on the ratio between electronféer due to impurities. The coupling between the oligomer
and lattice time scales. For fixed electronic structure, a cros@nd the metals is described by hopping at the ends of the
over behavior from free-electron to polaronlike transport isoligomer:
found with increasing phonon frequency. In the former, the N T
lattice lags behind the incoming wave packet and the trans- Hint=~t2(CoC1+ CNC+1HH.C. ™
mission is close to that of the static case; whereas, in thgne |eft metal lead extends frofn=— to |=0 and the
latter, the lattice follows the injected electron forming a lat- right metal lead extends from=N+1 to | =%. The oligo-
tice distortion cloud around the electron, and the transmisger extends fromi=1 to |=N. The position of the sitek
sion peak shifts toward a polaron level in the oligomer. =1 andl=N are fixed and the position of the othisr—2
The paper is organized as follows. In Sec. Il, we preseniias in the oligomer can vary. The intedéiis even.
the details of the Green’s function formalism. Section Il \ye explicitly include the valence electrons in the oligo-
contains results on the time evolution of a wave packet as ityer and the electrons below the Fermi energy in the metals.
traverses the oligom_er,_ eIeptronic transmission as a functiofy ihe ground state the oligomer is dimerized and polarons
of energy, energy distribution between the wave packet andre the primary single-particle excitations. In the polaron, the
the lattice as a function of time, and charge density in thgharge is localized and surrounded by a lattice distortion.
oligomer as a function of time. In Sec. IV, we summarize our  \ye neglect electron-electron interactions and assume the
conclusions. energy of the incoming wave packet is far above the Fermi
energy so that all the states of the outgoing electron are un-
Il. MODEL AND FORMALISM occupied. We consider both the metal and the metal/
. . : . . .oligomer contact as ideal one-dimensional structure. The
We consider a one-dimensional structure in which an oli- . X
- . transmission features depend weakly on the detailed struc-
gomer chain is sandwiched between two metal contacts. Thte

metals attached to the oligomer may be different and therg”e of the metal/contacts and the dimensionality of the met-
may be a bias between the metal leéiig. 1). To avoid the Is. In our static study, we systematically studied 1D/2D/3D

spurious multiscattering that would result from the boundaryStrUCtures and found that they have similar transport

4
in a finite system, we take infinitely long metal leads. Be_featuresl.

cause the system is infinite the energy spectrum is continu- We regard the decoupled metals and oligomer to be de-
y gy sp scribed by the unperturbed Hamiltonian

N-1 2
P

K N—-1
Hian=>% 21 AP+ oM (6)

ous.
The Hamiltonian consists of four parts: Ho=HY o+ HR A+ HE, . (8)
H=HL +HR +Hgit+Hin. (1)  The Green’s function oH, is calculated from
We describe the metals by using a one-dimensigha) ~0 (I i) ill")
tight-binding model, for the left lead, G”r(E)ZE - 9
T E—E;+i0
-1 0

L t + Because the oligomer and the two metal contacts are decou-
Hme= _tolzz_ (c C'+1+H'C')+V1| :2_00 ¢, (2 pled inH, this Green's function for each of these regions
can be calculated separately. Since the oligomer is small,
and for the right lead, |$i) and E; can be obtained by direct diagonalization of a
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small matrix. For the left metal, because of the boundary . 2 EL
condition, the eigenfunctions are 6€-=——EImInDy(E)| 75, .\,
_1 > [ekl— e iki-2)|] 10 + ZfEt IminD,(E)dE (19
| i) = N4 [ —e 111 (10 ) ~2t5+vy ' ’
Thus the Green’s function at the left metal Isl(<0), 2 £R
8ER=——EImInD,(E)| 7, .,
ik(1=1") _ aik(1+1"=2) ™ 072
~0 1 e —€
G||I(E)_2_ L . (11) 2 (gR
7T)-n E+i0T—V;+2tecosk +—J F ImInD,(E)dE, (20
™) -2t5+ Vs,
Similarly, at the right metall(l’ >N), LR . .
and whereE; (Ef) is the Fermi energy of the lefright)
- elk(1=1") _ gik(I+1"=2N) metal and
~0 3
G”'(E)_ﬁf 10"Vt 2tgcosk. 2 280 (£ &0
-7 E+i07=Vy+2tocos D1(E)=In[1- 5By E)GI(E)], (2D)

Since our model includes two semi-infinite metal leads, the 90 ~0
energy spectrum of the system is continuous. We calculate D2(E)=IN[1-t;G\N(E)Gn+ain+2(B) ] (22
the energy change of the system after turning on Fhe COUplmﬂlere the Green’s functions for the metals are

between the metals and the oligomer by integrating over the
whole energy spectrum,

~ - (E-Vy)?
Ggo(E): -
4t5— (E—Vy)? 2t5
5= f dEESp(E), (13 VAto—( v 0
(E=Vy) 5
where 8p(E) is the change in the density of states that re- 2 Vatg—(E=Vy)?|, (23
sults from turning on the coupling. Usirignatrix theory?® it 0
can be written as
Go (E)= - (E_V2)2
-1 d N+1IN+1 - 2_ — 2 - 2
5p(E)= —Im-—InD(E), (14) Vatg—(E-Vy) 215
7 dE
(E=Vy) 5
where +i 2 \/4t02—(E—V2) . (29
0

D(E)=def1—G°(E)Hiy]. (19  The short range dfl,, enables us to treat it rigorously rather

. . than perturbatively. We included all orders of the interaction
D(E) is easy to calculate becaukk, is short range; non- P y

zero only at the two interfaces between the oligomer and the"’
metal. The nonzero elements idf,; form two 2X2 subma-
trices,

When the band bottom of the metals is below the lowest
level in the oligomer, the interface coupling will not intro-
duce any new localized states because, in this d&€) is

0 ¢ 0 0 always positive and there is no solution that satisbé&)
—lu

=0.
-t O 0 0 The ground-state configuration of the oligomer is deter-
0 0 -t 0 &8(H) S(Hy o6&
1 ( >: (Ho) n 0. (25)

We have two interface couplings between the metals and the ou, ou o
oligomer H = H_il?n+ Hifc- There is no correlation between \when the oligomer is attached to the metals, the lattice con-
these two couplings, so we have figuration will deviate from its isolated one.
5 5 N We introduce an incoming wave packet, which is taken to
def1—G°%(E)H;,J=def1-G°(E)H}]def1— G (E)HR ] have a Gaussian profile,
=D;(E)D,(E). 17 (I-1g)2

4082 | (8

lﬂl(To):CGXF{iko('_'o)—

Thus we can separate the contributiond® from the two

interface couplings )
wherek, is the average wave number of the wave padkget,

S5E=SEL+ SER, (18)  its center locationdl its width, andC the normalization
constant. To study the dynamics of this incoming wave
where packet, we solve the time-dependent Sclimger equation:
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(1) =Hinth(7). (27)

J
|:|ﬁE__H0(T)

HereH, implicitly depends on time through the lattice con-
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formalism is also easy to extend to other metal and oligomer
structures by substituting the appropriate Green’s function in
the present formula.

Due to the strong electron-lattice coupling in the oligo-

figuration of the oligomer, which evolves after the electronmer, when the incoming wave packet is passing through the
impacts the left interface. We use the Green'’s function taoligomer, the lattice will be distorted from its equilibrium
update the wave function of the incoming wave packet. Theposition and this distortion in turn changes the electronic

Green's function oH, at time r is

Gy (87, m)=—i(l|eMo()o7 ")

1 .
= EJ_ dEG) (E;r)e o7t (29

whereéﬂ,(E;r) is the Green’s function ofl, at time 7 in

the energy space which can be calculated from(Bg.Thus
for the left metal,

Gy (o7 m)=(—i)e Vo[l =V1g, (267t /h)

=il 2,287t 1], (29)
and for the right metal
Gy (o7 m)=(—i)e Vol =V1g, L\, (267t /h)

=il NG Lo (28Tt /1)1, (30)

whereJ, is thelth Bessel function of the first kind, and in the

oligomer

Gl (o= =i 3 (Il(D) (DI )e B (3D

structure in the oligomer. Thus we must determine the lattice
and the wave packet motion self-consistently. The lattice
motion is calculated from the classical equation

du _ &(H()
M =Fim)=— == 35)

where 8(H( 7))/ éu; consists of the contribution from both
S(Hei(7)) 8u; and SE(7)/8u;. Now S&(Hi(7)) contains
contributions from both the valence electrons and the incom-
ing wave packet.

The updated lattice configuration and momentum after a
small interval §7 is obtained by integrating Eq35) over
time,

pi(7)
M

u(7+87r)=u(7)+ oT, (36)

pi(7+7)=p|(7)+F (7). (37

To describe the dynamics of the wave packet tunneling
through the organic polymer, it is useful to examine the time-
dependent energy of the wave packet and of the lattice. It is
also useful to analyze the time-dependent energy distribution
of the wave packet. From this analysis, we can understand
how the energy is exchanged between the incoming wave

The updated wave function of the incoming wave packepacket and the lattice dynamically. The energy in the oligo-
after a small time interv&l 67 is obtained through the evo- mer is the summation of the lattice kinetic and elastic ener-

lution equation

7+ 6r>=i2| Gy . (87;7) ¢ (7)
1 [oér
+%fo dr’% G (7' T)Ht (7).

(32

Defining
s”,(ar;r):f&dr'eﬁ,(ar— 77, (33

0
we have
d(m+67)=12 G).(87;7) (1)
|/

+2 Sp(omnH Yin(7). (34

1"

gies and the energies of valence electrons. Before the wave
packet impacts the interface, the lattice stays in its equilib-
rium position and both the lattice kinetic and elastic energy
are zero. If we denote the energy change due to the interface
couplings in the ground state 3¢, initially, the energy in

the lattice at timer is calculated from

N-1 2
pA(r) K\
Eul 1= 2 S 52 A%(7)

N/2
+Zl [2E;(7)— 2E]+[ 8&(7) — 6&]). (39)

Here,E;(7) is theith eigenvalue of the oligomer electronic
Hamiltonian at timer and E? the eigenvalue for the initial
condition. The expectation value of the energy of the wave
packet with the normalized wave functiaf 7) at time 7 is
obtained from

Evwad 7) = (¢(7)|H¥4p(7)),

HE o+ HR +Hei+Hpy is the total electronic

(39

where Hé=

In the above equations, the scattering potential is short rangdamiltonian.

and therefore the evolution equation contains only one sum- The total energy of the system which includes the wave
mation. Thus our Green'’s function approach is efficient forpacket, all valence electrons, and the lattice elastic and ki-
studying the dynamics of transport in organic devices. Ounetic contributions can be written as
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The transmission and reflection coefficients can be ob-

E(7)=(p(D)|H (1) + 2 (i|HY b))+ Hepa tained by integrating the current over time. The current in the
' metal is defined as
1 . .
M (40 I=ito(Ui = i ), (47)

5. _ _ _ and the coefficients for the normalized incoming wave
HereHg ,=K/2X A{ is the lattice elastic energy. Singg r) packet are

satisfies the time-dependent Safirger equation, by using

the Feynman-Hellman theorem, the time-derivative of the < L
energyyis Tzf dTlR(T);R=f drj~(7), (48
70 70
dE dH® dH® dHeia where we use currents far from the metal/oligomer inter-
EZW(THFW(T)HZ (il g1+ —5— faces,
du, d2u, N =ite(d 11— diath), 1<<0, (49)
+M Ry (42) . _
C AT dr IR =ito(fs 1= i hsa), 1N (50
Since the Hamiltonian only depends erimplicitly through
u;, we have Ill. RESULTS
dE du d2u dHe A. Wave-packet evolution and transmission
| [
E:Z ar MEHI/I(TN du, ly(7)) We present results of our dynamical study using the

Green’s function formalism. We fix the electronic parameters

of the metal and the oligomer and vary the lattice vibration
. (42)  frequency by changing the mass of the oligomer atoms. The

electronic parameters of the oligomer are=7 eV/A, K
=40 eV/IA?, t,=2.6 eV, t=25 eV, and t;=1.5 eV,

The summation of the last three terms in the above equatio\rlwvhich are tvpical parameters in coniugated polvirg@e-
is simply —F,(7). Thus the total energy of the system is yp P Jug poly

cause the molecules used for molecular wires are also con-
congerved. : . : . é'ugated, these parameters should be also be reasonable for
Since the electronic spectrum in our system is continuou

the wave packet has a continuous energy distribution, whicﬁiezsf/:('b/_'l\r;lg_ thesij bsystr?ms._ Thr? Vlb;:tl?nh frelquenﬂy
is also a function of time. The time-dependent energy distri-__ IS tuned by changing the makso .t € oligomer
bution of the wave packet is atom. Using a value ofM corresponding to trans-

polyacetylene givesv=wy=0.22 eV. We present results
for an eight atom oligomef\=8. Figures 2 and 3 are snap-
d(E;n) =2, (il w(n))PSE—E)). (43 shots of the incoming wave packet at different times. Figure
! 2 is for a small transmissiofoff-resonancgcase and Fig. 3
Here ¢, is the eigenfunction of the total electronic Hamil- iS for a high transmissiofresonancecase. Before the wave

tonian andg; is the corresponding eigenvalue. We can cal-Packet enters the oligomer, the wave packet has a Gaussian
culated(E; 7) from the Green’s functions profile. While the wave packet is in the oligomer, the wave-

packet profile is severely distorted due to the scattering by
1 1 the interface and the oligomer. Eventually part of the wave
d(E;r)=——=Im >, ((7)| ;) ————(bi| (7)) packet is reflected and part is transmitted, and the profile of
™ i E—E+i0" the wave packet splits into several subwave packets.
From our dynamical calculations, we can determine the
__ ilm(dz( =~ 1 (7)) time duration over which the wave packet stays in the oligo-
T E—-H+i0" mer (dwell time). In Fig. 4, we plot the total charge density
in the oligomer as a function of time. We find that when the
energy of the wave packet coincides with that of the discrete
energy levels in the oligomer, the wave packet stays in the
~ oligomer for a much longer time than the wave packet with
where G, is the Green’s function of the electronic Hamil- other energies.

dHe dHeja
+2 (g 190+ g

1 ~
== —Im 2> (D) (NG (E), (44)

1n’

tonian in real spaceG (E)=(I[(E-H+i0%) "), Figure 5 describes the transmission as a function of the
which, in our case, can be calculated exactly because of tnergy of the incoming electron. The dashed line is the static
short range oH;y, case, i.e., the oligomer atoms are fixed at their equilibrium
positions. The peaks in the transmission spectrum corre-

G(E)=C%E)+C°(E)T(E)3°(E), (45) spond to the discrete energy levels in the oligomer. The first

peak indicates the lowest unoccupied level in the oligomer.

where For finite vibration frequencies, because of the electron-

5 lattice coupling, the lattice will move away from its equilib-
TE)=Hin{ 1—G°(E)Hin L. (46)  rium position after the electron wave packet impacts the in-
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T=1fs T=11s
0.05 0.05
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T=8fs T=8fs
S 005 . 005
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0.00 Ll 0.00 /\/4“/\
T=16fs T=16fs
0.05 0.05
0.00 i 0.00 L
-100 -50 0 50 100 -100 -50 0 50 100
SITE 1 SITE 1

FIG. 2. Snapshots of the wave packet at different times for a FIG. 3. Snapshots of the wave packet at different times for a
small (off-resonank transmission caseE(=1.2 eV). The five pan- large (resonanttransmission caseE=2.2 eV). Other parameters
els correspond te=1,4,8,12, and 16 fs, respectively. The oligomer and symbols are the same as in Fig. 2.
is between the two dashed lines. The lattice vibration frequency is
g. the right one. Because of the electron-lattice coupling, the

lattice moves away from its equilibrium configuration as in
terface between the oligomer and the metal. The solid line iFig. 6(b). However, duringt=6 to t=10 fs the lattice mo-
for the case ofv=wy. We find that the transmission is simi- tion is within its first vibrational period and lags far behind
lar to that of the static case. For the case 10w, as illus-  the incoming electron. Thus the carrier is like a free electron
trated by the dot-dashed lines, the transmission is dramatiand the transmission is almost the same as that in the static
cally different from that of thev= w, case, especially below case.
the conduction-band edge. The first transmission peak shifts The high-frequencys = 10w, results are shown in Fig. 7.
toward lower energy, which indicates some subgap electroihe lattice behavior is quite different from that fer= w,.
levels. During the period from 6-10 fs, as the wave packet moves

In inorganic double barrier tunneling structures, phonon{rom the left interface to the right one, the profile of the
assisted tunneling and phonon side peaks in the transmissideittice distortion also moves through the oligomer, following
spectrum have been obsen/&d?° In the organic-based de- the wave packet motion. In other words, the carrier in this
vices, since the lattice is described classically, the energy inase is no longer a free electron but rather the electron is
the lattice is not quantized and we do not observe the phonosurrounded by the lattice distortion, like a self-trapped po-
side peaks. However, because the self-trapped polaron madgron. This carrier behavior leads to the first transmission
be formed, which is below the conduction-band edge, we capeak shifting toward the polaron level in the oligomer, which
observe that the peak in transmission shifts toward the pdies below the energy gap, as shown in Fig. 5.
laron level.

To more clearly illustrate the different transmission be-
havior for the different lattice vibrational frequencies, we
examined the evolution of the wave function of the incoming The transport behavior in various frequency regimes can
wave packet and the lattice configuration. We calculate thalso be studied by focusing on the evolution of the energy in
charge density of the incoming electron and the lattice conthe wave packet and the energy in the oligomer. Figure 8
figuration in the oligomer for different time to study the cor- depicts the energy of the incoming wave packet and that in
relation between the electronic and the lattice motion forthe oligomer as a function of time for the case wf w,.
these two cases. Figure 6 illustrates the case in the lowFhe energy in the oligomer consists of three parts: lattice
frequency regimep = w,. The circles, squares, and triangles kinetic and elastic energy, valence electron energy, &hd
correspond ta=6, 8, and 10 fs. Figure(6) shows that from due to the interface couplings. In the low-frequency regime,
6-10 fs, the wave packet is moving from the left interface toafter the wave packet enters the oligomer, the wave packet

B. Energy exchange between wave packet and lattice
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0.5 ; - . 0.10 (a)
5 0.4 | B
E o o0.05
g 0.3 | b
[FE)
g
L 0.2 4
;,’ 0.00 [
5 0.010
R ot ]
o —
o 20 ~
TIME (fs) (g 0.005 |
0.3 —_ i .
i N A
i,’ '~<\.‘-—. \‘\
1/ Teem N
i o ) N
8 0.000 4 3 6 9
% 02 b Lattice 7
=
w FIG. 6. Snapshot ofa) charge density of the wave packet and
= (b) magnitude of the lattice distortion in the oligomer for= w,.
; 0.1 | The circles, squares, and triangles correspontt6, 8, and 10 fs.
S The energy of the incoming wave packet is 2.1 eV.
o motion through the electron-lattice coupling, but cannot ob-

° 20 S ey %0 % 7°  tain the feedback from the lattice. Thus the energy in the
lattice is monotonic.

FIG. 4. The total charge density in the oligomer as a function of In the high-frequency regime, as shown in Fig. 9, the
time. In panel(a), the solid line is for a smalloff-resonanktrans-  energy in the lattice is localized for some period when the
mission (Fig. 2) and the dashed one is for the largesonant  incoming wave packet is in the oligomer, indicating the
transmissior(Fig. 3). Parameters are the same as in Fig. 2. In pa”ehighly correlated motion between the incoming wave packet
(b), the interface coupling is smalt{=0.5 eV) and the width of  anq the lattice. Since in this case, the lattice distortion is
the ipitial wave packet is Iarge&[=20 lattice constanjsso as to  |5calized around the wave packet, the peak corresponds to
manifest the resonant tunneling effects. the whole wave packet being in the oligomer, which has the

. .largest lattice distortion and therefore the largest energy ex-
loses some energy gradually and at the same time the Iatn% gnge in lattice 9 9y

gains some energy; the total energy of the wave packet an To obtain more detailed information about the energy ex-

the Iatticg is conserved. In the lattice, the energy increase(;’:.nam‘:]e occurring when the wave packet passes through the
monotonically and safurates when the wave packet hagligomer, we show in Figs. 10 and 11 the energy distribution

_passe_d through the oligomer. Th|s_ Is to be_ expected_smce tho% the wave packet for different times. We see that the initial
incoming electron causes the lattice motion when it passeg . e packet has a Gaussian distribution around its
through the oligomer, and in this case the lattice motion lags

behind the electron. This lattice motion has no correlation

with the electron: the wave packet just excites the lattice 010
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FIG. 5. Electronic transmission as a function of the incoming
wave-packet energy for=7 eV/A. The dashed, solid, and dot- FIG. 7. Snapshot ofa) charge density of the wave packet and
dashed lines correspond =0, w=wy, and w=10w,, respec- (b) magnitude of the lattice distortion in the oligomer far
tively. The inset shows schematically the electronic levels of the=10wy. Symbols and the energy of wave packet are the same as in
oligomer; dashed lines denote polaron levels. Fig. 6.
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FIG. 8. Energy of the wave packét) and the latticeb) as a
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energy of the wave packet and the lattice. The energy of the incomthe energy distribution changes dramatically with some sharp

ing wave packet i€=2.2 eV.
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FIG. 9. Energy of the wave packéd) and the latticeb) as a
function of time forow=10w,. The symbols and the energy of the different times foro=10w,. Symbols and the energy of the wave

wave packet are the same as in Fig. 8.
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FIG. 10. Energy distribution of the incoming wave packet at
different times foro = w,. Panelsa)—(d) correspond tar=0,8,16,
and 40 fs, respectively. The dashed line in pailis identical to
panel(a) for reference purposes. The energy of the incoming wave
packet isSE=2.2 eV.

average energy. While the wave packet is in the oligomer,

peaks, which correspond to the discrete levels of the oligo-
mer. Because the wave-packet tail stays in the oligomer for a
long time, the peaked structure of the energy distribution is
maintained for a long time. Eventually the energy distribu-
tion is restored to a smooth one. By comparing the final
energy distribution to the initial one, we find different behav-
ior of the wave-packet energy distribution for the two vibra-
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FIG. 11. Energy distribution of the incoming wave packet at

packet are the same as in Fig. 10.
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tion. The electron-lattice coupling i&=5.6 eV/A. Dashed and

FIG. 12. The energy left in the lattice as a function of the lattice dot-dashed lines correspond éo=0 andw= w,. The solid line is
vibrational frequency. The energy of the incoming wave packet igor reference purpose, obtained by using the equilibrium lattice con-
fixed atE=2.2 eV. figuration andw= w,.

Frequency (w,)

tional frequencies. In the low-frequency regime= wo), C. Lattice fluctuation effects: a preexisting polaron

the final distribution becomes asymmetric and the wave Strong lattice fluctuations may significantly influence
packet gains some weight below the distribution peak, alelectronic transmission through the organic segment. Due to
though the location of the peak does not change significantlythe low dimensionality of polymers, lattice fluctuations can
This result is consistent with the picture that the wave packee sufficiently strong to produce some transient solitonlike or
loses energy in the lattice and lattice excitations are left bePolaronlike lattice distortiori®" Since the polaron configu-
hind the wave packet in this regime. In the high-frequencyration has the most important contribution to lattice fluctua-
regime, however, the final distribution is nearly symmetrictions in oligomers, we consider a preexisting polaron lattice
and is simply broadened compared to the initial one. Thdlistortion anq calculate the_wave-packet transmlssmn.to
energy of the final wave packet is nearly the same as that ¢ftudy fluctuation effects. In Fig. 13, we show the transmis-
the initial one. This result is consistent with the picture ofSion as a function of the energy of the incoming wave packet
highly correlated electron and lattice motion in this regime:W'th a preeX|st|ng. polaronlike lattice distortion. The dashed
after the wave packet has passed through the oligomer, ttg"d dot-dashed lines correspondde=0 and o= wo. For
lattice stays near its equilibrium position and little energy is@=0, because the lattice does not move, the first resonant
transferred to the lattice. tunneling peak is from the polaron level in the oligomer. For

The energy left in the lattice after the wave packet hasw= wo. although the first transmission peak shifts from the
passed through the oligomer depends on the phonon fréolaron level toward higher energy compared to the case of
quency. We plot in Fig. 12 the energy left in the lattice as a@ =0, it is still much lower than the energy gdirst peak of
function of the phonon frequency of the oligomer. We seethe s_olld ling. This indicates that the wave packet can use a
that in both low- and high-frequency limits, the energy in the ‘Partially formed” polaron level produced by lattice fluctua-
lattice approaches zero. This is expected because, in the lo}ons to tunnel through the oligomer, although the carrier
frequency limit, the lattice cannot move and the lattice canPehavior here is more like a free electron. Thus polaron ef-
not be excited; whereas in the high-frequency limit, the mofects may be important even in the low-frequency regime
tion of the electron and lattice are highly correlated and afteflue to the presence of strong lattice fluctuations in oligo-
the wave packet has passed through the oligomer, the lattidBers. The present realization of lattice fluctuations is more
stays near its equilibrium position and little energy is transTealistic compared to the previous approximation treated as
ferred to the lattice. The difference between these two limit$tatic disorde’ The subgap transmission is enhanced in
is that in the high-frequency limit, the energy in the lattice POth cases, although at somewnhat different energies.
changes with time when the wave packet is moving through

the oligomer.
; - . . _ IV. SUMMARY AND CONCLUSION
We also find a similar crossover behavior for a fixed vi-
brational frequencyw=wq by tuning the electronic time In this paper, we have studied the dynamics of charge

scale. The electronic scale is determined by its momentuntransport in metal/organic/metal tunneling structures. We
In the one-dimensional tight-binding model of the metal, thehave introduced a model which consists of two semi-infinite
dispersion is E=V;—2tocosk and the time scale is metal contacts attached to the polymer chain. Conjugated
#il|2tysink|. Thus for an incoming electron with a fixed en- organic materials are quite different from inorganic semicon-
ergy, we can chang¥, to obtain different momenta of the ductors in that the lattice in organics is flexible and readily
electron. Thus whether the carrier is like a free electron or alistorted and there is a strong electron-lattice coupling. To
polaron depends on the ratio between the electron time scalederstand the transport in these devices, it is necessary to
and the lattice time scale. solve both the electronic and lattice motions self-
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consistently. Existing dynamical approaches used for finitarapped polaron level. We also observed this crossover for a
homogeneous polymer models are not suitable to study thedixed lattice vibrational frequency by tuning the velocity of
organic tunneling structures. To this end, we developed #he incoming wave packet. We have investigated the trans-
physically intuitive and numerically efficient Green’s func- mission properties, the transfer of energy between the inci-
tion approach to investigate the dynamics of transport injent electron and the oligomer, and the time evolution of the
organic-based devices. In this formalism, we have treated thglectron energy distribution, as the ratio of these time scales
coupling between the oligomer and metals as the interactions changed. We have calculated the dynamical electronic
The short range of this interaction enabled us to treat it rigtransmission with a preexisting lattice distortion to simulate
orously rather than perturbatively and to study the dynamicsattice fluctuations. Strong lattice fluctuations in one-
very efficiently. The formalism is readily extended to other gimensional oligomers may lead to transient polaronlike lat-
organic structures where a dynamical study would also bgce distortions, which change the transmission of these tun-
appropriate. nel structures substantially even in the low phonon frequency
The transport behavior in the metal/organic/metal strucregime. Our microscopic results should provide valuable in-
tures depends on the ratio between the electronic and Iattmrﬂ_jt to macroscopic device models, e.g., cross sections for
time scales. For fixed electronic structure, by increasing th@cattering events and carrier mobilities.
lattice vibrational frequency, the carrier behavior changes
from free-electron-like to polaronlike. In the former, the lat-
tice motion lags behind the incoming wave packet and the ACKNOWLEDGMENTS
transmission is very close to that in the rigid-lattice case. In
contrast, in the latter case, the lattice follows the electron, This work was supported by the LDRD program on Mo-
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