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We investigate general channel drop tunneling processes using both analytic theory and first-principles
simulations. These tunneling processes occur when two one-dimensional continuums are brought into close
proximity with a resonator system that supports localized states. Propagating states can be transferred between
the continuums through the resonator system. We show that the transport properties are intricately related to
the symmetries of the resonant states. Complete transfer can be achieved by manipulating the symmetries of
the system, and by forcing an accidental degeneracy between states with different symmetries. In addition, the
line shape of the transfer spectrum can be engineered by varying the number of localized states in the resonator
system. The theoretical analysis is confirmed by first-principles simulations of transport properties in a two-
dimensional photonic crystdlS0163-1829)09419-9

[. INTRODUCTION and compare the theoretical results with computer simula-
tions.
Resonant tunneling processes play an important role in
many optical and electronic devices. Channel drop tunneling
processes, in particular, have captured recent interest, due to

their applications for wavelength division multiplexing in- The schematic diagram of a general system is shown in
optical communication systems;® and potentially as a Fig. 1. The system is composed of two continuums, labeled

Speciroscopy 100l _for eI_ectroﬁsThe_ Pprocesses occur be_' C andC, side coupled through a resonator system. The co-
tween two one-dimensional -continuums of propagating,ginates along the continuums are labeteahd, respec-

states, side coupled through a resonator system that Suppof, ely. The continuums support propagating states. States in
localized states. Examples of the continuums include dielec- —

tric waveguide&and electronic nanowiré$ while the reso-  C &re labeledq), while states irC are labeledq), whereq

nator system could be made of optical cavities or quantun?"dd aré wave vectors. The resonator system supports lo-

dots. Optimal tunneling is achieved when a selected propaQallzed states. Localized states are labgpdwherec is an

gation signali.e., monoenergy electron, or single-frequency'meger’ taking a value between 1 and the total number of

photon is completely transferred from one continuum to thelocalize_d states. The transport properties of the system are
other, leaving all other signals unaffected determined by interactions between these states.

In a recent lette?,we determined the characteristics of the We describe the interaction by an effective Hamiltonian

resonator system required to achieve complete channel drd’ﬁ' The Hamiltonian consists of the sum of two patg and

tunneling. The characteristics were discussed for an exem? Where

plary structure supporting two localized states, which gener-

ated a transfer function with a Lorentzian line shape. In this

paper, we introduce a formalism to determine the transport Ho= 2, o lk){(k|+ > wdc)c|, (1)
properties of general systems with an arbitrary number of K ¢

resonances. The transport properties are related to the

II. THEORY

Green’s-function matrix of the localized states, which is ob- Input

tained by analyzing the direct and indirect coupling mecha- c | -— — ]

nisms. We derive criteria for complete transfer, and present Reflection Transmission

structures that are capable of generating higher order transfer v

line shapes, such as the maximum-flat functions. The results Resonator L

of the analytic theory are verified by performing computa- System x

tional simulations on the transport properties of electromag- Backward Forward

netic waves in two-dimensional photonic crystal structures. Transfer Transfer
The paper is organized as follows: In Sec. Il, we present a [ — — ]

detailed discussion of the formalism, and we derive criteria
for the complete transfer in general systems. In Sec. Ill, we FIG. 1. Schematic diagram of two continuums coupled through
apply the formalism to analyze photonic crystal structuresa resonator system that supports localized states.
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The localized states associated with the resonator system
v= 2 Vcl,c2|01><02| can be either even or odd with respect to the two mirror
€172 operators. For a state) that is ever(odd) with respect to the

operatorll,, i.e.,

1
—. V. K|+ Vi o/ k){cl|]. 2
+\[|_ %[ Kl ) (K[+V c[k)(c[] 2 I Jc)=+(—)|c), @)

Here statdk) represents a state in either continuum, ard  the coupling constant must satisfy the following condition
is its frequency. The coefficient; , measures the coupling

between a localized state) and a propagating staté), Vek=F(=)Ve—k: (8)
while the coefficientV, ., describes the strength of direct as easily derived from Ed3). Similarly, For a statdc) that
coupling between a pair of localized states) and|c,).  is even(odd with respect to thdl, operator, i.e.,

These coupling constants satisfy the conditidhg =V . IJc)= +(—)[c) ©)
andVCyCz:VZz,cl due to the hermiticity of the Hamiltonian y

matrix. The1/L factor in Eq.(2) arises from a box normal- it follows from Eq. (4) that the coupling constant must sat-
ization of lengthL. Similar Hamiltonians have been used by isfy the condition
Fand and by Anderschto describe the interaction between

localized resonances and continuums in different contexts. Vek=+(=)Vex- (10

_ 2. Translational operators
A. Symmetry properties . .
To study the symmetry properties of the Hamiltonidn

The symmetry properties of the system impose certaifingder translational transformations, we start by discussing
constraints on the coupling constants. These constraints, @ge translational properties of the states associated with each
we will show in later sections, are of crucial importance t0jndjvidual component of the system, viewed as isolated en-
achieve complete transfer characteristics. Since the ongpties. Since the continuums are translationally invariant, the

dimensional continuums define a propagation direction, thgyopagating staték) satisfies the Bloch theorem, i.e.,
symmetry group in most cases consist only of mirror opera-

tors. With the existence of mirror symmetries, the coupling T(a)|k)=e"" k), (11

constants are no longer independent variables, but rather they

are related to each other through symmetry operations. |fn€reT(2) represents a translation operation along the con-
addition, the continuums by themselves possess translationdfi!ums by a distanca. The resonator system, on the other
hand, does not possess translational symmetry. A &tate

symmetry. Translational operators, while not being a sym- ; = . .
metry operator of the entire structure, can nevertheless intr'c_{gcaIIIZEOI atx=0, for example, is transformed into a state

duce interesting phase relations. We explore below the con)= T(8)[c) localized atx=a. o
sequences of these symmetry operations. Under the translational operatioi(a), the Hamiltonian

H, therefore, is transformed into a new Hamiltoni&h

1. Mirror operators =T(a)HT(a) '=Hy+V, where
In general, there exist two types of mirror symmetries.
OperatorIl,, which is perpendicular to the continuums, Ho=2, o(K)|K){K|+ Y, wde)T| (12
k c

leaves each of the continuums invariant. Operbtgr which
is parallel to the continuums, maps one continuum onto thg,q
other. We study the case where the Hamiltonian is invariant
with respect to both operators, i.e., -
V= E Vcl,c2|El><EZ|
CliCz

[1I,,H]=0 3
1 ikal= —ika ~
and + E-kE [Ve k€ 3ENK|+ Vi e 3k)(E]]. (13
,C
[1I,,H]=0. (4)  The first term on the right-hand side of Hd2) describes the

continuums, and remains unchanged, as expected. A local-
The propagating states in the continuums transform adzed statec) is transformed into the stafé). In addition, the

cording to the following relations coupling constantsV., acquire wave-vector-dependent
phase factors. Such changes in the coupling constants are
I, |k)=|—k), (5)  analogous to gauge transformations, since both Hamiltonians

H andH describe the same physical system.

IT, k)= k). 6
y| )=k ®) B. Transport properties

Here,|?> is defined as the propagating state with the same We now proceed to study the transport properties. In a

wave-vector value as the stdke, yet residing in a different gedanken experiment, we excite a stideat x=—c. The

continuum. state propagates i@ and excites the localized states in the



15884 SHANHUI FAN et al. PRB 59

resonator system, which in turn decays along several direcFhe summation in Eq20) is performed over all propagating
tions in the continuums. This scattering process can be destates in both continuums.

scribed in the usual way by the Lippman-Schwinger The poles of the Green’s function in the complexplane
equatior, which relates the scattered wave functigh to  determine the real and imaginary parts of the eigenfrequen-
the incoming wavek) cies. By rewriting Eq(18) as

1
)=+ o —hor7e VIW =TIk (14 Gl =

Cq.Cy (0— wcl) ¢

Sy 0y (20)

162
In Eq. (14), wy is the frequency of the incoming wave, and

is an infinitesimally small number greater than zero. The .
e . we can see that the off-diagonal elements of the self-energy
number ¢ is introduced to enforce an outgoing wave-

. matrix are related to the interactions between the localized
boundary condition for the scattered wave. states. The first term on the right-hand side of Ef) rep-
Equation(14) can be solved iteratively. As a result, tiie ' 9 b

matrix can be represented as a sum of an infinite series resents a direct coupling mechanism. The second term de-
P scribes an indirect coupling mechanism that occurs via the

w 1 m continuums: energy in a localized state couples into the con-
Te=(K'|T|K)= >, (k’|(—.v) k). (15  tinuums, propagates in the continuums, and then couples
Mm=0 wy—Hotie back into another localized state.
The structure of the Green’s-function matrix can be sim-
states, we can rewrite the infinite sum as We note that the operat® ! possesses the same symmetry
as the Hamiltonian, as can be seen by rewriting @4) in

1
Twk= Oyt ———— Vir .-G wy) -V, an operator form
k’k k’k wk—wk/-l-ls C§2 k’,c, c2,cl( k) Cq,k

(16)
where Gt :<c (w—H —V-W ! w) c >
- m c1:2 ! 0 o= Hcontinuumst 1€ 2
1 1

= =(c4|G™cy), 22

GCZ,Cl(w) mE=0<CZ w_H0+i8 Vw—H0+|£ Cl> < 1| | 2> ( )
=<c2 ; C1> (17)  where H continuums= = q@q|a)(al is the Hamiltonian for the

w—H+ie continuums, and the matrix element of théoperatorW, ,

=V, 4lc)(ql describes the interaction between the continu-
ums and the localized states. The localized sthatgs and

Equation(16) incorporates the effects from two physical |c2) may belong to different irreducible repr_esentations of
processes. The incident wave can directly propagate into thEe symmetry group, or may transform as different partner

final state, as described by the first term containing the deltcig(glsontshgogﬁt_%?aSgrr]nael éﬁfgiﬁ;bfegzg;s?&a“:?f (I)? st;g'EZS
function. Alternatively, the incident wave can excite the i ’ 9 P

is the Green’s function for a pair of localized stateg) and
c2).

resonances, which in turn decay into the final state, as d ¢1) and|cy) vanishes. For many structures, symmetrizing

scribed by the second term. The sum of these two process n%el' lgctilggjreséi?ei ?]I(C)Pgn'iq zltJ:fc'(ge”t to completely diago-
give theT matrix. 1z s-functi ices.

With Eq. (16), the scattering problem is reduced to the In g(_aneral, the Greelj’s-function f.“at”x can_always be_ di-
‘agonalized by appropriately choosing a basis of localized

evaluation of a single-particle Green'’s function. Using stan . . . .
dard diagrammaticg peFr)turbation method. the Green% funcStates. In this basis, the Green's function for a localized state

tion is evaluated exactly as lc) can be written as

G=(1-G%)1G° (18

whereG, G°, and3 are matrices with dimensions equal to Gec(w)= (23
the number of localized state§° is the “unperturbed”
Green’s function for the localized states, and it is given by
The real part o . represents a shift in resonant frequency
> _ 1 S with respect to the bare frequen®y.. The imaginary part of
2 w—w tie 1 3. corresponds to the width of the resonance, which is
(19 related to the power decay rate from the localized state into
) ) ) ) the continuums. The norm square Gf .(w) possesses a
while X is the “self-energy” matrix, and is evaluated as | grentzian line shape centered at a “renormalized” resonant
1 1 T:ﬁqzuencya)czchr ReX . with a width of y, equal to
Fere; = Voue, L % Vcl'qw—wqﬂs Vo, (20 From Eq.(20), the width of the resonance is evaluated as

1
w—HO-HsC

U—
Gcl,c2_<cl
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v 2

2 _
cad | Vea, Terk= Skt —————— > Vi (GeoV (25)
% + % y k’k k’k (I)k_C!)k/+i8 g k’,c9c,cVek-

(29)

whereg is the density of states of the propagating mode aEach localized state contributes to thanatrix as an inde-
frequencyw., and is equal to the inverse of group velocity pendent scattering path. The scattering property is deter-
at that frequency. In deriving Eq24), we assume that state mined by the interference of the different amplitudes along
|c) couples to both continuums. Contributions from the twoall possible paths.
propagation directions within each continuum are also taken We now calculate the transmission, reflection, and trans-
into account. fer spectra, by evaluating the amplitudes of the scattered
By diagonalizing the Green’s-function matrix, the for- wave function¥ at x,x= *+o. The transmitted amplitude is
mula for theT matrix derived in Eq(16) can be simplified to given by

/ﬂ ~
'}’c:E% |Vc,q|2' 5(“)(:_(0):

<X=°°|lﬂ>=<x=°°|T|k>=§ (x=coo[k")-(k'[T[k)

=Limifdk’ie”<’X5,+ > Vi GV
e 27T \/E k'k (wg—wyr +ie) L4 k'.cPectek
= \/E 1-i 3 TheVek, . el (26
L c o ~ . Vk,ch,k VEch,k
w— o+l % + %
Scattering amplitudes along the other directions can be obtained in a similar fashion. The reflected amplitude is given by
1 V_keVek 1 _
X=—oo|ly=(—i \/: IR elkx 2
< |l,0> ( ) L zc: Yo ~ . Vk,cvc,k VEch,k ( 7)
w— Wt % + %

the forward transfer amplitude is given by

. 1 chc k 1 kKX
X=00 = _I)\/: . . elkX' (28)
<_ |l//> ( L g o ~ . Vk,ch,k \/ECVC,F)
ww:t1 +
Yo 90
and the backward transfer amplitude is given by
~ 1 V_kcVek 1 =X
= — ool = (—i \ﬁ ctek, gl(—kx (29
< |l//> ( ) L 2 Jo ~ . Vk,ch,k VEch,k
w— Wt +
Yo 90
I
C. Criteria for optimal channel drop transfer 1. Two-state system

. . . We begin by considering a structure that supports onl
‘We now examine Eqs.26)—(29) in order to derive the Iocali?ed s%/ates, and pc?ssesses a mirror plaﬁg symme}t/ry
criteria for optimal channel drop transfer. Optimal tra”Sferperpendicular to both continuums. We assume that these two
occurs when a selected propagating state is completely transtates possess a different symmetry with respect to the mirror
ferred from one continuum to the other, while states at otheplane, one even labelgdven, one odd labeledbdd. Since
frequencies remain unperturbed. Such transfer requires thie states possess a different symmetry, the Green’s-function
cancellation of the reflection amplitude. From Ef7), the  matrix is diagonal, and the conditions for using E6)—
reflection amplitude originates entirely from the decay of the(29) are satisfied. Moreover, from Ed8) we find Ve
localized states. Hence, at least two states are needed for thev, _, andV, = —V, _. Therefore, the states contribute
decaying amplitude to cancel in the reflection direction. Be+to the reflection amplitudEEqg. (27)] with opposite signs.
low we consider the criterion in two-state systems, and then Since each state possesses a Lorentzian line shape, com-
generalize the criterion to any number of states. plete cancellation of reflection amplitude over the entire fre-
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guency ranges occurs only when the two states are degendretween the states in each pair, reflection is completely
ate in frequency and linewidth. In general, because theliminated.

symmetry of the structure is low and only one-dimensional In the general case, however, symmetry and degeneracy
irreducible representations are allowed, the localized statedJone are not sufficient to guarantee complete transfer. As we
belong to different irreducible representations and an acciwill see below, the complex frequency of each pair must be

dental degeneracy among the states must be faeed by adjusted appropriately in order to achieve 100% transfer ef-

modifying the structural parameter of the system in the apficiency. _ .
propriate manngr As a specific example, we apply the generalized discus-

When such degeneracy is indeed forced, the transmissigHOn above to a structure that is capable of achieving a
amplitude vanishes. And from E@28), complete transfer maX|m_um-fIat line sha_\pe In intensity transfer. An example of
occurs at resonant frequency what o|2=|Vi |2 This lat- & maximum-flat function is given by
ter condition implies the two localized states must decay into
the two continuums at an equal rate. Recalling &), we Y
see that such condition can be satisfied by imposing mirror (0= )+ Y

plane symmetry parallel to the continuums.

The discussions above can be summarized as follows: in §U¢h @ line shape is of great interest for optical communica-
two-state system, the structure must possess two mirrdfon applications, due t(%)2|ts desired “flat-top™ and “sharp-
planes, one parallel, and one perpendicular to the continuuniidewall” characteristics: _ ,
to achieve complete transfer. Furthermore, the two states SINC€ €ach pair of degenerate states contributes a first-

must possess different symmetry with respect the perperp_rder pole to the amplitude response function, it is obvious

dicular mirror plane. Also, an accidental degeneracy of botfjhat at least two pairs are needed to generate a transfer func-
the real and imaginary parts of the frequencies must bd0n Such as the one described in E§0). We consider a

forced between the two states. An intuitive discussion of thiStructure with four localized states. Among the different
criterion can be found in Ref. 10. The criterion can also beSYMMEMy properties that these states might POSSEss, we con-
derived in a phenomenological fashion using Haus's timeSider the case where each state possesses different symmetry

coupled-mode theor$: properties with respect to two mirror planes. This case is

The propagation directionality of the transferred state iP@rticularly simple, as the Green’s-function matrix is auto-
related to the symmetry of the localized states with respect tgratically diagonalized. Each state, therefore, is an eigenstate
the mirror plane parallel to the continuums, as easily verifiedN@t Possesses a Lorentzian line shape, and €65-(29)
by inserting Eqs(8) and (10) into Egs.(28) and (29). When can be directly applied to calcylate trangport properties.
both states are even, the transfer occurs in the forward direc- W€ label the states according to their symmetry proper-
tion, and the backward transfer amplitude vanishes. On thli€S- The statéeven-odd, for example, is even with respect
other hand, when the staleven) has odd symmetry and the to_ the mirror plane perpend|cular to the continuums, .and odd
state|odd has even symmetry with respect to the paraIIeIW_'th respect to the mirror plane parallel_to the continuums.
mirror plane, complete transfer occurs in the backward direcSINce there are four states, we recognize two pairing sce-
tion. In both forward or backward cases, the intensity transDarios:(a@ scenario 1,
fer function has a Lorentzian line shape, as seen from Egs.

(28) and(29). Weven-even Wodd-everr ¥1, (3D

2. General systems with any number of states Oeven-odi™ Podd-odd™ @2, (32

In applications such as optical communications, it is
sometimes desirable to have transfer functions with a line
shape other than Lorentzian. Such line shape requires struc-
tures that support more than two localized states. Below, we
generalize the previous discussions for the two-state system Yeven-odd™ Yodd-odd™= Y2s (34)
to systems with any number of states. and (b) scenario 2,

Similar to the two-state case, it is important for the gen-
eral system to have two mirror planes, one parallel and one
perpendicular, with respect to the continuums. Having the Weven-even- @odd-odd— @1, (35
perpendicular mirror plane is necessary to achieve cancella-

Yeven-evefr Yodd-everr Y1, (33

tion of reﬂecuon, while hav.mg the parallt_al mirror ensures Oeven-odi= Codd-ever= 2 (36)
that the eigenstates decay into both continuums at an equal
rate.

Also, we note that the decay amplitudes from any two Yeven-evei™ Yodd-odd= Y1 (37
states interfere destructively in the reflection direction when
they are of opposite symmetry with respect to the perpen- _ —

Y pp y y P berp Yeven-odd™ Yodd-everr Y2 (38

dicular mirror plane. It is possible, therefore, to design a

structure with localized states arranged in pairs. The states im both scenarios, it follows from Eqgg26)—(29) that a
each pair possess opposite symmetry with respect to the panaximume-flat transfer function can be achieved by imposing
pendicular mirror plane. By forcing an accidental degeneracyhe following conditions
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Y1="7Y2 (39) [ BN BN B BN BN BN BN BN BN BN BN B BN BN BN BN BN BN BN BN J
' e00cc00c0000000000000
L B BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN J
— = L BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN J

w1~ w=2Y. (40 cavity 1 cavity 2
. . . . o0 000000 0000 :=0/000000
We also note that, in the first scenario the wave is transferred eooo00 e e0v00b0e0000e
along the forward direction, while in the second scenario the 00000060 0000 ccccoooe
wave is transferred along the backward direction. ©00000000000000000000
In addition, it is important to point out that the transfer 000000000000 0000000
can in fact be entirely eliminated when all four states have © 0660666060000 0006006600S0
the same frequency and the same width, i.e., 0000000000000 0000000 0
® 0 6000 0006000000000 9000
® O 0000000000600 0009090 0o

Weven-even- Wodd-even Weven-odd Wodd-odd (41
FIG. 2. Photonic crystal structure with two waveguides and two
(42) single-mode cavities used to achieve complete channel drop trans-
fer. The black circles correspond to rods with a dielectric constant
of 11.56, while the gray circles correspond to rods with a dielectric
Thus, if the system were designed to be tunable, this resufonstant of 9.5. The two smaller rods define the cavities; they have
could allow for switching on and off the channel drop pro- 2 dielectric constant of 6.6, and a radius of @0%vherea is the
cess, as well as for switching between forward and backwartfttice constant.
transfers. o . . .
In the following section, we validate the results of the excnatlon scheme is used to c_harac_terlze _transp_ort properties
theoretical analysis by studying transport properties of elecOVer a wide frequency range in a single simulation run.
tromagnetic waves in photonic crystals. Photonic crystals of-
fer an ideal environment for studying these processes. With
the existence of a band gap, one can create one-dimensional A. Structure with two single-mode cavities
continuums and resonators with desired number of modes, \ye first study a structure with two single-mode cavities

while eliminating all other modes, including radiation 55 shown in Fig. 2. The structure possesses both the parallel
modes. and perpendicular mirror planes, as desired. It consists of
two cavities, located atl/2 and —d/2 with respect to the
origin located at the center of the figure. Each cavity is
lll. CHANNEL DROP PROCESSES IN PHOTONIC formed by reducing the radius of a rod, and supports a single
CRYSTALS localized state. The two states are labdlpcand|2), respec-
tively. The HamiltonianH in Egs. (1)—(2) can be written
We consider a photonic crystal made up of a square latticexplicitly as
of high-index dielectric rods with a dielectric constant of
11.56 and a radius of 0.20 wherea is the lattice constant of
the square array. The band structure of a perfect crystal and Ho= wo| 1)(1|+ wo|2)(2| + >, wik)(K|, (43
the defect modes have been studied extensively We ko
summarize here only the relevant results. The crystal pos-
sesses a complete band gap for the TM-polarized states, I
which has its electric field parallel to the rods. A line defect _ \ﬁ —ik(d/2) ik(d/2)
can be introduced by removing a row of rods. This line de- V=NL 2.:‘ Vie |1){k]+ Vi = 2)(K]
fect supports a single-guide mode band inside the band gap.
Localized states are introduced inside the photonic crystal by +VyJd1)(2|+c.cl. (44)
creating point defects. These point defects are formed by
either increasing or decreasing the radius of a rod. By reduc-
ing the radius of a rod, the defect can be made to support Here, wq is the unperturbed frequency of a single localized
single degenerate state. Making the radius larger leads tosiate in the absence of the waveguide¥, represents the
doubly degenerate state. These properties are exploited epupling constant between a single cavity and the
construct channel drop structures in the photonic crystal. waveguides when the cavity is placed at the origin. The
We simulate the propagation of electromagnetic waves ipphase factore'*(%? and e~ '*(#2) gre obtained by transla-
the photonic crystal using a finite-difference time-domaintional transformations, as derived in E3). The direct cou-
progrant° with perfectly matched layer boundary pling constani/; , becomes important when the two cavities
condition!® At the entrance to the photonic crystal wave- are brought in close proximity with each other. Due to the
guide, a specially designed waveguide made up of a lingnirror plane symmetry perpendicular to waveguides, it can
defect in a distributed Bragg reflectt@®BR) is used to con- be shown thaW¥, , must be real, and that, ,=V,;=V,.
nect to the photonic crystal waveguide, so that light can Since the statefl) and |2) possess the same frequency
propagate out of the photonic crystal with minimum reflec-when unperturbed, diagonalization of the Green’s-function
tion. Light propagating in such DBR waveguides can then banatrix is achieved by diagonalizing the self-energy matrix
effectively absorbed by the perfectly matched layers. A puls&Jsing Eq.(20), we can write

Yeven-ever~ Yodd-everi- Yeven-odd~ Yodd-odd
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1 1 .
- 2 i 4+ = 2 g7iqd____—
L% |Vq| w—wgtie Vx L% |Vq| € w—wgtie
2= 1 1 1 1 49
_ 2 Aiqd - 2. -
VX+L% [Vol*-e o—wgtie L% |Vq| w—wgtie
The summation in the matrix elements is evaluated using a contour integral method. As &réswiilculated as
2|V, |? 2|V, |?
i Voo V,—i Vad eidod
Yo Yo
2= , (46)
2|V l? 21V |2
i g'dod i
Yo Y0
|
whereq, andg, are the magnitudes of the wave vector and |COS{qod/2)Vq |2
group velocity for the continuum states at the frequengy yeven=2—°, (53
respectively. The factor 2 results from the presence of two Y0
continuums. The diagonal elements characterize the interac- Isin(qod/2) V, |2
tion of a single-cavity state with continuums on a single- You=2 Sin(God/2)Vy, (54)
odd—&«— o -

cavity states. These elements are purely imaginary, indicat- Jdo

ing that the interactions introduce a finite lifetime, leavin -
g gIJ_n obtaining these results, we assumed that both the wave

the frequency unchanged. The off-diagonal elements inco dth locity of th .
porate the effects of both direct and indirect coupling mechaYector and the group velocity of the propagating states asso-
iated with the line defects do not change appreciably when

nisms between the localized states, and affect both the fré:h ¢ . ied within th idth of th
quency and the width of the states. the frequency is varied within the width of the resonance

The matrixS is diagonalized by the symmetrization pro- peak. This _is a good approximation since the width of the
cedure resonance is usually very narrow.

In order to achieve complete channel drop transfer from

one continuum to the other, both the width and frequency of

leven = i(|1>+|2>) (47) the resonant states must be made equal. The width of the
V2 ' resonances becomes equal when the following condition is
satisfied
1 —_—
|odo}=‘72(|1>—|2>), (48) qod=nm+ /2, (55)

which can be achieved by appropriately choosing the reso-

where statdeven is even and statdd is odd with respect nant frequency. The frequency splitting vanishes when
to the mirror plane perpendicular to the waveguides. The

e 2|Vq |2
self-energy for the even and odd states is given by V- 20 sin(ged) =0. (56)
S v Zlvqo|zsin(q d)—i- 2|Vq°|2[1+cos(q )] The first term on the left-hand side of E&6) represents the
even  7x do 0 do 0 direct coupling mechanism, while the second term represents
(490 the indirect coupling. The frequency splitting is cancelled by
a balance between these two mechanisms.

2|Vg,I? 2|Vg,|? As a side note, when the conditiapd=(2n+1)7 is
2 odd= — Vit sin(god) —i - [1—coqqqd)]. satisfied, the width of the even state vanishes, while the
0 0 width of the odd state reaches a maximum. For the even

(50 state, the two cavities oscillate in phase. Due to the spatial

The resonant frequencies and widths of the resonant Statggparatlon between the two cavities, at any given pointin the

. 3 . . Waveguides, the decaying amplitudes are 180° phase out of
:L% (oskg)amed from the self-energy expressions in 48, phase and cancel each other. Similarly, when the condition

god=2nm is satisfied, the width of the odd resonant state
approaches zero while the width of the even resonant state

2
B oV 2|V%| sin(qod) (51) approaches a maximum. This indicates a novel possibility of
evenr 0 T ¥ 9o God): achieving a highQ resonant state based on interference ef-
fects. We also note that the indirect part of the frequency
2|V, 2 splitting vanishes when t_he cpndit!md =nm is satisfigd.
Dodd= @o— Vy+ 0 sin(ged), (52) The structure shown in Fig. 2 is designed to satisfy the

0 degeneracy conditions given in Eq85) and (56). In order
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to satisfy Eq.(55), we choose the distance between the cavi- B. Structure with four single-mode cavities
ties to be &, and the wave vector of the guided mode at the
resonant frequency to be 0.25r2a. Examining Eq(56), we Instead of using two localized states to achieve complete

note that the indirect part scales quadratically with the coutransfer, it may also be possible to use a resonator system
pling constants, while the direct part scales linearly. Sincewith four states. The advantage of using more than two states
the coupling constants decreases exponentially as the dits the possibility of creating a flat-top transfer function, as
tance between the states increases, we choose the distant@scribed in Sec. Il C. Such a four-state structure is shown in
between the cavity and the waveguides to lae @hich is  Fig. 3. The resonator system is made up of four identical
roughly equal to half the distance between the cavities. Arpoint defects in the photonic crystal. The structure possesses
exact degeneracy is enforced by changing the dielectric coriwo mirror planes, as desired. Each defect supports a singly
stant of four rods from 11.56 to 9.5. The position of thesedegenerate state. The state associated withtthdefect is
four rods is indicated by the light gray circles in Fig. 2. labeled|i). Since the states possess the same frequency when
For this structure, computer simulations indeed demonuncoupled, it is sufficient to analyze the self-energy matrix
strated complete channel drop tunneling, as published in 2.
previous papet. The simulated spectra agreed excellently ~Using the method presented in Sec. 1Il 1 for the two-state

with the theoretical results obtained using E@6)—(29).2 case, we calculate the matrix as
|
- |V |2 V 2 -
o Vy AL 0
Yo 90
Vg |? Vg |?
vy i Vag 0 i ﬂemod
Yo 90
2= 2 2 . (57)
Vell* Vg,
1 g'dod 0 i Vy
Yo Y0
Vg |? Vg |?
0 i [Vag gidod Y Vad
X y |
L 0 90 J
|
The above matrix could also have been obtained by simple Vg 2
. . . . . 0 i
inspection. Indirect coupling occurs only between states Oeven-ever Wo+ Vit Vy+i ?(1_el%d)’ (59)

and |3), and between statd®) and |4). Since each cavity
interacts with only one continuum, the indirect coupling
strength is half the value of that in the two cavity case. As for Vg,
the direct coupling, we consider only nearest-neighbor inter- Wodd-ever™ @o— V1 Vy+i
actions, as the amplitude of the defect states decays exponen-

tially away from the defect. Since the structure has two mir-

2

(1+€'9%9),  (60)

2

ror planes, there exist only two independent direct coupling . . |VqO| igyd

constants, both of which are redl; is the direct coupling Weven-odd™ Wo T Vx— Vy do (1—e™%), (61

constant between statés and |3), and between statd®)

and|4), andV, is the direct coupling constant between states V, |2

|1) and|2), and between statd3) and|4). e VoVt 0L 4 4 giid 62
The3 matrix is completely diagonalized by forming sym- @odd-odd™ @0 Ex ¥y g ( ). (6

metrized stategeven-evep, |even-od{l, |odd-evep, and
lodd-odd as detailed earlier, each possessing a differenf Ne real part of the complex frequency corresponds to the
symmetry with respect to the two mirror planes. Thecenter frequency, while the imaginary part corresponds to the

|even-oddl state, for example, is defined by width of the Lorentzian. _ _
To achieve a flat-top line shape, we configure the states in

L pairs, and create accidental degeneracies within the pairs of
leven-odd=3(|1)+[3)—[2)—[4)), (58)  states|even-evep and |odd-eveh, and within the pair of
stategeven-od{l and|odd-odd, as discussed in Sec. 11 3. To
and has even symmetry with respect to the perpendiculesatisfy the constraints on the width as defined in Eg8),
mirror plane, and odd symmetry with respect to the paralle(34), and(39), it is sufficient to have
mirror plane. These symmetrized states are the eigenstates of
the system. Each state is associated with a single Lorentzian qod=nm+ /2, (63)
line shape, with a center frequency and a linewidth given by
the following complex frequencies which gives the same widtly for all four states, namely
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0000000000000 000OCOOES
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o000 0s00poosoo o000 (]
000000 . 0000 . 00000000 'E i 1
o0 0000000000000 00c000 -
0000000000000 0000000 i i
S0 eec0o000000000000000
0000000000000 0000OOGEEES
000000 000 -00000000 -
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0060606060000 00000000000 FIG. 4. Spectra of the four eigenmodes in the structure shown in
0000000000000 OOORIOIEEO Fig. 3.
o0 0000000000000 00eOeS
G000 00000000000000000

the waveguides. By Fourier transforming the decaying am-
plitudes, we can find the frequency spectrum of all the sym-
metric states, each with a Lorentzian line shape, as shown in
1a:ig. 4. As required, the line shapes of tleven-eveh and

FIG. 3. Photonic crystal structure with two waveguides and four
single-mode cavities. The black circles correspond to rods with

dielectric constant of 11.56, while the gray circles correspond tg dd tat | | ¢ letel I th
rods with a dielectric constant of 7.5. The four smaller rods defin _0 -even states overlap almost completely, as well as the

the cavities; they have a dielectric constant of 6.5, and a radius (J]me shapes of th@ven-odd and|0dd'9dd states. The cen-
0.05, wherea is the lattice constant. ter frequency of th¢even-eve state is separated from the

center frequency of theeven-oddl state by twice the width

YAk of the resonant peak, as desired. Using these parameters, we
y= do (64)  compute the spectrum of the transmitted signal and that of
Y0 the transferred signal using Eq26)—(29). These spectra are

The accidental frequency degeneracy constraints, as defin€oWn as solid lines in Fig. 5 and are compared to those
in Egs.(31) and(32), are satisfied by imposing obtained by computational simulatioisolid dot3. Again,
excellent agreement is obtained between theory and com-

|qu|2 puter simulation. The transmission is close to 100% over the
= =0. (65
Yo (@) ]
When the accidental degeneracy is enforced, the maximum S osl
flat lineshape can be achieved by satisfying &), which 2 o6l
implies g 04l
|Vq0|2 E 0(2) - I
. (66)
_ ° (b)
or equivalently, 8 1F
§ 08|
Vy=Vy. (67) 5 06l
The structure shown in Fig. 3 is designed to satisfy all of = 04f
the constraints described above. Equati@d) is satisfied by § 02|
having the defects separated in thdirection by 5, and by o0 ‘
appropriately setting the resonant frequency of the defect
states such thaj,=0.25(2%/a), whereqq is the wave vec- ©) .
tor of the continuums at the resonant frequency. Equation g 1t
(65) is satisfied by choosing the waveguide to be three lattice g 08}
constants away from the cavity, and by changing the dielec- '_; 06}
tric constant of four rods from 11.56 to 8.9 to achieve a 5 04}
cancellation between the direct and indirect coupling mecha- % 02
nisms. The four rods are indicated in light gray in Fig. 3. o Jus 057 0.375

Equation(67) is satisfied by having the defects separated in
they direction by & as well.

We compute the filter response of the structure shown in  F|G. 5. Intensity spectra for the structure shown in Fig(&:
Fig. 3 using a finite-difference time-domain scheme. A pulseransmission(b) transfer in the forward directioric) transfer in the
is sent down one of the waveguides and excites the resonabéckward direction. The solid dots are obtained from computer
states. These resonant states then decay exponentially inginulations. The lines result from analytical theory.

Frequency (c/a)
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: +n, with respect to the perpendicular mirror plane. An even
waveguide : state with respect to the perpendicular mirror plane can
cavity 1 <@ @@ cavity n+1 therefore be constructed by

n
cavity 2 < “gp cavity n+2 . )

. . |ever}=_§:l ci(li)y+li+nYy), (69)

. . 1=

L] .
cavity n-1 @ & cavity 2n-1 while its corresponding odd state is

n
cavityn @» £ cavity2n |0d0>=_§:l ci([iy—li+ny)). (69)

|=

waveguide

Only cavities 10, n+1, and 2 interact with the continu-
FIG. 6. Channel drop structure using 2avities. For clarity of ~UMS. Indirect coupling occurs between cavities 1 ardl,
presentation, only the position of the waveguides and cavities i@Nd between cavities and 2h. The structure is configured

indicated. The waveguides are represented by rectangles, and ti¥Ch that direct coupling between the two groups occurs only
cavities are represented by ellipses. between these two pairs. The direct coupling consignt

must be real, as required by the mirror symmetries. With

entire spectrum, except in the neighborhood of the centelﬁl;\?visr?gi?;?maﬂon’ the self energy matiixassumes the fol-

frequency where it drops to 0¢Fig. 5@)]. The forward drop
reaches a maximum close to 99% at the center frequency St Sriahtleft
[Fig. 5(b)]. The backward drop shows almost complete ab- 2:{ N }
sence of signalFig. 5(c)]. The transfer line shape does in- Seftright  right

deed show the maximum-flat characteristics, i.e., flatteningvhere each submatrix has the dimensionn. The diagonal
of the top at the resonance peak and sharp falloff of thesubmatricest e and2 g are equal. They are given by

transfer amplitude away from the center frequency.

(70

- ) -
i Vgl

C. Structure with 2n cavities Jdo Vinternal

Equations(61) and (63) provide a way to enforce degen- 0
eracies for a class of structures that consistsrofdentical S =3 = (71)
single-mode cavities. A schematic is shown in Fig. 6. This left™ <right
structure is capable of generating a higher-order maximum
flat line shape. The structure possesses the same two mirror Vinternal |qu|2
planes as all the previous cases that we have discussed. The i
cavities can be separated into two groups. We label the cavi- L 90
ties placed to the left of the perpendicular mirror plane withand describe the properties of each group of cavities. The
numbers 1 ta, forming the left group, and label the cavities off-diagonal submatricesy ef.rignt and X ightier, are also
on the right with numbersi+1 to 2n, forming the right identical, and describe the interactions between the two
group. Cavityi is located at the image position of cavity —groups of cavities. They are given by

- v -
x_i | q0| eiqod
Jo 0
0
2 leftright= >right-left= U . (72
0
0 2
x| | q0| eiqod
- 0 -

The 2 matrix can be block diagonalized by imposing the Taking the real and imaginary parts of E@3), we recover
following condition Egs.(63) and(65). Under this condition, the two groups are
completely decoupled. An accidental degeneracy between
2 every even eigenstate and its corresponding odd eigenstate is
fo gidod = 73 thereby enforced. In the tunneling process, the reflection is
Yo completely absent. Of course, cancellation of reflection alone
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is not a sufficient condition for complete transfer. The inter-erties are intricately related to the symmetries of the resonant
action within each group, as defined Wy,ma in EQ. (71),  states. By manipulating the symmetries and forcing an acci-
still needs to be appropriately designed in order to achieve dental degeneracy in the complex frequencies of the resonant

desired line shape with 100% transfer efficiency. states, complete transfer was achieved. In addition, the line
shapes of the transfer spectra can be engineered by varying
IV. CONCLUSION the number of localized states in the resonator system, and

o by properly designing the complex frequencies of these lo-
We have shown that the transport properties in a channely|ized states. These results are quite general and are appli-

drop tunneling process can be described by the Green'’s fungzple to both photonic waveguide/microcavity systems as
tion of the localized states. The Green’s function can be deyg|| as electroic quantum wire/quantum dot systems.
termined by calculating the self-energy matrices. The tunnel-
ing processes occur when two one-dimensional continuums
are brought in close proximity to a resonator system that ACKNOWLEDGMENT
supports multiple localized states. In such a system propagat-
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