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Theoretical analysis of channel drop tunneling processes
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We investigate general channel drop tunneling processes using both analytic theory and first-principles
simulations. These tunneling processes occur when two one-dimensional continuums are brought into close
proximity with a resonator system that supports localized states. Propagating states can be transferred between
the continuums through the resonator system. We show that the transport properties are intricately related to
the symmetries of the resonant states. Complete transfer can be achieved by manipulating the symmetries of
the system, and by forcing an accidental degeneracy between states with different symmetries. In addition, the
line shape of the transfer spectrum can be engineered by varying the number of localized states in the resonator
system. The theoretical analysis is confirmed by first-principles simulations of transport properties in a two-
dimensional photonic crystal.@S0163-1829~99!09419-9#
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I. INTRODUCTION

Resonant tunneling processes play an important role
many optical and electronic devices. Channel drop tunne
processes, in particular, have captured recent interest, d
their applications for wavelength division multiplexing
optical communication systems,1,2,3 and potentially as a
spectroscopy tool for electrons.4 The processes occur be
tween two one-dimensional continuums of propagat
states, side coupled through a resonator system that sup
localized states. Examples of the continuums include die
tric waveguides2 and electronic nanowires,5,6 while the reso-
nator system could be made of optical cavities or quan
dots. Optimal tunneling is achieved when a selected pro
gation signal~i.e., monoenergy electron, or single-frequen
photon! is completely transferred from one continuum to t
other, leaving all other signals unaffected.

In a recent letter,3 we determined the characteristics of t
resonator system required to achieve complete channel
tunneling. The characteristics were discussed for an ex
plary structure supporting two localized states, which gen
ated a transfer function with a Lorentzian line shape. In t
paper, we introduce a formalism to determine the transp
properties of general systems with an arbitrary number
resonances. The transport properties are related to
Green’s-function matrix of the localized states, which is o
tained by analyzing the direct and indirect coupling mec
nisms. We derive criteria for complete transfer, and pres
structures that are capable of generating higher order tran
line shapes, such as the maximum-flat functions. The res
of the analytic theory are verified by performing compu
tional simulations on the transport properties of electrom
netic waves in two-dimensional photonic crystal structure

The paper is organized as follows: In Sec. II, we prese
detailed discussion of the formalism, and we derive crite
for the complete transfer in general systems. In Sec. III,
apply the formalism to analyze photonic crystal structur
PRB 590163-1829/99/59~24!/15882~11!/$15.00
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and compare the theoretical results with computer simu
tions.

II. THEORY

The schematic diagram of a general system is shown
Fig. 1. The system is composed of two continuums, labe
C and C̄, side coupled through a resonator system. The
ordinates along the continuums are labeledx and x̄, respec-
tively. The continuums support propagating states. State
C are labeleduq&, while states inC̄ are labeleduq̄&, whereq
and q̄ are wave vectors. The resonator system supports
calized states. Localized states are labeleduc&, wherec is an
integer, taking a value between 1 and the total numbe
localized states. The transport properties of the system
determined by interactions between these states.

We describe the interaction by an effective Hamiltoni
H. The Hamiltonian consists of the sum of two partsH0 and
V where

H05(
k

vkuk&^ku1(
c

vcuc&^cu, ~1!

FIG. 1. Schematic diagram of two continuums coupled throu
a resonator system that supports localized states.
15 882 ©1999 The American Physical Society
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V5 (
c1Þc2

Vc1 ,c2
uc1&^c2u

1A1

L
•(

k,c
@Vc,kuc&^ku1Vk,cuk&^cu#. ~2!

Here stateuk& represents a state in either continuum, andvk
is its frequency. The coefficientVc,k measures the couplin
between a localized stateuc& and a propagating stateuk&,
while the coefficientVc1 ,c2

describes the strength of dire

coupling between a pair of localized statesuc1& and uc2&.
These coupling constants satisfy the conditionsVc,k5Vk,c*
andVc1 ,c2

5Vc2 ,c1
* due to the hermiticity of the Hamiltonian

matrix. TheA1/L factor in Eq.~2! arises from a box normal
ization of lengthL. Similar Hamiltonians have been used b
Fano7 and by Anderson8 to describe the interaction betwee
localized resonances and continuums in different contex

A. Symmetry properties

The symmetry properties of the system impose cer
constraints on the coupling constants. These constraint
we will show in later sections, are of crucial importance
achieve complete transfer characteristics. Since the o
dimensional continuums define a propagation direction,
symmetry group in most cases consist only of mirror ope
tors. With the existence of mirror symmetries, the coupl
constants are no longer independent variables, but rather
are related to each other through symmetry operations
addition, the continuums by themselves possess translat
symmetry. Translational operators, while not being a sy
metry operator of the entire structure, can nevertheless in
duce interesting phase relations. We explore below the c
sequences of these symmetry operations.

1. Mirror operators

In general, there exist two types of mirror symmetrie
Operator Px , which is perpendicular to the continuum
leaves each of the continuums invariant. OperatorPy , which
is parallel to the continuums, maps one continuum onto
other. We study the case where the Hamiltonian is invar
with respect to both operators, i.e.,

@Px ,H#50 ~3!

and

@Py ,H#50. ~4!

The propagating states in the continuums transform
cording to the following relations

Pxuk&5u2k&, ~5!

Pyuk&5uk̄&. ~6!

Here, uk̄& is defined as the propagating state with the sa
wave-vector value as the stateuk&, yet residing in a different
continuum.
.

in
as

e-
e
-

ey
In
nal
-
o-
n-

.

e
nt

c-

e

The localized states associated with the resonator sys
can be either even or odd with respect to the two mir
operators. For a stateuc& that is even~odd! with respect to the
operatorPx , i.e.,

Pxuc&51~2 !uc&, ~7!

the coupling constant must satisfy the following condition

Vc,k51~2 !Vc,2k , ~8!

as easily derived from Eq.~3!. Similarly, For a stateuc& that
is even~odd! with respect to thePy operator, i.e.,

Pyuc&51~2 !uc& ~9!

it follows from Eq. ~4! that the coupling constant must sa
isfy the condition

Vc,k51~2 !Vc,k̄ . ~10!

2. Translational operators

To study the symmetry properties of the HamiltonianH
under translational transformations, we start by discuss
the translational properties of the states associated with e
individual component of the system, viewed as isolated
tities. Since the continuums are translationally invariant,
propagating stateuk& satisfies the Bloch theorem, i.e.,

T~a!uk&5e2 ikauk&, ~11!

whereT(a) represents a translation operation along the c
tinuums by a distancea. The resonator system, on the oth
hand, does not possess translational symmetry. A stateuc&
localized atx50, for example, is transformed into a sta
uc̃&[T(a)uc& localized atx5a.

Under the translational operationT(a), the Hamiltonian
H, therefore, is transformed into a new HamiltonianH̃

5T(a)HT(a)215H̃01Ṽ, where

H̃05(
k

v~k!uk&^ku1(
c

vcuc̃&^c̃u ~12!

and

Ṽ5 (
c1Þc2

Vc1 ,c2
uc̃1&^c̃2u

1A1

L
•(

k,c
@Vc,ke

ikauc̃&^ku1Vk,ce
2 ikauk&^c̃u#. ~13!

The first term on the right-hand side of Eq.~12! describes the
continuums, and remains unchanged, as expected. A lo
ized stateuc& is transformed into the stateuc̃&. In addition, the
coupling constantsVc,k acquire wave-vector-depende
phase factors. Such changes in the coupling constants
analogous to gauge transformations, since both Hamilton
H and H̃ describe the same physical system.

B. Transport properties

We now proceed to study the transport properties. I
gedanken experiment, we excite a stateuk& at x52`. The
state propagates inC and excites the localized states in th
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15 884 PRB 59SHANHUI FAN et al.
resonator system, which in turn decays along several di
tions in the continuums. This scattering process can be
scribed in the usual way by the Lippman-Schwing
equation,9 which relates the scattered wave functionuc& to
the incoming waveuk&

uc&5uk&1
1

vk2H01 i«
Vuc&[Tuk&. ~14!

In Eq. ~14!, vk is the frequency of the incoming wave, and«
is an infinitesimally small number greater than zero. T
number « is introduced to enforce an outgoing wav
boundary condition for the scattered wave.

Equation~14! can be solved iteratively. As a result, theT
matrix can be represented as a sum of an infinite series

Tk8k[^k8uTuk&5 (
m50

`

^k8uS 1

vk2H01 i«
VD m

uk&. ~15!

Since there is no direct coupling between the propaga
states, we can rewrite the infinite sum as

Tk8k5dk8k1
1

vk2vk81 i« (
c1 ,c2

Vk8,c2
•Gc2 ,c1

~vk!•Vc1 ,k

~16!

where

Gc2 ,c1
~v!5 (

m50

` K c2U 1

v2H01 i« S V
1

v2H01 i« D mUc1L
5 K c2U 1

v2H1 i«Uc1L ~17!

is the Green’s function for a pair of localized statesuc1& and
uc2&.

Equation~16! incorporates the effects from two physic
processes. The incident wave can directly propagate into
final state, as described by the first term containing the d
function. Alternatively, the incident wave can excite t
resonances, which in turn decay into the final state, as
scribed by the second term. The sum of these two proce
give theT matrix.

With Eq. ~16!, the scattering problem is reduced to t
evaluation of a single-particle Green’s function. Using sta
dard diagrammatic perturbation method, the Green’s fu
tion is evaluated exactly as

G5~12G0S!21G0 ~18!

whereG, G0, andS are matrices with dimensions equal
the number of localized states.G0 is the ‘‘unperturbed’’
Green’s function for the localized states, and it is given b

Gc1 ,c2

0 [ K c1U 1

v2H01 i«Uc2L 5
1

v2vc1
1 i«

dc1 ,c2
,

~19!

while S is the ‘‘self-energy’’ matrix, and is evaluated as

Sc1 ,c2
5Vc1 ,c2

1
1

L (
q

Vc1 ,q

1

v2vq1 i«
Vq,c2

. ~20!
c-
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The summation in Eq.~20! is performed over all propagatin
states in both continuums.

The poles of the Green’s function in the complexv plane
determine the real and imaginary parts of the eigenfrequ
cies. By rewriting Eq.~18! as

Gc1 ,c2

21 5~v2vc1
!dc1 ,c2

2Sc1 ,c2
, ~21!

we can see that the off-diagonal elements of the self-ene
matrix are related to the interactions between the locali
states. The first term on the right-hand side of Eq.~20! rep-
resents a direct coupling mechanism. The second term
scribes an indirect coupling mechanism that occurs via
continuums: energy in a localized state couples into the c
tinuums, propagates in the continuums, and then cou
back into another localized state.

The structure of the Green’s-function matrix can be si
plified when the Hamiltonian possesses certain symmetr
We note that the operatorG21 possesses the same symme
as the Hamiltonian, as can be seen by rewriting Eq.~21! in
an operator form

Gc1 ,c2

21 5 K c1US v2H02V2W
1

v2Hcontinuums1 i«
WD Uc2L

[^c1uG21uc2&, ~22!

where Hcontinuums[(qvquq&^qu is the Hamiltonian for the
continuums, and the matrix element of theW operatorWc,q
[Vc,quc&^qu describes the interaction between the contin
ums and the localized states. The localized statesuc1& and
uc2& may belong to different irreducible representations
the symmetry group, or may transform as different part
functions for the same irreducible representation. In b
cases, the off-diagonal element between the pair of st
uc1& and uc2& vanishes. For many structures, symmetrizi
the localized states alone is sufficient to completely dia
nalize the Green’s-function matrices.

In general, the Green’s-function matrix can always be
agonalized by appropriately choosing a basis of localiz
states. In this basis, the Green’s function for a localized s
uc& can be written as

Gc,c~v!5
1

v2vc2Sc,c
. ~23!

The real part ofSc,c represents a shift in resonant frequen
with respect to the bare frequencyvc . The imaginary part of
Sc,c corresponds to the width of the resonance, which
related to the power decay rate from the localized state
the continuums. The norm square ofGc,c(v) possesses a
Lorentzian line shape centered at a ‘‘renormalized’’ reson
frequency ṽc5vc1ReSc,c with a width of gc equal to
Im Sc,c .

From Eq.~20!, the width of the resonance is evaluated
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gc5
p

L (
q

uVc,qu2•d~ṽc2v!5
uVc,qc

u2

g0
1

uVc,q̄c
u2

g0
,

~24!

whereg0 is the density of states of the propagating mode
frequencyṽc , and is equal to the inverse of group veloci
at that frequency. In deriving Eq.~24!, we assume that stat
uc& couples to both continuums. Contributions from the tw
propagation directions within each continuum are also ta
into account.

By diagonalizing the Green’s-function matrix, the fo
mula for theT matrix derived in Eq.~16! can be simplified to
fe
an
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r
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Tk8k5dk8k1
1

vk2vk81 i« (
c

Vk8,cGc,cVc,k . ~25!

Each localized state contributes to theT matrix as an inde-
pendent scattering path. The scattering property is de
mined by the interference of the different amplitudes alo
all possible paths.

We now calculate the transmission, reflection, and tra
fer spectra, by evaluating the amplitudes of the scatte
wave functionC at x,x̄56`. The transmitted amplitude is
given by
en by
^x5`uc&5^x5`uTuk&5(
k8

^x5`uk8&•^k8uTuk&

5Lim
x→`

L

2p E dk8
1

AL
eik8xFdk8k1

1

~vk2vk81 i«!•L (
c

Vk8,cGc,cVc,kG
5A1

L F 12 i(
c

Vk,cVc,k

g0
•

1

vk2ṽc1 i S Vk,cVc,k

g0
1

Vk̄,cVc,k̄

g0
D Geikx. ~26!

Scattering amplitudes along the other directions can be obtained in a similar fashion. The reflected amplitude is giv

^x52`uc&5~2 i !A1

L F(c

V2k,cVc,k

g0
•

1

vk2ṽc1 i S Vk,cVc,k

g0
1

Vk̄,cVc,k̄

g0
D Geikx, ~27!

the forward transfer amplitude is given by

^x̄5`uc&5~2 i !A1

L F(c

Vk̄,cVc,k

g0
•

1

vkṽc1 i S Vk,cVc,k

g0
1

Vk̄,cVc,k̄

g0
D Geikx̄, ~28!

and the backward transfer amplitude is given by

^ x̄52`uc&5~2 i !A1

L F(c

V2 k̄,cVc,k

g0
•

1

vk2ṽc1 i S Vk,cVc,k

g0
1

Vk̄,cVc,k̄

g0
D Gei ~2 k̄!x̄. ~29!
nly
etry
two

irror

tion

te

com-
re-
C. Criteria for optimal channel drop transfer

We now examine Eqs.~26!–~29! in order to derive the
criteria for optimal channel drop transfer. Optimal trans
occurs when a selected propagating state is completely tr
ferred from one continuum to the other, while states at ot
frequencies remain unperturbed. Such transfer requires
cancellation of the reflection amplitude. From Eq.~27!, the
reflection amplitude originates entirely from the decay of
localized states. Hence, at least two states are needed fo
decaying amplitude to cancel in the reflection direction. B
low we consider the criterion in two-state systems, and t
generalize the criterion to any number of states.
r
s-
r

he

e
the
-
n

1. Two-state system

We begin by considering a structure that supports o
two localized states, and possesses a mirror plane symm
perpendicular to both continuums. We assume that these
states possess a different symmetry with respect to the m
plane, one even labeledueven&, one odd labeleduodd&. Since
the states possess a different symmetry, the Green’s-func
matrix is diagonal, and the conditions for using Eqs.~26!–
~29! are satisfied. Moreover, from Eq.~8! we find Ve,k
5Ve,2k andVo,k52Vo,2k . Therefore, the states contribu
to the reflection amplitude@Eq. ~27!# with opposite signs.

Since each state possesses a Lorentzian line shape,
plete cancellation of reflection amplitude over the entire f
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quency ranges occurs only when the two states are dege
ate in frequency and linewidth. In general, because
symmetry of the structure is low and only one-dimensio
irreducible representations are allowed, the localized st
belong to different irreducible representations and an a
dental degeneracy among the states must be forced~e.g., by
modifying the structural parameter of the system in the
propriate manner!.

When such degeneracy is indeed forced, the transmis
amplitude vanishes. And from Eq.~28!, complete transfer
occurs at resonant frequency whenuVk,cu25uVk̄,cu2. This lat-
ter condition implies the two localized states must decay i
the two continuums at an equal rate. Recalling Eq.~9!, we
see that such condition can be satisfied by imposing mi
plane symmetry parallel to the continuums.

The discussions above can be summarized as follows:
two-state system, the structure must possess two m
planes, one parallel, and one perpendicular to the continu
to achieve complete transfer. Furthermore, the two st
must possess different symmetry with respect the perp
dicular mirror plane. Also, an accidental degeneracy of b
the real and imaginary parts of the frequencies must
forced between the two states. An intuitive discussion of t
criterion can be found in Ref. 10. The criterion can also
derived in a phenomenological fashion using Haus’s tim
coupled-mode theory.11

The propagation directionality of the transferred state
related to the symmetry of the localized states with respec
the mirror plane parallel to the continuums, as easily verifi
by inserting Eqs.~8! and~10! into Eqs.~28! and~29!. When
both states are even, the transfer occurs in the forward d
tion, and the backward transfer amplitude vanishes. On
other hand, when the stateueven& has odd symmetry and th
state uodd& has even symmetry with respect to the para
mirror plane, complete transfer occurs in the backward dir
tion. In both forward or backward cases, the intensity tra
fer function has a Lorentzian line shape, as seen from E
~28! and ~29!.

2. General systems with any number of states

In applications such as optical communications, it
sometimes desirable to have transfer functions with a
shape other than Lorentzian. Such line shape requires s
tures that support more than two localized states. Below,
generalize the previous discussions for the two-state sys
to systems with any number of states.

Similar to the two-state case, it is important for the ge
eral system to have two mirror planes, one parallel and
perpendicular, with respect to the continuums. Having
perpendicular mirror plane is necessary to achieve canc
tion of reflection, while having the parallel mirror ensur
that the eigenstates decay into both continuums at an e
rate.

Also, we note that the decay amplitudes from any t
states interfere destructively in the reflection direction wh
they are of opposite symmetry with respect to the perp
dicular mirror plane. It is possible, therefore, to design
structure with localized states arranged in pairs. The state
each pair possess opposite symmetry with respect to the
pendicular mirror plane. By forcing an accidental degener
er-
e
l
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between the states in each pair, reflection is comple
eliminated.

In the general case, however, symmetry and degene
alone are not sufficient to guarantee complete transfer. As
will see below, the complex frequency of each pair must
adjusted appropriately in order to achieve 100% transfer
ficiency.

As a specific example, we apply the generalized disc
sion above to a structure that is capable of achieving
maximum-flat line shape in intensity transfer. An example
a maximum-flat function is given by

T~v!5
g4

~v2v0!41g4 . ~30!

Such a line shape is of great interest for optical commun
tion applications, due to its desired ‘‘flat-top’’ and ‘‘sharp
sidewall’’ characteristics.12

Since each pair of degenerate states contributes a
order pole to the amplitude response function, it is obvio
that at least two pairs are needed to generate a transfer f
tion such as the one described in Eq.~30!. We consider a
structure with four localized states. Among the differe
symmetry properties that these states might possess, we
sider the case where each state possesses different sym
properties with respect to two mirror planes. This case
particularly simple, as the Green’s-function matrix is au
matically diagonalized. Each state, therefore, is an eigens
that possesses a Lorentzian line shape, and Eqs.~26!–~29!
can be directly applied to calculate transport properties.

We label the states according to their symmetry prop
ties. The stateueven-odd&, for example, is even with respec
to the mirror plane perpendicular to the continuums, and o
with respect to the mirror plane parallel to the continuum
Since there are four states, we recognize two pairing s
narios:~a! scenario 1,

veven-even5vodd-even[v1, ~31!

veven-odd5vodd-odd[v2, ~32!

geven-even5godd-even[g1, ~33!

geven-odd5godd-odd[g2; ~34!

and ~b! scenario 2,

veven-even5vodd-odd[v1, ~35!

veven-odd5vodd-even[v2, ~36!

geven-even5godd-odd[g1, ~37!

geven-odd5godd-even[g2. ~38!

In both scenarios, it follows from Eqs.~26!–~29! that a
maximum-flat transfer function can be achieved by impos
the following conditions
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g15g2 , ~39!

v12v252g. ~40!

We also note that, in the first scenario the wave is transfe
along the forward direction, while in the second scenario
wave is transferred along the backward direction.

In addition, it is important to point out that the transf
can in fact be entirely eliminated when all four states ha
the same frequency and the same width, i.e.,

veven-even5vodd-even5veven-odd5vodd-odd, ~41!

geven-even5godd-even5geven-odd5godd-odd. ~42!

Thus, if the system were designed to be tunable, this re
could allow for switching on and off the channel drop pr
cess, as well as for switching between forward and backw
transfers.

In the following section, we validate the results of th
theoretical analysis by studying transport properties of e
tromagnetic waves in photonic crystals. Photonic crystals
fer an ideal environment for studying these processes. W
the existence of a band gap, one can create one-dimens
continuums and resonators with desired number of mo
while eliminating all other modes, including radiatio
modes.

III. CHANNEL DROP PROCESSES IN PHOTONIC
CRYSTALS

We consider a photonic crystal made up of a square lat
of high-index dielectric rods with a dielectric constant
11.56 and a radius of 0.20a, wherea is the lattice constant o
the square array. The band structure of a perfect crystal
the defect modes have been studied extensively.13,14 We
summarize here only the relevant results. The crystal p
sesses a complete band gap for the TM-polarized sta
which has its electric field parallel to the rods. A line defe
can be introduced by removing a row of rods. This line d
fect supports a single-guide mode band inside the band
Localized states are introduced inside the photonic crysta
creating point defects. These point defects are formed
either increasing or decreasing the radius of a rod. By red
ing the radius of a rod, the defect can be made to suppo
single degenerate state. Making the radius larger leads
doubly degenerate state. These properties are exploite
construct channel drop structures in the photonic crystal

We simulate the propagation of electromagnetic wave
the photonic crystal using a finite-difference time-doma
program15 with perfectly matched layer boundar
condition.16 At the entrance to the photonic crystal wav
guide, a specially designed waveguide made up of a
defect in a distributed Bragg reflector~DBR! is used to con-
nect to the photonic crystal waveguide, so that light c
propagate out of the photonic crystal with minimum refle
tion. Light propagating in such DBR waveguides can then
effectively absorbed by the perfectly matched layers. A pu
d
e
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excitation scheme is used to characterize transport prope
over a wide frequency range in a single simulation run.

A. Structure with two single-mode cavities

We first study a structure with two single-mode caviti
as shown in Fig. 2. The structure possesses both the pa
and perpendicular mirror planes, as desired. It consists
two cavities, located atd/2 and 2d/2 with respect to the
origin located at the center of the figure. Each cavity
formed by reducing the radius of a rod, and supports a sin
localized state. The two states are labeledu1& andu2&, respec-
tively. The HamiltonianH in Eqs. ~1!–~2! can be written
explicitly as

H05v0u1&^1u1v0u2&^2u1(
ko

vkuk&^ku, ~43!

V5A1

L
•(

k
$Vke

2 ik~d/2!u1&^ku1Vke
ik~d/2!u2&^ku

1V1,2u1&^2u1c.c.%. ~44!

Here,v0 is the unperturbed frequency of a single localiz
state in the absence of the waveguides.Vk represents the
coupling constant between a single cavity and
waveguides when the cavity is placed at the origin. T
phase factorseik(d/2) and e2 ik(d/2) are obtained by transla
tional transformations, as derived in Eq.~13!. The direct cou-
pling constantV1,2 becomes important when the two cavitie
are brought in close proximity with each other. Due to t
mirror plane symmetry perpendicular to waveguides, it c
be shown thatV1,2 must be real, and thatV1,25V2,1[Vx .

Since the statesu1& and u2& possess the same frequen
when unperturbed, diagonalization of the Green’s-funct
matrix is achieved by diagonalizing the self-energy matrixS.
Using Eq.~20!, we can write

FIG. 2. Photonic crystal structure with two waveguides and t
single-mode cavities used to achieve complete channel drop tr
fer. The black circles correspond to rods with a dielectric const
of 11.56, while the gray circles correspond to rods with a dielec
constant of 9.5. The two smaller rods define the cavities; they h
a dielectric constant of 6.6, and a radius of 0.05a, wherea is the
lattice constant.
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S5F 1

L (
q

uVqu2
1

v2vq1 i«
Vx1

1

L (
q

uVqu2
•e2 iqd

1

v2vq1 i«

Vx1
1

L (
q

uVqu2
•eiqd

1

v2vq1 i«

1

L (
q

uVqu2
1

v2vq1 i«
G . ~45!

The summation in the matrix elements is evaluated using a contour integral method. As a result,S is calculated as

S5F i
2uVq0

u2

g0
Vx2 i

2uVq0
u2

g0
eiq0d

Vx2 i
2uVq0

u2

g0
eiq0d i

2uVq0
u2

g0

G , ~46!
nd
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the
whereq0 andg0 are the magnitudes of the wave vector a
group velocity for the continuum states at the frequencyv0 ,
respectively. The factor 2 results from the presence of
continuums. The diagonal elements characterize the inte
tion of a single-cavity state with continuums on a sing
cavity states. These elements are purely imaginary, indi
ing that the interactions introduce a finite lifetime, leavi
the frequency unchanged. The off-diagonal elements in
porate the effects of both direct and indirect coupling mec
nisms between the localized states, and affect both the
quency and the width of the states.

The matrixS is diagonalized by the symmetrization pr
cedure

ueven&5
1

&
~ u1&1u2&), ~47!

uodd&5
1

&
~ u1&2u2&), ~48!

where stateueven& is even and stateuodd& is odd with respect
to the mirror plane perpendicular to the waveguides. T
self-energy for the even and odd states is given by

Seven5Vx2
2uVq0

u2

g0
sin~q0d!2 i •

2uVq0
u2

g0
@11cos~q0d!#

~49!

Sodd52Vx1
2uVq0

u2

g0
sin~q0d!2 i •

2uVq0
u2

g0
@12cos~q0d!#.

~50!

The resonant frequencies and widths of the resonant s
are obtained from the self-energy expressions in Eqs.~49!
and ~50!

ṽeven5v01Vx2
2uVq0

u2

g0
sin~q0d!, ~51!

ṽodd5v02Vx1
2uVq0

u2

g0
sin~q0d!, ~52!
o
c-

-
t-

r-
-
e-

e

tes

geven52
ucos~q0d/2!Vq0

u2

g0
, ~53!

godd52
usin~q0d/2!Vq0

u2

g0
. ~54!

In obtaining these results, we assumed that both the w
vector and the group velocity of the propagating states a
ciated with the line defects do not change appreciably w
the frequency is varied within the width of the resonan
peak. This is a good approximation since the width of t
resonance is usually very narrow.

In order to achieve complete channel drop transfer fr
one continuum to the other, both the width and frequency
the resonant states must be made equal. The width of
resonances becomes equal when the following conditio
satisfied

q0d5np1p/2, ~55!

which can be achieved by appropriately choosing the re
nant frequency. The frequency splitting vanishes when

Vx2
2uVq0

u2

g0
sin~q0d!50. ~56!

The first term on the left-hand side of Eq.~56! represents the
direct coupling mechanism, while the second term repres
the indirect coupling. The frequency splitting is cancelled
a balance between these two mechanisms.

As a side note, when the conditionq0d5(2n11)p is
satisfied, the width of the even state vanishes, while
width of the odd state reaches a maximum. For the e
state, the two cavities oscillate in phase. Due to the spa
separation between the two cavities, at any given point in
waveguides, the decaying amplitudes are 180° phase ou
phase and cancel each other. Similarly, when the condi
q0d52np is satisfied, the width of the odd resonant sta
approaches zero while the width of the even resonant s
approaches a maximum. This indicates a novel possibility
achieving a high-Q resonant state based on interference
fects. We also note that the indirect part of the frequen
splitting vanishes when the conditionq0d5np is satisfied.

The structure shown in Fig. 2 is designed to satisfy
degeneracy conditions given in Eqs.~55! and ~56!. In order
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to satisfy Eq.~55!, we choose the distance between the ca
ties to be 5a, and the wave vector of the guided mode at t
resonant frequency to be 0.25 2p/a. Examining Eq.~56!, we
note that the indirect part scales quadratically with the c
pling constants, while the direct part scales linearly. Sin
the coupling constants decreases exponentially as the
tance between the states increases, we choose the dis
between the cavity and the waveguides to be 3a, which is
roughly equal to half the distance between the cavities.
exact degeneracy is enforced by changing the dielectric c
stant of four rods from 11.56 to 9.5. The position of the
four rods is indicated by the light gray circles in Fig. 2.

For this structure, computer simulations indeed dem
strated complete channel drop tunneling, as published
previous paper.3 The simulated spectra agreed excellen
with the theoretical results obtained using Eqs.~26!–~29!.3
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B. Structure with four single-mode cavities

Instead of using two localized states to achieve comp
transfer, it may also be possible to use a resonator sys
with four states. The advantage of using more than two st
is the possibility of creating a flat-top transfer function,
described in Sec. II C. Such a four-state structure is show
Fig. 3. The resonator system is made up of four identi
point defects in the photonic crystal. The structure posse
two mirror planes, as desired. Each defect supports a si
degenerate state. The state associated with thei th defect is
labeledui&. Since the states possess the same frequency w
uncoupled, it is sufficient to analyze the self-energy mat
S.

Using the method presented in Sec. III 1 for the two-st
case, we calculate theS matrix as
S53
i
uVq0

u2

g0

Vy Vx2 i
uVq0

u2

g0
eiq0d 0

Vy i
uVq0

u2

g0

0 Vx2 i
uVq0

u2

g0
eiq0d

Vx2 i
uVq0

u2

g0
eiq0d 0 i

uVq0
u2

g0

Vy

0 Vx2 i
uVq0

u2

g0
eiq0d Vy i

Vq0
u2

g0

4 . ~57!
the
the

s in
s of

o

The above matrix could also have been obtained by sim
inspection. Indirect coupling occurs only between statesu1&
and u3&, and between statesu2& and u4&. Since each cavity
interacts with only one continuum, the indirect couplin
strength is half the value of that in the two cavity case. As
the direct coupling, we consider only nearest-neighbor in
actions, as the amplitude of the defect states decays expo
tially away from the defect. Since the structure has two m
ror planes, there exist only two independent direct coupl
constants, both of which are real;Vx is the direct coupling
constant between statesu1& and u3&, and between statesu2&
andu4&, andVy is the direct coupling constant between sta
u1& and u2&, and between statesu3& and u4&.

TheS matrix is completely diagonalized by forming sym
metrized statesueven-even&, ueven-odd&, uodd-even&, and
uodd-odd& as detailed earlier, each possessing a differ
symmetry with respect to the two mirror planes. T
ueven-odd& state, for example, is defined by

ueven-odd&5 1
2 ~ u1&1u3&2u2&2u4&), ~58!

and has even symmetry with respect to the perpendic
mirror plane, and odd symmetry with respect to the para
mirror plane. These symmetrized states are the eigenstat
the system. Each state is associated with a single Lorent
line shape, with a center frequency and a linewidth given
the following complex frequencies
le

r
r-
en-
-
g

s

nt

ar
l
of

an
y

veven-even5v01Vx1Vy1 i
uVq0

u2

g0
~12eiq0d!, ~59!

vodd-even5v02Vx1Vy1 i
uVq0

u2

g0
~11eiq0d!, ~60!

veven-odd5v01Vx2Vy1 i
uVq0

u2

g0
~12e2 iq0d!, ~61!

vodd-odd5v02Vx2Vy1 i
uVq0

u2

g0
~11eiq0d!. ~62!

The real part of the complex frequency corresponds to
center frequency, while the imaginary part corresponds to
width of the Lorentzian.

To achieve a flat-top line shape, we configure the state
pairs, and create accidental degeneracies within the pair
statesueven-even& and uodd-even&, and within the pair of
statesueven-odd& anduodd-odd&, as discussed in Sec. II 3. T
satisfy the constraints on the width as defined in Eqs.~33!,
~34!, and~39!, it is sufficient to have

q0d5np1p/2, ~63!

which gives the same widthg for all four states, namely
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g5
uVq0

u2

g0
. ~64!

The accidental frequency degeneracy constraints, as de
in Eqs.~31! and ~32!, are satisfied by imposing

Vx2
uVq0

u2

g0
50. ~65!

When the accidental degeneracy is enforced, the maxim
flat lineshape can be achieved by satisfying Eq.~40!, which
implies

Vy5
uVq0

u2

g0
, ~66!

or equivalently,

Vx5Vy . ~67!

The structure shown in Fig. 3 is designed to satisfy all
the constraints described above. Equation~63! is satisfied by
having the defects separated in thex direction by 5a, and by
appropriately setting the resonant frequency of the de
states such thatq050.25(2p/a), whereq0 is the wave vec-
tor of the continuums at the resonant frequency. Equa
~65! is satisfied by choosing the waveguide to be three lat
constants away from the cavity, and by changing the die
tric constant of four rods from 11.56 to 8.9 to achieve
cancellation between the direct and indirect coupling mec
nisms. The four rods are indicated in light gray in Fig.
Equation~67! is satisfied by having the defects separated
the y direction by 5a as well.

We compute the filter response of the structure shown
Fig. 3 using a finite-difference time-domain scheme. A pu
is sent down one of the waveguides and excites the reso
states. These resonant states then decay exponentially

FIG. 3. Photonic crystal structure with two waveguides and f
single-mode cavities. The black circles correspond to rods wit
dielectric constant of 11.56, while the gray circles correspond
rods with a dielectric constant of 7.5. The four smaller rods de
the cavities; they have a dielectric constant of 6.5, and a radiu
0.05a, wherea is the lattice constant.
ed

m
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ct

n
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nto

the waveguides. By Fourier transforming the decaying a
plitudes, we can find the frequency spectrum of all the sy
metric states, each with a Lorentzian line shape, as show
Fig. 4. As required, the line shapes of theueven-even& and
uodd-even& states overlap almost completely, as well as
line shapes of theueven-odd& anduodd-odd& states. The cen-
ter frequency of theueven-even& state is separated from th
center frequency of theueven-odd& state by twice the width
of the resonant peak, as desired. Using these parameter
compute the spectrum of the transmitted signal and tha
the transferred signal using Eqs.~26!–~29!. These spectra are
shown as solid lines in Fig. 5 and are compared to th
obtained by computational simulation~solid dots!. Again,
excellent agreement is obtained between theory and c
puter simulation. The transmission is close to 100% over

r
a
o
e
of

FIG. 4. Spectra of the four eigenmodes in the structure show
Fig. 3.

FIG. 5. Intensity spectra for the structure shown in Fig. 3:~a!
transmission;~b! transfer in the forward direction;~c! transfer in the
backward direction. The solid dots are obtained from compu
simulations. The lines result from analytical theory.
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entire spectrum, except in the neighborhood of the ce
frequency where it drops to 0%@Fig. 5~a!#. The forward drop
reaches a maximum close to 99% at the center freque
@Fig. 5~b!#. The backward drop shows almost complete a
sence of signal@Fig. 5~c!#. The transfer line shape does in
deed show the maximum-flat characteristics, i.e., flatten
of the top at the resonance peak and sharp falloff of
transfer amplitude away from the center frequency.

C. Structure with 2 n cavities

Equations~61! and ~63! provide a way to enforce degen
eracies for a class of structures that consists of 2n identical
single-mode cavities. A schematic is shown in Fig. 6. T
structure is capable of generating a higher-order maxim
flat line shape. The structure possesses the same two m
planes as all the previous cases that we have discussed
cavities can be separated into two groups. We label the c
ties placed to the left of the perpendicular mirror plane w
numbers 1 ton, forming the left group, and label the cavitie
on the right with numbersn11 to 2n, forming the right
group. Cavityi is located at the image position of cavityi

FIG. 6. Channel drop structure using 2n cavities. For clarity of
presentation, only the position of the waveguides and cavitie
indicated. The waveguides are represented by rectangles, an
cavities are represented by ellipses.
he
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1n, with respect to the perpendicular mirror plane. An ev
state with respect to the perpendicular mirror plane c
therefore be constructed by

ueven&5(
i 51

n

ci~ u i &1u i 1n&), ~68!

while its corresponding odd state is

uodd&5(
i 51

n

ci~ u i &2u i 1n&). ~69!

Only cavities 1,n, n11, and 2n interact with the continu-
ums. Indirect coupling occurs between cavities 1 andn11,
and between cavitiesn and 2n. The structure is configured
such that direct coupling between the two groups occurs o
between these two pairs. The direct coupling constantVx
must be real, as required by the mirror symmetries. W
these information, the self energy matrixS assumes the fol-
lowing form

S5F Sleft Sright-left

Sleft-right Sright
G , ~70!

where each submatrix has the dimensionn3n. The diagonal
submatricesS left andS right are equal. They are given by

S left5S right53
i
uVq0

u2

g0 Vinternal

0

¯

Vinternal

0

i
uVq0

u2

g0

4 ~71!

and describe the properties of each group of cavities.
off-diagonal submatrices,S left-right and S right-left , are also
identical, and describe the interactions between the
groups of cavities. They are given by

is
the
S left-right5S right-left53
Vx2 i

uVq0
u2

g0
eiq0d

0

0

¯

0

0

Vx2 i
uVq0

u2

g0
eiq0d

4 . ~72!
e
een
te is

n is
one
The S matrix can be block diagonalized by imposing t
following condition

Vx2 i
uVq0

u2

g0
eiq0d50. ~73!
Taking the real and imaginary parts of Eq.~73!, we recover
Eqs.~63! and~65!. Under this condition, the two groups ar
completely decoupled. An accidental degeneracy betw
every even eigenstate and its corresponding odd eigensta
thereby enforced. In the tunneling process, the reflectio
completely absent. Of course, cancellation of reflection al
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is not a sufficient condition for complete transfer. The int
action within each group, as defined byVinternal in Eq. ~71!,
still needs to be appropriately designed in order to achiev
desired line shape with 100% transfer efficiency.

IV. CONCLUSION

We have shown that the transport properties in a chan
drop tunneling process can be described by the Green’s f
tion of the localized states. The Green’s function can be
termined by calculating the self-energy matrices. The tunn
ing processes occur when two one-dimensional continu
are brought in close proximity to a resonator system t
supports multiple localized states. In such a system propa
ing states can be transferred between the continuums thr
the resonator system. We have shown that the transport p
, J

u

h

u

-

a

el
c-

e-
l-
s
t

at-
gh
p-

erties are intricately related to the symmetries of the reson
states. By manipulating the symmetries and forcing an a
dental degeneracy in the complex frequencies of the reso
states, complete transfer was achieved. In addition, the
shapes of the transfer spectra can be engineered by va
the number of localized states in the resonator system,
by properly designing the complex frequencies of these
calized states. These results are quite general and are a
cable to both photonic waveguide/microcavity systems
well as electroic quantum wire/quantum dot systems.
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