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One-dimensional phonon-coupled electron tunneling: A realistic model
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The transition probability for a one-dimensional tunneling electron coupled to acoustical phonons is calcu-
lated, with the Feynman path-integral method. We considered a realistic electron-phonon interaction~defor-
mation potential, piezoelectric!, making use of slowness of the phonon system compared to electron tunneling.
We show that the problem of the complex nonlinear coupling of a tunneling electron to the zero-point
fluctuations of a phonon field is equivalent to that of an electron tunneling through a slow fluctuating spatially
uniform barrier, thus resulting in an increase of the tunneling probability due to electron coupling with
zero-point phonon oscillations. We calculated also the energy change of the tunneling electron due to phonon
emission.@S0163-1829~99!09423-0#
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I. INTRODUCTION

Tunneling, being one of the most remarkable nonclass
manifestations of quantum dynamics, has been largely in
tigated. One of the major issues in the field is the understa
ing of the properties of tunneling particles coupled to degr
of freedom representing the environment. The case of a
ticle or macroscopic degree of freedom tunneling out o
metastable state in the presence of arbitrary linear dissipa
mechanism, has been extensively studied in a series of
pers by Caldeira and Leggett1 and other groups.2 Two state
systems coupled to a dissipative environment have b
studied in depth by a large number of groups,3 in the last two
decades.

The problem that we address in the present paper is
tunneling of an electron with a given energyE across a rect-
angular barrier where it is coupled with phonons. We cal
late the change of the tunneling probability due to this c
pling and the average energy loss due to phonon emissio
tunneled electrons. In this paper, we consider only a o
dimensional problem that can be realized as a quantum w
or in narrow constrictions.

This problem, finding the transmission probability a
spectrum of a tunneling electron coupled to phonons is
fundamental interest as well as being potentially of gr
technological importance. Examples are tunneling throu
Josephson junctions,4 bit errors in mesoscopic logic, an
memory circuits,5 as well as quantum cascade lasers,6 and of
course, scanning tunneling microscopy.7 There are even
some recent examples of the use of the transmission s
trum to define an experimental test between quantum
chanics and a class of alternative theories.8 Also, recent de-
velopment of nanostructure technology makes it possible
check experimentally the effect of coupling with the enviro
ment on the dependence of the tunneling probability on
width and the height of the barrier.

Typically the coupling between the tunneling particle a
the environment is assumed to be linear with respect to
ticle coordinate. This assumption may be justified for tunn
ing of heavy atoms or macroscopic degrees of freedom b
is not realistic for electrons. A nonlinear coupling wi
phonons was considered by Bruinsma and Bak.9 But they
considered only the case when the coupling between the
PRB 590163-1829/99/59~24!/15854~8!/$15.00
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neling particle and each phonon degree of freedom is
same, which is not realistic in a regular lattice. Due to t
the result of Bruinsma and Bak contains a cutoff frequen
In our realistic treatment of electron-phonon coupling a ch
acteristic frequency naturally arises in the theory. Since
only length scale in the problem is the barrier length a
from it a typical time scale emerges.

A recent treatment of the problem was given by Ueda10

who used the effective action technique and got analytic
sults, for some cases of the spectral density function of
phonon bath. Whereas Bruinsma and Bak9 calculated the
transmission spectrum, we show that the main effect, on
electron transition probability, is static, i.e., a static effecti
lowering of the barrier by phonons. Such an effect, a sta
lowering of the barrier due to coupling of the tunneling ele
tron to zero-point fluctuations, was also discussed in t
papers by Ueda and Ando11 although they studied a differen
physical problem, the coupling of the tunneling electron
electromagnetic modes~in their paper this was referred to a
the dynamic limit!.

A deformation potential coupling of tunneling electron
with phonons was also studied by Gelfandet al.12 However,
they considered only an infinitesimally thin barrier.

We consider interaction of tunneling electron with acou
tic phonons via realistic coupling mechanisms: deformat
potential or piezoelectric. Coupling with optical phonons
neglected for the following reasons. The amplitude for ze
point fluctuations for optical phonons, for a given frequen
is proportional to one over the square root of the frequen
Since the optical frequencies are large compared to thos
acoustic phonons we consider their zero-point fluctuation
negligible. Also the coupling constant with optical phono
in III-V materials13 is not very large giving a further justifi-
cation for neglecting the effect of optical phonons. Conce
ing optical phonon emission and absorption we study
low-temperature case and assume that electron energy
temperature are much smaller than the energy of the op
phonons so that emission and absorption can be neglec

The coupling with acoustic phonons leads to a modulat
of the barrier. This effect exists even at zero temperat
when the modulation is controlled by zero-point phonon
brations. In other words, as a result of coupling with phono
15 854 ©1999 The American Physical Society
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PRB 59 15 855ONE-DIMENSIONAL PHONON-COUPLED ELECTRON . . .
the height of the potential barrier is not any more a class
parameter determined by fabrication of the structure bu
quantum-mechanical dynamical variable that is character
by a wave function. Thus, the complex nonlinear problem
a tunneling electron coupled to a phonon field is transform
to a that of an electron tunneling through an effective pot
tial barrier where the barrier height fluctuates.

The paper is composed in the following way. In Sec.
we formulate the model. In Sec. III we introduce two ma
approximations, which we use to facilitate the calculation
the tunneling probability. Both coupling mechanisms that
consider are nonlinear with respect to the electron coo
nate. This nonlinearity makes the application of genera
used instanton method difficult and to solve the problem
developed an expansion on some small parameters. Fir
appears that frequencies of typical phonons interacting w
a tunneling electron are so small that the phonon system
be considered slow compared to the electron. Second, we
the WKB approximation. The slowness of the phonon s
tem allows us in the first approximation to neglect phon
dynamics and to consider their potential as time independ
which dramatically simplifies the calculation~the calculation
without this approximation appears in the Appendix!. The
corresponding calculation of the transmission coefficient
carried out in Sec. IV. The static approximation, howev
does not include phonon emission and resulted energy
To calculate it a more general approach is necessary. In
V, again making use of the slowness of the phonon sys
we go beyond the static approximation and calculate the
erage energy loss of tunneled electrons.

II. GENERAL FORMULATION OF THE PROBLEM

A. The model

We treat the problem of a one-dimensional electr
coupled to acoustic phonons while tunneling through a re
angular barrier, of lengthL. The potentials restricting the
electron’s movement do not effect phonons, which mo
freely through the bulk and thus are treated as three dim
sional. Being interested in the effect of the zero-point flu
tuations of the phonon field on the electron tunneling pr
ability, we consider the system at zero temperatu
Practically, it means that temperature is low enough and
condition as well as the finite temperature case are discu
in the Appendix. Coupling the electron to the phonon fie
transforms the problem from a low-dimensional quant
problem to a field theory problem. A convenient way to a
proach such a field theory problem is via the formalism
path integrals.14

The first stage in the calculation of the transition probab
ity for the tunneling process is the calculation of the retard
Green function. We express the energy-dependent reta
Green function as the Fourier transform of the tim
dependent propagator,

K~xb ,uqf ,Euxa ,uqi !

5E
0

`

K~xb ,uqf ,Tuxa ,uqi !expS ıE•T

\ DdT,

~2.1!
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that can be written as the combined path integral of the e
tron and phonons

K~xb ,uqf ,Tuxa ,uqi !5E DxE Duq expH ı

\
@Sel~x!

1Sph~uq!1Sint~uq ,x!#J , ~2.2!

wherex is the electron coordinate,uq are the Fourier coeffi-
cients of u(x,t), which is the displacement vector, an
xa ,uqi ; xb ,uqf are the initial and final coordinates of th
electron and phonons, respectively. The limits over the
ergy Fourier transform result from the fact that we are c
culating the retarded Green function.Sel is the action of the
electron in the absence of phonons, given by

Sel5E
0

T

dtS m

2
ẋ22VD , ~2.3!

wherem is the effective electron mass, andV is the constant
potential height of the rectangular barrier.Sph is the action of
the uncoupled phonon field

Sph5E
0

T

dt(
q

S r

2
uu̇qu22

r

2
•vq

2uuqu2D , ~2.4!

wherer is the crystal density andu2q5uq* . Since we are
treating acoustic phononsvq5q•s, s being the phonon ve-
locity. Sint is the action associated with the interaction b
tween the electron and the phonon environment

Sint52E
0

T

dtVint . ~2.5!

We will treat two electron-phonon coupling mechanisms,
ezoelectric and deformation potential, and consider crys
of cubic symmetry. We consider this symmetry as the m
important because most of III-V compounds belong to t
class.13 So for the piezoelectric coupling

Vint
piezo5

1

AVvol
(
qn

JqnuqnMq'
exp~ iqxx!, ~2.6!

where

Jqn5
4pe

eq2
b i jkqiqjek

n ~2.7!

b i jk is the piezoelectric modules,e is the electron charge,e
is the dielectric constant,ek

n is the polarization vector of the
nth phonon branch, andVvol is the normalization volume
Mq'

is the matrix element of the phonon expone

exp(iq'r'), between the wave functions describing the ele
tron quantization in the cross section of the wire,q' andr'

are the phonon wave vector and electron radius vector in
cross section plane. In cubic crystals the only nonzero co
ponents of the piezoelectric module arebxyz5byxz and all
other permutations.15 They are equal and we will designa
them asb.

The deformation potential couples electrons only with t
longitudinal phonon mode and



-
o

th

-

o

at

r
un

o
d
ar
t

bil

na
nd
e
u

is
tia
ro

io

a
s
in

n
tr

c-

-
n

.

as

l

the

ter

e
t
gth

e
rier.
g
e

the
uch
as-

we
oxi-
nd

of

he

lly
in a

co-
t to
the
q.

15 856 PRB 59E. PAZY AND B. LAIKHTMAN
Vint
de f5

1

AVvol
(

q
iLuquuqlMq'

exp~ iqxx!. ~2.8!

Here,L is the deformation potential constant.
We neglect the screening ofVint . Underneath the poten

tial barrier there are no electrons and the screening by rem
electrons is small.

B. Transition amplitude and transition probability

We can now define the transition amplitude through
use of the retarded Green function ~2.2!.
K(xb ,uqf ,Euxa ,uqi) is the amplitude to go from initial pho
non coordinateuqi to final coordinateuqf and from electron
coordinatexa to xb , for a given energyE, of the joint sys-
tem.~In all intermediate calculation we suppress the index
the phonon branch to simplify the notations.! The transition
amplitude for the joint system to go from a phonon st
designated byc0(uqi) to a statecn(uqf) is expressed by
K(xb ,uqf ,Euxa ,uqi) in the following manner

Anb,0a5E duqiduqfcn* ~uqf !K~xb ,uqf ,Euxa ,uqi !c0~uqi !.

~2.9!

We treat the problem with the temperature equal to ze
therefore, phonons are assumed to be initially in the gro
state:c0(uqi).

The transition probability is the absolute value squared
the transition-matrix element. Since we are not intereste
the final phonon configuration, final phonon states
summed over. From the completeness relation we get
following delta function:d(uqf2ũqf). We end up with the
following expression for the electron transmission proba
ity

Pb,a5(
n

uAnb,0au2

5E duqidũqiduqfc0* ~ ũqi !K~xb ,uqf ,Euxauqi !

3K̃* ~xb ,uqf ,Euxaũqi !c0~uqi !. ~2.10!

This equation defines the transmission coefficient.

III. MAIN APPROXIMATIONS

The usual approach to the calculation of the functio
integral in Eq.~2.2! that has been started by Caldeira a
Leggett1 is the integration out the phonon degrees of fre
dom. This can be done exactly because the action is q
dratic in uq . In the realistic electron-phonon coupling, th
results in a complicated electron-electron effective poten
since the coupling mechanism is nonlinear in the elect
coordinate, thus, a simpler approach is needed.

We use the following approach. We consider the situat
~which is typical experimentally! when ~i! the barrier is so
high that the tunneling can be considered semiclassically
~ii ! the interaction energy between electrons and phonon
small compared to the height of the barrier. The first po
allows us to make use of the semiclassical approximatio
integrate with respect to all electron paths. The main con
te
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bution to this integral comes from only one optimal traje
tory that satisfies the equation

mẍ52
]Vint

]x
, ~3.1!

~for a rectangular barrier]V/]x50). This equation has to be
solved for givenu(x,t). The second point allows us to con
siderVint in Eq. ~3.1! as a small perturbation and thus, it ca
be neglected. As usual in tunneling problems,16,17we change
the timet to 2 i t ~andT to iT) so that the first integral of Eq
~3.1! has the form

mẋ2

2
5V2E8. ~3.2!

Here,E8 is the integration constant that can be considered
the electron energy. The value ofE8 is determined from the
boundary conditionsx(0)5xa andx(T)5xb . For a rectan-
gular barrier whenxa andxb are fixedE8 is a function ofT
only. Without phonon emissionE8 eventually appears equa
to the energy of the incident electronE that is also the total
energy. If during tunneling phonons are emitted then
electron energyE8 appears smaller than the total energy.

Thus in the tunneling problem an important parame
appears the electron velocityv5A2(V2E8)/m. If V2E8 is
around 10 meV or larger than in GaAs wherem
50.067m0 (m0 is the free-electron mass! v is around or
larger than 23107 cm/s. This velocity is larger than th
sound velocitys by about two orders of magnitude. Tha
means that frequencies of phonons with the wave len
around the length of the barrierL are much smaller than th
inverse time necessary for an electron to traverse the bar
Actually, the wave length of a typical phonon interactin
with the tunneling electron is limited not by the length of th
barrier but by the width of the constrictiona that is smaller
thanL. However, practically the ratioa/L for a constriction
where tunneling is still measurable is not very small and
assumption that the typical phonon frequencies are m
smaller than the inverse traverse time is justified. This
sumption means that during the traverse time (L/v) the pho-
non potential nearly does not change. In the extreme case
can consider it constant. We call this case the static appr
mation. A similar approximation was used by Flynn a
Stoneham18 and later by Kagan and Klinger19 treating the
problem of quantum diffusion of atomic particles.

It should be mentioned that the physical significance
the parametervt0 , v being the phonon frequency,t0 the
tunneling time as defined by Bu¨ttiker and Landauer,20 t0
5L/v ~in our case of a rectangular barrier! was also noted in
the two papers of Ueda and Ando,11 but in their problem the
typical frequencyv was a tunable parameter defined by t
properties of the electric circuit.

In the static approximation the problem is dramatica
simplified because we need to consider electron motion
static potential and the stationary Schro¨dinger equation is
enough for this. The integration with respect to phonon
ordinates is reduced to the integration only with respec
uqi . The derivation of the corresponding expression for
transmission coefficient in the static approximation from E
~2.10! with the help of the expansion ins/v is given in the
Appendix.
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In the static approximation we can add alsoVint
stat

5Vint(uqi) to the rhs of Eq.~3.2!. That immediately shows
that the small parameter characterizing the interaction w
phonons isVint /(V2E). In the calculation of the transmis
sion coefficient we take into account only terms of the fi
order in this parameter. So we ignore corrections to the
jectoryx5vt coming from the interaction with phonons. It
obvious in the calculation ofVint and this is also true forSel .
Indeed, the trajectoryx5vt is found from the minimization
of Sel and any correction to this functional contains a c
rection to the trajectory squared. Such an approxima
means, in particular, that we neglect all polaron effects. T
physical meaning of the phonon effect in this approximat
is that different phonon configurations change the barrier
the main contribution to the transmission comes from
configurations corresponding to the barrier being a bit low
in average, so that the tunneling probability is higher. It
worthwhile to note that the average~over configurations!
height of the barrier does not change because^Vint&50 but
nevertheless the average of the tunneling exponent is m
fied due toVint ~similar to, e.g.,̂ exp(Vint)&.1).

The tunneling across a static barrier is an elastic proc
and the energy of the incident electron and the tunneled
is the same. Phonon emission and the corresponding ch
of the electron energy come about only in the first appro
mation in s/v when the phonon dynamics is taken into a
count. The calculation of the dynamic correction to the tra
mission coefficient that requires a more complete treatm
of the modes presented in the previous section is given
Sec. V.

IV. STATIC APPROXIMATION

In the static approximation the problem of tunneling c
be formulated in a very simple way, without making use
Eq. ~2.2!. First, we can find the transmission probability for
given static phonon field. The regular WKB approximati
gives for it

D~E;uqi !5A m

4~V1Vint
stat2E!

3expH 2
2

\E0

L
A2m~V1Vint

stat2E!dxJ .

~4.1!

The calculation of the electron transmission coefficient in
case when phonon field is initially at the ground state
reduced now to the integration ofD(E;uqi) multiplied by the
ground state phonon wave function squared with respec
uqi ,

P~E!5C2E D~E;uqi !expS 2
1

\ (
q

rqsuuqi u2D duqi

~4.2!

(C is a normalizing constant!. The expansion inVint gives
h
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P~E!5P0~E!C2E
3expH 2A 2m

\AV2E
E

0

L

Vint
statdx2

rs

\

3(
q

quuqi u2J duqi , ~4.3!

where

P0~E!5
Am

2AV2E
expH 2

2L

\
A2m~V2E!J . ~4.4!

is the transmission coefficient without interaction wi
phonons. Equation~4.3! can be obtained directly from Eq
~2.10! ~see Appendix!. The result can be written in the form

P~E!5P0~E!expH 2

\
Fstat~E!J . ~4.5!

For the deformation potential

Fstat~E!5
L2L

8p2rslv
2E uMq'

u2q'd2q' , ~4.6!

wheresl is the longitudinal phonon velocity.
For the piezoelectric coupling

Fstat~E!5
1

2p3rv2E0

`

dqx

sin2~qxL/2!

qx
2

3(
n

1

sn
E uJqnu2uMq'

u2
d2q'

q
. ~4.7!

Because of the anisotropy the result depends on the tunne
direction with respect to crystalographic axes. For the t
neling in @100# the contribution of the longitudinal phonon
in Fstat is small compared to that of transverse ones ina/L
and

Fstat~E!5
8b2e2L

rv2e2st
E uMq'

u2
qy

2qz
2

q'
5

d2q' , ~4.8!

wherest is the velocity of the transverse phonons. For t
tunneling in@110# direction the contributions of both longi
tudinal and transverse phonons are of the same order,

Fstat~E!5
2b2e2L

rv2e2 E uMq'
u2

3Fqy
414qy

2qz
2

stq'
4

2S 1

st
2

1

sl
D9qy

4qz
2

q'
6 Gd2q'

q'

.

~4.9!

As can be seen the typical phonon wave numbers w
which the electron interacts are fixed through the len
scales of the problem, the barrier lengthL and the width of
the constrictiona. It is important to note that, the static co
rection, in the exponent is positive, therefore static phon
reduce the effective potential barrier height, enhancing e
tron tunneling probability. The electron, due to coupling
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15 858 PRB 59E. PAZY AND B. LAIKHTMAN
the zero-point fluctuations of the phonon field, tunn
through an effectively lower potential barrier.

V. DYNAMIC CORRECTIONS AND ENERGY LOSS

To get the electron’s energy loss due to phonon emiss
during the tunneling process, one needs to go beyond
static approximation. As the first step we make use of
WKB approximation to simplify the expression for th
propagatorK(xb ,uqf ,Tuxa ,uqi) ~2.2!. In this approximation
the main contribution to the integral with respect tox(t)
comes from the saddle point trajectory that in the first
proximation inVint /(V2E) is determined by Eq.~3.2!, As a
result the propagator is factorized. In Eq.~3.2!, we passed to
the imaginary time so the trajectory isx0(t)5vt where v
5A2(V2E8)/m, thus the propagator can be expressed a

K~xb ,uqf ,2 iTuxa ,uqi !5K0~xb ,Tuxa!Kph~uqf ,Tuuqi !.
~5.1!

Here,

K0~xb ,Tuxa!5F m

4~V1Vint
stat2E!

G 1/4

expS 2E8T

\ D
3expS 2

1

\E0

L

dxA2m~V2E8! D ~5.2!

is the electron propagator without interaction with phono
and

Kph~uqf ,Tuuqi !5E Duq expH 2
1

\
@Sph~uq!1Sint~uq ,x0!#J

~5.3!

is the phonon part of the propagator.
So as the electron trajectory is determined the phonon

of the propagator is the propagator of an ensemble of for
harmonic oscillators.14 The integration with respect touq
leads to

Kph~uqf ,Tuuqi !5g~T!expF2
1

\
Scl~uqf ,Tuuqi !G ,

~5.4!

where

g~T!5)
q
A rvq

2p\ sinhvqT
, ~5.5!

and

Scl~uqf ,Tuuqi !5(
q

rvq

2 sinh~vqT! H cosh(vqT)

3~ uuqi u21uuqf u2!2~uqiuqf* 1uqi* uqf !

2uqfF 1

rvqvE0

L

dx fq~x!sinhS vqx

v D G
2uqiF 1

rvqvE0

L

dx fq~x!sinhS vq~L2x!

v D G
2uqf* F 1

rvqvE0

L

dt fq* ~x!sinhS vqx

v D G
s

n
he
e

-

s

rt
d

2uqi* F 1

rvqvE0

L

dx fq* ~x!sinhS vq~L2x!

v D G
2

2

r2vq
2v2E0

L

dxE
0

x

dy@ f q~x! f q* ~y!

1 f q* ~x! f q~y!#sinhS vqy

v D sinhFv~L2x!

v D J .

~5.6!

Here, according to Eqs.~2.8! and ~2.6!

f q~x!5
JMq'

AVvol

eiqxx ~5.7!

for the piezoelectric interaction and

f q~x!5 i uqu
LMq'

AVvol

eiqxx ~5.8!

for the deformation potential interaction. One should no
that in Eq.~5.6! we made a transformation of variables fro
t in the action, tox5vt.

Making use of the factorization~5.1! the expression for
tunneling probability~2.10! can be written as

P~E!5E dTE dT̃K0~xb ,Tuxa!K0~xb ,T̃uxa!jph~T;T̃!,

~5.9!

where

jph~T;T̃!5g~T!g~ T̃!

3E duqiE duqfE dũqi

3expF2
1

\
Scl~uqf ,Tuuqi !

2
1

\
Scl~uqf ,T̃uũqi !Gc0~uqi !c0* ~ ũqi !,

~5.10!

andc0(uqi) is the phonon ground state wave function. T
integrals with respect toT and T̃ in Eq. ~5.9! are calculated
by the saddle-point method.16 Due to the symmetry of
jph@T;T̃# with respect to the transposition ofT and T̃ the
saddle point values of these variables are identical. We
interested only in the exponential part of the transition pro
ability and for this onlyjph@T;T# is necessary. The resu
can be written in the form

jph~T;T!5A expF2

\
Fph~T!G , ~5.11!

where Fph(T) is calculated in the Appendix and the pr
exponential factorA, will not be calculated.

We now breakFph(T) into a static part,Fstat , and a
dynamical correction so thatFph5Fstat1Fdyn . As one can
expect the static part is identical toFstat(E8) obtained in
Sec. IV, Eq.~4.8!, in a more simple way. The dynamica
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correction,Fdyn(T,E8), is obtained in the Appendix in the
leading order ins/v!1. Using these notations the saddl
point equation for time integration is given by

S ]Fel

]E8
2

]Fstat

]E8
2TD dE8

dT
2

dFdyn

dT
1E2E850,

~5.12!

whereFel(E8)5LA2m(V2E8).
According to Sec. IV,Fel(E8)2Fstat(E8) is the electron

action in the phonon static field at the trajectory with t
energyE8. The derivative of the action with respect to th
energy is the traveling time along the trajectory. The fi
term, ]Fel /]E8, has been defined by Bu¨ttiker and
Landauer20 as a semiclassical traverse time. The seco
term, ]Fstat /]E8, gives a phonon correction to the traver
time. The sum to the two terms equalsT and the expression
in the parentheses is identically zero. Then, Eq.~5.12! can be
written in the form

E2E852
]Fdyn

]v
v2

L
. ~5.13!

In the accepted approximation in the rhs of this equation
difference betweenE andE8 has to be neglected.

According to our definition the energyE appearing at the
Fourier transform of the transmission amplitude is the to
energy of the system whileE8 is the energy characterizin
the electron trajectory. The difference between them is
energy transferred to the phonon system, i.e., the ave
energy loss of the tunneling electron.

The substitution ofT5L/v and calculation of the integra
with respect toqx in Eq. ~A8! we obtain for the deformation
potential,

Fdyn~E!5
L2L2

8p2rv3E uMq'
u2q'

2 d2q' . ~5.14!

For the piezoelectric potential the terms inuJqnu2 containing
qx are small ina/L and the main contribution is

Fdyn~E!5
L2

8p2rv3 (
n
E uJqnu2uMq'

u2d2q' .

~5.15!

For @100# tunneling direction Eq.~5.15! becomes

Fdyn~E!5
8b2e2L2

rv3e2 E uMq'
u2

qy
2qz

2

q'
4

d2q' , ~5.16!

and for @110# tunneling direction

Fdyn~E!5
2b2e2L2

rv3e2 E uMq'
u2~qy

414qy
2qz

2!
d2q'

q'
4

.

~5.17!

It is worthwhile to note thatFdyn is positive, i.e., it in-
creases the transmission coefficient as well asFstat . One
could expect that phonon emission makes the barrier
electrons effectively higher that may lead to a reduction
the transmission probability. However,Fdyn is calculated for
E5E8 and this effect can appear only in the next appro
mation.
t

d

e

l

e
ge

r
f

-

The average energy loss resulting from the deformat
potential coupling is,

E2E85
3L2L

8p2rv2E uMq'
u2q'

2 d2q' . ~5.18!

Whereas the average energy loss due to the piezoele
coupling is given by

E2E85
24b2e2L

rv2e2 E uMq'
u2

qy
2qz

2

q'
4

d2q' , ~5.19!

for @100# tunneling direction and

E2E85
6b2e2L

rv2e2 E uMq'
u2 ~qy

414qy
2qz

2!
d2q'

q'
4

.

~5.20!

for @110# tunneling direction.
The energy loss is proportional to the length of the b

rier, which means that it is accumulated along it.
The comparison the static and dynamical phonon corr

tions to the tunneling probability givesFdyn /Fstat
;(s/v)(L/a) wherea is the width of the constriction. Typi-
cally the ratioL/a is not very large so the expansion that w
used is justified.

VI. DISCUSSION AND SUMMARY

In this paper, we have presented a detailed study of ef
of coupling with acoustic phonons on electron tunneli
across a rectangular barrier in a realistic situation. We st
ied piezoelectric and deformation potential coupling at lo
temperature, which means thatlT /a@1, wherelT is the
thermal phonon wavelength~see Appendix!. We considered
only a one-dimensional problem that can be realized in
quantum wire or a narrow constriction.

In our calculation we assumed that the barrier is h
enough to describe tunneling in the semiclassical approxi
tion. Our detailed calculations reveal that the typical phon
interacting with the tunneling electron is chosen through
length of the barrierL and the width of the constriction o
quantum wirea. It is thus the geometry of the potential ba
rier that defines the phonon frequencyv. Under such a con-
dition the electron motion under the barrier is so fast t
phonons do not follow it and can be considered nearly st
during the time necessary for electron to traverse the bar
The main effect of phonons in this case is a modulation
the barrier so that its height has to be considered a
quantum-mechanical variable whose probability distribut
is controlled by a phonon wave function. In this cas
roughly speaking, an electron chooses for tunneling the p
non configurations when the barrier is lower than its aver
value, that results in an increase of the transmission co
cient compared to that with zero electron-phonon coupli
Thus, the interaction of an electron with the zero point ph
non fluctuations increases the tunneling probability.

The correction to the tunneling exponent in the static
proximation is proportional to the length of the barrier. Th
is, the coupling affects the dependence of the transmis
coefficient on the height of the barrier only.

The dynamical correction leads to two effects. First,
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describes the reduction of the electron energy due to pho
emission. Second, which is probably more interesting
gives the dependence of the transmission coefficient on
length of the barrier different from the regular one where
log of the transmission coefficient is linear in the length. W
calculated only the first order correction to the exponen
dependence. The effect can be stronger and is probably
surable for tunneling near the top of the barrier. One sho
note that even though the dynamical correction to the tra
tion probability is smaller than the static correction, it is s
an exponential correction and it easily can be made la
than unity, i.e., by changing the length of the barrier. In t
case it can significantly affect the tunneling probability.

The dependence of transmission coefficient on the he
and the length of a barrier can be measured in devices w
the barrier is introduced with the help of a gate. In such
device both the height and the length of the barrier are c
trolled by the gate voltage. Our results point out to a dev
tion of these dependencies from the standard ones obta
from stationary Schro¨dinger equation.

The application of our results to a long quantum wire c
encounter a difficulty because we did not take into acco
electron-electron interaction. The effect of this interacti
can be reduced for a short wire or a narrow constriction.

We expect nontrivial results through further use of t
piezoelectric and deformation potential coupling mec
nisms in two- or three-dimensional systems.

We believe that the physical considerations presen
here, which greatly simplified the calculations are conveni
for extending the calculations to two- and three-dimensio
physical situations.

APPENDIX: NONSTATIC CALCULATION OF THE
TRANSITION AMPLITUDE AND TRANSITION

PROBABILITY

In the Appendix, we carry out the integration with respe
to initial and final phonon coordinates and expand the re
in two small parameters defined in Sec. III,s/v and
Vint /(V2E). The calculations presented here are for the
nite temperature case.

The explicit form of Eq.~5.10! for T̃5T is

jph~T;T!5g2~T!

3E duqiE duqfE dũqi

3expF2
1

\ (
q

aq~T!hq~uqf ,uqi ,ũqi ;T!G
3

1

Z (
m

e2bEmcm~uqi !cm* ~ ũqi !, ~A1!

whereZ5(me2bEm, b is one over the Boltzmann consta
times the temperature~we use this notation only in the Ap
pendix and it should not be confused with the piezoelec
module in the body of the paper!,
on
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-

c

hq~uqf ,uqi ,ũqi ;T!5eq~ uuqi u21uuqf u2!2~uqiuqf* 1uqi* uqf !

1eq~ uũqi u21uuqf u2!2~ ũqiuqf* 1ũqi* uqf !

1uqi I 21uqf I 11uqi* I 2* 1uqf* I 1* 1ũqi* I 2*

1uqf* I 1* 1ũqi I 21uqf I 12I 3 , ~A2!

aq5rvq/2 sinh(vqT), eq5 cosh(vqT),

I 15
1

rvqvE0

L

dx fq~x!sinhS vqx

v D , ~A3a!

I 25
1

rvqvE0

L

dx fq~x!sinhFvq~L2x!

v G , ~A3b!

I 35
2

r2vq
2v2E0

L

dxE
0

x

dy@ f q~x! f q* ~y!

1 f q* ~x! f q~y!#sinhS vqy

v D sinhFvq~L2x!

v G .
~A3c!

Using the well known result for the density matrix21

1

Z (
m

e2bEmcm~uqi !cm* ~ ũqi !

5g~b!expF2
2

\ (
q

rvqUuq̃iU2 tanhS \vqb

2 D G ,
~A4!

whereg(b) is given by

g~b!5)
q
A rvq

2p\ sinh\vqb
. ~A5!

The result of the integration with respect to initial an
final phonon coordinates givesjph(T;T)5A exp@2Fph(T)/\#
where

Fph~T!5(
q

aq

eq
F ueq•I 21I 1u2

eq
21rsqgq/221

1uI 1u21
eq•I 3

2 G ,

~A6!

gq5eq tanh(\vqb/2)/aq
Finite temperature effects in Eq.~A6! can be neglected if

tanh (\vqb/2)'1. The physical meaning of this approxima
tion is that the phonon thermal wavelength is much lar
than the quantum wires width, i.e.,lT /a@1. For the width
of the constriction of 100 Å or larger this condition is sati
fied up to room temperature. From this estimate it is a
follows that the matrix element for high-energy phonons t
could activate a tunneling electron to energy compara
with the height of the barrier is small and we neglect
Thus, the rest of the calculations will be performed for t
zero-temperature case.

One should note that the phonon part of the transit
probability, jph(T;T), is larger than 1, causing an enhanc
ment of the electron tunneling probability.

It is convenient to separate inFph(T) a static part that is
obtained by puttings/v50 and a dynamical correction,
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Fph~T!5Fstat~T!1Fdyn~T!. ~A7!

The static part

Fstat5(
q

1

rqsv2 U E0

L

dx fq~x!U2

, ~A8!

is equal to the expression appearing in Eq.~4.7!. The dy-
namical correction is necessary for the calculation of pho
emission and it is calculated in the leading order ins/v!1.
For the deformation potential the dynamical correction
given by
.

.

.
d

n
.
o,

.

n

s

Fdyn~E!5
4L2T

rv2Vvol
(

q
F sin~qxL !

qx
3L

2
cos~qxL !

qx
2 Gq'

2 uMq'
u2.

~A9!

For the piezoelectric coupling, one gets

Fdyn~E!5
4T

rv2Vvol
(
qn

F sin~qxL !

qx
3L

2
cos~qxL !

qx
2 G uJqnu2uMq'

u2. ~A10!
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