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One-dimensional phonon-coupled electron tunneling: A realistic model
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The transition probability for a one-dimensional tunneling electron coupled to acoustical phonons is calcu-
lated, with the Feynman path-integral method. We considered a realistic electron-phonon intétefton
mation potential, piezoelectjicmaking use of slowness of the phonon system compared to electron tunneling.
We show that the problem of the complex nonlinear coupling of a tunneling electron to the zero-point
fluctuations of a phonon field is equivalent to that of an electron tunneling through a slow fluctuating spatially
uniform barrier, thus resulting in an increase of the tunneling probability due to electron coupling with
zero-point phonon oscillations. We calculated also the energy change of the tunneling electron due to phonon
emission[S0163-18209)09423-Q

[. INTRODUCTION neling particle and each phonon degree of freedom is the
Tunneling, being one of the most remarkable nonclassicadame, which is not realistic in a regular lattice. Due to this
manifestations of quantum dynamics, has been largely inveshe result of Bruinsma and Bak contains a cutoff frequency.
tigated. One of the major issues in the field is the understandn our realistic treatment of electron-phonon coupling a char-
ing of the properties of tunneling particles coupled to degreeacteristic frequency naturally arises in the theory. Since the
of freedom representing the environment. The case of a paonly length scale in the problem is the barrier length and
ticle or macroscopic degree of freedom tunneling out of arom it a typical time scale emerges.
metastable state in the presence of arbitrary linear dissipation A recent treatment of the problem was given by U&Ya,
mechanism, has been extensively studied in a series of paho used the effective action technique and got analytic re-
pers by Caldeira and Leggktind other group$.Two state  sults, for some cases of the spectral density function of the
systems coupled to a dissipative environment have beephonon bath. Whereas Bruinsma and Baklculated the
studied in depth by a large number of grodpis the last two  transmission spectrum, we show that the main effect, on the
decades. electron transition probability, is static, i.e., a static effective
The problem that we address in the present paper is thiewering of the barrier by phonons. Such an effect, a static
tunneling of an electron with a given enerfyacross a rect- lowering of the barrier due to coupling of the tunneling elec-
angular barrier where it is coupled with phonons. We calcutron to zero-point fluctuations, was also discussed in two
late the change of the tunneling probability due to this coupapers by Ueda and Antoalthough they studied a different
pling and the average energy loss due to phonon emission ghysical problem, the coupling of the tunneling electron to
tunneled electrons. In this paper, we consider only a oneelectromagnetic modd their paper this was referred to as
dimensional problem that can be realized as a quantum wirghe dynamic limij.
or in narrow constrictions. A deformation potential coupling of tunneling electrons
This problem, finding the transmission probability andwith phonons was also studied by Gelfagial 1> However,
spectrum of a tunneling electron coupled to phonons is ofhey considered only an infinitesimally thin barrier.
fundamental interest as well as being potentially of great We consider interaction of tunneling electron with acous-
technological importance. Examples are tunneling throughic phonons via realistic coupling mechanisms: deformation
Josephson junctiorfshit errors in mesoscopic logic, and potential or piezoelectric. Coupling with optical phonons is
memory circuits, as well as quantum cascade lageasd of  neglected for the following reasons. The amplitude for zero-
course, scanning tunneling microscdpythere are even point fluctuations for optical phonons, for a given frequency
some recent examples of the use of the transmission speis proportional to one over the square root of the frequency.
trum to define an experimental test between quantum meSince the optical frequencies are large compared to those of
chanics and a class of alternative theofiddso, recent de- acoustic phonons we consider their zero-point fluctuations as
velopment of nanostructure technology makes it possible toegligible. Also the coupling constant with optical phonons
check experimentally the effect of coupling with the environ-in 111-V materials' is not very large giving a further justifi-
ment on the dependence of the tunneling probability on theation for neglecting the effect of optical phonons. Concern-
width and the height of the barrier. ing optical phonon emission and absorption we study the
Typically the coupling between the tunneling particle andlow-temperature case and assume that electron energy and
the environment is assumed to be linear with respect to patemperature are much smaller than the energy of the optical
ticle coordinate. This assumption may be justified for tunnelphonons so that emission and absorption can be neglected.
ing of heavy atoms or macroscopic degrees of freedom but it The coupling with acoustic phonons leads to a modulation
is not realistic for electrons. A nonlinear coupling with of the barrier. This effect exists even at zero temperature
phonons was considered by Bruinsma and B&ut they  when the modulation is controlled by zero-point phonon vi-
considered only the case when the coupling between the tutbrations. In other words, as a result of coupling with phonons
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the height of the potential barrier is not any more a classicathat can be written as the combined path integral of the elec-
parameter determined by fabrication of the structure but @ron and phonons
guantum-mechanical dynamical variable that is characterized
by a wave function. Thus, the complex norl1line'ar problem of K (Xp ,Ugt ,T|Xa,qu)=f Dxf Dug exp{I—[Se|(x)
a tunneling electron coupled to a phonon field is transformed fi
to a that of an electron tunneling through an effective poten-
tial barrier where the barrier height fluctuates. + Spn(Ug) + Sint(Uq ,x)]}, (2.2
The paper is composed in the following way. In Sec. I,
we formulate the model. In Sec. Il we introduce two main h is the elect dinat the Fouri ffi-
approximations, which we use to facilitate the calculation of VNErex s the electron coordinatel are the Fourier coettl

the tunneling probability. Both coupling mechanisms that weSlents of u(x,t), which is the displacement vector, and

consider are nonlinear with respect to the electron coordiXa:Yai: Xb,Uqr are the initial a_nd final coprdmates of the
lectron and phonons, respectively. The limits over the en-

nate. This nonlinearity makes the application of generallye )
used instanton method difficult and to solve the problem w9 Fourier transform result from the fact that we are cal-

developed an expansion on some small parameters. First,quat'ng t_he retarded Green functiof, IS the action of the
appears that frequencies of typical phonons interacting witff ectron in the absence of phonons, given by

a tunneling electron are so small that the phonon system can T
be considered slow compared to the electron. Second, we use Se1= f dt
the WKB approximation. The slowness of the phonon sys- 0

tem allows us in the first approximation to neglect phonon,perem s the effective electron mass, aNds the constant

dynamics and to consider their potential as time independeniyenial height of the rectangular barriéy, is the action of
which dramatically simplifies the calculatigthe calculation 4 uncoupled phonon field

without this approximation appears in the AppendiXhe

corresponding calculation of the transmission coefficient are T Pri-o P o 1o

carried out in Sec. IV. The static approximation, however, Sph= fo dt; 5 1Ugl*— 5 - wglugl* 2.4
does not include phonon emission and resulted energy loss.

To calculate it a more general approach is necessary. In Segherep is the crystal density and_q=uq*. Since we are
V, again making use of the slowness of the phonon systerreating acoustic phonons,=q-s, s being the phonon ve-
we go beyond the static approximation and calculate the avocity. S, is the action associated with the interaction be-

M. v) 2.3
XV, (2.3

erage energy loss of tunneled electrons. tween the electron and the phonon environment
T
Il. GENERAL FORMULATION OF THE PROBLEM Sint=— fo dtVin;. (2.9
A. The model

We will treat two electron-phonon coupling mechanisms, pi-

We treat the problem of a one-dimensional electronezoelectric and deformation potential, and consider crystals
coupled to acoustic phonons while tunneling through a rectof cubic symmetry. We consider this symmetry as the most
angular barrier, of lengtiL. The potentials restricting the jmportant because most of 1ll-V compounds belong to this
electron’s movement do not effect phonons, which movecjass'® So for the piezoelectric coupling
freely through the bulk and thus are treated as three dimen-
sional. Being interested in the effect of the zero-point fluc- niezo 1 — i
tuations of the phonon field on the electron tunneling prob- Vint :T EV EaqlgMq, expiqX), (2.6
ability, we consider the system at zero temperature. vol 9
Practically, it means that temperature is low enough and thigjhere
condition as well as the finite temperature case are discussed

in the Appendix. Coupling the electron to the phonon field _, 4me ,
transforms the problem from a low-dimensional quantum Eqv=""" Bijk¥iq;€ (2.7)
problem to a field theory problem. A convenient way to ap- €q

proach such a field theory problem is via the formalism OfIBijk is the piezoelectric modules, s the electron charge

; 4
path mt_egralé. . . " _is the dielectric constangy is the polarization vector of the
The first stage in the calculation of the transition probabil- th phonon branch, an¥,,, is the normalization volume

ity for the tunneling process is the calculation of the retarde is the matri>2 eIerUr(;lent of the phonon exponeﬁt

Green function. We express the energy-dependent retarded®: ) o
Green function as the Fourier transform of the time-€XP{d.r.), between the wave functions describing the elec-
dependent propagator, tron quantization in the cross section of the vytq@,and e
are the phonon wave vector and electron radius vector in the
cross section plane. In cubic crystals the only nonzero com-
ponents of the piezoelectric module g8g,,= By, and all

o IE-T other permutation¥> They are equal and we will designate
ZJ' K(Xbauqf1T|Xa1uqi)exf<T>dTy them asB.

0 The deformation potential couples electrons only with the

(2.1 longitudinal phonon mode and

K(Xbauqf !Elxaauqi)
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1 bution to this integral comes from only one optimal trajec-
vief— > AlglugMq expligx). (2.8 tory that satisfies the equation
VVyol 9 oV
. . ) . 1 t
Here, A is the deformation potential constant. mx= — (9—)'(”, (3.1

We neglect the screening ®,;. Underneath the poten-
tial barrier there are no electrons and the screening by remotgor a rectangular barrietV/ 9x=0). This equation has to be

electrons is small. solved for givenu(x,t). The second point allows us to con-
siderV;,; in Eqg. (3.1 as a small perturbation and thus, it can
B. Transition amplitude and transition probability be neglected. As usual in tunneling probletfi$’we change

We can now define the transition amplitude through thethe timet to —it (andTtoiT) so that the first integral of Eq.

use of the retarded Green function (2.2). (3.) has the form

K(Xp ,Uqt ,E|Xa,Uq) is the amplitude to go from initial pho- mx2

non coordinatel; to final coordinateuy; and from electron T:V_ E'. (3.2
coordinatex, to x,, for a given energy, of the joint sys-

tem. (In all intermediate calculation we suppress the index ofHere, E’ is the integration constant that can be considered as
the phonon branch to simplify the notationghe transition  the electron energy. The value Bf is determined from the
amplitude for the joint system to go from a phonon statehoundary conditionx(0)=x, andx(T)=x,. For a rectan-
designated byyo(Uq) to a statey(uy) is expressed by gular barrier wherx, andx, are fixedE’ is a function of T

K(Xp,Uqt ,EXa,Uq) in the following manner only. Without phonon emissioR’ eventually appears equal
to the energy of the incident electréhthat is also the total
Anb,Oa:f dugidugs 7 (Ugr) K(Xp ,Ugt s EXa, Ugi) tho(Ugi) - energy. If during tunneling phonons are emitted then the

(2.9 electron energ{’ appears smaller than the total energy.
Thus in the tunneling problem an important parameter

We treat the problem with the temperature equal to Z€r0annears the electron velocity= 2 (V—E')/m. If V—E’ is
therefore, phonons are assumed to be initially in the ground,5,nd 10 meVv or larger than in GaAs whenm

state:yo(Ug). o =0.06Mn, (m, is the free-electron mas® is around or
The transition probability is the absolute value squared Ofarger than %107 cm/s. This velocity is larger than the

the transition-matrix element. Since we are not interested i'%ound velocitys by about two orders of magnitude. That
the final phonon configuration, final phonqn states arqneans that frequencies of phonons with the wave length
summed over. From the completeness relation we get thg.,nq the length of the barrierare much smaller than the
following delta function:6(uqs—uqs). We end up with the inverse time necessary for an electron to traverse the barrier.
following expression for the electron transmission probabil-Actually, the wave length of a typical phonon interacting
ity with the tunneling electron is limited not by the length of the
barrier but by the width of the constricticmthat is smaller
Pb,aZE |Anb,0a|2 thanL. However, practically the ratia/L for a constriction
n where tunneling is still measurable is not very small and the

_ _ assumption that the typical phonon frequencies are much

=J dugidugidugs s (Ugi ) K(Xp ,Ugg ,E|xauqi) smaller than the inverse traverse time is justified. This as-
sumption means that during the traverse tirhév() the pho-

X K* (X, Ugs 1E|Xaaqi)‘/f0(uqi)- (2.10  hon potential nearly does not change. In the extreme case we

can consider it constant. We call this case the static approxi-

This equation defines the transmission coefficient. mation_ A Sim”ar approximation was used by F|ynn and
Stonehartf and later by Kagan and KlingErtreating the
1. MAIN APPROXIMATIONS problem of quantum diffusion of atomic particles.

It should be mentioned that the physical significance of

The usual approach to the calculation of the functionatthe parametewt,, w being the phonon frequency, the
integral in Eq.(2.2) that has been started by Caldeira andtunneling time as defined by Biker and Landauef! t,
Leggett is the integration out the phonon degrees of free-=L/v (in our case of a rectangular barpigvas also noted in
dom. This can be done exactly because the action is quahe two papers of Ueda and Andbbut in their problem the
dratic inu,. In the realistic electron-phonon coupling, this typical frequencyw was a tunable parameter defined by the
results in a complicated electron-electron effective potentialproperties of the electric circuit.
since the coupling mechanism is nonlinear in the electron In the static approximation the problem is dramatically
coordinate, thus, a simpler approach is needed. simplified because we need to consider electron motion in a

We use the following approach. We consider the situatiorstatic potential and the stationary Scflirger equation is
(which is typical experimentallywhen (i) the barrier is so enough for this. The integration with respect to phonon co-
high that the tunneling can be considered semiclassically andrdinates is reduced to the integration only with respect to
(i) the interaction energy between electrons and phonons is; . The derivation of the corresponding expression for the
small compared to the height of the barrier. The first pointtransmission coefficient in the static approximation from Eqg.
allows us to make use of the semiclassical approximation t¢2.10 with the help of the expansion isfv is given in the
integrate with respect to all electron paths. The main contriAppendix.
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tat

In the static approximation we can add alaf: )
=Vini(ugi) to the rhs of Eq(3.2). That immediately shows P(E)=Po(E)C f
that the small parameter characterizing the interaction with
phonons isV;,;/(V—E). In the calculation of the transmis- 2m L tat pS
sion coefficient we take into account only terms of the first Xexp — mfo Vint dx= 2=

order in this parameter. So we ignore corrections to the tra-

jectoryx=vt coming from the interaction with phonons. It is ,

obvious in the calculation of;,, and this is also true faf,,. x 2 dlugl?dug, (4.3
Indeed, the trajectory=vt is found from the minimization K

of S, and any correction to this functional contains a cor-where

rection to the trajectory squared. Such an approximation Jm oL
means, in particular, that we neglect all polaron effects. The Po(E)= ———exp — —2m(V— E)]. (4.4
physical meaning of the phonon effect in this approximation 2yV—E h

is that dllfferent.pho.non conﬂgurauong change the barrier ancljs the transmission coefficient without interaction with
the main contribution to the transmission comes from the

configurations corresponding to the barrier being a bit Iowephonons. Equatiortd.3) can be obtained directly from Eq.
. 9 P 9 - DEINg. .~ (2.10 (see Appendix The result can be written in the form,
in average, so that the tunneling probability is higher. It is

worthwhile to note that the averagever configurations 2
height of the barrier does not change becaiig,)=0 but P(E)=Po(E)exp = Pl E) - (4.9
nevertheless the average of the tunneling exponent is modi-
fied due toV;,, (similar to, e.g.{expVin))>1). For the deformation potential
The tunneling across a static barrier is an elastic process 5
and the energy of the incident electron and the tunneled one _ AL 2. 42
: L . Dsiad E) |Mq %9, d%q, , (4.9
is the same. Phonon emission and the corresponding change 8m?psiv? L
of the electron energy come about only in the first approxi- ) o _
mation ins/v when the phonon dynamics is taken into ac-Wheres; is the longitudinal phonon velocity.
count. The calculation of the dynamic correction to the trans- For the piezoelectric coupling
mission coefficient that requires a more complete treatment 1 > sin(qyL/2)
of the modes presented in the previous section is given in (I)Smt(E):—J' X—X
Sec. V. 2mpv2Jo 2

<3 L[ mamg 2w
IV. STATIC APPROXIMATION s, ) T Al q '

In the static approximation the problem of tunneling canBecause of the anisotropy the result depends on the tunneling
be formulated in a very simple way, without making use ofdirection with respect to crystalographic axes. For the tun-
Eq.(2.2). First, we can find the transmission probability for a neling in[100] the contribution of the longitudinal phonons
given static phonon field. The regular WKB approximationin ®,,; is small compared to that of transverse onea/in
gives for it and

_8p%e’L

qzqz
z
m D E)= —55— J Mg [2=257d%q,, (4.8
D(EiUg) =\ — st = pUTETS ar
A(V+Vi—E)

int wheres; is the velocity of the transverse phonons. For the
2 (L — tunneling in[110] direction the contributions of both longi-
xXexp — gJO V2m(V+ V- E)dx;. tudinal and transverse phonons are of the same order,

4.1 2p%e’L
43 Bl E) = | [Mq |2
pv-E

The calculation of the electron transmission coefficient in the

case when phonon field is initially at the ground state is %
reduced now to the integration Df(E;ug;) multiplied by the

ground state phonon wave function squared with respect to

qu ,

dqu

q,. -
(4.9

ay+ 40502 _( 1 1>9q;‘q§

sq? s s/ qf

As can be seen the typical phonon wave numbers with
, 1 5 which the electron interacts are fixed through the length
P(E)=C f D(E;ugi)expg — % > pasug|” |dug scales of the problem, the barrier lendttand the width of
d the constrictiora. It is important to note that, the static cor-
4.2 SO X " ,

rection, in the exponent is positive, therefore static phonons
reduce the effective potential barrier height, enhancing elec-

(C is a normalizing constantThe expansion itV;,; gives tron tunneling probability. The electron, due to coupling to
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the zero-point fluctuations of the phonon field, tunnels 1 L [ wg(L=x)
through an effectively lower potential barrier. — Ug pw—vfo dxfg (x)sinh ———
q
V. DYNAMIC CORRECTIONS AND ENERGY LOSS 2 L X
. ————| dx J' dy[f,(x)f*

To get the electron’s energy loss due to phonon emission prgvzfo 0 M) Tq (y)
during the tunneling process, one needs to go beyond the
static approximation. As the first step we make use of the . _[ogy)| . Jo(L=X)
WKB approximation to simplify the expression for the +15 (0 fq(y)]sinh —=]sin -

propagatoK (Xp ,Ugs , T|Xa,Ug) (2.2). In this approximation
the main contribution to the integral with respect x¢t) (5.6
comes from the saddle point trajectory that in the first aPHere according to Eas2.8) and (2.6

proximation inV;,./(V—E) is determined by E¢3.2), As a ' s q$2.8) 2.8

result the propagator is factorized. In E§.2), we passed to EMg
the imaginary time so the trajectory ig(t)=vt wherev fa(x)= — glaxx (5.7
=+2(V—E")/m, thus the propagator can be expressed as Wl
K(Xp ,Ugt r_iT|Xaiuqi):K0(Xb1T|Xa)Kph(uqf ,T|qu)- for the piezoelectric interaction and
5.1 CAM,
Here, fa(x)=ilq] g'axx (5.8
[
m veET _ o
Ko(Xp,T|Xa) = ——— | X 7 for the deformation potential interaction. One should note
4(V+Viy —E) that in Eq.(5.6) we made a transformation of variables from

t in the action, tax=uvt.

1L . N .
Xexp{ - _f dx. /2m(V—E’)> (5.2 Making use of the factorizatiof5.1) the expression for
filo tunneling probability(2.10 can be written as

is the electron propagator without interaction with phonons _ - -
and P(E)=f de dTKo(Xp, T[Xa) Ko(Xp , T|Xa) €pn(T: T),
1 (5.9
Kph(uqfrT|uqi):f Dugexp — 2 Spn(Ug) + Sint(Uq  Xo) ] where
3 En(T;T)=g(Tg(T)
is the phonon part of the propagator. P T 9a
So as the electron trajectory is determined the phonon part d d i
of the propagator is the propagator of an ensemble of forced X | dUg | dUgt | dUq
harmonic oscillators? The integration with respect ta,
leads to xext — ES T
A cl(uqfa |uqi)
1
Kph(uqfleuqi):g(T)ex%_% Scl(uqfvT|uqi)}, 1 e _
(5_4) - gscl(uqf ,T|qu) l//o(qu)l//’S(qu),
where (5.10
g(T)=H pwq (5.5 and ¢o(uq;) is the phonon ground state wave function. The
q 27h sinhw T’ ' integrals with respect t& and T in Eq. (5.9 are calculated
and by the saddle-point methdf. Due to the symmetry of
gph[T;'T'] with respect to the transposition @fand T the
pwq saddle point values of these variables are identical. We are
Sei(Ugt ,T|qu)=E 2 sinfwgT) cosh(wyT) interested only in the exponential part of the transition prob-
a a ability and for this only¢,[T;T] is necessary. The result
X (Jugi|?+ [ugr|2) = (Uit + uZUgr) can be written in the form
1 (- [ @gX T,T)=Ae Zp T) (5.11
— Ugs f dxfy(x)sin i Epnl(T; X 7 ph(T) |, .
WpwquJo v

where @ (T) is calculated in the Appendix and the pre-
exponential factoA, will not be calculated.

1 [t [ og(L=X)
—pqu fo dqu(x)sml-<—v )

Ya We now breakd,(T) into a static part®g,, and a

1 . « dynamical corrgction SO thdtph-: Dgiart Pyyn- As one can

—u* f dtf*(x)sin?’(w—q) expect the static part is identical th,(E’) obtained in
M poglo @ v Sec. IV, Eq.(4.9), in a more simple way. The dynamical
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correction,®4,(T,E"), is obtained in the Appendix in the The average energy loss resulting from the deformation
leading order ins/u<1. Using these notations the saddle- potential coupling is,
point equation for time integration is given by

dE’  ddgy,

’ 3A2L 2~2 42
E-E :8772pl)2f |M‘h| gq7d<q, . (5.18
dT dT

07(1)e| . &q)stat_
JE’ JE’

+E—E'=0,

(5.12 Whereas the average energy loss due to the piezoelectric
coupling is given by
where®(E')=Ly2m(V—E’). 2
According to Sec. IVD(E') —D2(E’) is the electron E—E'= 24p% LJ IM |2 d%q (5.19
action in the phonon static field at the trajectory with the at o '
energyE’. The derivative of the action with respect to the
energy is the traveling time along the trajectory. The firstfor [100] tunnelmg direction and

term, 9d./JE’, has been defined by "Biker and ,82e2L
Landauezr0 as a semiclassical traverse time. The second E-E'= f |MqL qy
term, 9® 5/ JE’, gives a phonon correction to the traverse
time. The sum to the two terms equdlsand the expression (5.20
in the parentheses is identically zero. Then, &ql2 can be  fgor [110] tunneling direction.
written in the form The energy loss is proportional to the length of the bar-
9D gy v rier, which means that it is accumulated along it.
E-E'=- v L (5.13 The comparison the static and dynamical phonon correc-

tions to the tunneling probability givesdyy,/Pgia;
In the accepted approximation in the rhs of this equation the~(s/v)(L/a) wherea is the width of the constriction. Typi-
difference betweelt andE’ has to be neglected. cally the ratioL/a is not very large so the expansion that we
According to our definition the enerdy appearing at the used is justified.
Fourier transform of the transmission amplitude is the total
energy of the system whilg’ is the energy characterizing V1. DISCUSSION AND SUMMARY
the electron trajectory. The difference between them is the

energy transferred to the phonon system, i.e., the average |n this paper, we have presented a detailed study of effect
energy loss of the tunneling electron. of coupling with acoustic phonons on electron tunneling

The substitution off =L/v and calculation of the integral across a rectangular barrier in a realistic situation. We stud-
with respect tag, in Eq. (A8) we obtain for the deformation jed piezoelectric and deformation potential coupling at low
potential, temperature, which means tha{/a>1, where\ is the

thermal phonon wavelengtisee Appendix We considered
D 4yn(E)= f |MQL| 292d?q, . (5.149 only a one_—dimensional problem_ that can be realized in a
guantum wire or a narrow constriction.

In our calculation we assumed that the barrier is high
enough to describe tunneling in the semiclassical approxima-
tion. Our detailed calculations reveal that the typical phonon
interacting with the tunneling electron is chosen through the
o2 Mg, | |2d?q, . length of the barriel. and the width of the constriction or

quantum wirea. It is thus the geometry of the potential bar-

(5.19 rier that defines the phonon frequenoy Under such a con-

For[100] tunneling direction Eq(5.15) becomes dition the electron motion under the barrier is so fast that
phonons do not follow it and can be considered nearly static
,32 2L? 5 4 2 during the time necessary for electron to traverse the barrier.

Payn(E)= f Mg, d A, (18 The main effect of phonons in this case is a modulation of
the barrier so that its height has to be considered as a

and for[110] tunneling direction quantum-mechanical variable whose probability distribution

) is controlled by a phonon wave function. In this case,
d ql roughly speaking, an electron chooses for tunneling the pho-
non configurations when the barrier is lower than its average

(5.17) value, that results in an increase of the transmission coeffi-
cient compared to that with zero electron-phonon coupling.

It is worthwhile to note thatbg,, is positive, i.e., it in-  Thus, the interaction of an electron with the zero point pho-
creases the transmission coefficient as welldag,;. One  non fluctuations increases the tunneling probability.
could expect that phonon emission makes the barrier for The correction to the tunneling exponent in the static ap-
electrons effectively higher that may lead to a reduction ofproximation is proportional to the length of the barrier. That
the transmission probability. Howeveb,, , is calculated for is, the coupling affects the dependence of the transmission
E=E' and this effect can appear only in the next approxi-coefficient on the height of the barrier only.
mation. The dynamical correction leads to two effects. First, it

For the piezoelectric potential the terms| qulz containing
gy are small ina/L and the main contribution is

q)dyn

,82 2 2
P gyn(E)= f|Mq |2(ay+40202)
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describes the reduction of the electron energy due to phono

Crl ord _ PNONOP (y e Ui Ugi i T) = €4(|Ugi |2+ [Ugt] ) — (Ug U + U Ugs)
emission. Second, which is probably more interesting, |t9q ar i T al|ugil ™+ gl atqf " o

gives the dependence of the transmission coefficient on the + eq([Ugil 2+ |ugs|®) — (Ug ¥ + U ugr)
. . g\ Hai af gi“qgf qiYaqf

length of the barrier different from the regular one where the _

log of the transmission coefficient is linear in the length. We +Ugil o+ Ugsl 1 Hugl 3 +ugel T +ugls

calculated only the first order correction to the exponential ‘ix

dependence. The effect can be stronger and is probably mea- gl 1 +Ugil2t Ugrly— 13, (A2)

surable for tunneling near the top of the bar_rier. One shoulqu:pwaz sinh,T), €= coshgT)
note that even though the dynamical correction to the transi-

tion probability is smaller than the static correction, it is still _

an exponential correction and it easily can be made larger Il_pqu fo dqu(x)sml—( v ) (A33)

than unity, i.e., by changing the length of the barrier. In this

case it can significantly affect the tunneling probability. [, = 1 JLde (x)sinr{ “’q(L_X)} (A3b)
The dependence of transmission coefficient on the height 2 pwqv Jo q v ’

and the length of a barrier can be measured in devices where
the barrier is introduced with the help of a gate. In such a | f dxf dy[ f (x)f v)
device both the height and the length of the barrier are con- 3= prZUZ Ma y
trolled by the gate voltage. Our results point out to a devia-
tion of these deper)_dencies from the standard ones obtained 15 (0 f (y)]sinr( qy)sw{wq(L—x)
from stationary Schminger equation. q q '
The application of our results to a long quantum wire can
encounter a difficulty because we did not take into account
electron-electron interaction. The effect of this interactionUsing the well known result for the density maftix
can be reduced for a short wire or a narrow constriction.
We expect nontrivial results through further use of the 7 E e PEmy(ug) ¥k (Ugi)
piezoelectric and deformation potential coupling mecha- m

v

(A3c)

nisms in two- or three-dimensional systems. 2 hw,B

We believe that the physical considerations presented :g(IB)ex[{ — =D pog|Uy Ztam—(—q> ,
here, which greatly simplified the calculations are convenient h “q 2
for extending the calculations to two- and three-dimensional (A4)
physical situations. o

whereg(p) is given by
pwgq
APPENDIX: NONSTATIC CALCULATION OF THE a=11 P "t (A5)
q wh sinhfiwyB8
TRANSITION AMPLITUDE AND TRANSITION
PROBABILITY

In the Appendix, we carry out the integration with respectfinal phonon coordinates giveg(T;T) = A ex 2,(T)/%]
to initial and final phonon coordinates and expand the resukvhere
in two small parameters defined in Sec. I#/v and

. 2 .
Vin/(V—E). The calculations presented here are for the fi-  ¢_ (T)=> aq| _leqlatla]” 11,2+ €als '
nite temperature case. P q €q e§+ pSQyq/2—1 2
The explicit form of Eq.(5.10 for T=T is (AB)

Yq= €q tanhGowyB2)/ay

The result of the integration with respect to initial and

Epn(T;T)=g*(T)

fduq,J'duqffduqI

Xexp{ = Eq: ag(T) 7g(Ugs Ui, Ugi; T)

1 ~
X7 2 e Em(ug) ¥ (Ug), (A1)

Finite temperature effects in EGA6) can be neglected if
tanh fiwyB/2)~1. The physical meaning of this approxima-
tion is that the phonon thermal wavelength is much larger
than the quantum wires width, i.e\;/a>1. For the width
of the constriction of 100 A or larger this condition is satis-
fied up to room temperature. From this estimate it is also
follows that the matrix element for high-energy phonons that
could activate a tunneling electron to energy comparable
with the height of the barrier is small and we neglect it.
Thus, the rest of the calculations will be performed for the
zero-temperature case.

One should note that the phonon part of the transition

whereZ=3 e #Em B is one over the Boltzmann constant probability, £,n(T;T), is larger than 1, causing an enhance-
times the temperatur@ve use this notation only in the Ap- ment of the electron tunneling probability.
pendix and it should not be confused with the piezoelectric It is convenient to separate fh,,(T) a static part that is

module in the body of the paper

obtained by puttings/v =0 and a dynamical correction,
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q)ph(T):q)stat(T)"'(Ddyn(T)- (A7)
The static part
1 L 2
Do S —— | [ty (A8)
a pqsv|/0

is equal to the expression appearing in E4.7). The dy-

namical correction is necessary for the calculation of phonon

emission and it is calculated in the leading ordesfin<<1.
For the deformation potential the dynamical correction is
given by

ONE-DIMENSIONAL PHONON-

COUPLED ELECTRON ... 15861
4N%T sin(g,L) cogq,l)
@4 (E)= > - 2IM, |2.
dyn pvzvv0| 5 { qu i qi| ‘h|
(A9)
For the piezoelectric coupling, one gets
4T sin(gyL)
Dgyn(E)=——— 2 { =
144 VUOl av qXL
_ cogqul)

2
X

]Iqullequz. (A10)
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