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Point-contact conductances at the quantum Hall transition
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On the basis of the Chalker-Coddington network model, a numerical and analytical study is made of the
statistics of point-contact conductances for systems in the integer quantum Hall regime. In the Hall plateau
region the point-contact conductances reflect strong localization of the electrons, while near the plateau tran-
sition they exhibit strong mesoscopic fluctuations. By mapping the network model on a supersymmetric vertex
model with GL(2u2) symmetry, and postulating a two-point correlator in keeping with the rules of conformal
field theory, we derive an explicit expression for the distribution of conductances at criticality. There is only
one free parameter, the power law exponent of the typical conductance. Its value is computed numerically to
be Xt50.64060.009. The predicted conductance distribution agrees well with the numerical data. For large
distances between the two contacts, the distribution can be described by a multifractal spectrum solely deter-
mined byXt . Our results demonstrate that multifractality can show up in appropriate transport experiments.
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I. INTRODUCTION

Models of two-dimensional~2D! noninteracting electrons
subject to disorder and a strong magnetic field are in a fo
called the~integer! quantum Hall universality class. The
most prominent feature is the existence of a localizati
delocalization~LD! transition, which underlies the plateau
to-plateau transition of the Hall conductance observed in
integer quantum Hall effect. Among the various members
the quantum Hall universality class, the Chalker-Codding
network model1 has been found2,3 to be a convenient repre
sentative, particularly for numerical purposes. A wave fu
tion in this model is a collection of complex amplitudes, o
for each bond of a square lattice. The time evolution opera
acts on the wave functions by discrete steps, which are
termined by unitary scattering matrices assigned to the
tices of the lattice. It has been established that, with vary
left-right asymmetry of the scattering probabilitypP@0,1#,
the stationary states undergo a LD transition2 with a critical
exponent n'2.35 for the localization lengthj;up
2p* u2n, p* 50.5. Moreover, it was shown that the crit
cal states~for which the localization length is much large
than the system sizeL) have multifractal properties3 that are
universal, and are characterized by an exponenta0'2.28
describing the scaling of the typical value~i.e., the geometric
mean! of the squared amplitude exp^lnucu2&;L2a0. The com-
binationn(a02d) is the critical exponent of the typical loca
density of states~LDOS!, which has been argued4 to be an
order parameter for the LD transition.

The critical exponentn was extracted in a number o
transport experiments.5 In contrast, no such experiment ha
been carried out to measurea0 or related multifractal expo-
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nents. Multifractality is observable in local quantities such
local densities, or in the wave number and frequency dep
dent dynamic structure factor~see Refs. 6,7!. These have yet
to be studied in transport measurements under mesosc
conditions. In Ref. 8 it was pointed out that multifractali
can show up in the size dependence of the conductance
tribution close to the LD transition. Further suggestions
an experimental determination were made in Ref. 9, bu
seems that these are still awaiting realization. Recently, it
been suggested that multifractality relates to the correcti
to scaling and may be observable in the temperature de
dence of the peak-hight of the conductance at the
transition.10 In the present paper we demonstrate that ano
sensitive probe arepoint-contact conductances, making mul-
tifractality directly accessible through a suitable transp
measurement. By a point-contact conductance we mea
conductance between two small interior probes separate
a distancer. They show strong mesoscopic fluctuations at
LD transition, similar to those of the conductance~see, e.g.,
Refs. 11–14!. By varying the distancer, point-contact con-
ductances allow to study local details of mesoscopic fluct
tions that are not captured by the~global! conductance.

One of our motivations came from Ref. 15, which di
cusses the conductance between two~or more! small interior
contacts from a field theoretic perspective. In that work
was pointed out that for a large enough system the po
contact conductance depends only on the distancer between
the interior contacts, whereas the typical LDOS also involv
the system sizeL. At criticality, the conductance in the infi
nite plane falls off algebraically withr and, by the conformal
hypothesis, this decay should be conformally related to
decay in other geometries such as the cylinder. Unfo
15 836 ©1999 The American Physical Society
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PRB 59 15 837POINT-CONTACT CONDUCTANCES AT THE QUANTUM . . .
nately, a comprehensive analytical theory of the critical po
does not yet exist, and we cannot predict the critical ex
nents. As we are going to show, however, we are able
draw some strong conclusions just from the assumption
the existence of a conformal field theory for the critic
point.

In the present work, we use the Chalker-Codding
model to calculate point-contact conductances as wel
quasi energies and the corresponding stationary state
Sec. II we consider the dynamics of a closed network.
begin with familiar objects, we demonstrate that, under cr
cal conditions, the local density of states has multifrac
correlation exponents that agree with those obtained f
Hamiltonian models.16 These results will later be contraste
with the critical behavior of point-contact conductances
Sec. IV. We then review the definition of the point-conta
conductances and compute them in the localized regime.
find them to be well described by a log-normal distributi
determined by a single parameter, the typical localizat
length j t ~Sec. III!. Our main theme, the investigation o
point-contact conductances atp* 51/2, is taken up in Sec
IV, which employs a combination of analytical and nume
cal techniques, and is divided into five subsections. Theqth
moment of the conductance^Tq& is expressed as a two-poin
correlator of a supersymmetric vertex model equivalent
the network model.15,17,18 We exploit the global GL(2u2)
symmetry of that model and, based on the general princi
of conformal field theory, propose a closed analytical expr
sion for^Tq&. From that we extract predictions for the typic
conductance, the log variance, and the entire distribu
function. These predictions leave one parameter unde
mined, which can be identified with the power law expone
Xt of the typical conductance. We calculateXt numerically
and find Xt50.64060.009. The distribution function with
this value is shown to agree with the numerical data. In
limit of large separation between the contacts, which is d
ficult to reach numerically, the conductance distribution c
be reduced to a spectrum of multifractal exponents.
speculate on a possible connection between the multifra
spectra of the point-contact conductances and of the l
density of states.

Finally, by matching to results that are available for t
quasi-1D limit, we argue that if the network model~or a
suitable continuum limit thereof! were a fixed point of the
renormalization group, then the power law exponent of
typical conductance would have to beXt52/p'0.637,
which is in remarkably close agreement with our result fro
numerics. Because standard conformal field theories of
Wess-Zumino-Witten or coset type predict critical expone
to be rational numbers~if the fixed point is isolated! such a
value, if correct, would imply an unconventional fixed poi
theory.

II. MULTIFRACTALITY OF THE LOCAL DENSITY
OF STATES AT CRITICALITY

To describe the critical behavior of 2D electrons in
strong magnetic field and a smooth random potent
Chalker and Coddington1 formulated a network model which
is very simple and yet captures the essential features.
model is composed of a set of elementary ‘‘scattere
t
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placed on the vertices of a square lattice.~In a microscopic
picture, these correspond to the saddle points of the ran
potential.19! Unidirectional channels link the scatterers
each other as shown in Fig. 1. Each elementary scatter
represented by a unitary 232 scattering matrixS transform-
ing 2 incoming amplitudes into 2 outgoing amplitudes. T
simulate the effect of a disordered or irregular array of sc
terers, a~kinetic! phase factor is attached to every chann
amplitude. These phases are taken to be independent ran
variables distributed uniformly on the interval@0,2p#. An
incoming amplitude on a given link can only be scattered
the left or right. Let us denote the probability for scatteri
to the left byp. The scattering probability to the right is the
12p. The parameterp for each scatterer can be taken to
fixed or drawn at random from a certain distribution. In e
ther case, the states in a system of finite sizeL turn out to be
delocalized1,2 when the mean ofp lies in a small interval
aroundp50.5. The width of this intervalDp shrinks to zero
in the thermodynamic limitDp;L21/n, wheren'2.35 is the
critical exponent of the localization lengthj.

A network model wavefunction is a set of complex am
plitudes$c( l )% wherel 51, . . . ,Nl runs over the links of the
network, and the normalization is fixed by( l uc( l )u251.
Wavefunctions are propagated forward in time by discr
steps20,3

c t11~ l !5 (
l 851

Nl

U~ l ,l 8!c t~ l 8!, ~1!

the propagator for one unit of time being a sparse unit
Nl3Nl matrix U which is uniquely determined by the ne
work of scattering matrices.21

Stationary states of the~isolated! network are solutions of
the equation3,22

Ucn5eifncn .

The eigenphasesfn will be referred to asquasi energies.
~This terminology is motivated by the analogy with th
eigenphases of the Floquet operator of a periodically dri
quantum system.! The stationary states of the network mod

FIG. 1. Graphical representation of the Chalker-Coddington n
work model. Wave amplitudes propagating on the links are s
tered to the left~right! with probability p(12p). The correspond-
ing unitary scattering matricesS are situated at the nodes of th
network.
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15 838 PRB 59JANSSEN, METZLER, AND ZIRNBAUER
are critical ~which is to say their localization lengthsj ex-
ceed the system sizeL) when the parameterp is close
enough top* 50.5. The critical states are multifractals3

Criticality is visible through power law scaling of th
moments:23 ^uc( l )u2q&L;L2d2t(q) wheret(q) is a nonlinear
function ofq andd52. ~We will continue to writed instead
of 2 to keep the dependence on the number of dimens
explicit.! Within our numerical accuracy, thet(q) functions
for different critical states coincide. The corresponding d
tribution function is specified by a single-humped positi
function f (a), called the multifractal spectrum of the wav
function3

prob~P5uc~ l !u2;L !dP;L2d1 f (a)da,

where lnP[2a ln L, and f (a) is related tot(q) by a Leg-
endre transformation f @a(q)#5qa(q)2t(q), a(q)
5dt(q)/dq. In the vicinity of its maximum,f (a) is well
approximated by a parabola24

f ~a!'d2
~a2a0!2

4~a02d!
,

which is seen to be determined by a single numbera0. From
Refs. 16,3 we know this number to bea0'2.28.

The local density of states~LDOS! is defined asr(f,l )
5(nd(f2fn)ucn( l )u2, wherecn denotes a stationary sta
with quasienergyfn . To wash out thed-peak structure of
this function in a closed finite system, we smoothen it ove
scale of one mean level spacingd. The LDOS then become

r~f,l !5d21uc~f,l !u2,

whereuc(f,l )u2 means the square of the wave function a
plitude, microcanonically averaged over the quasienergy
terval@f2d/2,f1d/2#. Givend21;Ld and the multifractal
scaling law for the critical states, the LDOS must scale
^r(f,l )q&L;L2Dr(q) with

Dr~q!5~12q!d1t~q!, ~2!

and the typical value asr t5exp̂ ln r(l)&L;Ld2a0.
The averageLDOS is well known to be noncritical and

nonvanishing at the LD transition. In contrast, thetypical
LDOS does show critical behavior. For one thing, it is ze
in the region of localized states. For another, suppose
system under consideration had a finite band of meta
states~which it does not!, as is the case for a mobility edge
three dimensions. The typical LDOS would then be nonz
in that metallic band and, for values ofL much larger than
the correlation lengthjc , would vanish with exponentb t
5n(a02d) on approaching the critical point. Such behav
is reminiscent of an order parameter, which distinguis
between two phases joined by a second order phase tr
tion. The LDOS has in fact been proposed as an order
rameter field for the general class of LD transitions.4 Al-
though the 2D quantum Hall class has no extended met
phase, the exponenta022'0.28 still controls the finite size
scaling of the LDOS close to the critical point.

It is then natural to inquire into the nature of thecorrela-
tion functionsof the LDOS at criticality. This was done in
Refs. 25,16~see also Ref. 26!. The critical correlations
turned out to be of the form
ns
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r2
[q]~v,r 5ur u,L ![^r~e,l !qr~e1v,l 1r !q&L

;~r /Lv!2z(q)L2 z̃(q), ~3!

where the lengthLv is defined as the linear size of a syste
with level spacingv: Lv5(v/d)21/dL.6 This length scale
provides a natural cutoff for the correlations between t
critical states,27,28,16,7whence Eq.~3! applies to the regime
r !Lv,L. For Lv.L the dependence onLv saturates and
Lv has to be replaced byL in Eq. ~3!. The critical exponent
z(q) is given by the important scaling relation29,25

z~q!5d12t~q!2t~2q!. ~4!

A second scaling relation

z̃~q!52~12q!d12t~q!52Dr~q! ~5!

follows from Eqs.~3! and ~4! by letting r andv go to zero
and then matching witĥr2q&L;L2Dr(2q). We emphasize
that the multifractal correlations of the LDOS have a ch
acteristic dependence on system size,16 which is encapsu-
lated by the family of exponentsz̃(q).

We now report on a numerical test of the scaling relat
for z(q), using the Chalker-Coddington model. Let us st
by verifying that the critical correlations are indeed cut off
the scaleLv . Figure 2 plots2 ln(r2

[q])(v,r,L) as a function of
ln r for q50.5, L5150, and two different values ofv. For
v50.000541~corresponding toLv'76) the linear depen-
dence on lnr is seen to be limited to a much smaller regio
than for v50.00026 (Lv'110). The rest of a our data
show similar behavior, although the fluctuations due to
niteness of the data set are quite large. It is clear though f
these data thatLv does set the typical scale for the cutoff
critical correlations.

To study the scaling exponent for ther dependence of the
correlator, we first tookLv5`, i.e., zero energy separation
and compared the calculated exponentz(q) with the value
predicted by the scaling relation~4! and thet(q) spectrum
previously obtained. As shown in the upper part of Fig.
the result forz(q) agrees with the prediction within the sta

FIG. 2. Double logarithmic plot of the correlation functio
r2

[0.5](v,r ,L5150) versus distancer for two different energy sepa
rationsv, which correspond to cutoff scalesLv .
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tistical errors. Next, we took the quasi energies to be se
rated by a finite amount corresponding toLv'110, and cal-
culatedz(q) for a few selected values ofq. Within the error
bars, agreement with the previous values was obtained.

Finally, we investigated the scaling with respect toLv

which, according to Eq.~3!, should lead to the samez(q).
The data set consisted of 500 eigenfunctions for a partic
disorder realization and a range of quasi energies permit
small values ofLv to be reached. The system size wasL
550 and we performed a spatial average. The choice
relatively small system size was necessitated by the fact
the fluctuations of the eigenfunction correlations grow
strength asv is increased. To reach statistical convergenc
very large number of pairingsr(f,l )r(f1v,l 1r ) for fixed
values ofr andv must be accumulated. This, given prese
computer capacity, is possible only for a small enough s
tem. We setr 52 and found behavior sufficiently linear i
ln Lv in a regime betweenLv53 andLv512. The results for
z(q) are shown at the bottom of Fig. 3. In view of the sy
tematic difficulties, we conclude that our data are consis
with the scaling relation. In summary, our numerical resu
for the multifractal exponents of the local density of sta

FIG. 3. Scaling exponentsz(q) obtained from scaling with re-
spect to distancer ~a! and energy separationv ~b!. The data points
denoted as ‘‘numerics’’ correspond to the linear regression of lnr2

[q]

versus lnr ~a! and lnLv ~b! while the data denoted as ‘‘scaling
follow from the scaling relation~4! and the knownt(q).
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clearly identify the Chalker-Coddington model as belongi
to the quantum Hall universality class.

III. POINT-CONTACT CONDUCTANCES
IN THE LOCALIZED REGIME

We start by reviewing what is meant by a ‘‘point-conta
conductance’’ in the Chalker-Coddington model.15,17 Select
two of the links of the network for ‘‘contacts’’ and cut them
in halves~Fig. 4!. Then do the following: Inject a total of one
unit of probability flux into the incoming contact links, an
apply the time evolution operatorU once. Then inject an-
other unit of flux and applyU again. Keep iterating this
process, always feeding in the same unit of probability fl
so as to maintain a constant current flow into the netwo
The outgoing ends of the broken links serve as drains, so
will eventually start exiting through them. After sufficientl
many iterations of the procedure, the network will ha
settled down to a stationary state. The stationary wave
plitudes at the severed links square to transmission and
flection probabilities, which translate into a~point-contact!
conductance by the Landauer-Bu¨ttiker formula. In the
present section we describe how to obtain these amplitu
by solving a system of linear equations instead of labor
through many iterations of the above dynamical procedu
Afterwards, we calculate the distribution of point-conta
conductances in the localized regime and show that it is w
approximated by a one-parameter family of functions, d
pending only on the value of the typical localization leng
j t .

The injection of current into the contact linksc,c8 is
simulated by modifying the time step in the following way

uc t11&5U~ uc t&1auc&1buc8&),

wherea andb ~subject touau21ubu251) are the amplitudes
of the current fed into the linksc andc8, anduc&, uc8& denote
basis states with unit amplitude atc,c8, respectively, and
zero elsewhere. To implement the draining action of the o
going ends atc andc8, we define projection operatorsPC by
PCuc&5c(C)uC& for C5c,c8. Using these, we can write
the complete dynamics as

uc t50&50,

FIG. 4. A section of the network model with two interior poin
contacts.
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uc t11&5U@~12Pc!~12Pc8!uc t&1auc&1buc8&].

The stationary current carrying state is formally obtained
taking the limit uc`&5 limt→`uc t&. Alternatively, we set
UP5U(12Pc2Pc8) and use stationarity to deduce foruc`&
the linear equation

~12UP!uc`&5U~auc&1buc8&), ~6!

which can be solved by an inversion routine.
What we want are the amplitudes of the stationary stat

the links c and c8, which are the componentsc`(c) and
c`(c8) of the vector uc`&. According to the Landauer
Büttiker formula, the conductanceg between two point con-
tacts c and c8 is given by the transmission probabilityT
5utc8cu2 as g5(e2/h)T. The scattering problem for this i
defined by feeding one unit of current into the linkc and zero
current intoc8. The transmission amplitude is the amplitu
of uc`& at the exitc8. Hence we seta51 and b50, and
compute the conductance from

T5u^c8uc`&u2. ~7!

Note that such a point-contact conductance is bounded f
above by unityT<1.

Our numerical calculations of point-contact conductan
were done for systems of sizeL560, 80, and 100, with the
distance between contacts varying fromr 51 to r 5L/2. For
every distance we calculated between 200 and 3000 con
tances~depending on system size!. In the following, we
present results for the distribution of the conductance
localized states (j!L), corresponding to the plateau regim
of the quantum Hall effect. Figure 5 shows a normaliz
histogram accumulated from 3000 data points for the lo
rithm of the conductanceg5T ~in atomic units!, at fixed
values of the distancer 57 and the system sizeL560. The
histogram clearly demonstrates the approximate log-nor
character of the distribution. Such behavior is expected fr
the standard picture of localization. More precisely, the p
ture says that the inverse of localization lengthj has a nor-

FIG. 5. Normalized histogram of the logarithm of the condu
tanceg in the localized regime, for a network of linear sizeL560
and a fixed distancer 57 between the contacts.
y

at

m

s
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r
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mal distribution~see Ref. 4 for a review!, and the conduc-
tance is given byg5g0 exp(22r/j) where the factor of 2 is
due to the convention of associating the localization len
with the modulus of the wave function. The inverse of t
average of 1/j is called the typical valuej t of the localiza-
tion lengthj t

215^j21&. As a further check on this picture
we calculated̂ ln T& as a function ofr and found linear be-
havior, as shown in Fig. 6. The average was performed a
combination of spatial average and disorder average accu
lating 3000 data. A more interesting question concerns
relation between the two parameters@log-mean^ ln T& and
log-variance^(d ln T)2&# of the log-normal distribution. Ac-
cording to the one-parameter scaling hypothesis first form
lated in Ref. 30, one expects the two parameters to be
pendent on each other. Such a dependence was in
observed in other LD transitions~see, e.g., Ref. 31!, and it
takes the form of a linear relation

^~d ln T!2&52A^ ln T&1B, ~8!

whereA is a number of order unity~it equals 2 in quasi-1D
systems32!, andB is some offset due to the presence of t
factor g0. Our data confirm this picture. The value forA we
find is A51.0060.05 ~Fig. 7!. Thus, the typical localization
length is the only relevant parameter for the conducta
distribution in the localized regime. This distribution is ve
broad and is well described by a log-normal form.

IV. POINT-CONTACT CONDUCTANCES
AT CRITICALITY

We now embark on an investigation of point-contact co
ductances of the critical network model atp* 51/2, by em-
ploying a combination of analytical and numerical tec
niques. In Sec. IV A, the network model is mapped on
supersymmetric vertex model~for technically related work
see also Ref. 18! and theqth moment of the transmissio
coefficient T is expressed as a two-point correlator@Eqs.
~11,12!#. For this we follow the method of Ref. 17, which i
based on the so-called color-flavor transformation and is
cluded here for completeness. In Sec. IV B we take adv
tage of the global symmetries of the vertex model and, ba

-

FIG. 6. Plot of the average of lng versus the distancer between
the contacts, for different system sizesL and probabilitiesp5(1
1e2E)21.
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PRB 59 15 841POINT-CONTACT CONDUCTANCES AT THE QUANTUM . . .
on the general principles of conformal field theory, propos
closed analytical expression for theqth moment of the point-
contact conductance at criticality@Eq. ~17!#. This expression
is analytically continued toq50, to extract predictions for
the typical conductance and the log-variance, which are c
pared to numerical data in Sec. IV C. In the limit of larg
separation between the contacts, which is difficult to re
numerically, a multifractal description of conductances b
comes appropriate, as is discussed in Sec. IV D. In Sec.
we use conformal invariance to predict an exact expres
for point-contact conductances in the quasi-one-dimensio
limit of the network model. Finally, in Sec. IV F we recon
struct from the moments the entire distribution function
point-contact conductances.

A. Mapping on a supersymmetric vertex model

We start by recalling the Landauer-Bu¨ttiker formula for
the dimensionless conductanceg5T[utc8cu2, where

tc8c5^c8u~12UP!21Uuc&.

For the following it is convenient to change our conventio
slightly and interpret each of the severed contact linksc and
c8 as apair of disjoint links ~Fig. 4!, defining basis state
u i 1&, uo1&, and u i 2&, uo2&, respectively. We then impose th
boundary conditions

Uuo1&505Uuo2&, ~9!

U†u i 1&505U†u i 2&. ~10!

The boundary conditions on the outgoing links have
same effect as the projectorsPc andPc8 , which enter in the
definitionUP5U(12Pc2Pc8). With these boundary condi
tions in force, we can write the expression for the transm
sion amplitude astc8c5^o2u(12U)21Uu i 1&. Assuming the
two point contacts to be separated by more than one la
unit, so that̂ o2uUu i 1&50, we can write it in the even sim
pler form

tc8c5^o2u~12U !21u i 1&.

FIG. 7. Linear relation between the mean and the variance o
conductance distribution in the localized regime.
a
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Note that the escape of flux, here modeled by the bound
conditions on the outgoing links, causes a unitarity defi
and thus ensures positivity of the operator 12U†U.

The next step is to expresstc8c as a Gaussian superinte
gral. For this purpose we introduce a doubletC
5(CB ,CF) for every link. ~The incoming and outgoing
ones are included.! The quantitiesCB and CF are bosonic
and fermionic~i.e., commuting and anticommuting! complex
integration variables. Defining a Gaussian ‘‘statistical’’ ave
age by

^•&5E • exp2S1

with

S15 (
s5B,F

(
l ,l 8

C̄s~ l 8!~d l 8 l2Ul 8 l !Cs~ l !,

we have

tc8c5^CB~o2!C̄B~ i 1!&.

As usual the integration measure for the fieldC is the flat
one, normalized so that^1&51. The Gaussian integral ove
C converges because the modulus of the operatorU with
boundary condition~9! is less than unity.

Our interest here is not only in the average conducta
but in all momentsof the conductance. In fact, we ultimate
will reconstruct the entire distribution function. To calcula
the qth moment we need an expression for theqth power of
tc8c . As is easily verified from Wick’s theorem, this is give
by

tc8c
q

5
1

q!
^CB~o2!qC̄B~ i 1!q&.

Note that in a many-channel situation~such as a network
model with more than one channel per link or a conducta
which is not point contact! wheretc8c consists of more than
one amplitude, going fromq51 to arbitraryq requires en-
larging C to a superfield with more than one compone
Here we are in the fortunate situation that a single com
nent suffices to generate all the moments.33

We call C a ‘‘retarded’’ field and denote it from now on
by C1 . The complex conjugatetc8c̄ is expressed by a simi
lar construction using an ‘‘advanced’’ fieldC2 . By combin-
ing the Gaussian integrals over retarded and advanced fi
we get

Tq5
1

q! 2 ^C1B~o2!qC̄1B~ i 1!qC2B~ i 1!qC̄2B~o2!q&

for the qth moment of the transmission probability. Th
Gaussian statistical average here is taken with respec
exp2S whereS5S11S2 and

S25 (
s5B,F

(
l ,l 8

C̄2s~ l !~d l l 82Ū l 8 l !C2s~ l 8!.

Our next goal is to average over the disorder of the n
work model. For that we put

e
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Ul 8 l5U1~ l 8,l !eiw( l ),

whereU1 is the deterministic part ofU describing the scat
tering at the nodes, andw( l ) are random phases uniforml
distributed on the interval@0,2p#. On extracting from
exp2S the w-dependent parts and temporarily omitting t
integration over the superfieldC, we are faced with the in-
tegral

F5E )
l

dw~ l !

2p
exp (

s; l 8,l
@C̄1s~ l 8!U1~ l 8,l !eiw( l )C1s~ l !

1C̄2s~ l !e2 iw( l )U1
†~ l ,l 8!C2s~ l 8!#.

It is seen that the random phasese6 iw couple, roughly speak
ing, to the bilinears(sC̄6sC6s . Plain integration over the
variablesw( l ) now produces a product of Bessel function
an expression which is not a good starting point for furth
analysis. Fortunately, there exists something better we
do. In the supersymmetric treatment34 of disordered Hamil-
tonian systems, one makes a Hubbard-Stratonovitch tran
mation replacing the disorder average by an integral ove
supermatrix-valued fieldQ. It turns out that a similar re-
placement, called the ‘‘color-flavor transformation,’’35 can
be made in the present context. The role ofQ is taken by two
sets of complex fieldsl °Zss8( l ) and l °Z̃s8s( l ), which
assemble into supermatrices

Z5S ZBB ZBF

ZFB ZFF
D , Z̃5S Z̃BB Z̃BF

Z̃FB Z̃FF
D ,

and couple toC̄1sC2s8 andC̄2s8C1s , respectively. The
final outcome of the transformation will be another expr
sion for F, given at the end of the next paragraph, whe
instead of integrating over the random phasesw( l ) we inte-
grate over the supermatrix fieldsZ,Z̃.

For completeness, let us now briefly summarize the ma
ematical structures surrounding the supermatricesZ and Z̃.
The details can be found in Ref. 36. Elementsg5(C

A
D
B) of the

Lie supergroupGC[ GL(2u2) are taken to act onZ, Z̃ by the
transformations

Z°g•Z5~AZ1B!~CZ1D !21,

Z̃°g•Z̃5~C1DZ̃!~A1BZ̃!21.

Because this group action is transitive andZ5Z̃50 is fixed
by an HC[GL(1u1)3GL(1u1) subgroup with elementsh
5(0

A
D
0 ), the complex supermatricesZ and Z̃ parametrize the

complex coset superspaceGC /HC . Let D(Z,Z̃) be aGC in-
variant superintegration measure on this coset space an
Dm(Z,Z̃)5D(Z,Z̃)SDet(12Z̃Z). We take the integration
domain for the bosonic variables to be the Riemannian s
manifold Mr defined by the conditions

Z̃FF52Z̄FF , Z̃BB51Z̄BB , uZBBu2,1.

The normalization ofD(Z,Z̃) is fixed by requiring that
*Dm(Z,Z̃)51. Given these definitions, it was shown in Re
36 that the above expression forF is equivalent to
,
r
an

or-
a

-
e

h-

put

b-

F5E Dm~Z,Z̃!exp (
lss8

@C̄2s8~ l !Z̃s8s~ l !C1s~ l !

1~C̄1sU1!~ l !Zss8~ l !~U1
†C2s8!~ l !#,

whereDm(Z,Z̃)5) lDm(Z( l ),Z̃( l )). It is understood that
the sum overl excludes all links leaving the network. Indee
by the boundary condition~9! the phasew( l ) on an outgoing
link l 5o1 or l 5o2 never appears in the formalism and the
is no need to introduce any supermatricesZ,Z̃ there. Alter-
natively, we may extend the sum to run over all links a
compensate by putting

Z~ l !5Z̃~ l !50 for all outgoing links.

We mention in passing that the equivalence between
two expressions forF extends17 to the more general cas
where the random phase factorseiw( l )PU(1) on links are
replaced by random U(N) elements. The transformatio
from these U(N) ‘‘gauge’’ degrees of freedom to composit
‘‘gauge singlets’’ Z( l ),Z̃( l ) is in striking analogy with
strongly coupled U(N) lattice quantum chromodynamics
where integration over the gauge fields, which carry U(N)
color, produces an effective description in terms of mes
fields carrying flavor. Therefore, the passage from the fi
form of Z to the second one is referred to as the ‘‘colo
flavor transformation.’’35

An attractive feature of the color-flavor transformation
that it preserves the Gaussian dependence of the integran
the fieldsC,C̄. If we switch to schematic notation and su
press the link and super indices, the Gaussian statis
weight is the exponential of the quadratic form

2~C̄1C̄2!S 1 2U1ZU1
†

2Z̃ 1 D S C1

C2
D .

In the absence of source terms or other perturbations, i
gration overC,C̄ simply produces the inverse of a superd
terminant,

SDet21S 1 2U1ZU1
†

2Z̃ 1 D 5SDet21~12Z̃U1ZU1
†!.

When the source terms are taken into account, additio
factors arise. Since we are calculating a point-contact c
ductance, these are localized at two points. By apply
Wick’s theorem, we get from the combinatio
C2B( i 1)qC̄1B( i 1)q/q! at the first contact an extra factor

@ Z̃~12U1ZU1
†Z̃!21#BB~ i 1 ,i 1!q5Z̃BB

q ~ i 1!.

The simplification to the right-hand side of this equation o
curs becauseU1

†(•,i 1)50 according to the boundary cond
tions ~10!. Unfortunately, a similar simplification does no
take place at the other contact.~There is a basic asymmetr
between ‘‘in’’ and ‘‘out,’’ which stems from the fact that we
must decide on some ordering of the factorseiw and U1 in
the evolution operator for one time step.! However, we can
mend the situation with a little trick. We ‘‘prolong the exit’
by inserting anadditional node on the out-links as shown i
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Fig. 8. This means that flux arriving at the linko2 does not
exit immediately, but first gets transferred too28 and then
exits from there during the next time step. With this mod
cation, the extra factor arising from the produ
C1B(o28)

qC̄2B(o28)
q/q! simplifies to

@U1ZU1
†~12Z̃U1ZU1

†!21#BB~o28 ,o28!q5ZBB
q ~o2!,

sinceU1(o28 ,o2)5U1
†(o2,o28)51 andZ̃(o28)50.

In summary, we have expressed theqth moment of the
transmission coefficientT as a two-point correlator

^Tq&5^ZBB
q ~o2!Z̃BB

q ~ i 1!&, ~11!

of a supersymmetric lattice field theory

^•&5E Dm~Z,Z̃!•SDet21~12Z̃U1ZU1
†!. ~12!

The superdeterminant runs over superspace and the Hi
space of the network model.

As it stands, the formula for̂Tq& does not display clearly
the internal symmetries of the theory. To make these m
explicit, recall the definition of the~single Z) integration
measure

Dm~Z,Z̃!5D~Z,Z̃!SDet~12Z̃Z!.

We now factor the superdeterminant as two square roots

SDet~12Z̃Z!5SDet1/2~12Z̃Z!3SDet1/2~12Z̃Z!,

and associate each of these with one of the two nodes a
begins or ends on. This procedure works perfectly for
internal links: every square root factor is assigned to exa
one node. For the external~or contact! links the situation is
different. These are connected to just a single node of
network, and therefore only one of the two square roots
used up. It is natural to assign the remaining factor to

FIG. 8. Prolongation of the exit by adding a dummy vertex
the drain contact, so as to simplify the field theoretic representa
~see text! of the point-contact conductance.
ert
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operator whose correlation function we are evaluating.
this way, the expression for^Tq& reorganizes to

^Tq&5^vq~o2!v0* ~ i 2!3v0~o1!v2q* ~ i 1!&, ~13!

where

vq5ZBB
q SDet1/2~12Z̃Z!,

v2q* 5Z̃BB
q SDet1/2~12Z̃Z!,

and

^•&5E D~Z,Z̃!• exp2S,

D~Z,Z̃!5)
l

D@Z~ l !,Z̃~ l !#.

The statistical weight exp2S is given by the superdetermi
nant SDet21(12Z̃U1ZU1

†) multiplied by one~two! factors

of SDet@12Z̃( l )Z( l )# for every external~internal! link. As
was shown in Ref. 17, exp2S has the structure of avertex
modelweight, i.e., it separates into a product of factors, o
for each node. Hence the lattice field theory with statisti
weight exp2S is called a vertex model. The factor for
given node, the so-calledR matrix, is invariant under the
global action of GL(2u2) or, more precisely speaking, can b
regarded17 as the matrix element of a GL(2u2) invariant op-
erator between coherent states parametrized by the field
ablesZ,Z̃ on the links which emanate from that node.

B. Symmetries and conformal hypothesis

The special significance of the functionsvq and v2q* is
that they lie15 in irreducible representation spaces, deno
by V andV* , of the symmetry group GL(2u2). The action of
GL(2u2) on these spaces can be shown to beunitary for a
SU(1,1)3SU(2) subgroup, andV andV* belong to thedis-
crete series of SU(1,1). The representation spaceV(V* ) is
of lowest weight~resp. highest weight! type.

To make further progress, it is imperative that we expl
the global GL(2u2) symmetry of exp2S. The linksi 1 ando1
lie close in space, and so doi 2 and o2, whereas these two
sets are in general far apart from each other. Therefore,
next step is to fusevq(o2)PV with v0* ( i 2)PV* and to make
a decomposition into irreducible representation spaces
GL(2u2). The operators at the other contact,v0(o1) and
v2q* ( i 1), are processed in the same way. Thus we need
know how to reduce the tensor productV^ V* . According to
Sec. 5.2 of Ref. 15, this reduction involves a single contin
ous series of GL(2u2), which is closely related to the prin
cipal continuous series of unitary representations of SU(1
This series is labeled by a real parameterlP@0,̀ ). Denot-
ing the basis state with weightm by wlm , we have

vqv0* 5E ^Vq,V* 0ulq&wlqm~l!dl, ~14!

v0v2q* 5E ^V0,V* 2qul2q&wl-qm~l!dl, ~15!

t
n
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where ^Vm,V* m8ulm1m8& is a Clebsch-Gordan coeffi
cient, andm(l)dl is the Plancherel measure for the contin
ous series labeled byl. Explicit expressions for these will b
given below. We adopt the conventionwlq̄5wl2q . Then an
immediate statement is that the Clebsch-Gordan coeffic
behaves under complex conjugation as

^Vq,V* 0ulq&̄5^V0,V* 2qul2q&,

as follows fromvqv0*̄ 5v0v2q* .
All steps so far have been exact and rigorously justifi

Now we have to make an assumption which is cruc
namely that the vertex model atp* 51/2 flows under renor-
malization to aconformal fixed point theory. Sadly, although
substantial effort has been expended on identifying that fi
point, we still do not understand its precise nature. Never
less, as we shall see, we can draw a number of strong
clusions just from the assumption of its existence.

By the principles of conformal field theory, the two-poi
function of wl decays algebraically

^wlq~r !wl82q~r 8!&5
d~l2l8!

m~l!
ur2r 8u22Dl1•••,

~16!

whereDl is the scaling dimension of the most relevant co
formal field contained in the expansion ofwlq . @By
GL(2u2) invariance, this dimension is independent of t
weight q.# Although Dl cannot be predicted without know
ing the stress-energy tensor of the conformal field theory,
will make an informed guess later on. What we can say ri
away is thatDl must be an even function ofl. @This is due
to the invariance ofDl under a Weyl group action on th
roots of the Lie superalgebra of GL(2u2), which takesl into
2l.# The appearance of the weight functionm(l) in the
denominator, and of the Diracd function ~instead of the
usual Kroneckerd symbol!, are forced by the fact that we ar
dealing with a continuous series. On inserting the decom
sitions ~14! and ~15! into the formula~13! for ^Tq&, and
using the expression~16! for the two-point correlator, we
obtain

^Tq&5E u^Vq,V* 0ulq&u2r 22Dlm~l!dl, ~17!

wherer is the distance between the two point contacts, m
sured in the units that are prescribed by the choice of n
malization made in Eq.~16!.

The computation of the Clebsch-Gordan coefficient a
the Plancherel measure entering in the expression for^Tq& is
nontrivial. Major complications arise from the fact that th
modulesV andV* are infinite dimensional, and that the re
resentation spaces appearing in the decomposition of the
sor productV^ V* have neither a highest nor a lowe
weight vector. Consequently, the computation cannot
done solely by algebraic means and a certain amoun
analysis must be invested. We have relegated this len
calculation to the Appendix, where it is shown that

m~l!dl5
l

2
tanhS pl

2 Ddl, ~18!
-
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u^Vq,V* 0ulq&u25
G~q21/22 il/2!G~q21/21 il/2!

G~q!2
.

~19!

As it stands, the result for̂Tq& has been derived for al
positive integersq. However, since the Clebsch-Gordan c
efficient is a meromorphic function ofq, it is clear that we
can analytically continue the result to allq. @This analytic
continuation is unique, as follows from the boundu^Tq&u
<1 for Re(q).0 and Carlson’s theorem stated in paragra
5.81 of Ref. 37.# Notice, now, that all of theq dependence of
^Tq& resides in the Clebsch-Gordan coefficient, while t
dependence onr is encoded in the factorr 22Dl. It would
therefore seem that all moments ofT decay asymptotically
with the same power,̂Tq&;r 22D0, the exponent being given
by D05 MinlPR1Dl . While this is correct forq>1/2, it
fails to be true forq,1/2. The reason is that, whenq is
lowered past the value 1/2 from above, the two poles al
56 i (2q21) of the gamma functionsG(q21/26 il/2)
cross the integration axis atl50. Therefore, to do the ana
lytic continuation toq,1/2 correctly, we must pick up the
contribution from these poles. It is straightforward to calc
late the residues at the poles, which results in

^Tq&5G~q!22E
0

`UGS q2
1

2
2

il

2 D U2

r 22Dlm~l!dl

12p cot~qp!
G~2q!

G~q!2 r 22D i (2q21) ~ uqu,1/2!.

~20!

Here we have usedDl5D2l to combine terms.
By letting q go to zero in Eq.~20! and using the fact tha

normalization of the distribution function forT implies
^Tq&uq5051, we can deduce a constraint onDl . Indeed,
from Eq. ~19! the square of the Clebsch-Gordan coefficie
vanishes uniformly in l as q→0, and since
limq→02p cot(qp)G(2q)/G(q)251, we have ^T0&5r 22D2 i.
Hence we conclude

D2 i5D1 i50.

Thus, normalization constrainsDl to be of the form

Dl5~l211!F~l2!.

It will be convenient to setF(l2)5 f (l211).

C. Typical conductance and log-variance

Our next goal is to obtain information about the unknow
function f. Because we have no analytical control on t
fixed point theory, we are forced to resort to numeric
means. To prepare the numerical calculation, we first sh
that f (0) is determined in a very simple way by how th
typical conductance exp^ln T& varies withr. To that end we
differentiate both sides of Eq.~20! with respect toq at q
50 and use the identity

d

dq
^Tq&uq505^ ln T&.
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FIG. 9. Fluctuating values of the conductanceg ~or the transmission probabilityT) at the critical point of the network model. 130
realizations at a fixed distancer 510 are displayed.
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The integral on the right-hand side of Eq.~20! tends to a
finite value whileG(q)22 behaves asq2 in the limit q→0.
Also, the Taylor expansion of 2p cot(qp)G(2q)/G(q)251
1O(q2) contains no term linear inq, as is easily verified
from standard properties of the gamma function. Hence

^ ln T&5
d

dq
r 22D i (2q21)uq50528 f ~0!ln r

or, after exponentiation,

exp̂ ln T&5r 2Xt, Xt58 f ~0!. ~21!

Thus, exp̂ln T& decays as a pure power. Note that this feat
is unique to the typical conductance. For a general value
q, formula~20! shows that the behavior of^Tq& as a function
of r is governed by a wholecontinuumof exponents.

We have calculated conductances at criticality (p5p*
50.5) for systems of sizeL540, 60, and 100, and for dis
tancesr varying from r 51 to r 5L/2. For every distance
2200 realizations forL540, 1200 realizations forL560, and
between 200 and 300 realizations forL5100, were gener-
ated. Figure 9 shows 1300 realizations of the conducta
for L560 and r 510. The distribution of conductances
seen to be very broad. In Fig. 10 the mean logarithm of
conductancêln T& is displayed as a function of lnr for three
different system sizesL540,60,100. The typical value in
deed scales as a power withr,

exp̂ ln T&5~r /r 0!2Xt,

Xt50.64060.009, r 0'0.42, ~22!
e
of

ce

e

and has no significant dependence on the system size.
result for Xt is based on data forL5100 and distancesr
<40, on data forL560 and distancesr<25, and on data for
L540 and distancesr<20. The error results from a linear fi
taking the statistical errors of the data into account. Tak
the same raw data but neglecting their errors, yieldsXt

50.61360.012. Note that the hypothesis~16! was formu-
lated in ‘‘conformal units’’ (r 051) whereas the numerica
data are represented in length units given by the lattice c
stant of the network. Therefore,r 0 is written explicitly in Eq.
~22! whereas it is treated as unity in Eq.~21!.

FIG. 10. Scaling plot of the typical conductance for three d
ferent system sizes. The horizontal and vertical axes are loga
mic.
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Higher moments of lnT can be obtained by usinĝTq& as
a generating function,

^Tq&511q^ ln T&1~q2/2!^~ ln T!2&1•••.

A straightforward calculation starting from~20! yields for
the log-variance~in conformal units!

^~ ln T!2&2^ ln T&2516@ f ~0!24 f 8~0!# ln r

2E
0

`

~12r 22Dl!
8pm~l!dl

~l211!cosh~pl/2!
.

~23!

The integral on the right-hand side decays algebraically
constant whereas the first term grows logarithmically. E
~23! says that the sum,S, of the log variance and the integra
is linear in lnr. To obtain the prefactor of lnr, we numeri-
cally calculated the integral for each value ofr, took the log
variance from our data for systems of sizeL560, and plotted
the functionS(r ) versusXt ln(r/r0), see Fig. 11. It turned ou
that the integral was nonnegligible for the range ofr values
that were numerically accessible. The slope of the stra
line in Fig. 11 is 2.0860.11, i.e., the log variance is abou
twice the log-average for larger ~as is the case for in
quasi-1D systems32!. Given 8f (0)5Xt , our numerical result
implies thatf 8(0) is very close to zero:

24 f 8~0!/Xt50.00560.008,

which leads us to conjecturef 850 or, equivalently, a depen
dence ofDl which is exactly quadratic:

Dl5 f ~0!~l211!5
Xt

8
~l211!. ~24!

Aside from being the simplest possible expression forDl ,
this guess is in line with field theoretic expectations: in co
formal field theories with a stress-energy tensor that is q
dratic in the currents, the scaling dimensions are proportio
to the quadratic Casimir invariant. The polynomiall211 is,
in fact, the quadratic Casimir of GL(2u2), evaluated on the
continuous series of representationsl. In the language of
multifractality ~Sec. IV D!, the conjecture~24! means that
the parabolic approximation to theF(a) spectrum is exact
In the remainder of the present paper we shall assume
quadratic form~24!.

FIG. 11. The log-variance of the conductance augmented by
integral on the right-hand side of Eq.~23! is denoted byS(r ) and
plotted versusXt ln(r/r0).
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D. Multifractal spectrum

We have seen that the dependence of^Tq& on the distance
between the two point contacts is governed in general b
continuous set of exponents 2Dl . This dependence simpli
fies, of course, in the asymptotic domainr→`. For q>1/2
the asymptotic behavior is controlled by the smallest ex
nent 2D05Xt /4.0.16. In the range21/2<q<11/2, the
dominant contribution comes from the second term on
right-hand side of Eq.~20!, with the exponent being
2D i (2q21)5Xtq(12q)<Xt/4. Forq<21/2 there appear ad
ditional contributions due to the poles ofG(q21/26 il/2) at
l56 i (2q11), 6 i (2q13), etc. However, since
D i (2q21),D i (2q11),D i (2q13),••• for q,21/2, these are
negligible in the limitr→`. Thus we have

^Tq& ;
r→`

r 2X(q),

X~q!5H Xt/4 for q>1/2,

Xtq~12q! else.
~25!

Note that the spectrum of exponentsX(q) is a nondecreasing
function ofq. The spectrum shown in Fig. 12 is nonlinear,
is characteristic of a multifractal. ThatX(q) becomes con-
stant for q>1/2 can be traced to the boundedness of
variable lnT<0: for q>1/2 the asymptotics of the momen
^Tq& is governed by the value of the distribution function
the upper bound prob(T51;r );r 2Xt/4, which is indepen-
dent ofq, as isTquT51. In a thermodynamic interpretation o
multifractal spectra, the nonanalyticity atq51/2 is called a
‘‘phase transition’’ inX(q).38 The failure ofX(q) to become
linear forq→2` results from the absence of a lower bou
on lnT.

The multifractal nature of theX(q) spectrum can alterna
tively be described by a spectrum off (a) type. If we make
a multifractal ansatz for the probability density ofT,

prob~T5r 2a!dT;r 2F(a)da,

the moments ofT for large r scale as

^Tq&;E r 2qa2F(a)da;r 2X(q),

e
FIG. 12. The multifractal spectrumX(q) governing the

asymptotic power law scaling of the moments^Tq&.
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whereX(q) andF(a) are Legendre transforms of each oth
i.e., q1F8@a(q)#50, X(q)5qa(q)1F@a(q)#, and con-
versely,a2X8@q(a)#50, F(a)52aq(a)1X@q(a)#. Us-
ing these relations we find

F~a!5
~a2Xt!

2

4Xt
~a.0!. ~26!

The F(a) spectrum shown in Fig. 13 is defined only fo
positive values ofa becausea5X8(q)>0.

An obvious question arises: is it possible to relate
multifractal exponentsX(q) to the t(q) spectrum of the
critical eigenstates, or the scaling exponents of the LDO
Our first observation is that there exists an obvious diff
ence between the two cases: while the spatial correlation
the LDOS continue to scale in a nontrivial manner with s
tem sizeL when L is increased, the distribution of poin
contact conductances~at fixed r ) becomesindependentof
L.15 Another way of saying this is that the critical condu
tance between interior point contacts has a trivial infin
volume limit, whereas the LDOS does not.

To explain this distinction in physical terms, recall th
iterative procedure by which the stationary limitc` was ap-
proached. An essential ingredient in that process was
draining actionof the broken links at the two contacts. B
the loss of probability through these outgoing channels,
system relaxes and settles down to a stationary long-t
limit. The key to understanding the size dependence of
conductance is to visualize the distribution ofuc`u2 in space.
In the regime of localized states this distribution is conc
trated in a circular area of radius;j centered around its
source~i.e., the contact where the current is fed in!. Outside
this area the intensityuc`u2 falls off exponentially with dis-
tance. On approaching the critical point,j diverges and the
exponential decay turns into a power law. Thus the inten
becomes more spread out. However, in spite of this spre
ing out, the intensity remains~algebraically! localized near
the source. The finite size of the network affects only
tails of the distributionuc`u2 and, as a result, the condu
tance converges to a well-defined limit as the system
goes to infinity.

FIG. 13. The multifractal spectrumF(a) describing the scaling
of the distribution prob(T5r 2a)dT.
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When the LDOS is discussed in the same language
different picture emerges. Consider, for simplicity, theqth
power of the density-density correlator

u^c8u~12e2dU !21uc&u2q

which, though not expressible as a correlation function of
LDOS, is related closely enough to allow a meaningful co
parison. There again exists a dynamical interpretation.
compute the density-density correlator we feed in curr
through linkc and, after relaxation to the steady state, m
sure the square of the amplitude at linkc8. What is different
from the conductance measurement is that there are no d
at c andc8 ~the network is now isolated!. Instead, particles
are absorbed at a constant rate 2d at any location in the
network. As the system size is increased, the time spen
the network grows as the Heisenberg timed21;Ld. ~Previ-
ously, the dwell time in the 2D network was limited by th
‘‘strength’’ of the contacts and remained finite in the lim
L→`.! Thus, there is a build up of particles in the networ
When all states are localized, this causes theq-dependent
correlator to diverge asd2q;Lqd. At the critical point, the
divergence from build up is counteracted by the reduction
the amplitude at linkj due to incipient delocalization of the
wave functions. For a general value ofq the two competing
effects do not cancel, so that a nontrivial scaling withL is
expected to remain, in agreement with what we found in S
II.

Having said all this, we return to the original question:
it possible, after all, to relate the multifractal exponentsX(q)
to thet(q) spectrum? We wish to offer the following argu
ment. Imagine placing tunnel barriers at the two conta
c,c8. For zero tunneling probability, the network is close
and we can measure the density-density correlations. N
assume that theq-dependent density-density correlator h
the same set of scaling exponents as the LDOS correla
Then, in the limitv50 ~or Lv5`) we have

^u^c8u~12e2dU !21uc&u2q&;r 2z(q)Lz(q)2 z̃(q).

As the tunneling rate is increased, a new time scale appe
the time a particle injected at linkc spends in the network
~with the absorption rated set to zero! before exiting through
link c8. The critical dynamics translates this dwell time in
some characteristic lengthLt . Although Lt is an irrelevant
length for an almost closed system with high tunnel barrie
it takes the regularizing role of the system size in the regi
of open systems withLt,L. In the limit of vanishing tunnel
barriers, the density-density correlator turns into the po
contact conductance. At the same time, the lengthLt must
become proportional to the distance between the point c
tacts, for the simple reason that no other length scale rem
available. This argument would say^Tq&;r 2 z̃(q), and sug-
gestsz̃(q) as a candidate forX(q). We should be cautioned
by the fact that the density-density correlator, unlike the c
ductance, does not respect any upper bound. This differe
influences the tails of the distribution and changes the h
moments, at least. In fact, we have shownX(q) to be con-
stant forq>1/2, whereasz̃(q) continues to increase. How
ever, the tails of the distribution should not affect the typic
values, and therefore one might expectXt5X8(0)5 z̃8(0)
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52(a022). Recall that we foundXt50.64060.009. Other
groups quote values 2(a022)50.5660.04,16 0.5460.02
~e.g., Ref. 3!, and 0.5860.04.39 These values are not all mu
tually consistent. We leave it as an open problem whet
there is a flaw in the argument linkingX(q) with z̃(q) or
there is a real discrepancy.

E. Quasi-1D limit

We now endow the network model with a cylinder geo
etry. This means that we consider an infinitely long strip
width W, with coordinatesxPR andyP@0,W#, and impose
periodic boundary conditions in the transverse direction.
before, our interest is in the conductance between two p
contacts, which are placed at positions (x,y) and (x8,y8).
The conductance in such a cylindrical setting can be rela
to the point-contact conductance in the infinite 2D plane w
complex coordinatez by a conformal transformation

z5exp
2p

W
~x1 iy !.

The conformal field theory rule for translating two-poi
functions from the plane to the cylinder reads40

^wl~z!wl~z8!&5uz2z8u22Dl

→UWp sinhS p

W
~x2x81 iy2 iy8! D U22Dl

.

From this rule we have the relation

^Tq&u(x,y);(x8,y8)
cylinder

5^Tq&ur 5uW/psinh[p/W(x2x81 iy2 iy8)] u
2D .

In particular, for the typical cylindrical conductance we o
tain

exp̂ ln T&5UWp sinhS p

W
~x2x81 iy2 iy8! D U2Xt

.

~Recall that we are using length units so that^ ln T&2D50 for
r 51.! In the quasi-1D limitL[ux2x8u@W, this result sim-
plifies to

exp̂ ln T&uL@W5~W/2p!Xt exp2pXtL/W.

Note that from Eq.~22! the numerical value ofpXt is

pXt52.0160.03. ~27!

What is this result, a value ofpXt close to 2, trying to tell
us? Let us offer some speculation based on the assum
that the relationpXt52 holds exactly. In Ref. 17 it was
shown that, if a naive continuum limit is assumed~i.e., pos-
sible renormalization effects due to short wave length mo
are ignored!, the supersymmetric vertex model~12! for the
critical network is equivalent to Pruisken’s nonlinears
model41 at couplingssxx5sxy51/2. The action functiona
of the latter model is

S5E dxdy@sxx~Lxx1Lyy!1sxy~Lxy2Lyx!#,

where
er

-
f

s
nt

d
h

ion

s

Lmn5S Tr~12ZZ̃!21]mZ~12Z̃Z!21]nZ̃.

For the sake of the argument, let us nowassumePruisken’s
model atsxx5sxy51/2 to be afixed pointof the renormal-
ization group. Then, by raising the short distance cutoff fro
a51 to a5W we can reduce Pruisken’s actionS to a 1D
effective action

S1D5
W

2 E dxS Tr~12ZZ̃!21]xZ~12Z̃Z!21]xZ̃.

Alternatively, we could argue that in the quasi-1D limit th
dependence of the fieldZ on y can be neglected and, sinc
sxx does not renormalize~by the fixed point hypothesis!, the
process of scaling outy simply produces a factor*dy5W.

The one-dimensional theory with action functionalS1D
has been much studied, and its mean conductance
known42–44 to decay with lengthL of the conductor, which
plays the role of distance between the contacts, as

^T&uL
1D; exp2L/2W.

Moreover, from Ref. 45 we know that the localizatio
lengths for the mean and typical conductances of the o
dimensional nonlinears model differ by a factor of 4, so tha

exp̂ ln T&uL
1D; exp22L/W,

which agrees, within the numerical errors, with what w
found in Eq.~27!. To turn the argument around, by assumi
Pruisken’s nonlinears model atsxx5sxy51/2 to be a fixed
point, we would have predictedXt to be

Xt5~psxx!
21usxx51/2'0.637.

The above argument is not convincing, as it relies on
questionable assumption that the nonlinears model is a
fixed point theory. Conventional wisdom has it that critic
two-dimensional nonlinears models are unstable with re
spect to quantum fluctuations and flow under renormaliza
to theories of the Wess-Zumino-Witten type. However,
can reformulate the argument and avoid any reference
Pruisken’s theory. Let us assume that it is the network mo
itself ~or, rather, a suitable continuum limit thereof! which is
a fixed point of the renormalization group. Note that such
assumption is consistent with the fact that network mo
observables start scaling very rapidly when the observa
scale is increased.~For example, in Fig. 10 there are n
visible deviations from linearity asr approaches the shor
distance cutoffa.! As before, we imagine raising the cuto
by using a sequence of RG transformations. By the fix
point hypothesis, we arrive fora5W at the 1D network
model~or, rather, some continuum version closely related
it!, with the distance between contacts rescaled toL/W. Next
we pass to the 1D supersymmetric vertex model, and fr
there to the continuum actionS1D . In contrast to earlier, the
last step is benign, as the 1D nonlinears model issuper-
renormalizable~i.e., ultraviolet finite! and the RG trajectory
can no longer depart from it. By this token, we again arr
at Xt52/p, this time without having passed through
Pruisken’s model. Thus, the proposed value forXt follows as
a consequence of assuming the network model~or a suitable
continuum limit thereof! to be a RG fixed point.
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Note that if the above fixed point assumption is corr
and X t52/p holds exactly, then we are led to the striking
conclusion that Wess-Zumino-Witten models are ruled ou
candidates for the fixed point theory. Indeed, the scaling
mensions for such models are given46 by kCl /(k1h* ),
whereCl is the quadratic Casimir, andk andh* are integers.
Such an expression for the scaling dimensions cannot
duce the irrational number 2/p.

F. Reconstruction of the distribution

We now return to the two-dimensional network and
construct the entire distribution function for the point-conta
conductance from the moments^Tq&. By making a simple
variable substitution~namely,x52r11) in Eq. ~A4! of the
Appendix, the product of gamma functions in the formula
^Tq& can be represented as an integral over Legendre f
tions

uG~q21/22 il/2!u2

G~q!2
5E

0

`

~11r!2qP( il21)/2~2r11!dr.

Next we define a probability density prob(r;r )dr for the
variabler by

prob~r;r !5E
0

`

r 2Xt(l
211)/4P( il21)/2~2r11!m~l!dl.

Given 2Dl5Xt(l
211)/4, comparison with Eqs.~17! and

~19! yields

^Tq&5E
0

`

~11r!2q prob~r;r !dr.

Hence, on making the identificationT[(11r)21 we con-
clude that the probability density forT is prob(r;r )dr. Al-
though this is easily expressed in terms ofT by using the
inverse relationr5T2121, which has differentialdr5
2T22dT, we find it more convenient to work with the var
abler instead ofT.

Because the Legendre functionsP( il21)/2(2r11) are os-
cillatory with respect tol ~incidentally, they oscillate also
with respect tor), the above formula for the probabilit
density is not well suited for numerical evaluation. Mo
vated by this, we switch to a different representation as
lows. The Legendre functions satisfy the hypergeometric
ferential equation

S 1

4
~l211!1

]

]r
r~r11!

]

]r DP( il21)/2~2r11!50,

and the integral ofP( il21)/2 against the Plancherel measu
gives a Fourier representation of thed function

d~r!5E
0

`

P( il21)/2~2r11!m~l!dl.

Both facts are standard results in harmonic analysis on
hyperbolic plane~or Lobachevsky plane! and are briefly re-
viewed in the Appendix. Using them in thel-integral repre-
sentation for prob(r;r ) we obtain
t

s
i-

o-

-
t

r
c-

l-
f-

e

S ]

] ln r
1Xt

]

]r
r~r11!

]

]r Dprob~r;r !50,

lim
ln r→0

prob~r;r !5d~r!. ~28!

Consider now the hyperbolic plane with the metric tensor
polar coordinatesu,f given by du21sinh2(2u)df2. If we
substituter5sinh2u, the differential operator]rr(r11)]r

turns into

]

]r
r~r11!

]

]r
5

1

4

1

sinh~2u!

]

]u
sinh~2u!

]

]u
,

which coincides with 1/4 times the radial part of the Laplac
Beltrami operator on the hyperbolic plane. Therefore,
viewing lnr as ‘‘time’’ and Xt/4 as a ‘‘diffusion constant,’’
we can interpret the initial value problem~28! as the heat~or
diffusion! equation on that space. Solving the heat equat
on the hyperbolic plane is a textbook example in Riemann
geometry.47 For our purposes, a convenient expression
the solution is the following integral:

prob~r;r !5
2p21/2r 2Xt/4

~Xt ln r !3/2 E
arcsinhAr

` e2t2/(Xt ln r )tdt

Asinh2~ t !2r
,

which is easy to compute numerically. The result for t
distribution function

f ~ ln T;r !5prob~r;r /r 0!U dr

d ln TU ~29!

is plotted in Fig. 14 for the distancer 515 between the con
tacts. The valueXt50.64 is assumed. The error bars corr
spond to the mean deviation to be expected in histogra
accumulated from 1760 independent measurements of
following the predicted distribution. It is seen that our an
lytical prediction agrees well with the numerical data poin
~accumulated from 1760 conductances! represented by dots

FIG. 14. Normalized histograms of the critical log-conductan
ln T ~dots! for distancer 515. The numerical data are compare
with plots of the distribution functionf (ln T;r) defined in Eq.~29!.
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V. SUMMARY

We have presented a numerical and analytical study
point-contact conductance distributions for the Chalk
Coddington network model. After reconsidering the mu
fractal correlations of the local density of states, we fi
focussed on the distribution of point-contact conductance
the quantum Hall plateau region, where strong localization
electrons occurs. As expected, the distribution is close
log-normal and is essentially parametrized by only the ty
cal localization length. In particular, we found the lo
variance to be proportional to the logarithm of the typic
conductance, with the constant of proportionality bei
21.0060.05.

We then turned to the plateau-to-plateau transition of
quantum Hall effect. Our analytical results are summariz
as follows. By transforming the network model to a sup
symmetric vertex model with GL(2u2) symmetry, we de-
rived a formula, Eq.~17!, for the qth moment of the point-
contact conductance at criticality. The general structure
the formula is completely determined by group symmet
The unknowns are the scaling dimensionsDl of certain local
operatorswlq , which represent the point contacts in the fo
mulation by the vertex model. We assumed these sca
dimensions to be proportional to the quadratic Casimir
variant of the symmetry algebraDl5Xt(l

211)/8. ~This as-
sumption is not essential and can in principle be relaxe!
This choice leavesXt as the only free parameter. Knowledg
of all the moments allowed us to reconstruct the entire d
tribution function.

Salient predictions of our analysis are as follows.~i! The
distribution of point-contact conductances becomes indep
dent of the system sizeL in the thermodynamic limitL
→`. ~ii ! At the critical point, the typical point-contact con
ductance of the infinite 2D network decays with the distan
r between the two contacts as a pure power: exp^ln T&
5(r/r0)

2Xt. ~iii ! The log variance equals22 times the loga-
rithm of the typical conductance.~iv! For large distances
between the contacts, theq moments of the conductance e
hibit multifractal statistics ^Tq&;r 2X(q), where X(q)5
2Xtq(q21) for q<1/2 andX(q)5Xt /4 for q>1/2. Thus
there is a ‘‘phase transition’’ in theX(q) spectrum atq
51/2.

All these predictions are consistent with our numeri
data, which were accumulated by a computing effort
about 2000 CPU hours on a Sun Sparc workstation.
found the distribution of point-contact conductances for
,L/2 to show no significant dependence on the system s
as expected. In a double logarithmic plot of the typical co
ductance versusr, the data points scatter around a line
curve with slope2Xt520.64060.009. The log variance is
linearly related to the logarithm of the typical conductan
with the constant of proportionality being22.0860.11. The
phase transition in theX(q) spectrum is hard to see in ou
data, since the numerically accessible values ofr are not
large enough in order for the asymptotic behavior to do
nate. However, the predicted distribution function for t
point-contact conductances agrees well with our numer
data.

On a speculative note we argued that if the network mo
~or, rather, a suitable continuum limit thereof! is a fixed point
of
-

t
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f
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of the renormalization group, then the scaling exponent
the typical point-contact conductance must have the va
Xt52/p. This follows from conformal invariance linking 2D
with quasi-1D, and from exact results available for the latt
While the fixed point assumption for the network mod
needs to be substantiated, it is remarkable that the predi
value lies very close to the numerical result.

As a suggestion for further work, recall from Sec. IV
that conformal invariance at the critical point predicts t
typical conductance between two point contacts at positi
(0,0) and (x,y) on a cylinder with circumferenceW to be

exp̂ ln T& (x,y);(0,0)
cylinder 5UWp sinhS p

W
~x1 iy ! D U2Xt

.

Verification of this relation would provide a stringent test
the idea of a conformal fixed point theory for the quantu
Hall transition. We have not done the test, as our numer
calculations had already been long completed by the time
became aware of the exactness of the relation. We in
other groups to perform this stringent test and reduce
statistical error onXt . We feel certain that the value ofXt
will be a benchmark for the analytical theory yet to be co
structed, and is desirable to know with the same accurac
the localization length exponentn.
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APPENDIX

Here we derive the result for the Clebsch-Gordan coe
cient and the Plancherel measure announced in Eqs.~19! and
~18!. For reasons that were explained in the text, this is
an easy calculation. Fortunately, we can do it by using
following trick.

We consider a very simple network, consisting of just tw
edges that interact along a chain ofL vertices~see Fig. 15!.
The formalism developed in Secs. IV A and IV B applies
this case just as well as to the two-dimensional netw
model. In particular, theqth moment of the conductance
given by a formula such as Eq.~13!. A simplifying feature is
that the product ofR matrices now organizes into a convo
lution product of transfer matrices,T L. Denoting the eigen-
values of the transfer matrixT by t(l) we get

^Tq&1D;L5E
0

`

u^Vq,V* 0ulq&u2t~l!Lm~l!dl, ~A1!

by a similar reasoning as in the body of the paper. Our st
egy will now be to exploit the simplicity of this 1D mode

FIG. 15. Graphical representation of a network, consisting
two edges that interact along a chain of vertices.
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and compute the moments^Tq&1D;L from a quite different
approach. By comparing the result to the formula~A1!, we
will ultimately be able to read off the desired expressions
the Clebsch-Gordan coefficient and the Plancherel meas

For technical convenience, we shall consider the two-e
network model in the limit of weak backscattering at t
nodes. An attractive feature of this limit is that the task
computing^Tq&1D;L can be reformulated as apartial differ-
ential equation~of the Fokker-Planck type! which is readily
solved. Before writing down that equation, it is helpful
make two adjustments. Rather than computing directly
momentŝ Tq&, we will study theentire distribution function
of T. Also, we switch fromT to the variabler5(12T)/T
~‘‘Landauer’s resistance’’!. Now, by an elementary calcula
tion ~for a review, see, e.g., Ref. 48!, the probability density
prob(r;L)dr of Landauer’s resistance satisfies the differe
tial equation

l
]

]L
prob~r;L !5

]

]r
r~r11!

]

]r
prob~r;L !, ~A2!

wherel is the elastic mean free path. We are going to so
this equation by harmonic analysis, i.e., by diagonalizat
of the differential operator]rr(r11)]r . @This operator has
a geometric meaning as the radial part of the Laplacian o
noncompact Riemannian symmetric space SU(1,1)/U(1).#
Introducing the Legendre functionPn(x) through its integral
representation

Pn~x!5E
0

2pdf

2p
~x1Ax221 cosf!n, ~A3!

one easily verifies

S ]

]r
r~r11!

]

]r
1

1

4
~l211! DP( il21)/2~2r11!50.

This relation suggests a solution of the differential equat
~A2! of the form

prob~r;L !5E
0

`

e2L/4l (l211)P( il21)/2~2r11!dm~l!.

The spectral measure~or Plancherel measure! dm(l) is de-
termined by the asymptotic behavior of the Legendre fu
tions P( il21)/2(2r11) for r→`, as follows. By using the
substitutionu5tan(f/2) in the integral representation~A3!,
one finds

P( il21)/2~cosh 2u! →
u→`

e2u@c~l!eilu1c~2l!e2 ilu#,

where thec function is given by

c~l!5
1

Ap

G@~1/2!il#

G@~1/2!~ il11!#
.

From this asymptotic limit, we infer the orthogonality rel
tions

E
0

`

P( il21)/2~2r11!P( il821)/2~2r11!dr5Nld~l2l8!,
r
re.
e

f

e

-

e
n

a

n

-

with the normalization factor beingNl5puc(l)u2. In con-
junction with the initial condition

lim
L→01

prob~r;L !5d~r!,

stating that transmission through a short chain is ideal,
presence of the normalization factor determines the spe
measure to be

dm~l!5
dl

puc~l!u2
5

l

2
tanhS pl

2 Ddl.

To recover the momentŝTq& from the distribution
prob(r;L)dr, we need the integral

I l~q![E
0

`

~11r!2qP( il21)/2~2r11!dr,

which converges forq.1/2. We claim that this integral ha
the value

I l~q!5
G~q21/21 il/2!G~q21/22 il/2!

G~q!2
.

To prove this statement, we proceed as follows. In the fi
step, we setx52r11 and write

E
1

`

~x11!2qP( il21)/2~x!dx

5G~q!21E
0

`S E
1

`

e2axP( il21)/2~x!dxD aq21e2ada,

which is a valid equality forq.0. According to Ref. 49~p.
323, No. 11! the integral in parentheses equals

E
1

`

e2axP( il21)/2~x!dx5A 2

pa
Kil/2~a!.

This leads to an integral over the auxiliary variablea, which
converges forq.1/2 and the value of which we take from
Ref. 50@p. 716, No. 6.628~7!#:

A2

pE0

`

aq23/2e2aKil/2~a!da

5GS q2
1

2
2

il

2 DGS q2
1

2
1

il

2 D lim
a→0

P( il21)/2
12q ~cosha!

~sinha!q21
,

whereP n
m(x) is the associated Legendre function. From R

51 ~p. 332, No. 8.1.2! this function has the following small
a limit:

P( il21)/2
12q ~cosha! →

a→0

G~q!21~a/2!q21.

Combination of all these results yields
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I l~q!52q21E
1

`

~11x!2qP( il21)/2~x!dx

5

GS q2
1

2
2

il

2 DGS q2
1

2
1

il

2 D
G~q!2

, ~A4!

which proves the claim.
By substitutingT5(11r)21 and inserting for the prob

ability density prob(r;L)dr the spectral resolution give
earlier, we finally arrive at

^Tq&1D;L5E
0

`

e2(l211)L/4l I l~q!dm~l!.
ci
.

,

te

on
e
f

th
Comparison with Eq.~A1! identifies the eigenvalue of th

transfer matrixT as t(l)5e2(l211)/4l , and yields

u^Vq,V* 0ulq&u2m~l!dl5I l~q!dm~l!. ~A5!

Although this result gives an answer for theproduct of the
squared Clebsch-Gordan coefficient with the Planche
measure, it does not allow to make the separate identifi
tions proposed in Eqs.~19! and~18!. For that, more detailed
considerations are necessary. For brevity, we refrain fr
elaborating on these since, actually, all that is needed for
main text is the formula~A5!.
m,

d-

a-

on
n,
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