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Point-contact conductances at the quantum Hall transition
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On the basis of the Chalker-Coddington network model, a numerical and analytical study is made of the
statistics of point-contact conductances for systems in the integer quantum Hall regime. In the Hall plateau
region the point-contact conductances reflect strong localization of the electrons, while near the plateau tran-
sition they exhibit strong mesoscopic fluctuations. By mapping the network model on a supersymmetric vertex
model with GL(22) symmetry, and postulating a two-point correlator in keeping with the rules of conformal
field theory, we derive an explicit expression for the distribution of conductances at criticality. There is only
one free parameter, the power law exponent of the typical conductance. Its value is computed numerically to
be X;=0.640+0.009. The predicted conductance distribution agrees well with the numerical data. For large
distances between the two contacts, the distribution can be described by a multifractal spectrum solely deter-
mined byX;. Our results demonstrate that multifractality can show up in appropriate transport experiments.
[S0163-182699)01623-9

[. INTRODUCTION nents. Multifractality is observable in local quantities such as
local densities, or in the wave number and frequency depen-
Models of two-dimensional2D) noninteracting electrons dent dynamic structure factésee Refs. 67 These have yet
subject to disorder and a strong magnetic field are in a fornto be studied in transport measurements under mesoscopic
called the(integey quantum Hall universality class. Their conditions. In Ref. 8 it was pointed out that multifractality
most prominent feature is the existence of a localizationcan show up in the size dependence of the conductance dis-
delocalization(LD) transition, which underlies the plateau- tribution close to the LD transition. Further suggestions for
to-plateau transition of the Hall conductance observed in then experimental determination were made in Ref. 9, but it
integer quantum Hall effect. Among the various members okeems that these are still awaiting realization. Recently, it has
the quantum Hall universality class, the Chalker-Coddingtorheen suggested that multifractality relates to the corrections
network model has been fourfef to be a convenient repre- to scaling and may be observable in the temperature depen-
sentative, particularly for numerical purposes. A wave funcdence of the peak-hight of the conductance at the LD
tion in this model is a collection of complex amplitudes, onetransitionl® In the present paper we demonstrate that another
for each bond of a square lattice. The time evolution operatogensitive probe arpoint-contact conductancesiaking mul-
acts on the wave functions by discrete steps, which are deifractality directly accessible through a suitable transport
termined by unitary scattering matrices assigned to the velimeasurement. By a point-contact conductance we mean a
tices of the lattice. It has been established that, with varyingonductance between two small interior probes separated by
left-right asymmetry of the scattering probabilipe[0,1],  a distance. They show strong mesoscopic fluctuations at the
the stationary states undergo a LD transitiaith a critical LD transition, similar to those of the conductansee, e.g.,
exponent v~2.35 for the localization lengthé~[p  Refs. 11-14 By varying the distance, point-contact con-
—p*|™%, p*=0.5. Moreover, it was shown that the criti- ductances allow to study local details of mesoscopic fluctua-
cal states(for which the localization length is much larger tions that are not captured by tiglobal conductance.
than the system size) have multifractal propertiéghat are One of our motivations came from Ref. 15, which dis-
universal, and are characterized by an exponefit2.28  cusses the conductance between taomore small interior
describing the scaling of the typical val(iee., the geometric  contacts from a field theoretic perspective. In that work, it
mean of the squared amplitude eftp|y{>)~L . The com- was pointed out that for a large enough system the point-
binationv(ag—d) is the critical exponent of the typical local contact conductance depends only on the distarmween
density of state$LDOS), which has been arguédo be an the interior contacts, whereas the typical LDOS also involves
order parameter for the LD transition. the system sizé&. At criticality, the conductance in the infi-
The critical exponentv was extracted in a number of nite plane falls off algebraically with and, by the conformal
transport experimenfsin contrast, no such experiment has hypothesis, this decay should be conformally related to the
been carried out to measusg or related multifractal expo- decay in other geometries such as the cylinder. Unfortu-
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nately, a comprehensive analytical theory of the critical point
does not yet exist, and we cannot predict the critical expo-
nents. As we are going to show, however, we are able to
draw some strong conclusions just from the assumption of
the existence of a conformal field theory for the critical
point.

In the present work, we use the Chalker-Coddington
model to calculate point-contact conductances as well as
quasi energies and the corresponding stationary states. In
Sec. Il we consider the dynamics of a closed network. To
begin with familiar objects, we demonstrate that, under criti-
cal conditions, the local density of states has multifractal
correlation exponents that agree with those obtained from
Hamiltonian model$® These results will later be contrasted

with the critical behavior of point-contact conductances in , , _
Sec. IV. We then review the definition of the point-contact FIG. 1. Graphical representation of the Chalker-Coddington net-
ork model. Wave amplitudes propagating on the links are scat-

conductances and compute them in the localized regime. &red to the lefright) with probability p(1— p). The correspond
find them to be well described by a log-normal distribution. ) g P y.p( P). pond-
. . . .__.._ing unitary scattering matriceS are situated at the nodes of the
determined by a single parameter, the typical Iocallzanonn otwork
length &, (Sec. Ill). Our main theme, the investigation of '
point-contact conductances pt =1/2, is taken up in Sec.
IV, which employs a combination of analytical and numeri-
cal techniques, and is divided into five subsections. Gtte

moment of the conductang@?) is expressed as a two-point

correlator of a 5“p§§§3{g”metric ve.rtex mode| equivalent torepresented by a unitaryX?2 scattering matrids transform-
the network modet>*"*®We exploit the global GL(®) ing 2 incoming amplitudes into 2 outgoing amplitudes. To

symmetry of that model and, based on the genergl prinCiple§imulate the effect of a disordered or irregular array of scat-
of conformal field theory, propose a closed analytical expres;

ion for(T% . F h dictions for th ical erers, a(kinetic) phase factor is attached to every channel
sion for(T%). From that we extract predictions for the typica amplitude. These phases are taken to be independent random
conductance, the log variance, and the entire distribution

functi T dicti | ¢ det variables distributed uniformly on the interved,27]. An
unction. These predictions leave one parameter Undetefq.,ning amplitude on a given link can only be scattered to
mined, which can be identified with the power law exponen

tthe left or right. Let us denote the probability for scatterin
X of the typical conductance. We calculatg numerically g P y g

' b S , Y to the left byp. The scattering probability to the right is then
and find X;=0.640+0.009. The distribution function with 1—p. The parametep for each scatterer can be taken to be

t.h's. value is shown to agree with the numerical da_ma. _In thefixed or drawn at random from a certain distribution. In ei-
limit of large separation between the contacts, which is d'f'ther case, the states in a system of finite &izarn out to be
ficult to reach numerically, the conductance distribution Ca%elocalizé&'z when the mean op lies in a small interval

be reduced to a spectrum of multifractal exponents. W roundp=0.5. The width of this interval p shrinks to zero
speculate on a possible connection between the multifract the thermodynamic limia p~ L~ ", wherev~2.35 is the
spectra of the point-contact conductances and of the Ioc%lritical exponent of the localization iengﬁa '

der|1:§|ty”of Etates.t hing t its that lable for th A network model wavefunction is a set of complex am-
inafly, by matching 1o resutts that are avanablé 1or € qest (1)} wherel =1, . .. N, runs over the links of the

quasi-1D limit, we argue that if the network mod@r a network, and the normalization is fixed t|¢(1)|2=1.

suitable (_:onFinuum limit therepiwere a fixed point of the Wavefunctions are propagated forward in time by discrete
renormalization group, then the power law exponent of thestep§°*3

typical conductance would have to b$,=2/7~0.637,
which is in remarkably close agreement with our result from N,
numerics. Because standard conformal field theories of the da(D=> UL (), (1)
Wess-Zumino-Witten or coset type predict critical exponents I"=1

to be rational numberéf the fixed point is isolatedsuch a
value, if correct, would imply an unconventional fixed point
theory.

}

~

-O<0C
poele

FNone

placed on the vertices of a square lattide. a microscopic
picture, these correspond to the saddle points of the random
potential'® Unidirectional channels link the scatterers to
each other as shown in Fig. 1. Each elementary scatterer is

the propagator for one unit of time being a sparse unitary
N, X N, matrix U which is uniquely determined by the net-
work of scattering matrice%-
Stationary states of th@solated network are solutions of
Il. MULTIFRACTALITY OF THE LOCAL DENSITY the equation??
OF STATES AT CRITICALITY

. .. . . U‘//n:ei¢n‘//n-
To describe the critical behavior of 2D electrons in a
strong magnetic field and a smooth random potentialThe eigenphaseg, will be referred to agjuasi energies
Chalker and Coddingtdrformulated a network model which (This terminology is motivated by the analogy with the
is very simple and yet captures the essential features. Theigenphases of the Floquet operator of a periodically driven
model is composed of a set of elementary ‘“scatterers’quantum systemThe stationary states of the network model
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are critical(which is to say their localization length& ex-

ceed the system size) when the parametep is close
enough top*=0.5. The critical states are multifractdls.
Criticality is visible through power law scaling of the
moments (| y(1)|29), ~L 977 where(q) is a nonlinear Q
function ofg andd=2. (We will continue to writed instead W
of 2 to keep the dependence on the number of dimension:
explicit.) Within our numerical accuracy, thgq) functions

for different critical states coincide. The corresponding dis-
tribution function is specified by a single-humped positive :
function f(«), called the multifractal spectrum of the wave I B
functior?

[0.5]

-In P, (o,

prob(P=|¢(1)|%L)dP~L ¢+ 1(@dq, It i1l

where InP=—alInL, andf(«) is related tor(q) by a Leg-
endre transformation f[a(q)]=qa(q)—7(q), «(q) In r
=d7(q)/dg. In the vicinity of its maximum,f(«) is well

. FIG. 2. Double logarithmic plot of the correlation function
approximated by a parabdfa g P

pR%(w,r,L=150) versus distanaefor two different energy sepa-

2 rationsw, which correspond to cutoff scalés, .
(a—ag)

@) =d= g o)’

pE(w,r=]r|,L)=(p(e.1)%(e+w,l+1)%

which is seen to be determined by a single numbagrFrom —2(a) ~q)

Refs. 16,3 we know this number to lbg~2.28. ~(r/L,) L ' )
The local density of stated. DOS) is defined ap(#.1)  where the lengtit, is defined as the linear size of a system

=32n8(b— én)|¢n(1)]*, wherey, denotes a stationary state ith level spacingn: L, =(w/5)~ 9L .8 This length scale

with quasienergyp,. To wash out thes-peak structure of provides a natural cutoff for the correlations between two
this function in a closed finite system, we smoothen it over gyitical state€”281%7whence Eq(3) applies to the regime

scale of one mean level spacingThe LDOS then becomes <| <| . ForL,>L the dependence on, saturates and
L, has to be replaced by in Eg. (3). The critical exponent

_ o1 2
p(d1)=0""y(¢.DI%, z(q) is given by the important scaling relatfort®
where|(¢,1)|?> means the square of the wave function am-
plitude, microcanonically averaged over the quasienergy in- z(q)=d+27(q) - 7(29). (4)

terval[ ¢ — 8/2,¢+ 8/2]. Given s~ *~L% and the multifractal A second scaling relation
scaling law for the critical states, the LDOS must scale as

(p(,1) By ~L %@ with Z(q)=2(1—q)d+27(q)=2A,,(q) (5

Ay(q)=(1-q)d+7(q), (2 follows from Egs.(3) and(4) by lettingr andw go to zero

and then matching witp29), ~L %29, We emphasize
The averageLDOS is well known to be noncritical and that‘t t.h(ta' méjlt'fragtal correlatlonts of gée IHD?S have a char-

nonvanishing at the LD transition. In contrast, ttypical acteristic dependence on system sizeyhich IS encapsu-

LDOS does show critical behavior. For one thing, it is zerolated by the family of exponeni(q). _ .
in the region of localized states. For another, suppose the YWe now report on a numerical test of the scaling relation
system under consideration had a finite band of metallidor z(q), using the Chalker-Coddington model. Let us start
stategwhich it does nof, as is the case for a mobility edge in by verifying that the critical correlations are indeed cut off at
three dimensions. The typical LDOS would then be nonzerdhe scald.,,. Figure 2 plots—In(p5?(w,r L) as a function of
in that metallic band and, for values bfmuch larger than Inr for g=0.5,L=150, and two different values a@b. For
the correlation lengtht,, would vanish with exponeng, = ©=0.000541(corresponding td_,~76) the linear depen-
=v(ay—d) on approaching the critical point. Such behaviordence on I is seen to be limited to a much smaller region
is reminiscent of an order parameter, which distinguisheghan for w=0.00026 (,~110). The rest of a our data
between two phases joined by a second order phase transhow similar behavior, although the fluctuations due to fi-
tion. The LDOS has in fact been proposed as an order paditeness of the data set are quite large. It is clear though from
rameter field for the general class of LD transitinal- these data thdt , does set the typical scale for the cutoff of
though the 2D quantum Hall class has no extended metallicritical correlations.
phase, the exponent,—2~0.28 still controls the finite size To study the scaling exponent for thelependence of the
scaling of the LDOS close to the critical point. correlator, we first took ,=«, i.e., zero energy separation,
It is then natural to inquire into the nature of tberrela- and compared the calculated exponefd) with the value
tion functionsof the LDOS at criticality. This was done in predicted by the scaling relatio) and ther(q) spectrum
Refs. 25,16(see also Ref. 26 The critical correlations previously obtained. As shown in the upper part of Fig. 3,
turned out to be of the form the result forz(q) agrees with the prediction within the sta-

and the typical value as,=exp(In p(l)) ~L%" %,
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14 T T T T contact 1
scaling —
numerics +e—

s
N
contact 2
(a) FIG. 4. A section of the network model with two interior point
contacts.
0.5 : :
0.45 nu?ﬁ:','i';% MR clearly identify the Chalker-Coddington model as belonging
04 - _ to the quantum Hall universality class.
0.35 + l
03 L | 11l. POINT-CONTACT CONDUCTANCES
0.5 l IN THE LOCALIZED REGIME
i 02 b _ We start by reviewing what is meant by a “point-contact
ods | ! | conductance” in the Chalker-Coddington modet/ Select
| 1 1 two of the links of the network for “contacts” and cut them
01 r ; . 1 in halves(Fig. 4). Then do the following: Inject a total of one
0.05 - g : ! 1 unit of probability flux into the incoming contact links, and
0 's e % apply the time evolution operatdd once. Then inject an-
0.05 Ls , , , , , , , other unit of flux and apphyU again. Keep iterating this
" 08 06 04 02 0 02 04 06 08 process, always feeding in the same unit of probability flux
(b) q so as to maintain a constant current flow into the network.

The outgoing ends of the broken links serve as drains, so flux

spect to distance (a) and energy separatian (b). The data points will eventually start exiting through them. After sufficiently

denoted as “numerics” correspond to the linear regression dﬂn many iterations of th? procedure, the net_Wc’rk will_have
versus I (a) and InL, (b) while the data denoted as “scaling” settled down to a stationary state. The stationary wave am-

follow from the scaling relatiori4) and the knownr(q). plitudes at the severed links square to transmission and re-
flection probabilities, which translate into (point-contack
conductance by the LandaueriBker formula. In the

tistical errors. Next, we took the quasi energies to be sepagaresent section we describe how to obtain these amplitudes

rated by a finite amount correspondinglig~110, and cal- by solving a system of linear equations instead of laboring

culatedz(q) for a few selected values of Within the error  through many iterations of the above dynamical procedure.

bars, agreement with the previous values was obtained.  Afterwards, we calculate the distribution of point-contact

Finally, we investigated the scaling with respectlty  conductances in the localized regime and show that it is well

which, according to Eq(3), should lead to the sanm#(q). approximated by a one-parameter family of functions, de-

The data set consisted of 500 eigenfunctions for a particulgsending only on the value of the typical localization length

disorder realization and a range of quasi energies permitting, .

small values ofL, to be reached. The system size was The injection of current into the contact linksc’ is

=50 and we performed a spatial average. The choice of gimulated by modifying the time step in the following way:

relatively small system size was necessitated by the fact that

the fluctuations of the eigenfunction correlations grow in | 1)=U(|gy) +alc)+b|c’)),

strength asv is increased. To reach statistical convergence, a

very large number of pairings(¢,1) p(¢+w,| +1) for fixed ~ Wherea andb (subject tola|?+|b|?=1) are the amplitudes

values ofr andw must be accumulated. This, given presentof the current fed into the linksandc’, and|c), |c’) denote

computer capacity, is possible only for a small enough sysbasis states with unit amplitude ajc’, respectively, and

tem. We setr=2 and found behavior sufficiently linear in zero elsewhere. To implement the draining action of the out-

InL,, in a regime betweeh,=3 andL,=12. The results for going ends at andc’, we define projection operatoPy by

z(q) are shown at the bottom of Fig. 3. In view of the sys- Pc|#)=(C)|C) for C=c,c’. Using these, we can write

tematic difficulties, we conclude that our data are consistenthe complete dynamics as

with the scaling relation. In summary, our numerical results

for the multifractal exponents of the local density of states |h-0)=0,

FIG. 3. Scaling exponent®q) obtained from scaling with re-
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< 0.08 - v |§=7 x
=10
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0.06 | 1 45 | LF40E=T7 = |
0.04
_200 1 1 1 1 1
002 i 0 5 10 15 20 25 30
r
0 1 1 1 1 1 1
%5 50 -4 40 3 30 25 20 15 FIG. 6. Plot of the average of tpversus the distanaebetween
InT the contacts, for different system sizesand probabilitiesp=(1
+e E)~L

FIG. 5. Normalized histogram of the logarithm of the conduc-
tanceg in the localized regime, for a network of linear size- 60

; ) mal distribution(see Ref. 4 for a reviely and the conduc-
and a fixed distance=7 between the contacts.

tance is given byg=gyexp(—2r/¢) where the factor of 2 is

, due to the convention of associating the localization length
|t+1)=U[(1=Pc)(1=Pcr)|¢) +alc) +blc")]. with the modulus of the wave function. The inverse of the

The stationary current carrying state is formally obtained byaverage of 1 is called the typical valug; of the localiza-

taking the limit [¢..)=lim, ...|#). Alternatively, we set tion length& *=(&71). As a further check on this picture,

Up=U(1-P,—P,/) and use stationarity to deduce fgr,)  We calculatedInT) as a function of and found linear be-

the linear equation havior, as shown in Fig. 6. The average was performed as a
combination of spatial average and disorder average accumu-
(1—Up)|h.y=U(alc)+b|c")), (6) lating 3000 data. A more interesting question concerns the

relation between the two parametdieg-mean{InT) and
Apg—variance«éln T)?] of the log-normal distribution. Ac-
cording to the one-parameter scaling hypothesis first formu-
lated in Ref. 30, one expects the two parameters to be de-
pendent on each other. Such a dependence was indeed
observed in other LD transitionsee, e.g., Ref. 31and it
takes the form of a linear relation

which can be solved by an inversion routine.

What we want are the amplitudes of the stationary state
the links ¢ and c¢’, which are the components,.(c) and
..(c’) of the vector|..). According to the Landauer-
Buttiker formula, the conductanagbetween two point con-
tactsc and ¢’ is given by the transmission probabilifiy
=|tero|?> asg=(e*h)T. The scattering problem for this is
defined by feeding one unit of current into the linknd zero ((6INT)2)=—A(InT)+B, (8)
current intoc’. The transmission amplitude is the amplitude ) o ) )
of |4..) at the exitc’. Hence we sea=1 andb=0, and whereA is a number of order unityit equals 2 in quasi-1D

compute the conductance from system®), andB is some offset due to the presence of the
factorggy. Our data confirm this picture. The value farwe
T=[(c'|.)]2. (7)  find is A=1.00+0.05(Fig. 7). Thus, the typical localization

) ) length is the only relevant parameter for the conductance
Note that such a point-contact conductance is bounded frofistribytion in the localized regime. This distribution is very

above by unityT<1. _ _ broad and is well described by a log-normal form.
Our numerical calculations of point-contact conductances

were done for systems of site=60, 80, and 100, with the
distance between contacts varying from 1 tor=L/2. For
every distance we calculated between 200 and 3000 conduc-
tances(depending on system sizeln the following, we We now embark on an investigation of point-contact con-
present results for the distribution of the conductance foductances of the critical network model @it =1/2, by em-
localized statesg<L), corresponding to the plateau regime ploying a combination of analytical and numerical tech-
of the quantum Hall effect. Figure 5 shows a normalizedniques. In Sec. IV A, the network model is mapped on a
histogram accumulated from 3000 data points for the logasupersymmetric vertex modéor technically related work
rithm of the conductancg=T (in atomic unit3, at fixed see also Ref. J8and thegth moment of the transmission
values of the distance=7 and the system size=60. The coefficient T is expressed as a two-point correlafdgs.
histogram clearly demonstrates the approximate log-normall1,12]. For this we follow the method of Ref. 17, which is
character of the distribution. Such behavior is expected fronbased on the so-called color-flavor transformation and is in-
the standard picture of localization. More precisely, the piccluded here for completeness. In Sec. IV B we take advan-
ture says that the inverse of localization lengthas a nor- tage of the global symmetries of the vertex model and, based

IV. POINT-CONTACT CONDUCTANCES
AT CRITICALITY
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50 - - - - - — Note that the escape of flux, here modeled by the boundary
conditions on the outgoing links, causes a unitarity deficit
s ] and thus ensures positivity of the operater UU.
The next step is to express . as a Gaussian superinte-
A 40 1 gral. For this purpose we introduce a doubld
N =(¥g,¥p) for every link. (The incoming and outgoing
SR ° | ones are includefl.The quantities¥’'y and ¥ are bosonic
= 0 | | and fermionic(i.e., commuting and anticommutipgomplex
U\o/ integration variables. Defining a Gaussian “statistical” aver-
vV 25t 1 age by
20 y 1 <o>=f *exp— S,
15 1 1 1 1 1 1 .
20 25 30 35 40 45 50 55 with
<-lIn T> —
, , , Si= 2 2 W (N(8n=UimW(),
FIG. 7. Linear relation between the mean and the variance of the o=B,F ||’
conductance distribution in the localized regime.
we have

on the general principles of conformal field theory, propose a . — .
closed analytical expression for théh moment of the point- tere=(Wa(02) ¥a(ia)).

contact conductance at criticalif§q. (17)]. This expression  as ysual the integration measure for the fiddis the flat

is analytically continued t@=0, to extract predictions for one normalized so thgtl)=1. The Gaussian integral over

the typical conductance and the log-variance, which are comg, converges because the modulus of the operatarith
pared to numerical data in Sec. IV C. In the limit of large boundary conditior(9) is less than unity.

separation between the contacts, which is difficult to reach oy interest here is not only in the average conductance

numerically, a multifractal description of conductances be+t in all momentwf the conductance. In fact, we ultimately
comes appropriate, as is discussed in Sec. IV D. In Sec. IV Kjj| reconstruct the entire distribution function. To calculate
we use conformal invariance to predict an exact expressioghe qth moment we need an expression for tfie power of

for point-contact conductances in the quasi-one-dimensiongl, " As is easily verified from Wick’s theorem, this is given
limit of the network model. Finally, in Sec. IVF we recon-

struct from the moments the entire distribution function of
point-contact conductances. 1 _
tﬁ,c=q—!<‘1’3(02)q‘1’3(il)“>-

A. Mapping on a supersymmetric vertex model

Note that in a many-channel situatigguch as a network
model with more than one channel per link or a conductance
which is not point contagtwheret,,. consists of more than
toe=(c|[(1-Up)~U|c) one amplitude, going frong=1 to arbitraryq requires en-

ce P ' larging ¥ to a superfield with more than one component.

For the following it is convenient to change our conventionsHere we are in the fortunate situation that a single compo-
slightly and interpret each of the severed contact linksid ~ Nent suffices to generate all the momefits.
¢’ as apair of disjoint links (Fig. 4), defining basis states ~ We call'¥ a “retarded” field and denote it from now on

li1), |01y, andli,), |o,), respectively. We then impose the by W . The complex conjugati. . is expressed by a simi-

We start by recalling the Landauer-@iker formula for
the dimensionless conductange T=|t./.|?, where

boundary conditions lar construction using an “advanced” fielt _ . By combin-
ing the Gaussian integrals over retarded and advanced fields
Ulo;)=0=U]oy), 9  we get
i N\ =) 1 — -
Ulli)=0=UTiz). A0 1o (W (0 M gli) MW (i)W (0,)7)

=
The boundary conditions on the outgoing links have the &
same effect as the projectdps andP.., which enter in the for the gth moment of the transmission probability. The
definitionUp=U(1— P,— P,/). With these boundary condi- Gaussian statistical average here is taken with respect to
tions in force, we can write the expression for the transmisexp—SwhereS=S,+S_ and
sion amplitude as. .=(0,|(1—U) UJi,). Assuming the
two point contacts to be separated by more than one lattice _ I T '
unit, so that(0,|U|i;)=0, we can write it in the even sim- S- UZZB,F ; VoD =Up) ¥y (7).
pler form
Our next goal is to average over the disorder of the net-
tere=(0,|(1—U) " Yiy). work model. For that we put



15842 JANSSEN, METZLER

Ui =Uq(l7,hele®),

whereU; is the deterministic part of) describing the scat-
tering at the nodes, ang(l) are random phases uniformly
distributed on the interval0,27]. On extracting from

exp—S the ¢-dependent parts and temporarily omitting the

integration over the superfied, we are faced with the in-
tegral

11

+W_,(he e OulImHw_ (1]

de(l)

exp X [V (1")Uy(1",1)e*Ow, (1)

ol

e(l
2

It is seen that the random phases® couple, roughly speak-
ing, to the bilinear< ;¥ ., ¥ .. .. Plain integration over the

variablese(l) now produces a product of Bessel functions,

an expression which is not a good starting point for furthe

analysis. Fortunately, there exists something better we cawh

do. In the supersymmetric treatm&hof disordered Hamil-
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Du(Z,2)exp 2 [V _ o1 (NZgro(NF (1)

loo’

+(V 44U (DZge (NUIT_ ) (1],

where Du(Z,Z)=11,Du(Z(1),Z(1)). It is understood that
the sum ovel excludes all links leaving the network. Indeed,
by the boundary conditiof®) the phasep(l) on an outgoing
link | =0, or =0, never appears in the formalism and there
is no need to introduce any supermatrige® there. Alter-
natively, we may extend the sum to run over all links and
compensate by putting

F=

Z(1)=Z(1)=0 for all outgoing links.

We mention in passing that the equivalence between the
fwo expressions forF extend$’ to the more general case
ere the random phase facta¥") e U(1) on links are
replaced by random W) elements. The transformation

tonian systems, one makes a Hubbard-Stratonovitch transfofom these UN) “gauge” degrees of freedom to composite

mation replacing the disorder average by an integral over
supermatrix-valued fieldQ. It turns out that a similar re-
placement, called the “color-flavor transformatiof"can
be made in the present context. The rol€Xf taken by two
sets of complex field$—2Z, () and IH"Z‘(,,(,(I), which
assemble into supermatrices

el

and couple to¥, W __, and¥__, V., respectively. The
final outcome of the transformation will be another expres

2BB 2BF

Zeg Zee

Zgg
Zrg

ZgF
VAS

sion for F, given at the end of the next paragraph, where

instead of integrating over the random phag¢k) we inte-
grate over the supermatrix fieldsZ.

For completeness, let us now briefly summarize the math

ematical structures surrounding the supermatriéend Z.
The details can be found in Ref. 36. Elemegits(ap) of the
Lie supergrous = GL(2|2) are taken to act 0B, 7 by the
transformations

Z—q-Z=(AZ+B)(CZ+D) %,

Z—g-Z=(C+DZ)(A+BZ) L.
Because this group action is transitive afd Z=0 is fixed
by anH=GL(1|1)XGL(1|1) subgroup with elementh
=(§g), the complex supermatricésandZ parametrize the
complex coset superspa./H.. Let D(Z,Z) be aG, in-

4gauge singlets” Z(1),Z(l) is in striking analogy with
strongly coupled UNY) lattice quantum chromodynamics,
where integration over the gauge fields, which carryNY(
color, produces an effective description in terms of meson
fields carrying flavor. Therefore, the passage from the first
form of Z to the second one is referred to as the “color-
flavor transformation.®®

An attractive feature of the color-flavor transformation is
that it preserves the Gaussian dependence of the integrand on

the fieldsW, . If we switch to schematic notation and sup-
press the link and super indices, the Gaussian statistical
weight is the exponential of the quadratic form

| o)

In the absence of source terms or other perturbations, inte-

gration over® ¥ simply produces the inverse of a superde-
terminant,

1

—-U,zu}
1

vy
v

—mm—f)(

1

—U,zul
1

SDef !

)=SDefl(1—2ulzu{).
When the source terms are taken into account, additional
factors arise. Since we are calculating a point-contact con-
ductance, these are localized at two points. By applying
Wick’s theorem, we get from the combination

W _a(i,)%W , g(i1)¥q! at the first contact an extra factor

[Z(1—U,ZU1Z) Ygg(iy,in)I=Z34(i1).

variant superintegration measure on this coset space and put
Du(Z,Z)=D(Z,Z)SDet(1-7Z). We take the integration The simplification to the right-hand side of this equation oc-
domain for the bosonic variables to be the Riemannian subeurs becauséJI(-,il)=0 according to the boundary condi-
manifold M, defined by the conditions tions (10). Unfortunately, a similar simplification does not
take place at the other conta€there is a basic asymmetry
between “in” and “out,” which stems from the fact that we
~ must decide on some ordering of the facteté andU; in
The normalization ofD(Z,Z) is fixed by requiring that the evolution operator for one time steplowever, we can
fDu(Z,Z)=1. Given these definitions, it was shown in Ref. mend the situation with a little trick. We “prolong the exit”
36 that the above expression féris equivalent to by inserting amadditional node on the out-links as shown in

ZFF:_ZFF' ZBB: +ZBB! |ZBB|2<1'
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operator whose correlation function we are evaluating. In
this way, the expression fdiT%) reorganizes to

(TN =(vq(02)v5(i2) Xvo(01)v % o(i1)), (13
where
/ vq=Z3sSDet(1-22),
ly
* _7q 12014 5

drain 02’ v*,=Zis SDet(1-22),
contact . and

02 <->=f D(Z,7)e exp—S,

D(Z,Z)=H D[Z(1),Z(1)].

‘ The statistical weight expS is given by the superdetermi-
FIG. 8. Prolongation of the exit by adding a dummy vertex atnant SDet*(1—ZU,;ZUJ) multiplied by one(two) factors
the drain contact, so as to simplify the field theoretic representatiopys SDetl—z(l)Z(I)] for every externalinterna) link. As
(see text of the point-contact conductance. was shown in Ref. 17, expS has the structure of mertex
. _ . ) modelweight, i.e., it separates into a product of factors, one
Fig. 8. This means that flux arriving at the limg does not o ¢ach node. Hence the lattice field theory with statistical
exit immediately, but first gets transferred ¢g and then weight exp-S is called a vertex model. The factor for a
cation, the extra factor arising from the product giopal action of GL(22) or, more precisely speaking, can be

W 5(05) %W _5(05)%q! simplifies to regarded’ as the matrix element of a GL|[2) invariant op-
) g - erator between coherent states parametrized by the field vari-
[U;ZU3(1-2ZU,ZU7)  *1gp(05,05)9=Zg5(0,), ablesz,Z on the links which emanate from that node.

sinceU;(05,0,)=UI1(0,,05) =1 andZ(05)=0.

In summary, we have expressed tijh moment of the B. Symmetries and conformal hypothesis

transmission coefficien as a two-point correlator The special significance of the functiong andv*, is
~ that they lié® in irreducible representation spaces, denoted

(T =(Z3g(0,)Za(11)), (1) by VandV*, of the symmetry group GL(2). The action of

. L GL(2]2) on these spaces can be shown taubéary for a

of a supersymmetric lattice field theory SU(1,1)x SU(2) subgroup, anf andV* belong to thedis-

crete series of SU(1,1). The representation sps¢®*) is
<.>=f D#(Z,Z)oSDefl(l—zuleI), (12 of lowest weight(resp. highest weighttype.
To make further progress, it is imperative that we exploit
The superdeterminant runs over superspace and the Hilbghe global GL(22) symmetry of exp-S. The linksi; ando,
space of the network model. lie close in space, and so de and o,, whereas these two
As it stands, the formula fafT9) does not display clearly sets are in general far apart from each other. Therefore, our
the internal symmetries of the theory. To make these mor@ext step is to fuse,(0,) e V with v (i) e V* and to make
explicit, recall the definition of thesingle Z) integration a decomposition into irreducible representation spaces of
measure GL(2|2). The operators at the other contagt(o;) and
_ 3 g v’iq(il), are processed in the same way. Thus we need to
Du(Z,2)=D(Z,2)SDet1—27). know how to reduce the tensor prod® V* . According to
Sec. 5.2 of Ref. 15, this reduction involves a single continu-
ous series of GL(R), which is closely related to the prin-
= o P cipal continuous series of unitary representations of SU(1,1).
SDet1-27)=SDet%(1-72) xSDetq(1-22), This series is labeled by a real parameter[0.). Denot-

and associate each of these with one of the two nodes a [ilR9 the basis state with weight by ¢\, we have
begins or ends on. This procedure works perfectly for the

internal links: every square root factor is assigned to exactly VU :j (VQ,V*O[NG) orque( M)A, (14)
one node. For the externédr contact links the situation is

different. These are connected to just a single node of the
network, and therefore only one of the two square roots is
used up. It is natural to assign the remaining factor to the

We now factor the superdeterminant as two square roots

UOth:f<VO,V*_q|)\_q>‘P>\-qM(7\)d)\a (15
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where (Vm,V*m’|A\m+m’) is a Clebsch-Gordan coeffi- T(q—1/2—iN2)T(q— 1/2+iN/2)
cient, andu(\)d\ is the Plancherel measure for the continu-  [(Vq,V*0|rQ)|?= > .
ous series labeled by. Explicit expressions for these will be I'(q) 19

given below. We adopt the conventigng= ¢, 4. Then an
immediate statement is that the Clebsch-Gordan coefficient

. ) As it stands, the result fofT%) has been derived for all
behaves under complex conjugation as

positive integerg). However, since the Clebsch-Gordan co-
R . efficient is a meromorphic function df, it is clear that we
(Va,V*0|rg)=(VO,V* —q|\—q), can analytically continue the result to ajl [This analytic
ol fromooF — oo continuation is unique, as follows from the bouhd@®)|
as 10llows Tromu qug =vov —g - _ .. .=<1 for Re(@)>0 and Carlson’s theorem stated in paragraph
All steps so far have been exact and rigorously justifiedg g1 of Ref. 37] Notice, now, that all of they dependence of
Now we have to make an assumption which is crucial,ray resides in the Clebsch-Gordan coefficient, while the
namely that the vertex model pt =1/2 flows under renor- dependence on is encoded in the factor—22x. It would

malization to aconformal fixed point theorysadly, although erefore seem that all moments Bidecay asymptotically
substantial effort has been expended on identifying that fixea\jith the same powef,T9)~r ~240, the exponent being given

point, we still do not understand its precise nature. Nevertheby Ag= Min, _y+A, . While this is correct forq=1/2, it
less, as we shall see, we can draw a number of strong copz; o ?0 be t?ueg forxq.< 1/2. The reason is that wheq; is
clusions JUSF frgm the assumpnon.of Its existence. . lowered past the value 1/2 from above, the two polea at
By the principles of conformal field theory, the two-point _ +i(2q—1) of the gamma functiond (q— 1/2+i)/2)
function of ¢, decays algebraically cross the integration axis at=0. Therefore, to do the ana-
SON=\") lytic continuation toq<(1/2 correctly, we must pick up the
(Org(N @y _o(r)y=——""|r—r'| 72 +... contribution from these poles. It is straightforward to calcu-
Prglh) PN —q N ) ] > ]
) 16 late the residues at the poles, which results in

@ in ]2
whereA, is the scaling dimension of the most relevant con- (Tq)=l“(q)‘2f F( q- %_ %) F=25 L (\)d\
formal field contained in the expansion af,q. [By 0

GL(2|2) invariance, this dimension is independent of the

yveightq.] Although A, cannot be predicted wi.thout know- +27rcot(q7r)r(ﬁ; r=2diee-n  (|g|<1/2).
ing the stress-energy tensor of the conformal field theory, we I'(aq)
will make an informed guess later on. What we can say right (20)

away is thatA, must be an even function a&f. [This is due

to the invariance ofA, under a Weyl group action on the Here we have used,=A _, to combine terms.

roots of the Lie superalgebra of GL@), which takes\ into By letting g go to zero in Eq(20) and using the fact that
—X\.] The appearance of the weight functipr(\) in the  normalization of the distribution function foll implies
denominator, and of the Diraé function (instead of the (T%|q-0=1, we can deduce a constraint @, . Indeed,
usual Kroneckes symbo), are forced by the fact that we are from Eq. (19) the square of the Clebsch-Gordan coefficient
dealing with a continuous series. On inserting the decompovanishes  uniformly in A as g—0, and since
sitions (14) and (15) into the formula(13) for (T9), and  limg_ 27 cot@mI'(20)/I(q)*=1, we have (T%=r"24-i.
using the expressiofil6) for the two-point correlator, we Hence we conclude

obtain
A_i:A_H:O.

<Tq>:f [(Va,V*O[Nq)|?r ~2Ax (N )d, (179 Thus, normalization constrains, to be of the form

wherer is the distance between the two point contacts, mea- A=+ DF(?).
sured in the units that are prescribed by the choice of nory wij| pe convenient to seE(\2)=f(\2+1).
malization made in Eq16).

The computation of the Clebsch-Gordan coefficient and
the Plancherel measure entering in the expressiofilityr is
nontrivial. Major complications arise from the fact that the  Our next goal is to obtain information about the unknown
modulesV andV* are infinite dimensional, and that the rep- function f. Because we have no analytical control on the
resentation spaces appearing in the decomposition of the tefixed point theory, we are forced to resort to numerical
sor productV®V* have neither a highest nor a lowest means. To prepare the numerical calculation, we first show
weight vector. Consequently, the computation cannot béhat f(0) is determined in a very simple way by how the
done solely by algebraic means and a certain amount djpical conductance eXim T) varies withr. To that end we
analysis must be invested. We have relegated this lengthgifferentiate both sides of Eq20) with respect tog at q
calculation to the Appendix, where it is shown that =0 and use the identity

C. Typical conductance and log-variance

A A d . B
,u()\)d)\—Etanl‘(7)d)\, (18) E(T >|q:0—<|nT>.
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FIG. 9. Fluctuating values of the conductargé€or the transmission probability) at the critical point of the network model. 1300

realizations at a fixed distanece=10 are displayed.

The integral on the right-hand side of E@O) tends to a
finite value whileI'(q) ~2 behaves ag? in the limit q—0.
Also, the Taylor expansion of 2cot(m)I'(29)/T(g)>=1

+0(g?) contains no term linear in, as is easily verified
from standard properties of the gamma function. Hence

d
(In T):d—qr*ZAi(zq—1)|q=0= —8f(0)Inr

or, after exponentiation,

expInTy=r"%, X,=8f(0). (22)

Thus, exgin T) decays as a pure power. Note that this feature Lo 40 o
is unique to the typical conductance. For a general value of L=60 +

g, formula(20) shows that the behavior ¢T9) as a function
of r is governed by a wholeontinuumof exponents.

We have calculated conductances at criticalip={p*
=0.5) for systems of siz& =40, 60, and 100, and for dis-
tancesr varying fromr=1 to r=L/2. For every distance,
2200 realizations fok. =40, 1200 realizations fdr =60, and
between 200 and 300 realizations o100, were gener-

and has no significant dependence on the system size. The
result for X; is based on data for =100 and distances
<40, on data foL=60 and distancess<25, and on data for

L =40 and distancess< 20. The error results from a linear fit
taking the statistical errors of the data into account. Taking
the same raw data but neglecting their errors, yieXds
=0.613+0.012. Note that the hypothesi$6) was formu-
lated in “conformal units” y=1) whereas the numerical
data are represented in length units given by the lattice con-
stant of the network. Thereforgy is written explicitly in Eq.

(22) whereas it is treated as unity in EQ1).

-0.5 T T T T T T

e

L=100 =

15 ® E

<In T(r)>

ated. Figure 9 shows 1300 realizations of the conductance
for L=60 andr=10. The distribution of conductances is
seen to be very broad. In Fig. 10 the mean logarithm of the
conductancgIn T) is displayed as a function of nfor three
different system size& =40,60,100. The typical value in-
deed scales as a power with

expInTy=(r/ry) %,

-25

05

In r

FIG. 10. Scaling plot of the typical conductance for three dif-
ferent system sizes. The horizontal and vertical axes are logarith-
X;=0.640-0.009, ry=~0.42, (22 mic.
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FIG. 11. The log-variance of the conductance augmented by thgs ';I]Gt'otiz' ovTvzflavmvuslth:ﬁr?ta:)f fﬁgcr:gx%%> governing  the
integral on the right-hand side of E(23) is denoted bys(r) and ymplofic p g :

plotted versusX; In(r/rg). .
D. Multifractal spectrum

Higher moments of IT can be obtained by usin@“) as We have seen that the dependencéTdh on the distance
a generating function, between the two point contacts is governed in general by a
o — 2 a, continuous set of exponentfA2. This dependence simpli-
(TH=1+q(InT)+(q/2{(INT)5) + - - -. fies, of course, in the asymptotic domains. For q=1/2
A straightforward calculation starting frorf20) yields for  the asymptotic behavior is controlled by the smallest expo-

the log-variancdin conformal unit$ nent 2A,=X,/4=0.16. In the range-1/2<q=<+1/2, the
) 5 ) dominant contribution comes from the second term on the
((INT)5)—=(InT)*=16f(0) —4f'(0)]Inr right-hand side of Eq.(20), with the exponent being

(1—r 28— i ditional contributions due to the poles B{q— 1/2+i\/2) at
0 (A"+1)coshmA/2) A==i(29+1), =*i(2g+3), etc. However, since
(23) Ai2g-1)<Ai2q+1)<Ai2q+3)<--- for q<—1/2, these are

_ _ ) _ negligible in the limitr —c. Thus we have
The integral on the right-hand side decays algebraically to a

constant whereas the first term grows logarithmically. Eq.
(23) says that the suny,, of the log variance and the integral

fw 87 u(\)dN 2Ai(2q-1)=X:9(1—q)<X/4. Forgs< — 1/2 there appear ad-

— 0

r
S . . . ay ~ r—X()
is linear in Inr. To obtain the prefactor of In we numeri- (T ~r '
cally calculated the integral for each valuergtook the log
variance from our data for systems of slze 60, and plotted XJ4 for q=1/2,

the functionX (r) versusX, In(r/ro), see Fig. 11. It turned out X(q)= (25
that the integral was nonnegligible for the ranger afalues

that were numerically accessible. The slope of the straight , :
line in Fig. 11 is 2.080.11, i.e., the log variance is about NOt€ that the spectrum of exponeitty) is a nondecreasing

twice the log-average for large (as is the case for in function ofqg. The spectrum shown in Fig. 12 is nonlinear, as

quasi-1D systemid). Given &f(0)=X,, our numerical result is characteristic of a multifractal. That¢(gq) becomes con-
implies thatf’(0) is very close to zero: stant forq=1/2 can be traced to the boundedness of the

variable InT<0: for g=1/2 the asymptotics of the moment
—4f'(0)/X,=0.005*0.008, (T9 is governed by the value of the distribution function at
. . . the upper bound proBi(=1:r)~r %4 which is indepen-
which leads us to conjectufé =0 or, equivalently, a depen- dent ofq, as isT9_. In a thermodynamic interpretation of

Xa(l—q) else.

dence ofA, which is exactly quadratic: multifractal spectra, the nonanalyticity g&=1/2 is called a
X, “phase transition” inX(q).28 The failure ofX(q) to become
Ay=f(0)(A\%+1)= §(>\2+ 1). (24) linear forq— — results from the absence of a lower bound
on InT.
Aside from being the simplest possible expressionAqr, The multifractal nature of th&(q) spectrum can alterna-

this guess is in line with field theoretic expectations: in con-tively be described by a spectrum tfa) type. If we make
formal field theories with a stress-energy tensor that is quaa multifractal ansatz for the probability density Bf

dratic in the currents, the scaling dimensions are proportional

f[o the quadratic Cagimir inva}riant. The polynomigH-1 is, prob T=r"2)dT~r F@da,

in fact, the quadratic Casimir of GL(2), evaluated on the
continuous series of representatians In the language of
multifractality (Sec. IV D), the conjecturg24) means that
the parabolic approximation to tHe(a) spectrum is exact.
In the r_emainder of the present paper we shall assume the <Tq>~f ;—aa-F(@) g gy ~X(@)
quadratic form(24). '

the moments of for larger scale as
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F(a) I When the LDOS is discussed in the same language, a
different picture emerges. Consider, for simplicity, tiyth
power of the density-density correlator

[(c’l(1—e~°U)~*|c)|*

which, though not expressible as a correlation function of the
LDOS, is related closely enough to allow a meaningful com-
parison. There again exists a dynamical interpretation. To
compute the density-density correlator we feed in current
through linkc and, after relaxation to the steady state, mea-
sure the square of the amplitude at liok What is different
from the conductance measurement is that there are no drains
, , , , , atc andc’ (the network is now isolatgdInstead, particles
0 05 1 5 2 25 3 35 4 are absorbed at a constant raté at any location in the

a network. As the system size is increased, the time spent in
the network grows as the Heisenberg tigie!~ LY. (Previ-
ously, the dwell time in the 2D network was limited by the
“strength” of the contacts and remained finite in the limit
L—o.) Thus, there is a build up of particles in the network.
whereX(q) andF(a) are Legendre transforms of each other,\when all states are localized, this causes dfgependent
ie., qt+F'[a(q)]=0, X(q)=qa(q)+F[a(q)], and con-  correlator to diverge as~ 9~ L%, At the critical point, the
versely,a—X'[q(a)]=0, F(a)=-aq(a)+X[a(a)]. Us-  djvergence from build up is counteracted by the reduction in

FIG. 13. The multifractal spectruii(a) describing the scaling
of the distribution prob{=r"2)dT.

ing these relations we find the amplitude at lin§ due to incipient delocalization of the
wave functions. For a general value @the two competing
(a—X,)? effects do not cancel, so that a nontrivial scaling witlis
F(a)= Tax, (a>0). (26)  expected to remain, in agreement with what we found in Sec.

1.
o . i Having said all this, we return to the original question: is
The F(a) spectrum shown n Fig. E’ is defined only for j hossible, after all, to relate the multifractal exponexits|)
positive values of becausa=X"(q)=0. to the 7(q) spectrum? We wish to offer the following argu-

An obvious question arises: is it possible to relate th§nent |magine placing tunnel barriers at the two contacts
multifractal exponentsX(q) to the 7(q) spectrum of the ¢ o' "For zero tunneling probability, the network is closed

critical eigenstates, or the scaling exponents of the LDOSZ, e can measure the density-density correlations. Now

Our first observation is that there exists an obvious differ4cqme that the-dependent density-density correlator has

ence between the two cases: while the spatial correlations @fo same set of scaling exponents as the LDOS correlator.
the LDOS continue to scale in a nontrivial manner with sys—pan in the limitw=0 (or L, =) we have

tem sizeL whenL is increased, the distribution of point-
contact conductance&t fixed r) becomesindependenibf , S I =1\ (2 —2(q)y 2(q)—3
L.2°> Another way of saying this is that the critical conduc- (el =em2U) ")) ~r - ADLHD A,
tance between interior point contacts has a trivial infiniteAs the tunneling rate is increased, a new time scale appears:
volume limit, whereas the LDOS does not. the time a particle injected at link spends in the network

To explain this distinction in physical terms, recall the (with the absorption raté set to zerpbefore exiting through
iterative procedure by which the stationary lingit, was ap-  |ink ¢’. The critical dynamics translates this dwell time into
proached. An essential ingredient in that process was thgome characteristic length,. AlthoughL  is an irrelevant
draining actionof the broken links at the two contacts. By |ength for an almost closed system with high tunnel barriers,
the loss of probability through these outgoing channels, the takes the regularizing role of the system size in the regime
system relaxes and settles down to a stationary long-timgf open systems with .<L. In the limit of vanishing tunnel
limit. The key to understanding the size dependence of thearriers, the density-density correlator turns into the point-
conductance is to visualize the distribution| g£.|? in space.  contact conductance. At the same time, the lerigthmust
In the regime of localized states this distribution is concenpecome proportiona| to the distance between the point con-
trated in a circular area of radius & centered around its tacts, for the simple reason that no other length scale remains
source(i.e., the contact where the current is fed.i@utside  _\ ~iable. This argument would S@-q>~r—2(q)’ and sug-

this area the intensity..|? falls off exponentially with dis- ~ . )
; - < oo i gestsz(q) as a candidate fax(q). We should be cautioned
tance. On approaching the critical poigtdiverges and the y the fact that the density-density correlator, unlike the con-

exponential decay turns into a power law. Thus the intensit S
becomes more spread out. However, in spite of this sprea&j—UCtance’ does not respect any upper bound. This dlffere_nce
y influences the tails of the distribution and changes the high

ing out, the intensity remain&lgebraically localized near
the source. The finite size of the network affects only thgmoments, at least. In fact, we have sho¥fu) to be con-

tails of the distribution|#..|2 and, as a result, the conduc- Stant forq=1/2, whereag(q) continues to increase. How-
tance converges to a well-defined limit as the system siz€Ver, the tails of the distribution should not affect the typical
goes to infinity. values, and therefore one might expégt X' (0)=2'(0)
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=2(ap—2). Recall that we found(t=0.640tlg).009. Other E,w:STr(l—Z~Z)‘1(9ﬂZ(1—22)‘1&VZ

groups quote values z(—2)=0.56+0.04;> 0.54+0.02

(e.g., Ref. 3, and 0.58-0.04%° These values are not all mu- For the sake of the argument, let us nesumePruisken’s
tually consistent. We leave it as an open problem whethefodel atoy,= oy,=1/2 to be &fixed pointof the renormal-

there is a flaw in the argument linking(q) with Z(q) or ization group. Then, by raising the short distance cutoff from
there is a real discrepancy. a=1 to a=W we can reduce Pruisken’s actighto a 1D

effective action

E. Quasi-1D limit

W ~ ~ ~
_ _ -1 _ -1
We now endow the network model with a cylinder geom- S1p= 2 f AXSTH1=22)""0xZ(1=22)""d:Z.

etry. This means that we consider an infinitely long strip of , . . -
width W, with coordinatesce R andy e [0OW], and impose Alternatively, we cou_ld argue that in the quasi-1D I|m|§ the
periodic boundary conditions in the transverse direction. A¢léPendence of the field on y can be neglected and, since
before, our interest is in the conductance between two poirffxx d0es not renormalizéy the fixed point hypothesisthe
contacts, which are placed at positionsy) and (x’,y’).  Process of scaling oyt simply produces a factofdy=W.
The conductance in such a cylindrical setting can be related 1n€ one-dimensional theory with action functiorlp

to the point-contact conductance in the infinite 2D plane withaS been much studied, and its mean conductance is
complex coordinate by a conformal transformation knowrf*~*to decay with lengtiL of the conductor, which
plays the role of distance between the contacts, as

2
z=expW7T(x+iy). (T)[IP~ exp—L/2W.

Moreover, from Ref. 45 we know that the localization
lengths for the mean and typical conductances of the one-
dimensional nonlineas- model differ by a factor of 4, so that

The conformal field theory rule for translating two-point
functions from the plane to the cylinder re&tis

(er(Den(Z))=|z—2'| " exp(In T)| 1P~ exp—2L/W,
-2A
- V—Vsin)-<z(x—x’+iy—iy’)) g which agrees, within the numerical errors, with what we
™ W ' found in Eq.(27). To turn the argument around, by assuming

Pruisken’s nonlineasr model ato,,= o, = 1/2 to be a fixed

From this rule we have the relation point, we would have predicted, to be

q\ |cylinder _ /719\|2D
<T >|(x,y);(x’,y’)_<T >|r=|W/ﬂ'Sinh[7T/W(X*X’+iy*iy’)]| . Xt:(WUxx)_l|aXX:1/2~O-637-
In particular, for the typical cylindrical conductance we ob- ) . ) i
tain The above argument is not convincing, as it relies on the
questionable assumption that the nonlineamodel is a
=X fixed point theory. Conventional wisdom has it that critical

two-dimensional nonlineas- models are unstable with re-
spect to quantum fluctuations and flow under renormalization
(Recall that we are using length units so thiatT),,=0 for  to theories of the Wess-Zumino-Witten type. However, we
r=1.) In the quasi-1D limitL=|x—x’|>W, this result sim- can reformulate the argument and avoid any reference to

W (7 o
expIn T)=;sm>{w(x—x’+|y—|y'))

plifies to Pruisken’s theory. Let us assume that it is the network model
itself (or, rather, a suitable continuum limit thergefhich is
exp(In T s w= (W/27)*t exp— X L/W. a fixed point of the renormalization group. Note that such an

assumption is consistent with the fact that network model
observables start scaling very rapidly when the observation
_ scale is increasedFor example, in Fig. 10 there are no
mX=2.0120.03. @7 visible deviations from IinearFizty as apgroaches the short
distance cutoffa.) As before, we imagine raising the cutoff
6};/ using a sequence of RG transformations. By the fixed
point hypothesis, we arrive foa=W at the 1D network
model(or, rather, some continuum version closely related to
g), with the distance between contacts rescaldd/Wy. Next
we pass to the 1D supersymmetric vertex model, and from
there to the continuum actiafy 5. In contrast to earlier, the
last step is benign, as the 1D nonlinearmodel is super-
renormalizable(i.e., ultraviolet finite and the RG trajectory
can no longer depart from it. By this token, we again arrive
at X,=2/m, this time without having passed through
S= f AXAY o Lxxt Lyy) + 0y Liy= Ly ], Pruisken’s model. Thus, the proposed valueXpfollows as
a consequence of assuming the network m@oieh suitable
where continuum limit theregfto be a RG fixed point.

Note that from Eq(22) the numerical value ofrX; is

What is this result, a value afX; close to 2, trying to tell
us? Let us offer some speculation based on the assumpti
that the relationmX,=2 holds exactly. In Ref. 17 it was
shown that, if a naive continuum limit is assumge., pos-
sible renormalization effects due to short wave length mode
are ignored, the supersymmetric vertex modgl2) for the
critical network is equivalent to Pruisken’s nonlinear
modef at couplingsay,= oy,=1/2. The action functional
of the latter model is
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Note that if the above fixed point assumption is correct
and X \=2/7 holds exactly then we are led to the striking 0.3
conclusion that Wess-Zumino-Witten models are ruled out as
candidates for the fixed point theory. Indeed, the scaling di-0-2°
mensions for such models are gifrby kc, /(k+h,), 0.2
whereC, is the quadratic Casimir, arldandh,, are integers.

Such an expression for the scaling dimensions cannot proo.15
duce the irrational number 2/

F. Reconstruction of the distribution 0.05
We now return to the two-dimensional network and re-
construct the entire distribution function for the point-contact 12 210 r s yy 5 0
conductance from the momen{39). By making a simple
variable substitutioinamely,x=2p+1) in Eq.(A4) of the InT

Appendix, the product of gamma functions in the formula for

(T% can be represented as an integral over Legendre fun(fﬁ FIG. 14. Normalized histograms of the critical log-conductance

T (dotg for distancer =15. The numerical data are compared

tions with plots of the distribution functiori(In T;r) defined in Eq(29).

I(q-v2-ir2)" fw(1+ )P »2p+1)d d d p

> = p (in—1)12A 4P p- 7 e e ) —
I'(q) 0 alnr+xtapp(p+1)ap prob(p;r)=0,
Next we define a probability density prgia¢)dp for the
variablep by lim prob(p;r)=48(p). (28
Inr—0
© w2
prol(p;r)= fo r TP 1y(2p+ 1) (V) AN Consider now the hyperbolic plane with the metric tensor in

polar coordinated, ¢ given by d#?+ sintf(26)d¢?. If we
Given 2A,=X,(\%2+1)/4, comparison with Eqs(17) and substi_tutep:sinhza, the differential operatop,p(p+1)d,
(19) yields turns into

= [ “(1+p)70 :r)dp. 7 ot 1 I 7
(1= | "(+p) % probipin)dp (1) = o Si20) 7
Hence, on making the identificatioh=(1+p) ! we con-
clude that the probability density far is prob(p;r)dp. Al-
though this is easily expressed in termsToby using the
inverse relationp=T"1—1, which has differentialdp=
—T72dT, we find it more convenient to work with the vari-
ablep instead ofT.

Because the Legendre functioRg, —1y(2p+1) are os-
cillatory with respect tan (incidentally, they oscillate also
with respect top), the above formula for the probability
density is not well suited for numerical evaluation. Moti- o xa )
vated by this, we switch to a different representation as fol- rob(pir) = 2@ T J"” e N otdt
lows. The Legendre functions satisfy the hypergeometric dif- protp: (X, IN1)32 Jarcsinnz Sinf(t) —p

ferential equation
which is easy to compute numerically. The result for the

which coincides with 1/4 times the radial part of the Laplace-
Beltrami operator on the hyperbolic plane. Therefore, by
viewing Inr as “time” and X;/4 as a “diffusion constant,”
we can interpret the initial value problef®8) as the heator
diffusion) equation on that space. Solving the heat equation
on the hyperbolic plane is a textbook example in Riemannian
geometry?’” For our purposes, a convenient expression for
the solution is the following integral:

1 J J  tpilng .
2 — distribution function
(Z()\ +1)+%P(P+1)% Pir-1A2p+1)=0, Istribution functl
and the integral ofP;, _ 1), against the Plancherel measure cey ) dp
gives a Fourier representation of tAgunction f(nT;r)=probp;r/ro) dinT (29

I is plotted in Fig. 14 for the distanae= 15 between the con-
Ap)= fo Pin-0)d2p+ 1)) dN. tacts. The value;=0.64 is assumed. The error bars corre-
spond to the mean deviation to be expected in histograms
Both facts are standard results in harmonic analysis on thaccumulated from 1760 independent measurements of data
hyperbolic plangor Lobachevsky planeand are briefly re- following the predicted distribution. It is seen that our ana-
viewed in the Appendix. Using them in theintegral repre- lytical prediction agrees well with the numerical data points
sentation for proh;r) we obtain (accumulated from 1760 conductancespresented by dots.
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V. SUMMARY

We have presented a numerical and analytical study of
point-contact conductance distributions for the Chalker-
Coddington network model. After reconsidering the multi-
fractal correlations of the local density of states, we first FiG. 15. Graphical representation of a network, consisting of
focussed on the distribution of point-contact conductances ifiwo edges that interact along a chain of vertices.
the quantum Hall plateau region, where strong localization of
electrons occurs. As expected, the distribution is close tof the renormalization group, then the scaling exponent for
log-normal and is essentially parametrized by only the typithe typical point-contact conductance must have the value
cal localization length. In particular, we found the log- X;=2/m. This follows from conformal invariance linking 2D
variance to be proportional to the logarithm of the typicalwith quasi-1D, and from exact results available for the latter.
conductance, with the constant of proportionality beingWhile the fixed point assumption for the network model
—1.00+0.05. needs to be substantiated, it is remarkable that the predicted

We then turned to the plateau-to-plateau transition of th&/alue lies very close to the numerical result.
quantum Hall effect. Our analytical results are summarized AS & suggestion for further work, recall from Sec. IV E
as follows. By transforming the network model to a super-thaF conformal invariance at the cnqcal point pred|cts. Fhe
symmetric vertex model with GL(2) symmetry, we de- typical conductance be;ween two point contacts at positions
rived a formula, Eq(17), for the qth moment of the point- (0.0) and &.y) on a cylinder with circumferenc#/ to be
contact conductance at criticality. The general structure of W - X
the formula is completely determined by group symmetry. exp(In T>?X”y”ﬁ?6 O)zl—sinl'(—(xﬂy)) _
The unknowns are the scaling dimensidnsof certain local RS ™ W

?npu?;%tgr:&f)m ’thvéhl\?:rtfxprriso%rgl thvﬁlgoéggE?nnézctzégéhgcgﬁ]Verification of this relation would provide a stringent test of

. n by . ' . _SCINELe idea of a conformal fixed point theory for the quantum
d|men3|ons to be propartional to the qzuadratlc Ce_15|m|r ""Hall transition. We have not done the test, as our numerical
variant of the symmetry algebes, =X,(A"+1)/8. (This as- calculations had already been long completed by the time we

S“F“F’“O’? is not essential and can in principle be re"")xed'became aware of the exactness of the relation. We invite
This choice leaveX, as the only free parameter. Knowledge other groups to perform this stringent test and reduce the

Of aII_the mo”.‘e"“s allowed us to reconstruct the entire dIS'statistical error onX,. We feel certain that the value of
tribution function.

Salient predicti f vsi followis.Th will be a benchmark for the analytical theory yet to be con-
_>alient predictions ot our analysis are as 1ollows.1he g taq and is desirable to know with the same accuracy as
distribution of point-contact conductances becomes indepe

R R Yhe localization length exponent
dent of the system sizé in the thermodynamic limitL 9 P
—oo, (ii) At the critical point, the typical point-contact con-
ductance of the infinite 2D network decays with the distance

r betw_efn the two contacts as a pure power: (lexp We thank Alexander Altland for reading the manuscript.
=(r/ro)” ™. (iii) The log variance equals 2 times the loga-  Thjs research was supported in part by the Sonderfors-
rithm of the typical conductanceiv) For large distances cpyngsbereich 340K6In-Aachen-Jiich).

between the contacts, tlgemoments of the conductance ex-

hibit multifractal statistics (T9~r (@, where X(q)=

ACKNOWLEDGMENTS

—X,q(q—1) for g=1/2 andX(q) =X, /4 for q=1/2. Thus APPENDIX
there is a “phase transition” in th&(qg) spectrum atq Here we derive the result for the Clebsch-Gordan coeffi-
=1/2. cient and the Plancherel measure announced in(E§sand

All these predictions are consistent with our numerical(18). For reasons that were explained in the text, this is not
data, which were accumulated by a computing effort ofan easy calculation. Fortunately, we can do it by using the
about 2000 CPU hours on a Sun Sparc workstation. Weollowing trick.
found the distribution of point-contact conductances rfor We consider a very simple network, consisting of just two
<L/2 to show no significant dependence on the system sizezdges that interact along a chainlofertices(see Fig. 1b
as expected. In a double logarithmic plot of the typical con-The formalism developed in Secs. IV A and IV B applies to
ductance versus, the data points scatter around a linearthis case just as well as to the two-dimensional network
curve with slope— X;=—0.640+0.009. The log variance is model. In particular, theith moment of the conductance is
linearly related to the logarithm of the typical conductance,given by a formula such as E€L3). A simplifying feature is
with the constant of proportionality being2.08+0.11. The that the product ofR matrices now organizes into a convo-
phase transition in thX(q) spectrum is hard to see in our lution product of transfer matrice§;". Denoting the eigen-
data, since the numerically accessible values afre not values of the transfer matriX by t(\) we get
large enough in order for the asymptotic behavior to domi-
nate. However, the predicted distribution function for the *
point-contact conductances agrees well with our numerical (TH1pL= fo [(Va.V* o)tV a(M)dh, (A1)
data.

On a speculative note we argued that if the network modeby a similar reasoning as in the body of the paper. Our strat-
(or, rather, a suitable continuum limit thergdf a fixed point  egy will now be to exploit the simplicity of this 1D model
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and compute the momentd 9, from a quite different Wwith the normalization factor beind,=m|c(\)|%. In con-
approach. By comparing the result to the form(#d), we  junction with the initial condition
will ultimately be able to read off the desired expressions for
the Clebsch-Gordan coefficient and the Plancherel measure. lim prok(p;L)=4(p),

For technical convenience, we shall consider the two-edge L—0+
network model in the limit of weak backscattering at the
nodes. An attractive feature of this limit is that the task of
computing(T9);p. can be reformulated asgartial differ-
ential equation(of the Fokker-Planck typewhich is readily
solved. Before writing down that equation, it is helpful to
make two adjustments. Rather than computing directly the dn A A
moments(T%), we will study theentire distribution function dm(x)= oV |2 = - dh.
of T. Also, we switch fromT to the variableo=(1—-T)/T
(“Landauer’s resistance). Now, by an elementary calcula-
tion (for a review, see, e.g., Ref. #8he probability density
prob(p;L)dp of Landauer’s resistance satisfies the differen-
tial equation

stating that transmission through a short chain is ideal, the
presence of the normalization factor determines the spectral
measure to be

To recover the momentgT9) from the distribution
prob(p;L)dp, we need the integral

, , , (@)= [ (1) P 20+ 1,
|Ipl’0k(p;L)=£p(p+ 1)$prot(p;L), (A2)
which converges fog>1/2. We claim that this integral has

wherel is the elastic mean free path. We are going to solvehe value
this equation by harmonic analysis, i.e., by diagonalization

of the differential operato#,p(p+1)d,. [This operator has T(q—1/2+iIN2)T(q—1/2—iN/2)
a geometric meaning as the radial part of the Laplacian on a I(q)= )
noncompact Riemannian symmetric space SU(1,13)U IN()E

Introducing the Legendre functidh,(x) through its integral

To prove this statement, we proceed as follows. In the first

representation .
step, we sek=2p+1 and write

P,(X)= fZWd—d)(er Vx2—1 cosg)”, (A3) »
o 2m fl (X+1) 9P 1y X)dX

one easily verifies

a% le"ada,

:F(Q)ljow( J:efaxp(m—l)/z(x)dx

J J 1 2
%P(fﬂ‘ 1) %4‘ 2 (MDY | Piy-1y(2p+1)=0.
which is a valid equality fog>0. According to Ref. 49p.

This relation suggests a solution of the differential equation323 No. 11 the integral in parentheses equals

(A2) of the form

. © 2
prob(p;L)= JO e L0 DDL L (2p+ 1) dm(N). L e Pin-1)2(¥)dx= \| —Kiy(a).

The spectral measurer Plancherel measyreim(\) is de-  This leads to an integral over the auxiliary variablevhich
termined by the asymptotic behavior of the Legendre funcconverges foig>1/2 and the value of which we take from
tions P —1)(2p+1) for p—=, as follows. By using the Ref. 50[p. 716, No. 6.626&)]:

substitutionu=tan(¢/2) in the integral representatidiA3),

one finds 2 (o
;fo a¥%%3K;, ,(a)da

66— o

Pir-1yAcosh D) — e~ [c(h)e*+c(—N)e ],

1 i\ 1 N\ Pindyycosha)
where thec function is given by =I'la- 2 2 Ila- §+ 2 l'ino (sinha)d~1
oN) = 1 T[2)iA] whereP*(x) is the associated Legendre function. From Ref.
Jar FH2)(IN+ D)) 51 (p. 332, No. 8.1.2this function has the following small-
a limit:

From this asymptotic limit, we infer the orthogonality rela-
tions

a—0

Pird 1y cosha) — T'(q) H(al2)97 .

Prin— 20+ 1) Py — 2p+1)dp=N,6(A—\"), L .
fo (n-02p+ D) Pan -1y 29+ 1)dp=N, & ) Combination of all these results yields
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a1 (” 4 Comparison with Eq(Al) identifies the eigenvalue of the
h(a)=2 Jl (14%)"TPir -1y x)dx transfer matrixZ ast(\) =e~***1D4 and yields
r 1 i\ r 1 i\
"2 2)\92" 2 (VQV*OAG) e AN =1\ (@)dm(N).  (AS)
= ; . (A%
I'(q)
which proves the claim. Although this result gives an answer for tpeoductof the

By substitutingT=(1+p) ~* and inserting for the prob- squared Clebsch-Gordan coefficient with the Plancherel
ability density probp;L)dp the spectral resolution given measure, it does not allow to make the separate identifica-

earlier, we finally arrive at tions proposed in Eq$19) and(18). For that, more detailed
considerations are necessary. For brevity, we refrain from
T, :f e~ (\Z+1)L/4l dmin). elal_ooratlng on these since, actually, all that is needed for the
LT 0 A(@dmy) main text is the formuldA5).
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