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Donor energies in a quantum well: A perturbation approach
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The binding energies of some low-lying donor states in a quantum well are calculated by a perturbation-
variational approach introduced herein. It is significant that a comparison of the ground-state binding energies
in a Gg4ANng 54AS/Alg 4dNg5,AS quantum well with those computed by a variational method shows good
guantitative agreement for varying well sizes and donor positions. The perturbation-variational method, which
is shown in detail to depend on only a single parameter, is fast computationally even when the difference in
dielectric constants of well and barrier materials is taken into account. The method also gives an analytic
expression for the energy correction due to different electron effective masses. An analysjisstdit2s as a
function of donor positiorg; reveals a peak in the binding energy when the impurity is located about midway
between the well center and well edge. The various perturbation energies due to magnetic field, effective mass,
and dielectric mismatch are also studied as a functiory oApplication of degenerate perturbation theory to
various p., states yields reasonable agreement with experiment for the transition energies between donor
states in a 150 A GaAs/HkGa, -As quantum well over a range of magnetic fielpf80163-182609)09523-5

I. INTRODUCTION where

With the development of modern crystal-growth tech- H=H,+H,+Hs+H,, (1)
nigues such as molecular-beam epitaxy, the problem of shal-
low impurities in quantum wells and superlattices has at- N h? (109 d 1 &
tracted considerable attentfofi as with the related problem Hi(p,¢.2)=~ 2m*(2)|p ap \Pap + 02 92|’ (18
of magnetoimpurities in bulk semiconductors in the past.
The variational method has been traditionally employed to R B2 9 1 9
study the binding energies of hydrogenic donors mainly in Ha(2)=— % E(m*—(z) 5) +Vg(2), (1b)
GaAs/ALGa _,As heterostructures for which the same elec-
tron effective mass and dielectric constant of well and barrier . 1
media have been assumed in most studies in the literature. |3|3(p,z): — > o (10
The effective mass and dielectric constant misnatate Ameqn \p+(2-Z)
taken into account in the present study of the hydrogenic -
impurity states in the KssGa, 4 AS/INg 5Al4gAS quantum Fi( ):E e’B 2, eB (—iﬁi) (10
well. The binding energies of shallow donors are calculated ap®)= Y 2m*(z) P 2m*(z) de/’

using a perturbation-variational method, which is seldom. ) o .
studied in the literature. To illustrate the method works, aH1(p,¢.2) is the kinetic-energy operator for electron motion
comparison is made with the results obtained using a variain the layer planeH,(z) the part of the Hamiltonian for
tional technique. The KyGay,As/IngsAlg4gAS hetero-  electron motion in thez direction, where the Ben-Daniel
structure, which is characterized by a large conduction-banghuke form forH, has been assumed, am? (z) denotes the
offset and small band gap for J&a _,As alloys, is poten- electron effective mass;

tially useful for microelectronics and optoelectronics.

Galn,_,As/Al,In; _,As multiguantum-well lasers and opti- L
cal fiber communications feature among some of the appli- 0 for |Z|<§
cations of this class of ternary alloys. In the last part, the Vg(2)= (2)
perturbation method is applied to calculate the transition en- Vo for |z|>%,

ergies between various donor states in a GaAs{B& As

quantum well to compare with experiment. whereVg, the barrier height of the quantum well of width

is the conduction-band offs&E,., andl3|3(p,z) is the Cou-
lomb interaction between the electron and the impurity ion at
In the envelope-function approximation, the Salinger z=z;. Hy(p,¢) contains the field-dependent terms. The

equation for a shallow, hydrogenic donor locatedat;, in  Schralinger equation with the form of the Hamiltoni&h is
the presence of a uniform external magnetic fiBldpplied  not analytically solvable and approximation methods are the

IIl. METHOD

along the growth axis is usual recourse.
R In the perturbation-variational method that is proposed
Hy=Ey, here, the Hamiltonian is rewritten as
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A=Fo+A",
where the unperturbed Hamiltonian
Ho=H 1o+ Hao+ Hao, 3

Hois H; with m* (z) replaced byn? , the electron effective
mass in the well,

o hz[lﬁ(a+l (92} 39
07" 2mi o ap\Pap) T p? ae?)”
Hoo=H., (3b)
as in Eq.(1b),
. c —e?
Hyo=—%, wherec= 3C
% po1 ANy 39
and the perturbing Hamiltonian
. 1 1
H=¢cl———— (3d)

PP+ (z=2)% poy)

where §; is a variational parameter introduced to minimize

the total energyEy.
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P(u)=u32,O au',

where s=|m| is chosen forP(u) to be well defined ap
=0. This gives a recursion relation

_2(i+[m)+1-n
& T i+ [m) 2= mp &

(6a)

The series solution foP should terminate foP to vanish as
p—. Hence,n=2(inat|m)+1. This leads to the quan-
tized energy levels of the two-dimensional hydrogenic states
corresponding to the quantum numberandm,

* ~4
m,e

2.2 2n25i’

Evn=—o0 77>
nm 8h2m’egny,

n=1,3,...,0dd integer
(6b)

for the unperturbed enerdy, of the electron motion in the
Xy plane.

The kinetic energy of the electron motion in thalirec-
tion, which corresponds to the enerfy(s) of the conduc-
tion subbands is obtained by solving the corresponding

Schrodinger equation fdﬁz and applying the boundary con-

Using the method of separable variables, and rewritinglitions namely continuity of (z) and 1/m*(2)1f(z) across

the unperturbed wave functiafy, asR(p) ®(¢)f(z) to solve
the eigenstate equation

Hoto=Eoo,
we have
92 a 2my 2my
2.7 o T w 2_ w2 _
(p r9p2+p(9p+ ﬁZ Epp ﬁZ Cp—m )R(P) O!
192
L e m2
ad,ZCI) m-®,
it a ! i +V f(z)=E,f 4
7 52| m*2)| 7z (2)(f(2)=E,f(2), (4)
wherec’ = —e?/4meyn,,6,. The middle equation leads to

®(p)=€'"¢, wheremis the magnetic quantum number. The

unperturbed energi,=E, +E,, whereE, andE, are the
energies of the donor electron in the radial plane amti-
rection. Writing

*
2my,

2mj,
77 B -

ci=- c;=——z ¢ ®

and lettingu=c,p, the radial equation becomes

¢ 1d c5 mZ)R o
a2 uau ttou w/RW=0

Assuming thatR(u) has the forme “P(u) and definingn
=c§/cl, we obtain after some simplification,

2

uP’(u)+(1-2u)P'(u)+|{n—-1—- mT) P(u)=0.

P(u) can be written as a series solution

the interfaces.

The total energyE,=E, ntES)+ J6E is minimized with
respect to the single paramet®r. SE, which contains terms
appropriate to the various perturbing Hamiltonians, is the
energy correction in first-order perturbation theory, which
is later found to be adequate for this
Gay 47ng 53AS/AlG 48lNg 50AS quantum well.

Consider the energy correction for the ground state due to

the perturbing Hamiltoniati’ in Eq. (3d)

E'= (ol H' [0}/ {thol tho).
where the unperturbed ground state is

Yo=e 1f(2)

andf(z) is the lowest subband state of the square well po-
tential V(2). (ioliyg) can be expressed analytically in a
straightforward way.

ol )= | 2attcaerdz
where

| =[Ge 2w pl\p*+(z—2)*~1/5]dp.

From
IR
0

:g|Z_Zi|r(g)[H1(2C1|z—zi|)—N1(2C1|Z_Zi|]
1

the double integrals ifyo|H’| 1) can be transformed to
single integrals. Thus, we obtain
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- < dx
<¢0|H'|¢o>=2wc(fa2—%

X

2zicy; dx
+fo 2¢,
a dx
+f020| [H100 =N, (0] - 5

where k=+2miE /i, «k=2m;(Vo—Ey)/%,

—2))2c,; andb=(L/2+z)2c;.

a=(L/2
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X
4_01[H1(X) —Ny(x)]—
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X A2 —k(x/lcy+2z)
201

fmﬂ X_W[H (xX)—N (X)]_L A2e K(x/c1—27)
b 2C; |4c,t L . 2¢,
b d

J’_
+f2zc12°1:4c [H1(¥) =N ()] =3 ]CO§k( o )

( [H100 = N1 ()]= 5 ]co§k( )
1

2A287 «L
4KC]_51

sinkL+ kL
4c. 6.k )’

z|— (7)

on

2c1

width) and §; can be found to an accuracy of up to at least
two and five figures, respectively, if five terms are retained in

The Struve and Neumann functions can be expanded &ach of the above series expansionsHgrandN;. Typi-

follows:®

2X (1
Hy(x)= ?fo J1-t?sinxtdt

22X« (—1)ix2i+1
T S (2j 1) (2j+3)11°

12 x

(x)-—(ln Y[~ 5
( )Zj+l
——2( D)+ + 1} gy

whereJ; is a Bessel function of the first kind,

vy=0.5772156649(Euler's constant

¢(p)—1+§+~~-~+5, $(0)=

cally this takes one to two minutes on a personal computer.

The form of the Hamiltonian in Eq(l) contains a
z-dependent electron effective mass and so allowsto be
different in well and barrier materials. When this is the case,
the form ofI:|2 is retained in the perturbation approach as
part of the unperturbed Hamiltonian and a perturbing Hamil-
tonian

N | 1
2 {m*(z) m

# 14

ap® pdp p°ag°

(8a)

is introduced. A simplification gives
(ol H"[ o) o1 1\A?
= he| ———|—e€
my, my/ K
(8b)

(ol o)
Thus, the perturbation approach gives analytical expressions
for E".
When the dielectric constants of the well and barrier ma-
terials are different, this difference is taken into account by

B 2T
8( 1ol o)

E”: —KL.

It is found in the calculations in the next section that typi- introducing a perturbing Hamiltoniafin addition toH’ and

cally, the binding energycalculated as a function of well

HH)

( (1+,8)e Be?
n—|——— for z<—L/2
4’7T8077W n [ RJ 4reqnuRo
e o[ 24 2 for |7<L/2
///: — P P or
"=\ "Tmeom s P \RT RS z
_(1+p)€? . Be?
— for z>L/2,
dreqny ; B R AreqnuRo

\
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where Ho=H 1o+ Haot Ha,
g m—m2) where
+ 1
(71t 172) . 52 (92+1(9+102
Ro=p?+(z-2)?, O 2mi\ap® pap  p?ag?)’
Ry =p?+(z—z,)?, - Rz o 1 25,
Ho=— 5 — =5 55| TV@~ 17—
2 9z|m*(z) Jz 4megn,lZ|
. |z=nL  for evenn
Z_:
" | —z=nL for odd n. . —e?
. . ~ . H30:47T8 wo1p’
The double integrals iE" = (H") can again be expressed as 0woL
single integrals involving the difference of Struve and Neu-and
mann functions as considered previously in Ef).
In the presence of an external magnetic field applied in e? 1 1 e?s,
the z direction, the contribution to the perturbing Hamil- H"'=— 4 \/—ﬁ—g— T Amenlzl”
tonian becomes Teow | \pZt (z—2z)2 S1p| Ameqnl |(9)
2Rp2
Av=pf :1 i 2, eB (—ihi) (80) For the Is-like state, the variational calculations in the next
T4 2m P T o de section show thaB,— 0, which is equivalent té&,— 0 in the
as in Eq.(1) above ancE" =(H"). form of H,, above. However, it is not known whether this is
In the present case, when all the above perturbations a@ill true for the D,-like state and the parametéy is there-
considered, fore introduced.
e ey Although I:|2cJ is different from before, the corresponding
Ewt=E10tE(1)+E+E'+EV+E™. Schralinger equation is exactly solvable. To calculate the

binding energy of the g,-like state, which is associated with

is minimized with respect t&;. The binding energ¥, of the second subband, the unperturbed energy is

the donor state is then obtained from

Ep=Esust v~ Etot E1,0+ E.(2),

whereE,,,is the subband energy andis the energy of the where E,(2) is the energy of a donor electrc(associated

first Landau level. with the second subbapdbtained from the Schdinger
The subsequent calculations for the dtate based on the equation forH

above approach are compared with those obtained by a varia-

tional method. We adopt the donor trial function of Betancur [ At d

1 C3
and Mikhailov* which has been successful in variational cal-

+V(z)+

2 dz|m*(z) dz 7| P =E2F (@),

culations for the GaAs/GaAl o sAs quantum well. It is ex- (10
pe(;ted to be a realistic tnal function as it y|elds reSUItS'wherec3=c52. Forz>L/2, we have
which compare favorably with standard variational calcula-

tions involving more than ten linear parameters and has been omi

shown to give higher binding energies for off-center posi- FrarielZ) — _Zb[VO_Ez(z)]Fbarrien(Z)

tions of the donor impurity. The trial functiog for 1s- and

2p.-like states is B 2m ¢ i =0
¥(p.9.2)=G(p,¢.2)f(2), A2z T bemel s

wheref(z) is the solution to the square-well problem, DefiningW=kz, we obtain

2

G= eim<P |m|R e*ﬁz(Z*Zi)z " o
P (P) Fbarrier_ Foarriert W Farrie= 0, (113
and the radial functiolR(p) is

, wherea?=—2m} c3/%%k. For 0<z<L/2, we have
R(p)=e 2" *ﬁlp,

. - 2my 2my
whereqa, B8;, and B, are three nonlinear variational param- ro(2)+ QE (2)Fyen(2) — MF (2)=0.
L. X i L ~ wel h z wel ﬁZ we
eters. The variational energy is obtained by minimiz{ht)
in Eq. (1). Definingw=kz and changing the independent variablewto
We also apply the perturbation-variation method to calcuwe obtain
late the binding energy of thepg-like excited state. For this
computation, the unperturbed and perturbing Hamiltonians EroLE 4 ,BZF 0o 118
areH, andHY, respectively, wett Fweit - Fuer=0, (11b
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where 82=—2m¥ c5/A%k. A solution of Eq.(118 is® e WK(1+3iB%2,2w)2w,

—W 1.2
Ae TK(1-za%2,2W)2W whereK is the Kummer confluent hypergeometric function.
and a solution of Eq(11b) is Hence, the eigenstate correspondindet$2) is

—k 12 L
Ae *K(1-35a%,2,2kz)2kz for z>§
F(z)=

1 . o - . . . L
E[e*'sz(lJr%|,82,2,2|kz)2|kz—e'kZK(l—%|,82,2,—2|kz)(—2|kz)] for 0<z<5.

Since the square well and Coulomb potentials are symmetrical abolit the wave functiori(z) corresponding to the first
excited state of Eq(10) should be an odd function. Lastly, we obtd#(2), k, and « by using the boundary conditions
mentioned earlier, which require the first derivativeFdiz). The latter is given by

Ae “K(1-31a?2,2kz)2k+Ae “?L(1- 3a®)K(2— % a?,3,2k2)4Kk%2

L
— kAe “K(1—3a?2,2kz)2kz for >3

1 .
F'(z)= E[e"sz(le 21 8?,2,2ikz)2ik —e 2L (1+ i BHK (2 + 2i B2,3,2ikz) 4k?z

—ike *?K(1+1iB2,2,2ikz)2ikz—e'**K (1— i B2,2,— 2ikz)(— 2ik)

_ . L
+e*?2(1-1iB?)K(2— 3i B?,3,— 2ikz)4k?z—ike'"?K (1— 3i B?,2,— 2ikz)(— 2ikz)] for 0<z<3.

Therefore, writingEV=(H"), we obtain the binding energy ($2p 1||3|'+|3|'V|¢2p )
VI _ + +

by minimizing E =
2Px1 <l//2p11|l’//2911>
EiotEx(2)+EV+E"+E"+EV B 27 CeCot c . 15e2B?
(ap, [W2p. )| 72\ Sidcy 6am*c]
with respect to the variational parametésand &, . ) ]
In the last part, we apply the perturbation-variation % A . sinkL+kL| | eBh
method to calculate the energies of the 2, 2p. 1, 3P+ 1, kert 2k —2m*

and 4p, , excited states in the presence of a magnetic field.

For this computation, our unperturbed and perturbing HamilwhereG, is defined in Eq(12) below.

tonians are taken from Eqé3a) to (3d) and(8c). The unper- Similar to the above, degenerate perturbation theory can

turbed states be applied to obtain the first order energy corrections for the
3p.1 and 4p, ; states. The unperturbed states are

— @ C1p —ie )
Vap_ =€ rowpl(z)e Vap, ;=€ eip(1-Feip)f(2)e’ ¢

and and

Wap, = e e pf(2)et i Yap, = e ¢y p(1—3cip+3cipd)f(z)et’e

and the unperturbed energies are

are used to calculate the energies of the_2 and 2o,

states, respectively. The dependence of the unperturbed Es.1+EL(1)

states is determined from E¢fa) and f(z) is the first sub-

band state of the square well potential. Hargjs obtained for the 3p. , state and

from Eq. (5) where the unperturbed ener§y ., +E,(1) is

used to calculate the energy of thp_2 state. Using degen- E; 1+Ex(1)

erate perturbation theory, the first order energy correction for

the 2p.., states is found to be for the 4p, , state. After some simplification, we obtain
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gV <¢3p+1|ﬂl+|:|lv|¢3p+1> 2T 2:G,+24c3cG.+4c% G
= = c;C zC;C zcte
3p41 <¢3p+1|¢3p+1> <‘”Sp+1|¢3p+1> 10927 3093 T gL oy
c 25¢?B2\ [ A? sinkL+kL\] eBh
5112C1+64m*c‘11 et 2Kk tom
and
(¥ap 1||:|I+|:|Iv|w4p 1> 2
EX:)HE <+l’/’4 |#ap.,,) : " (Yap, [thap, ) cfcGy+ §eicGa+ FcicG,+ §eieGs+ 5cicGe
Pr1 Pt Py1 Py
N c , 35°B)( A? sinkL+kL\] eBs
5124(:1 64|”n* C? KeKL 2k Zm* ’
where
% xN+1 w xN+1
o= |, 0% g " 00 N0 AR =1 50 | Tt HY00 N 0 e e 2
a 1 b 1
b xN+1 y
+ T THN(x) = NN X
J'ZZiCldX(ZCl)NJrZZ[Hl (x)—NM(x)]cog k T z

fad o HM(x) - NV 2k —
+ o XW[ 1 (X)— 1 (X)]CO 2—Cl+Zi

(12

2zicy xN* 1 (N) (N) 2 X
+j0 dx e yezz [HT 00 =N (x) Jeos k| zi = 5 -

andH{™ andN{" are theNth derivatives of the Struve and literature, the binding energy of a donor electron in a 150 A
Neumann functions, respectively. Finally, the energies of thavell calculated with the perturbation method is less than 1%

2p_ andnp, states are obtained by minimizing lower than the binding energy calculated using the varia-
tional method and the percentage difference narrows even

Es-1tED)+Ez, further for smaller well widths. This is due to higher unper-

turbed electron energies in the smaller wells, which tend to

Eon-141t Ez(1)+E>1/:3+1 improve the results calculated from the perturbation-

_ variational method. When the difference in dielectric con-
with respect tod, wheren=2,3,4. stants is taken into account, the binding energy calculated
from the perturbation approach is around 1.5% lower than

ll. RESULTS AND DISCUSSION that calculated with the variational method for well widths

In the calculations below, when different electron up to 200 A. It is significant that there is such close agree-
effective masses are assum’edn\’,‘v=0.0403ne in the Mmentin the binding energies calculated from the two meth-
INosGa 4As well material, andm}=0.0795n, in the ©dSs. The figure also shows a marked increase in the binding

Ino 5:Ga, 46As barrier medium. At these compositions, the €N€ray at all well widths when the difference between the

ternary materials are lattice matched to the InP substrate Yo dielectric constants is taken into consideration since the
that interfacial strains are minimal. The barrier height isiMag€ charges introduced would enhance Coulombic bind-
taken to be 0.68E, (Ref. 8 and the band-gap difference ing. The effect of different electron effective masses leads to

P an increase in binding energy arising from greater electron
%Egt%ing?i?uL?‘isrf;o"‘cﬁie?;da?'squ0'48As 'S gven as a confinement within the well, which is only apparent at
smaller well widths below 100 A. In general, the binding
AE4=1.453 (eV). energy decreases with increasing well width corresponding
to a larger electron-ion separation on average.

Binding energies of thegtlike ground state as a function It is worthwile to note that the percentage change of 19%
of well size for a central donor are calculated using perturin the binding energy of thef2_, state due to the dielectric
bation theory and compared in Fig. 1 with those obtainectonstant mismatch is more significant than that for tise 1
from the variational method described previously as there istate. Classically for a central donor, an electron at the origin
no relevant data or related calculations on donor energies iwill not experience the Coulomb force due to the image
the Galn;_,As/Al,In; _,As quantum well to compare with. charges. Since the wave function in the radial direction for
When the dielectric constant is assumed to be the santhe 1s state decays away from the origin while that for the
throughout the heterostructure as with most studies in th@p_; state is peaked away from the origin, thp 2 state
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FIG. 1. Variation of binding energy with well width for the 1s FIG. 2. Variation of binding energy with donor position z;

state of a hydrogenic donor in a 100-A Gag 4/Ings3As/Al5lngs,As  for the 1s state of a hydrogenic donor in a 100-A
quantum well, with m}=0.0403m,, m}=0.0795m, for different = Gaga7Ings3As/Algsglng sAs quantum well, with m=0.0403m,,
cases: 7, = 7,,= 14 using perturbation method (V) and variational mj=0.0795m, for different cases: 7, = 7,,= 14 using perturbation
method (00); 7,=12.44, n,,= 13.9 using perturbation method (¢»)  method (A) and variational method (O); 7,=12.44, 7,=13.9 us-
and variational method (A); 7= 14, m* = 0.0403m, throughout (O)  ing perturbation method (&) and variational method (0J).

using variational method.

. . _ .enced by the electron from the image charges. Thus, the
will be more affected when image charges are introduced ir, ergy correction due to differemt* is increased when
the barriers because the electron density will be compresse};

diallv | ds. Simil derati Id ! H w® T - This increase is larger when the impurity is located
radially inwards. Similar considerations would apply t0 Other, o rer the well center as the image charges are correspond-

excited states whose density distributions have a larger radi%gw closer to the electron distribution. Als@, values are
Eprg_ad about the central donor thus contributing to a largefy g pstantially different among the cases considered except
Inding energy. when the impurity approaches the well edge when there will

In the p.e.rturbation calcullati_on for a sp(_acific wel! size andbe a higher probability of finding the electron in the barrier.
donor position, the donor binding energy is essentially deter:

. ; L2 The lowest value of; again occurs for the case when both
mined by two competing contributions, the unperturbed en

dth bali &5 This O m* and # are different.
ergy an t e perturbation energy gorrect - 1his gives a In the cases investigated above for the ground state of the
minimum in the energy at a specific value&f. The param-

. : . donor electron, when realistic values obtained from experi-
eter §;, which appears in the wave function of the two-

. : . . ent are used fomj; andmy,, it is found that in the varia-
dimensional hydrogenic ground state, varies from around 1.3 A o
for a well width of L=50 A to about 1.7 fo.=200A for tional method, the parametgs—0 andE,=(H,) coincides
the cases considered, i.e., sam& and 7, samem* but with the first subband energy. However, when it is assumed
different 7, and finally, bothm* and 7 different for well and that the electron effective mass; in the barrier material is
barrier regions for which casé, is found to have the lowest the same as that in the well materiaf, = 0.0403n,, similar
value corresponding to the lowest unperturbed energy amorgglculations show thag,~10"m~2<ag > where the effec-
these cases. tive Bohr radiusag=184 A in this case. Thus a contributing

As the impurity moves from the center to the edge of thefactor for 8,—0 in this problem must be the much larger

well, Fig. 2 shows that the binding energies of the groundeffective mass in the barrier for the GglngssAs/
state found from the two methods are again in quantitativeAl g 4dNg s2As quantum well. This is reinforced by the pre-
agreement with binding energies calculated by the perturbedominance of the square-well potential over the Coulomb
tion method varying from 1a 2 % below that obtained by potential(as evidenced by a barrier height to effective ryd-
the variational method. Again the binding energies are sigberg ratio of 160 which further confines the electron prob-
nificantly higher(corresponding to lower values @) for  ability distribution within the well.
all impurity positionsz; when the differences in electron ef- It is found in the calculations for the? state that the
fective masses and dielectric constants in well and barrigparameterd, is extremely small. Also, the quantitative
regions are considered. The sizes of the perturbation energiegreement between the results for ttestate from pertur-
due to differentm* and #» decrease with increasing well bation theory and from the variational method irrespective of
width, which corresponds to the case where the electron iwell size and donor position suggest tldgtis negligible for
usually found in the well region. The image charges will the same reasons for whig,— 0.
increase the probability of the donor electron to be found in  The binding energies of thep3-like donor state in the
the barrier region because of the Coulomb attraction expericaAs/AlGa _,As quantum well have been a subject of con-
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FIG. 3. Donor binding energy versus donor positipnin a FIG. 4. Variation of 8, with donor positionz; calculated with

100-A  Ga 44ngsAS/Alg4dNosAs quantum  well, with m, the perturbation method in a 100-A Galng sAS/Alg 4dNg s AS
=0.0403n,, m; =0.0795n,, 7,=12.44,7,=13.9 for(a) the Is  quantum well, withm* =0.0403n,, m{ =0.0795n,, 7,=12.44,
state(O) and 2p_, state(0), both calculated with the variational 7, =13.9 for(a) the 1s state in zero field®), (b) the 2p, state in
method,(b) the 2p, state in zero fieldA) and in a magnetic field a magnetic fielB=5 T (A) and zero fieldH).

B=5T (¢), both calculated with the perturbation method. )
havior of the D, state resembles that of the ground state.

troversy in the past:® °-''Using the expression fof(z) The curve ofé; versus donor positiog; in Fig. 4 shows

=sinkz, our test calculation with the perturbation-variational & Minimum for the P, state and a comparison with Fig. 3
approach for the @,-like state of a central donor in a well of SNOWS that the binding energy of thepg state varies in-

width L=100A coincides with that of Ref. 3 confirming that Versely withd,, as is the case for theslstate. In the pres-
the 2p,-like donor state is associated with the second sub€Nce Of & 5-T magnetic field that introduces an energy com-
band. ponentE", 5, becomes less sensitive zp. The figure also

Using the perturbation method, the binding energies ofows thaté, decreases in a magnetic field and heoge
the 2p,-like donor state calculated as a function®fin a increases, |m.ply'|ng greater eIectron confln(_ament around the
100-A Ga 4 ANg sAS/Alg 4N sAS quantum well are shown 2 8Xis: The binding energy thus m_c_reag{as_m_ Fig. 3 but
in Fig. 3. The binding energies for thep2,- and Is-like the depepdence on the donor position is slmllar.
states calculated using the variational method are included SinceH" has essentially the same formtd$ when s, is
for comparison. Unlike the standard monotonic behavior obhegligibly small as found from our computatiors! for the
served with D_ ;- and Is-like states associated with the first 2po State andE' for the 1s state are compared in Fig. 5.
subband, the curve of the binding energy of the, Ztate  Similar to E' for the 1s state,EV for the 2p, state behaves in
reveals a peak about midway between the center and edge @& opposite manner to the unperturbed energy that contains a
the well. Physically, this is readily understood as the,2 term varying as-1/5;. SoE" and the binding energy of the
state, being associated with the second subband, has tR®o state vary in a similar way as a function gf. (This is
highest probability density approximately midway betweenalso observed for theslstate when the binding energy and
the center of the well and the well edge. When the impurityE' exhibit similar behavioy.
is near the well center and moving away from it, the average By contrast, in the presence of a 5-T fieEl! is positive
donor ion-electron separation decreases; when the impuritgnd increases monotonically with donor positions away from
is near to the well edge and moving towards it, the ion-the center of the well. Becaus® is reduced in a magnetic
electron distance increases and the binding energy decreaséeld, the effect of the 19; term in Eq.(9) exceeds that of the
Therefore, the dependence of the average electron-ion difirst Coulomb term thus changing the signeX in the pres-
tance on the donor position is physically consistent with theence of a magnetic field. When the impurity moves away
variation of the binding energy with donor position. Thus, from the well center,§; decreases for the state(as in
the 2p,-like state has the highest binding energy when theFig. 4 and EV correspondingly increases. Near the well
impurity is off center. The nonmonotonicity of the binding edge, ass; increases slightly, the average electron-ion sepa-
energy with varying donor position is expected also for en-ation increases, resulting in a net increas&
ergy states associated with higher odd parity subbands with In Fig. 6, the size of the energy correctionE" of the 1s
similar symmetries. The absence of a concentration of elecstate is smaller than that of thepg state. This is due to the
tron density near the well center for th@@states accounts fact that the P, state, having higher energy, has a larger
for the weak dependence of the binding energy w&jtivhen  penetration into the barrier than the &tate. Also from the
z;~0. When the donor moves towards the well edge, thesame figure, it is observed that the size of the perturbation
average donor ion-electron separation increases and the benergy—E" for the 1s state is higher than that of thepg
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FIG. 7. Variation of EV with donor positionz; in a 100-A
Gay 47Ng.5AS/Alg 4dNo5AS quantum well, withm}=0.0403n,,

field (M). These are calculated with the perturbation method for am} =0.0795n,, 7,=12.44, 5,=13.9 for the D, state in a mag-

Gay 4ANg sAS/Alg 4dngsAs  100-A  quantum  well, with m¥,
=0.0403n,, M} =0.0795n,, 7,=12.44, 7,,= 13.9.

netic fieldB=5 T (@) calculated with the perturbation method.

from that for the & state. For the & state,— E" decreases

state, the spread of the electron distribution from the centemonotonically with donor position. On the other hand, the

of the well being greater for theslstate than for the (2,

curve of —E" for the 2p, state versus donor position shows

state, giving rise to the stronger Coulomb interactions witha peak when the impurity is about 0.3 of the well width from

the image charges. Thus, in Fig. 6, for the state,—E" is
one order of magnitude higher thanE", but for the 2,

the well center. These trends follow from E&b) since for
both 1s and 2p, states,— E" varies inversely withs; . When

state, these two perturbation energies are comparable amah external magnetic fieldf® T is introduced, the trend of
small in magnitude. The figure also shows that the depen—E" in Fig. 6 is not affected by the magnetic fiele.E",
dence of the perturbation energy due to different effectivewvhich varies directly as; (through the radial functioR) is

massesE"" on impurity position for the P, state differs
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FIG. 6. (a) —E" versusz for the 1s state in zero fieldO). (b)
—E" versusz, for 2p, state in a magnetic fiel8=5T (A) and
zero field(0). (c) —E" versusz; for 1s state in zero field®). (d)
—E" versusz; for 2p, state in a magnetic fiel@=5T (A) and

increased substantially whe#, generally decreases in a
magnetic field but the increase in the perturbation energy due
to the difference in dielectric constantsE" is much less.
Compared to the rest- E" shows the least increase in a
magnetic field.

In Fig. 7, the perturbation energy due to the magnetic
field, E", shows substantial variation with donor position.
The curve shows a dip arourr=0.3L, whenE" is at the
minimum and the binding energy is at the maximum.

The ratio of around 1% for the first-order energy correc-
tion relative to the unperturbed energy for the,XState im-
plies to a very good approximation, that the wave function
varies as exp{c;p)sinkz This is consistent with the finding
in Ref. 9 that thez dependence of the variational wave func-
tion varying as sitkz within the well is much better than
another trial function(also with odd parity depending orz
aszcoskz

Figure 8 shows that the experimental dator the 1s
—2p.q, 1s—3p, 1, 1s—4p, , transition energies in a 150-A
GaAs/Al :Ga 7/As quantum well are in reasonable agree-
ment with the curve drawn through the values calculated
from the perturbation method. Since the magnetic field is
taken into account as a perturbation, it is expected that the
perturbation-variational method works better for weaker
magnetic fields. It is observed that the calculated values are

zero field (M). These are calculated with the perturbation methodalways slightly higher than the experimental data for stron-

for a Ga 44Ng5dAS/Alg 4dNosAS 100-A quantum well, withm},
=0.0403n,, m§ =0.07958n,, 7,=12.44,7,=13.9.

ger magnetic fields. This may be due also to other interac-
tions that have not been considered in the computations.
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240 same/different dielectric constants of well and barrier mate-
rials of the quantum well and same/different electron effec-
tive masses in these materials. As such, second-order energy
corrections are not expected to be significant indicating rela-
tively little admixture of higher energy states in the second-
order perturbation approximation especially in narrower
wells. Even for wider wells, because the binding energies
decrease with well size, second-order corrections are not
likely to be appreciable.

The analysis introduced earlier in terms of confluent hy-
pergeometric functions shows the perturbation-variational
method to be a one-parameter calculation. This is corrobo-
rated by the variational calculations where it is observed that
the parameteiB,— 0. The perturbation-variational method
60 - differs from standard variational techniques used in the lit-
erature with regard to the choice of wave functions. In the
‘ T former method, the unperturbed states are chosen to be the
eigenstates of an appropriately chosen unperturbed Hamil-
tonian that contains the adjustable parameter. However, in

FIG. 8. Transition energies in a 150-A GaAs{Gal, As quan-  the variational method, the variational parameté&sme-
tum well versus magnetic field applied perpendicular to the intertimes as many as 13 in sophisticated treatmjeetder di-
faces of well and barrier: experimental values of tse2p_; (O), rectly into the trial function adopted. Moreover, different
1s-2p,; (O), 1s-3p,; (A), 1s-4p,, (), transition energies and trial functions must be constructed for different donor states
calculated values of thesi2p_; (@), 1s-2p_; (W), 1s-3p,; (A), in the method of variation. The perturbation method thus
1s-4p,, (#) transition energies. The curves shown are drawnoffers a systematic approach in deciding the form of the
through the calculated points as a visual guide. wave function.

Because the perturbation method is a single-parameter
However, the general correspondence between experimesélculation, the computational time required is drastically
and theory over a range of magnetic fields lends support teeduced compared to that for the variational method, par-
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the perturbation method. ticularly for calculations involving image charges when
the dielectric constant mismatch is taken into consideration.
CONCLUDING REMARKS The latter effec{which is an order of magnitude higher than

that due to the effective mass differends not negligible

The blndlng energy of a donor electron in a for the |rb'53G&)_47A\S/|no_52A|0_4gA\S quantum well System
Gap 47Ang sAS/Alg 4dNosAs quantum well has been calcu- and this is also the case from variational calculations on the
lated for 1s-, 2p_1-, and a)o-like states. We have studied a GaAslAbgea)7AS guantum We|? In the perturbation_
perturbation-variational approach that allows a classificatioariational method, the contributions to the binding energies
of energy states in terms of unperturbed two dimensionajrom the various perturbing Hamiltonians can be evaluated
hydrogenic states and corresponding subband states. In tegectly and it is found that in the absence of a magnetic
absence of calculations of donor binding energies in this Palsald. the main contribution is frorfil’ followed by A" due
ticular quantum well or related experimental data of transixq e gifference in dielectric constants. Furthermore, the

tloln elngrgleshlnvolgnng donor sta(;es,. ;he results f;(_)m the,sierturbation-variational method can be readily extended to
calculations have been compared with corresponding varigz, - jate energies of higher excited states.

tional calculations. Although energy corrections have been
considered to only first-order perturbation, it is significant
that there is good quantitative agreemeiat within 1.799
between the results from both methods for the binding ener- One of us(Y.T.Y.) would like to thank the National Uni-
gies of the & state calculated as a function of well width and versity of Singapore and the National Science and Technol-
of impurity position for the various cases considered, i.e.pogy Board for financial support.
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