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Donor energies in a quantum well: A perturbation approach
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The binding energies of some low-lying donor states in a quantum well are calculated by a perturbation-
variational approach introduced herein. It is significant that a comparison of the ground-state binding energies
in a Ga0.47In0.53As/Al0.48In0.52As quantum well with those computed by a variational method shows good
quantitative agreement for varying well sizes and donor positions. The perturbation-variational method, which
is shown in detail to depend on only a single parameter, is fast computationally even when the difference in
dielectric constants of well and barrier materials is taken into account. The method also gives an analytic
expression for the energy correction due to different electron effective masses. An analysis of 2p0 states as a
function of donor positionzi reveals a peak in the binding energy when the impurity is located about midway
between the well center and well edge. The various perturbation energies due to magnetic field, effective mass,
and dielectric mismatch are also studied as a function ofzi . Application of degenerate perturbation theory to
various p61 states yields reasonable agreement with experiment for the transition energies between donor
states in a 150 Å GaAs/Al0.3Ga0.7As quantum well over a range of magnetic fields.@S0163-1829~99!09523-5#
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I. INTRODUCTION

With the development of modern crystal-growth tec
niques such as molecular-beam epitaxy, the problem of s
low impurities in quantum wells and superlattices has
tracted considerable attention1–4 as with the related problem
of magnetoimpurities in bulk semiconductors in the pa5

The variational method has been traditionally employed
study the binding energies of hydrogenic donors mainly
GaAs/AlxGa12xAs heterostructures for which the same ele
tron effective mass and dielectric constant of well and bar
media have been assumed in most studies in the litera
The effective mass and dielectric constant mismatch3 are
taken into account in the present study of the hydroge
impurity states in the In0.53Ga0.47As/In0.52Al0.48As quantum
well. The binding energies of shallow donors are calcula
using a perturbation-variational method, which is seld
studied in the literature. To illustrate the method works
comparison is made with the results obtained using a va
tional technique. The In0.53Ga0.47As/In0.52Al0.48As hetero-
structure, which is characterized by a large conduction-b
offset and small band gap for InxGa12xAs alloys, is poten-
tially useful for microelectronics and optoelectronic
GaxIn12xAs/AlxIn12xAs multiquantum-well lasers and opt
cal fiber communications feature among some of the ap
cations of this class of ternary alloys. In the last part,
perturbation method is applied to calculate the transition
ergies between various donor states in a GaAs/Al0.3Ga0.7As
quantum well to compare with experiment.

II. METHOD

In the envelope-function approximation, the Schro¨dinger
equation for a shallow, hydrogenic donor located atz5zi , in
the presence of a uniform external magnetic fieldB applied
along the growth axis is

Ĥc5Ec,
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where

Ĥ5Ĥ11Ĥ21Ĥ31Ĥ4 , ~1!

Ĥ1~r,w,z!52
\2

2m* ~z! F1

r

]

]r S r
]

]r D1
1

r2

]2

]w2G , ~1a!

Ĥ2~z!52
\2

2

]

]z S 1

m* ~z!

]

]zD1VB~z!, ~1b!

Ĥ3~r,z!52
e2

4p«0h

1

Ar21~z2zi !
2 , ~1c!

Ĥ4~r,w!5
1

4

e2B2

2m* ~z!
r21

eB

2m* ~z! S 2 i\
]

]w D . ~1d!

Ĥ1(r,w,z) is the kinetic-energy operator for electron motio
in the layer plane,Ĥ2(z) the part of the Hamiltonian for
electron motion in thez direction, where the Ben-Danie
Duke form forĤ2 has been assumed, andm* (z) denotes the
electron effective mass;

VB~z!5H 0 for uzu,
L

2

V0 for uzu.
L

2
,

~2!

whereV0 , the barrier height of the quantum well of widthL,
is the conduction-band offsetDEc , andĤ3(r,z) is the Cou-
lomb interaction between the electron and the impurity ion
z5zi . Ĥ4(r,w) contains the field-dependent terms. T
Schrödinger equation with the form of the HamiltonianĤ is
not analytically solvable and approximation methods are
usual recourse.

In the perturbation-variational method that is propos
here, the Hamiltonian is rewritten as
15 825 ©1999 The American Physical Society
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Ĥ5Ĥ01Ĥ8,

where the unperturbed Hamiltonian

Ĥ05Ĥ101Ĥ201Ĥ30, ~3!

Ĥ10 is Ĥ1 with m* (z) replaced bymw* , the electron effective
mass in the well,

Ĥ1052
\2

2mw*
F1

r

]

]r S r
]

]r D1
1

r2

]2

]w2G , ~3a!

Ĥ205Ĥ2 ~3b!

as in Eq.~1b!,

Ĥ305
c

rd1
, where c5

2e2

4p«0hw
~3c!

and the perturbing Hamiltonian

Ĥ85cF 1

Ar21~z2zi !
22

1

rd1
G , ~3d!

whered1 is a variational parameter introduced to minimi
the total energyEtot .

Using the method of separable variables, and rewrit
the unperturbed wave functionc0 asR(r)F(w) f (z) to solve
the eigenstate equation

Ĥ0c05E0c0 ,

we have

S r2
]2

]r2 1r
]

]r
1

2mw*

\2 Err22
2mw*

\2 c8r2m2DR~r!50,

]2

]f2 F52m2F,

H 2
\2

2

]

]z F 1

m* ~z!G ]

]z
1V~z!J f ~z!5Ezf ~z!, ~4!

where c852e2/4p«0hwd1 . The middle equation leads t
F(w)5eimw, wherem is the magnetic quantum number. Th
unperturbed energyE05Er1Ez , whereEr and Ez are the
energies of the donor electron in the radial plane andz di-
rection. Writing

c1
252

2mw*

\2 Er , c2
252

2mw*

\2 c8 ~5!

and lettingu5c1r, the radial equation becomes

S d2

du2 1
1

u

d

du
211

c2
2

c1u
2

m2

u2 DR~u!50.

Assuming thatR(u) has the forme2uP(u) and definingn
5c2

2/c1 , we obtain after some simplification,

uP9~u!1~122u!P8~u!1S n212
m2

u D P~u!50.

P(u) can be written as a series solution
g

P~u!5us(
i 50

`

aiu
i ,

where s5umu is chosen forP(u) to be well defined atr
50. This gives a recursion relation

ai 115
2~ i 1umu!112n

~ i 111umu!22umu2
ai . ~6a!

The series solution forP should terminate forP to vanish as
r→`. Hence,n52(i max1umu)11. This leads to the quan
tized energy levels of the two-dimensional hydrogenic sta
corresponding to the quantum numbersn andm,

En,m52
mw* e4

8\2p2«0
2hw

2 n2d1
2 , n51,3,...,odd integer

~6b!

for the unperturbed energyEr of the electron motion in the
xy plane.

The kinetic energy of the electron motion in thez direc-
tion, which corresponds to the energyEz(s) of the conduc-
tion subbands is obtained by solving the correspondin
Schrodinger equation forĤ2 and applying the boundary con
ditions namely continuity off (z) and 1/@m* (z)# f (z) across
the interfaces.

The total energyEtot5En,m1Ez(s)1dE is minimized with
respect to the single parameterd1 . dE, which contains terms
appropriate to the various perturbing Hamiltonians, is
energy correction in first-order perturbation theory, whi
is later found to be adequate for th
Ga0.47In0.53As/Al0.48In0.52As quantum well.

Consider the energy correction for the ground state du
the perturbing HamiltonianĤ8 in Eq. ~3d!

EI5^c0uĤ8uc0&/^c0uc0&,

where the unperturbed ground state is

c05e2c1r f ~z!

and f (z) is the lowest subband state of the square well
tential V(z). ^c0uc0& can be expressed analytically in
straightforward way.

^c0uĤ8uc0&5E
2`

`

2p@ f ~z!#2cIdz,

where

I 5*0
`e22c1r@r/Ar21~z2zi !

221/d1#dr .

From

E
0

`
Ar21~z2zi !

2e22c1rdr

5
Ap

2c1
uz2zi uG~ 3

2 !@H1~2c1uz2zi u!2N1~2c1uz2zi u#

the double integrals in̂c0uĤ8uc0& can be transformed to
single integrals. Thus, we obtain
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^c0uĤ8uc0&52pcXE
a

` dx

2c1
H xp

4c1
@H1~x!2N1~x!#2

x

2c1
J A2e2k~x/c112zi !

1E
b

` dx

2c1
H xp

4c1
@H1~x!2N1~x!#2

x

2c1
J A2e2k~x/c122zi !

1E
2zic1

b dx

2c1
H xp

4c1
@H1~x!2N1~x!#2

x

2c1
J cos2 kS x

2c1
2zi D

1E
0

2zic1 dx

2c1
H xp

4c1
@H1~x!2N1~x!#2

x

2c1
J cos2 kS x

2c1
2zi D

1E
0

a dx

2c1
H xp

4c1
@H1~x!2N1~x!#2

x

2c1
J cos2 kS x

2c1
1zi D2

2A2e2kL

4kc1d1
2

sinkL1kL

4c1d1k
C, ~7!
d
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where k5A2mw* Ez/\, k5A2mb* (V02Ez)/\, a5(L/2
2zi)2c1 andb5(L/21zi)2c1 .

The Struve and Neumann functions can be expande
follows:6

H1~x!5
2x

p E
0

1
A12t2 sinxtdt

5
2x

p (
j 50

`
~21! j x2 j 11

~2 j 11!!! ~2 j 13!!!
,

N1~x!5
2

p S ln
x

2
1g D J1~x!2

1

p

2

x
2

x

2p

2
1

p (
j 51

`

~21! j$f~ j !1f~ j 11!%
~x/2!2 j 11

j ! ~ j 11!!
,

whereJ1 is a Bessel function of the first kind,

g.0.5772156649~Euler’s constant!,

f~p!511
1

2
1••••1

1

p
, f~0!50.

It is found in the calculations in the next section that ty
cally, the binding energy~calculated as a function of we
as

width! andd1 can be found to an accuracy of up to at lea
two and five figures, respectively, if five terms are retained
each of the above series expansions forH1 and N1 . Typi-
cally this takes one to two minutes on a personal compu

The form of the Hamiltonian in Eq.~1! contains a
z-dependent electron effective mass and so allowsm* to be
different in well and barrier materials. When this is the ca
the form of Ĥ2 is retained in the perturbation approach
part of the unperturbed Hamiltonian and a perturbing Ham
tonian

Ĥ952
\2

2 S 1

m* ~z!
2

1

mw*
D S ]2

]r2 1
1

r

]

]r
1

1

r2

]2

]w2D
~8a!

is introduced. A simplification gives

EII5
^c0uĤ9uc0&

^c0uc0&
52

2p

8^c0uc0&
\2S 1

mw*
2

1

mb*
D A2

k
e2kL.

~8b!

Thus, the perturbation approach gives analytical express
for EII .

When the dielectric constants of the well and barrier m
terials are different, this difference is taken into account
introducing a perturbing Hamiltonian~in addition toĤ8 and
Ĥ9)
H-55
2

~11b!e2

4p«0hw
(

n
Fbn

1

Rn
1G2

be2

4p«0hwR0
for z,2L/2

2
e2

4p«0hw
(

n
FbnS 1

Rn
1 1

1

Rn
2D G for uzu,L/2

2
~11b!e2

4p«0hw
(

n
Fbn

1

Rn
2G2

be2

4p«0hwR0
for z.L/2,
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where

b5
~h12h2!

~h11h2!
,

R05Ar21~z2zi !
2 ,

Rn
65Ar21~z2zn

6!2 ,

zn
65H zi6nL for even n

2zi6nL for odd n.

The double integrals inEIII 5^Ĥ-& can again be expressed
single integrals involving the difference of Struve and Ne
mann functions as considered previously in Eq.~7!.

In the presence of an external magnetic field applied
the z direction, the contribution to the perturbing Ham
tonian becomes

Ĥ IV5Ĥ45
1

4

e2B2

2m*
r21

eB

2m* S 2 i\
]

]w D ~8c!

as in Eq.~1! above andEIV5^H IV&.
In the present case, when all the above perturbations

considered,

Etot5E1,01Ez~1!1EI1EII1EIII 1EIV.

is minimized with respect tod1 . The binding energyEb of
the donor state is then obtained from

Eb5Esub1g2Etot ,

whereEsub is the subband energy andg is the energy of the
first Landau level.

The subsequent calculations for the 1s state based on th
above approach are compared with those obtained by a v
tional method. We adopt the donor trial function of Betanc
and Mikhailov,4 which has been successful in variational c
culations for the GaAs/Ga0.7Al0.3As quantum well. It is ex-
pected to be a realistic trial function as it yields resu
which compare favorably with standard variational calcu
tions involving more than ten linear parameters and has b
shown to give higher binding energies for off-center po
tions of the donor impurity. The trial functionc for 1s- and
2p61-like states is

c~r,w,z!5G~r,w,z! f ~z!,

where f (z) is the solution to the square-well problem,

G5eimwr umuR~r!e2b2~z2zi !
2

and the radial functionR(r) is

R~r!5e2ar22b1r,

wherea, b1 , andb2 are three nonlinear variational param
eters. The variational energy is obtained by minimizing^Ĥ&
in Eq. ~1!.

We also apply the perturbation-variation method to cal
late the binding energy of the 2p0-like excited state. For this
computation, the unperturbed and perturbing Hamiltoni
are Ĥ0 and ĤV, respectively,
-

n

re

ia-
r
-

,
-
en
-

-

s

Ĥ05Ĥ101Ĥ201Ĥ30,

where

Ĥ1052
\2

2mw*
S ]2

]r2 1
1

r

]

]r
1

1

r2

]2

]f2D ,

Ĥ2052
\2

2

]

]z F 1

m* ~z!

]

]zG1V~z!2
e2d2

4p«0hwuzu
,

Ĥ305
2e2

4p«0hwd1r
,

and

ĤV52
e2

4p«0hw
F 1

Ar21~z2zi !
2
2

1

d1rG1
e2d2

4p«0hwuzu
.

~9!

For the 1s-like state, the variational calculations in the ne
section show thatb2→0, which is equivalent tod2→0 in the
form of Ĥ20 above. However, it is not known whether this
still true for the 2p0-like state and the parameterd2 is there-
fore introduced.

Although Ĥ20 is different from before, the correspondin
Schrödinger equation is exactly solvable. To calculate t
binding energy of the 2p0-like state, which is associated wit
the second subband, the unperturbed energy is

E1,01Ez~2!,

where Ez(2) is the energy of a donor electron~associated
with the second subband! obtained from the Schro¨dinger
equation forĤ20

H 2
\2

2

d

dzF 1

m* ~z!

d

dzG1V~z!1
c3

uzuJ F~z!5Ez~2!F~z!,

~10!

wherec35cd2 . For z.L/2, we have

Fbarrier9 ~z!2
2mb*

\2 @V02Ez~2!#Fbarrier~z!

2
2mb* c3

\2z
Fbarrier~z!50.

Defining W5kz, we obtain

Fbarrier9 2Fbarrier1
a2

W
Fbarrier50, ~11a!

wherea2522mb* c3 /\2k. For 0,z,L/2, we have

Fwell9 ~z!1
2mw*

\2 Ez~2!Fwell~z!2
2mw* c3

\2z
Fwell~z!50.

Definingw5kz and changing the independent variable tow,
we obtain

Fwell9 1Fwell1
b2

w
Fwell50, ~11b!
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whereb2522mw* c3 /\2k. A solution of Eq.~11a! is6

Ae2WK~12 1
2 a2,2,2W!2W

and a solution of Eq.~11b! is
y

on

ld
i

d

-
fo
e2 iwK~11 1
2 ib2,2,2w!2w,

whereK is the Kummer confluent hypergeometric functio
Hence, the eigenstate corresponding toEz(2) is
t
s

F~z!5H Ae2kzK~12 1
2 a2,2,2kz!2kz for z.

L

2

1

2i
@e2 ikzK~11 1

2 ib2,2,2ikz!2ikz2eikzK~12 1
2 ib2,2,22ikz!~22ikz!# for 0,z,

L

2
.

Since the square well and Coulomb potentials are symmetrical aboutz50, the wave functionF(z) corresponding to the firs
excited state of Eq.~10! should be an odd function. Lastly, we obtainEz(2), k, and k by using the boundary condition
mentioned earlier, which require the first derivative ofF(z). The latter is given by

F8~z!5

¦

Ae2kzK~12 1
2 a2,2,2kz!2k1Ae2kz1

2 ~12 1
2 a2!K~22 1

2 a2,3,2kz!4k2z

2kAe2kzK~12 1
2 a2,2,2kz!2kz for z.

L

2

1

2i
@e2 ikzK~11 1

2 ib2,2,2ikz!2ik2e2 ikz1
2 ~11 1

2 ib2!K~21 1
2 ib2,3,2ikz!4k2z

2 ike2 ikzK~11 1
2 ib2,2,2ikz!2ikz2eikzK~12 1

2 ib2,2,22ikz!~22ik !

1eikz1
2 ~12 1

2 ib2!K~22 1
2 ib2,3,22ikz!4k2z2 ikeikzK~12 1

2 ib2,2,22ikz!~22ikz!] for 0,z,
L

2
.

can
the
Therefore, writingEV5^ĤV&, we obtain the binding energ
by minimizing

E1,01Ez~2!1EV1EII1EIII 1EIV

with respect to the variational parametersd1 andd2 .
In the last part, we apply the perturbation-variati

method to calculate the energies of the 2p21 , 2p11 , 3p11 ,
and 4p11 excited states in the presence of a magnetic fie
For this computation, our unperturbed and perturbing Ham
tonians are taken from Eqs.~3a! to ~3d! and~8c!. The unper-
turbed states

c2p21
5e2c1rc1r f ~z!e2 iw

and

c2p11
5e2c1rc1r f ~z!e1 iw

are used to calculate the energies of the 2p21 and 2p11
states, respectively. Ther dependence of the unperturbe
states is determined from Eq.~6a! and f (z) is the first sub-
band state of the square well potential. Here,c1 is obtained
from Eq. ~5! where the unperturbed energyE3,611Ez(1) is
used to calculate the energy of the 2p61 state. Using degen
erate perturbation theory, the first order energy correction
the 2p61 states is found to be
.
l-

r

E2p61

VI 5
^c2p61

uĤ I1Ĥ IVuc2p61
&

^c2p61
uc2p61

&

5
2p

^c2p61
uc2p61

& Fc1
2cG21S 2

c

d14c1
1

15e2B2

64m* c1
4D

3S A2

kekL 1
sinkL1kL

2k D G6
eB\

2m*

whereG2 is defined in Eq.~12! below.
Similar to the above, degenerate perturbation theory

be applied to obtain the first order energy corrections for
3p11 and 4p11 states. The unperturbed states are

c3p11
5e2c1rc1r~12 2

3 c1r! f ~z!e1 iw

and

c4p11
5e2c1rc1r~12 4

3 c1r1 1
3 c1

2r2! f ~z!e1 iw

and the unperturbed energies are

E5,111Ez~1!

for the 3p11 state and

E7,111Ez~1!

for the 4p11 state. After some simplification, we obtain
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E3p11

VI [
^c3p11

uĤ I1Ĥ IVuc3p11
&

^c3p11
uc3p11

&
5

2p

^c3p11
uc3p11

& Fc1
2cG21 4

3 c1
3cG31 4

9 c1
4cG4

1S 2
c

d112c1
1

25e2B2

64m* c1
4D S A2

kekL 1
sinkL1kL

2k D G1
eB\

2m*

and

E4p11

VI [
^c4p11

uĤ I1Ĥ IVuc4p11
&

^c4p11
uc4p11

&
5

2p

^c4p11
uc4p11

& Fc1
2cG21 8

3 c1
3cG31 22

9 c1
4cG41 8

9 c1
5cG51 1

9 c1
6cG6

1S 2
c

d124c1
1

35e2B2

64m* c1
4D S A2

kekL 1
sinkL1kL

2k D G1
eB\

2m*
,

where

GN5S E
a

`

dx
xN11p

~2c1!N122
@H1

~N!~x!2N1
~N!~x!#A2e2k~x/c112zi !1E

b

`

dx
xN11p

~2c1!N122
@H1

~N!~x!2N1
~N!~x!#A2e2k~x/c122zi !

1E
2zic1

b

dx
xN11p

~2c1!N122
@H1

~N!~x!2N1
~N!~x!#cos2 kS x

2c1
2zi D

1E
0

2zic1
dx

xN11p

~2c1!N122
@H1

~N!~x!2N1
~N!~x!#cos2 kS zi2

x

2c1
D1E

0

a

dx
xN11p

~2c1!N122
@H1

~N!~x!2N1
~N!~x!#cos2 kS x

2c1
1zi D G

~12!
d
th

n

he
e
is

e

n
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e

e
s
.
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th

Å
1%
ria-
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r-
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n-
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s

ee-
th-
ing
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the
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g
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9%

1
igin
ge
for
he
andH1
(N) andN1

(N) are theNth derivatives of the Struve an
Neumann functions, respectively. Finally, the energies of
2p2 andnp1 states are obtained by minimizing

E3,611Ez~1!1E2p21

VI ,

E2n21,111Ez~1!1Enp11

VI

with respect tod1 wheren52,3,4.

III. RESULTS AND DISCUSSION

In the calculations below, when different electro
effective masses are assumed,7 mw* 50.0403me in the
In0.53Ga0.47As well material, andmb* 50.0795me in the
In0.52Ga0.48As barrier medium. At these compositions, t
ternary materials are lattice matched to the InP substrat
that interfacial strains are minimal. The barrier height
taken to be 0.65DEg ~Ref. 8! and the band-gap differenc
DEg between In0.53Ga0.47As and In0.52Al0.48As is given as a
function of aluminum contenty as7

DEg51.453y ~eV!.

Binding energies of the 1s-like ground state as a functio
of well size for a central donor are calculated using pert
bation theory and compared in Fig. 1 with those obtain
from the variational method described previously as ther
no relevant data or related calculations on donor energie
the GaxIn12xAs/AlxIn12xAs quantum well to compare with
When the dielectric constant is assumed to be the s
throughout the heterostructure as with most studies in
e

so

-
d
is
in

e
e

literature, the binding energy of a donor electron in a 150
well calculated with the perturbation method is less than
lower than the binding energy calculated using the va
tional method and the percentage difference narrows e
further for smaller well widths. This is due to higher unpe
turbed electron energies in the smaller wells, which tend
improve the results calculated from the perturbatio
variational method. When the difference in dielectric co
stants is taken into account, the binding energy calcula
from the perturbation approach is around 1.5% lower th
that calculated with the variational method for well width
up to 200 Å. It is significant that there is such close agr
ment in the binding energies calculated from the two me
ods. The figure also shows a marked increase in the bind
energy at all well widths when the difference between
two dielectric constants is taken into consideration since
image charges introduced would enhance Coulombic b
ing. The effect of different electron effective masses leads
an increase in binding energy arising from greater elect
confinement within the well, which is only apparent
smaller well widths below 100 Å. In general, the bindin
energy decreases with increasing well width correspond
to a larger electron-ion separation on average.

It is worthwile to note that the percentage change of 1
in the binding energy of the 2p21 state due to the dielectric
constant mismatch is more significant than that for thes
state. Classically for a central donor, an electron at the or
will not experience the Coulomb force due to the ima
charges. Since the wave function in the radial direction
the 1s state decays away from the origin while that for t
2p21 state is peaked away from the origin, the 2p21 state
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will be more affected when image charges are introduce
the barriers because the electron density will be compre
radially inwards. Similar considerations would apply to oth
excited states whose density distributions have a larger ra
spread about the central donor thus contributing to a la
binding energy.

In the perturbation calculation for a specific well size a
donor position, the donor binding energy is essentially de
mined by two competing contributions, the unperturbed
ergy and the perturbation energy correctiondE. This gives a
minimum in the energy at a specific value ofd1 . The param-
eter d1 , which appears in the wave function of the tw
dimensional hydrogenic ground state, varies from around
for a well width of L550 Å to about 1.7 forL5200 Å for
the cases considered, i.e., samem* and h, samem* but
differenth, and finally, bothm* andh different for well and
barrier regions for which cased1 is found to have the lowes
value corresponding to the lowest unperturbed energy am
these cases.

As the impurity moves from the center to the edge of
well, Fig. 2 shows that the binding energies of the grou
state found from the two methods are again in quantita
agreement with binding energies calculated by the pertu
tion method varying from 1 to 2 % below that obtained by
the variational method. Again the binding energies are s
nificantly higher~corresponding to lower values ofd1) for
all impurity positionszi when the differences in electron e
fective masses and dielectric constants in well and bar
regions are considered. The sizes of the perturbation ene
due to differentm* and h decrease with increasing we
width, which corresponds to the case where the electro
usually found in the well region. The image charges w
increase the probability of the donor electron to be found
the barrier region because of the Coulomb attraction exp
in
ed
r
ial
er

r-
-

.3

ng

e
d
e
a-

-

er
ies

is
l
n
ri-

enced by the electron from the image charges. Thus,
energy correction due to differentm* is increased when
hwÞhb . This increase is larger when the impurity is locat
nearer the well center as the image charges are corresp
ingly closer to the electron distribution. Also,d1 values are
not substantially different among the cases considered ex
when the impurity approaches the well edge when there
be a higher probability of finding the electron in the barrie
The lowest value ofd1 again occurs for the case when bo
m* andh are different.

In the cases investigated above for the ground state of
donor electron, when realistic values obtained from exp
ment are used formb* andmw* , it is found that in the varia-

tional method, the parameterb2→0 andE25^Ĥ2& coincides
with the first subband energy. However, when it is assum
that the electron effective massmb* in the barrier material is
the same as that in the well materialmw* 50.0403me , similar
calculations show thatb2;1014m22!aB

22 where the effec-
tive Bohr radiusaB5184 Å in this case. Thus a contributin
factor for b2→0 in this problem must be the much larg
effective mass in the barrier for the Ga0.47In0.53As/
Al0.48In0.52As quantum well. This is reinforced by the pre
dominance of the square-well potential over the Coulo
potential~as evidenced by a barrier height to effective ry
berg ratio of 160! which further confines the electron prob
ability distribution within the well.

It is found in the calculations for the 2p0 state that the
parameterd2 is extremely small. Also, the quantitativ
agreement between the results for the 1s state from pertur-
bation theory and from the variational method irrespective
well size and donor position suggest thatd2 is negligible for
the same reasons for whichb2→0.

The binding energies of the 2p0-like donor state in the
GaAs/AlxGa12xAs quantum well have been a subject of co
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troversy in the past.2–3, 9–11 Using the expression forf (z)
5sinkz, our test calculation with the perturbation-variation
approach for the 2p0-like state of a central donor in a well o
width L5100 Å coincides with that of Ref. 3 confirming tha
the 2p0-like donor state is associated with the second s
band.

Using the perturbation method, the binding energies
the 2p0-like donor state calculated as a function ofzi in a
100-Å Ga0.47In0.53As/Al0.48In0.52As quantum well are shown
in Fig. 3. The binding energies for the 2p21- and 1s-like
states calculated using the variational method are inclu
for comparison. Unlike the standard monotonic behavior
served with 2p21- and 1s-like states associated with the fir
subband, the curve of the binding energy of the 2p0 state
reveals a peak about midway between the center and ed
the well. Physically, this is readily understood as the 2p0
state, being associated with the second subband, has
highest probability density approximately midway betwe
the center of the well and the well edge. When the impu
is near the well center and moving away from it, the avera
donor ion-electron separation decreases; when the imp
is near to the well edge and moving towards it, the io
electron distance increases and the binding energy decre
Therefore, the dependence of the average electron-ion
tance on the donor position is physically consistent with
variation of the binding energy with donor position. Thu
the 2p0-like state has the highest binding energy when
impurity is off center. The nonmonotonicity of the bindin
energy with varying donor position is expected also for e
ergy states associated with higher odd parity subbands
similar symmetries. The absence of a concentration of e
tron density near the well center for the 2p0 states accounts
for the weak dependence of the binding energy withzi when
zi;0. When the donor moves towards the well edge,
average donor ion-electron separation increases and the

FIG. 3. Donor binding energy versus donor positionzi in a
100-Å Ga0.47In0.53As/Al0.48In0.52As quantum well, with mw*
50.0403me , mb* 50.0795me , hb512.44,hw513.9 for ~a! the 1s
state~s! and 2p21 state~h!, both calculated with the variationa
method,~b! the 2p0 state in zero field~n! and in a magnetic field
B55 T ~
!, both calculated with the perturbation method.
l

-

f

d
-

of

the

y
e
ity
-
es.

is-
e
,
e

-
ith
c-

e
be-

havior of the 2p0 state resembles that of the ground state
The curve ofd1 versus donor positionzi in Fig. 4 shows

a minimum for the 2p0 state and a comparison with Fig.
shows that the binding energy of the 2p0 state varies in-
versely withd1 , as is the case for the 1s state. In the pres-
ence of a 5-T magnetic field that introduces an energy co
ponentEIV,d1 becomes less sensitive tozi . The figure also
shows thatd1 decreases in a magnetic field and hencec1
increases, implying greater electron confinement around
z axis. The binding energy thus increases~as in Fig. 3! but
the dependence on the donor position is similar.

SinceĤV has essentially the same form asĤ8 whend2 is
negligibly small as found from our computations,EV for the
2p0 state andEI for the 1s state are compared in Fig. 5
Similar toEI for the 1s state,EV for the 2p0 state behaves in
an opposite manner to the unperturbed energy that conta
term varying as21/d1 . SoEV and the binding energy of the
2p0 state vary in a similar way as a function ofzi . ~This is
also observed for the 1s state when the binding energy an
EI exhibit similar behavior.!

By contrast, in the presence of a 5-T field,EV is positive
and increases monotonically with donor positions away fr
the center of the well. Becaused1 is reduced in a magnetic
field, the effect of the 1/d1 term in Eq.~9! exceeds that of the
first Coulomb term thus changing the sign ofEV in the pres-
ence of a magnetic field. When the impurity moves aw
from the well center,d1 decreases for the 2p0 state~as in
Fig. 4! and EV correspondingly increases. Near the w
edge, asd1 increases slightly, the average electron-ion se
ration increases, resulting in a net increase inEV.

In Fig. 6, the size of the energy correction,2EII of the 1s
state is smaller than that of the 2p0 state. This is due to the
fact that the 2p0 state, having higher energy, has a larg
penetration into the barrier than the 1s state. Also from the
same figure, it is observed that the size of the perturba
energy2EIII for the 1s state is higher than that of the 2p0

FIG. 4. Variation ofd1 with donor positionzi calculated with
the perturbation method in a 100-Å Ga0.47In0.53As/Al0.48In0.52As
quantum well, withmw* 50.0403me , mb* 50.0795me , hb512.44,
hw513.9 for ~a! the 1s state in zero field~d!, ~b! the 2p0 state in
a magnetic fieldB55 T ~m! and zero field~j!.
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state, the spread of the electron distribution from the ce
of the well being greater for the 1s state than for the 2p0
state, giving rise to the stronger Coulomb interactions w
the image charges. Thus, in Fig. 6, for the 1s state,2EIII is
one order of magnitude higher than2EII , but for the 2p0
state, these two perturbation energies are comparable
small in magnitude. The figure also shows that the dep
dence of the perturbation energy due to different effect
masses,EII on impurity position for the 2p0 state differs

FIG. 5. ~a! EI versuszi for the 1s state in zero field~d!. ~b! EV

versuszi for the 2p0 state in a magnetic fieldB55 T ~m! and zero
field ~j!. These are calculated with the perturbation method fo
Ga0.47In0.53As/Al0.48In0.52As 100-Å quantum well, with mw*
50.0403me , mb* 50.0795me , hb512.44,hw513.9.

FIG. 6. ~a! 2EII versuszi for the 1s state in zero field~s!. ~b!
2EII versuszi for 2p0 state in a magnetic fieldB55 T ~n! and
zero field~h!. ~c! 2EIII versuszi for 1s state in zero field~d!. ~d!
2EIII versuszi for 2p0 state in a magnetic fieldB55 T ~m! and
zero field ~j!. These are calculated with the perturbation meth
for a Ga0.47In0.53As/Al0.48In0.52As 100-Å quantum well, withmw*
50.0403me , mb* 50.0795me , hb512.44,hw513.9.
er

h

nd
n-
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from that for the 1s state. For the 1s state,2EII decreases
monotonically with donor position. On the other hand, t
curve of2EII for the 2p0 state versus donor position show
a peak when the impurity is about 0.3 of the well width fro
the well center. These trends follow from Eq.~8b! since for
both 1s and 2p0 states,2EII varies inversely withd1 . When
an external magnetic field of 5 T is introduced, the trend of
2EII in Fig. 6 is not affected by the magnetic field.2EII ,
which varies directly asc1 ~through the radial functionR! is
increased substantially whend1 generally decreases in
magnetic field but the increase in the perturbation energy
to the difference in dielectric constants,2EIII is much less.
Compared to the rest,2EIII shows the least increase in
magnetic field.

In Fig. 7, the perturbation energy due to the magne
field, EIV, shows substantial variation with donor positio
The curve shows a dip aroundzi.0.3L, whenEIV is at the
minimum and the binding energy is at the maximum.

The ratio of around 1% for the first-order energy corre
tion relative to the unperturbed energy for the 2p0 state im-
plies to a very good approximation, that the wave functi
varies as exp(2c1r)sinkz. This is consistent with the finding
in Ref. 9 that thez dependence of the variational wave fun
tion varying as sinkz within the well is much better than
another trial function~also with odd parity! depending onz
asz coskz.

Figure 8 shows that the experimental data12 for the 1s
22p61, 1s23p11 , 1s24p11 transition energies in a 150-Å
GaAs/Al0.3Ga0.7As quantum well are in reasonable agre
ment with the curve drawn through the values calcula
from the perturbation method. Since the magnetic field
taken into account as a perturbation, it is expected that
perturbation-variational method works better for weak
magnetic fields. It is observed that the calculated values
always slightly higher than the experimental data for stro
ger magnetic fields. This may be due also to other inter
tions that have not been considered in the computatio

a

d

FIG. 7. Variation of EIV with donor positionzi in a 100-Å
Ga0.47In0.53As/Al0.48In0.52As quantum well, withmw* 50.0403me ,
mb* 50.0795me , hb512.44,hw513.9 for the 2p0 state in a mag-
netic fieldB55 T ~d! calculated with the perturbation method.
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However, the general correspondence between experim
and theory over a range of magnetic fields lends suppor
the perturbation method.

CONCLUDING REMARKS

The binding energy of a donor electron in
Ga0.47In0.53As/Al0.48In0.52As quantum well has been calcu
lated for 1s-, 2p21-, and 2p0-like states. We have studied
perturbation-variational approach that allows a classifica
of energy states in terms of unperturbed two dimensio
hydrogenic states and corresponding subband states. In
absence of calculations of donor binding energies in this p
ticular quantum well or related experimental data of tran
tion energies involving donor states, the results from th
calculations have been compared with corresponding va
tional calculations. Although energy corrections have be
considered to only first-order perturbation, it is significa
that there is good quantitative agreement~to within 1.7%!
between the results from both methods for the binding en
gies of the 1s state calculated as a function of well width an
of impurity position for the various cases considered, i

FIG. 8. Transition energies in a 150-Å GaAs/Ga0.7Al0.3As quan-
tum well versus magnetic field applied perpendicular to the in
faces of well and barrier: experimental values of the 1s-2p21 ~s!,
1s-2p11 ~h!, 1s-3p11 ~n!, 1s-4p11 ~L!, transition energies and
calculated values of the 1s-2p21 ~d!, 1s-2p11 ~j!, 1s-3p11 ~m!,
1s-4p11 ~l! transition energies. The curves shown are dra
through the calculated points as a visual guide.
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same/different dielectric constants of well and barrier ma
rials of the quantum well and same/different electron eff
tive masses in these materials. As such, second-order en
corrections are not expected to be significant indicating re
tively little admixture of higher energy states in the secon
order perturbation approximation especially in narrow
wells. Even for wider wells, because the binding energ
decrease with well size, second-order corrections are
likely to be appreciable.

The analysis introduced earlier in terms of confluent h
pergeometric functions shows the perturbation-variatio
method to be a one-parameter calculation. This is corro
rated by the variational calculations where it is observed t
the parameterb2→0. The perturbation-variational metho
differs from standard variational techniques used in the
erature with regard to the choice of wave functions. In t
former method, the unperturbed states are chosen to be
eigenstates of an appropriately chosen unperturbed Ha
tonian that contains the adjustable parameter. However
the variational method, the variational parameters~some-
times as many as 13 in sophisticated treatments! enter di-
rectly into the trial function adopted. Moreover, differe
trial functions must be constructed for different donor sta
in the method of variation. The perturbation method th
offers a systematic approach in deciding the form of
wave function.

Because the perturbation method is a single-param
calculation, the computational time required is drastica
reduced compared to that for the variational method, p
ticularly for calculations involving image charges whe
the dielectric constant mismatch is taken into considerat
The latter effect~which is an order of magnitude higher tha
that due to the effective mass difference! is not negligible
for the In0.53Ga0.47As/In0.52Al0.48As quantum well system
and this is also the case from variational calculations on
GaAs/Al0.3Ga0.7As quantum well.3 In the perturbation-
variational method, the contributions to the binding energ
from the various perturbing Hamiltonians can be evalua
directly and it is found that in the absence of a magne
field, the main contribution is fromĤ8 followed by Ĥ- due
to the difference in dielectric constants. Furthermore,
perturbation-variational method can be readily extended
calculate energies of higher excited states.
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