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A “strained linear combination of bulk bands” method is introduced for calculating the single-particle
electronic states of strained, million-atom nanostructure systems, within an empirical pseudopotential Hamil-
tonian. This method expands the wave functions of a nanostrutsuperlattice, wire, and dpfs linear
combinations of bulk Bloch states of the constituent materials, over band indimed wave vector&. This
allows one to use physical intuition in selecting thandk that are most relevant for a given problem. This
constitutes a useful approximation over the “direct diagonalization” approach where the basis is complete
(individual plane wavesbut unintuitive. It also constitutes a dramatic improvement uporktheapproach,
where the continuum model Hamiltonian is used, losing the atomistic details of the system. For a pyramidal
InAs quantum dot embedded in GaAs, we find electronic eigenenergies that are within 20 meV of the exact
direct diagonalization calculation, while the speed of the current method is 100—1000 times faster. The sub-
linear scaling of the current method with the size of the system enables one to calculate the atomistic electronic
states of a million-atom system on a personal computer in about 10 h. Sufficient detail is provided in the
formalism, so that the method can be promptly implemer{i86163-18269)01024-3

[. INTRODUCTION (1) The actual physical symmetry of the nanostructure is
replaced in the EMA by an artificially higher-symmetry
Heteronanostructures such as superlatticespbedded group. This distorts qualitative features of the electronic
quantum wire$:® or embedded quantum ddt®day consti-  Structure. Examples include the followin@) The omission
tute the main platforms for electronic structure engineeting.of odd vs even oscillation in quantum filmé leading to an
This calls for accurate predictions of their electronic proper-2rtificially monotonic energy-thickness curvéo) The re-
ties. The standard approaches to the problem are thelacement of the true zincblendg symmetry of spherical
effective-mass envelope-function approximati@&MA) and ~ dots by spherical symmetry, which artificially disallowsgp
its multibandk - p generalizatior§,” where the wave function envelope function mixing> (c) The replacement of the true
#(x) of the nanostructure is expanded in terms of zoneC2, symmetry of a square-based pyramidal dot b{4
center k=0 or “T point”) Bloch bandgiindexedn) of the =~ Symmetry which misses the splitting pfstates and the in-
underlying periodic solid plane polarization anisotropy.
(2) The coupling of nanostructure states to X or L bulk

Ng N Ng bands is disallowedThusI'-to-X conversion of a quantum
Y(X)=——= > > CL [ur o)X= fo(X)Up n(X). dot electron state as a function of presstité or quantum
YNGR R T n ’ dot sizé® cannot be described by thex® k-p model, nor
(1) can thel character of some of the lowest dot electron states,
or theX mixing in (001) GaAs/AlAs superlattice®®
Here Ng is the number of bands included in the expan-  (3) The coupling of strain to the electron state is linear-
sion, ur ,(x) is the periodic Bloch functionk is the wave ized This could lead to errors as large as a few hundred
vector, f,(x) is the envelope function, and is the number meV.
of primary cells in the system. This method is exact if all  (4) Interfaces are nonexistent or idealizeéor example,
(Ng==) zone-center bulk bands are included. In practicejn superlattices lacking a common atom, such as
this approach has been implemented in the spirit of a modglinAs),,/(GaShb), with (n,m) integers. The interface can ei-
Hamiltonian, with a heavy truncation of the basis S¥g),  ther be Ga-As bonded or In-Sb bonded. They are treated as
mitigated by extensive empirical parametrization of thethe same irk-p models. In addition, interdiffused and inter-
Hamiltonian matrix. Retension of a single bandg&=1) mixed interfaces cannot be easily described bykthe mod-
leads to the “particle in a box™ description, whereas use ofels.
the highest occupied bulk valence bahgs, leads to the (5) Electon-hole interaction energies evaluated via enve-
“6 X6 k-p” generalization, and addition of the lowest un- lope functions can be significantly inaccurat@/ithin the
occupied bulk conduction ban;. leads to the “8<8 k  k-p approach, Coulomb energies can be overestimated by up
-p” generalization, etc. to 40% in a quantum ddf, while exchange energies can only
The simplicity of the model comes, however, at a cost thabe evaluated using a short-range analytical model which has
has been recognized only recently, when large basis set caleen shown recently to be incorrégt.
culations of thesame Hamiltonian became available for However, there are ways of improving the conventional
comparisor? 1% These include the following. effective massor k- p) models®® e.g., by adding a nonpara-
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bolic kinetic energy term; adding a state mixing term at thewave basige'*“ "} of Eq. (3) is classified only in terms of the
interface?® introducing nonlinear strain effects, etc. The for- kinetic energy: «2. In contrast, the EMA expansion of Eq.
malism can get very complicated, and the rapid increase iQ1) is “intuitive,” in that one can classify the basis set in
the number of parameters makes it quite intractable. terms of physical Bloch function$up,neik'x} and include

An alternative approaéhto this problem, which is more only those that are “low energy.” The consequence of this
along the lines ofb initio methods, is to avoid the decom- distinction is that one uses a large basis set of plane waves in
position of the wave function in Ed1) into envelope func- the pseudopotential approach. Even though we employ a
tions. Instead, the wave function is described by a variationtinear-in-size ‘O(N)” method?® treating dots made of
aIIy flexible pIane wave basis, and the potential is describe@oo 000 atoms requires more than 20 h of CPU time on a 128
as a superposition of atomic potentfdls,(r). This guaran- nodes Cray T3E machine. In this paper, we refer to this
tees that the physical symmetry of the system is preservegjirect solution of Eq(2) as “exact.”
and affords an atomistic description of surfaces, interfaces, Here we will present an approximate method to solve Eq.
and strain. Since the basis set is not drawn fidiike Bloch  (2) by changing the basis of E) to the basis of full zone
states, an off- character in the wave functions can be pulk Bloch state$Eq. (4) below]. This approximate method
readily described. In this approach, the single-particle Schrocan solve the same problem of E@) within 10 h on a

dinger equation is constructed as personal computer. The accuracy of this method is typically
1 10—-20 meV of the exact results.
v+ S W.(R x—R—d (R X This work is an extension to the “linear combination of
2 RE,‘Z, o(Rjvel (R0 Bloch bands”(LCBB) method, which is described briefly in

B Ref. 13. In the LCBB method, the wave functigiix) in Eq.
=Hy(X)=ep(x), (2 (2) is expanded in terms of full-zone Bloch states of the

where ¢(x) is the single-particle wave functiol denotes ~constituent bulk solids:
the position of the primary cell, and,(R) is the displace- 1
ment of atom of typex inside the primary celR. v (X) is a ¢E’n(x): _uk’n(x)eil«x (4

screened, spherical atomic pseudopotential that can be ex- JIN
tracted from local density-approximatighDA ) calculations
on bulk systems, and then adjusted empirically so as to fit thé"d
measured bulkgg)and properties while keeping LDA quality Ng Ny
wave functions” In this work, we will deal with local 0
' = C . 5
pseudopotentials () only. The weight functionV,(R) is W0=2 2 Cundin(0 ©

used to denote whether an atom of typeoccupies siteR
+d,(R). The atomic position$R+d,(R)} are relaxed with
respect to their “ideal” positionge.g., perfect zinc-blende
crystal structurgto minimize the strain energy. For strain-
dependent pseudopotentiaf* W, (R) could deviate from
0 or 1, being instead a function of local straif(x) is ex-
panded in a fixed plane-wave basis set

The system being calculated is a super¢altge box peri-
odic in all three dimensions. Agail is the number of pri-
mary cells in the supercelh is the band index, ankl is the
supercell reciprocal-lattice vector defined within the first BZ.
The Hamiltonian matrix elements are evaluated within the
basis se1{¢‘,3’n(x)}, and the resulting Hamiltonian matrix is
diagonalized to yield C, ,}. There are two advantages to
_ this approach.
P(x)= 2, A(k)e'“X, ) (i) The advantage relative to a plane-wave methBd.
“ (3)]: Unlike the plane wave expansion @f(x) in Eq. (3),
This approach(l) includes, via{R+d,(R)}, the true atom- expansion in Eq(5) allows one to select the physically im-
istic symmetry of the heterostructur@) is able to describe portant bands andk points. As a result, the number of basis
the multivalley(e.g.,I’-X) mixing via the ability to describe functions (NgXNy) in Eq. (5) can be reduced significantly
the whole Brillouin zone(BZ) Bloch states;(3) could be compared to the plane-wave basis. As a matter of (eee
used to study very small nanostructures, beyond the regiofiecs. Ill and 1V, it is possible to use a fixed number of basis
of parabolic approximation of the band structure, and beyondunctions in Eq.(5) to achieve the same degree of accuracy
the region of linear strain dependen¢é) retains interfacial for different system sizes. This is in direct contrast to the
properties pertaining to the atomic structures; &hdgiven  plane-wave expansions, where the number of basis functions
the atomistidi.e., nonenvelopenature of the wave functions scales linearly with the size of the system. This sublinear
¥(X), this method can also be used to calculate explicitly thescaling makes the LCBB method much faster thanQiil)
Coulomb interaction and the exchange interacti§rig. methods(e.g., the folded spectrum metH8dfor very large
This approach has been used to study quantum wells, sgystems.
perlattices, disordered superlattices, quantum wires, colloidal (ii) The advantage relative to the p method Eqg. (1)]: In
guantum dots, embedded pyramidal quantum dots, and corthe conventionak-p method of Eq(1), the Bloch function
position modulations in alloys. Excellent agreements withuy ,(X) of Eq. (4) is replaced by the zone centel’)( part
the experiment have been obtained for single-particle energyr ,(x). As a result, one can describe the band structure only
levels' exchange splitting® optical-absorption specfa  near thel' point®!° Furthermore, the Hamiltonian has to be
and the magnitudes df-X coupling®® changed from Eq(2) to a parametrized form so as to yield
The disadvantage of the expansion of E8). is that it  the correct effective masses. As a result, khp method is
does not lend itself to systematic approximations: The planedetached from the atomistic origins of E), and serves
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only as a continuum model for the envelope functions. Inonly inputs of our method. Explicit deformation-potential pa-
contrast, the LCBB methodl) retains the full atomistic rameters and continuum elasticity strain profiles are not
structure of the wave functions, enabling the use of theneeded.
Hamiltonian of Eq.(2) without parametrization; Eq2) de-
scribes the bulk band structure correctly throughout the BZ, Il. FORMALISM
even if only a single banfNg=1) is used in Eqg. (5)Thus A. Strain-free LCBB formalism
the method can be used to describ& couplings, nonpara-
bolic effects around thé& point, interfacial anisotropy, and
interface-induced state couplings.

The formulation of the LCBB method described in Ref.

Since the LCBB method is only briefly discussed in Ref.
13, we will review its formalism here, and will provide more
discussions on its selection of basis sets and computational

13 d dd . d th i " details in Secs. Ill and V, along with the discussions of the
oes not address strain, and thus pertains to unstraineq ~gg method. In the LCBB method, the atoms are as-

heterostructures, such as GaAs/AlAs. In reality, most séMig,meq to be in their unrelaxed ideal zinc-blende positions
conductor heterostructures involve some degree of strai R0+d°}. The nanostructure is placed in a periodic supercell
e.d., InAs/GaAs and InP/GaP. Strain can havg a significar%/ith ceﬁ edge vectorsL%,L%, L9} and reciprocal-lattice vec-
effect (up to a few hu_ndred me\on th_e electronic structu_re tors {k}. The zinc-blende reciprocal-lattice vectors are de-
of the system. In this paper, we will extend the PreViOUShqted ag G}. While k is restricted to the first Brillouin zone
LCBB method to describe strained systems; thus we call i the zinc-blende reciprocal lattice, &l exceptG=0 are

the “strained LCBB" or SLCBB method. This extension qside the first BZ. Each spatial point inside the supercell is
expands the usability of this approach from very limited jescribed by its Cartesian coordinate

cases(e.g., GaAs/AlA3 to all possible semiconductor het-  As described in Eq(5), the nanostructure wave function
erostructures, and thus constitutes a major improvement 08 expanded by the constituent bulk Bloch states, (X).

this approach. o . . The periodic party ,(x) of the Bloch function is described
Recall that the description of strain effects in tkep  py the plane wave functions as

model requires as input the continuum elasticity strain profile
of the system, and various deformation potential parameters. G
They are used to construct an explicit linearly strain depen- Uy, n(X) = N % A n(G)e™, (6)
dent Hamiltonian. On the other hand, in our atomistic ap- 0

proach, all we need to describe strain effects is to solve thevhere Ng is the number of zinc-blende reciprocal-lattice
Schralinger equation2) when {R+d,(R)} are not at the vectorsG within an energy cutoff. Using this basis s{eiﬁ'n}
ideal zinc-blende positions. Th§R+d,(R)} andv, are the  of Eq. (4), the Hamiltonian matrix elements are

Ng

. h?
(i AlBR =0 2 A (G| 5[+ G260 Sa, 0
G,G’

+3 Vo(|k+ Gk —G'[2)eda (+ =K =GO (k—k ) | A, 1(G), %

where(} is the supercell volume and,(q,) is the Fourier the same independent of system size; only a few bahgds
transform ofv ,(X): are needed in the basis set, axg is a constant for a given
plane-wave cutoff energy. Consequently, the evaluation of
1 g% 43 Eq. (7) is fast; the effort is independent of the system’s size.
Va(Q2)= V_oJ va([X)e'"d, 8 A direct diagonalization of the Hamiltonian matrix

<¢>E,,n,|ﬂ|¢‘k{n> yields the coefficient<y , in Eq. (5) and

2 3 . .
where g,=[q|* and Vo=£€,/N is the volume of a single o eigenenergy. This diagonalization step takes(Ng

primary cell, andWe(k) is a structure factor x N,)® operations, which in practice is comparable to the
1 evaluation of the matrix elements. The strain-free LCBB
WO(K) = — W._(R)eik Ro. 9 meth_od provides a fast and accurate way to obtain the eigen-
oK) Qg ;O «(Ro) © solutions of unrelaxed nanostructures.
The unapproximated equatidid) can be evaluated effi- ‘ lism ined
ciently if WO(k) is available. The calculation d\2(k) is B. SLCBB formalism for strained systems
facilitated by the fact that the aton, are on a regular grid, Reference systenStarting with an unrelaxed system

so fast Fourier transformatiofFT) can be used in Eq9).  {L?,L9,L3} and {R,+d%} as a reference system for our
Using this technique, the evaluation of the matrix elementSLCBB, we let the atoms and the supercell shape change,
in Eq. (7) requires=(Ngx N, X Ng)? operations. As will be minimizing the total elastic energy of the systéusing, e.g.,
discussed in Sec. lIl, the number lopointsN, can be kept an atomistic valence force field mod¥l Let the relaxed



PRB 59 LINEAR COMBINATION OF BULK BANDS METHOD FOR.. .. 15809

atomic positions be denoted #R+d,(R)}, and the relaxed formed Bloch function™ in the relaxed system can be defined
supercell edge vectors be denoted{lks,L,,L3}. One can, as
for example, take the anion positions {&&}; then each cat-

Ng
ion has a displacemefd,(R)} (the displacements for an- — [Arey 40 _
ions is zerd. Notice that, in the unrelaxed Bloch function | B1n) = NIX) by [ (%) 2(;: Acn(G)k+G), (13

¢>E,n(x) of the reference system, the periodic function . , .
Uy n(X) is commensurate with the unrelaxed atomic positionsWhereAk'“(G) is defined in Eq/(6) for a bulk system. The

0 . . ) o Index n now denotes collectivelyi) the band index(ii) the
E_Réﬁ ga}' :Ot with Ittr;ﬁ %'ISpl‘chd ?tommf {ahosmonsl? OIidentity of the constituent bulk materialg.g., GaAs and
«(R)}. As a result, the Bloch functions of the unrelaxe InAs), and(iii) the bulk strains used to calculatg (G) in

system form a poor basis set for the relaxed system. Wha_t 'éq. (6) (e.g., unstrained InAs, hydrostatically compressed

be done by mapping a point, described>byn the relaxed
system, to a corresponding poixt in the unrelaxed refer-
ence systemu(x)=x°. One can imagine obtaining this map-
ping by considering a rubber sheéwith a grid on i) ; :

wrapped on the unrelaxed supercell, and letting the rubbei(;r;%msgefo that the resultingpy.,)'s form an orthonormal
sheet deform following the displacements of the anions. '

materials, and strains are not mutually orthogonal at a given
k. We will thus explicitly orthogonalize these basis functions
at eachk point (using the Gram-Schmidt orthogonalization

Thus, we have the mapping(R) =Ry, andu(Lj)zL? for Ng
j=1, 2, and 3. The unrelaxed Bloch functidx{ivn(x) will be (qﬁk,nlqbkr,nr):E AL (G A 0 (G) Bk = Bnn Sk -
replaced by¢ﬁyn[;u(x)] as the basis function. © (14)
Strain-deformed Bloch basis séet us define a deformed
plane wave function as As in the case of the strain-free LCBB of E(p), the
eigenstata/(x) of the deformed system will be expanded by
k+G)= + /‘]S()X)ei(me)-u(x), (10) the deformed Bloch functionspy ,)
0 Ng  Ng

yvhereQ0 is 'ghe volume of the reference supercell, aifs) Y= > Cinl in)- (15)
is the Jacobian of the map(x), so that nok

d3u=J(x)d3x. (12 Hamiltonian matrix in a deformed Bloch basifo solve

for the coefficients{Cy ,}, we need to evaluate the matrix
elements of the HamiltoniaH of Eqg. (2) using the basis set
(k+Glk'+G")= 6w da.cr (12) | din)s th_en diagonalize th_e er_lsuing_HamiIton_ian _matrix.

’ ' We will break the Hamiltonian H into the kinetic energy
so the deformed plane waves form an orthonormal set. Sufyart H,=-1V2? and the potential energy part,
pose that the unrelaxed Bloch bagif ,(x) of Eq. (4) has =3, W, (R)v [x—R—d.(R)], and evaluate their matrix
the periodic paru, ,(x) defined by Eq(6). Then the “de- elements separately. For the kinetic-energy part, we have

Using Eq.(10), the orthogonality condition is

1 L [I) i . PN
(SralHil b n) =5 2 AL(G)Aw o (G') f g (Ve IO 0 [yl e midy
G,G’

=% > Az,n<G>Akr,nr(G'>Qiof [(k+G)-e()]-[(k'+G")-e(x)]e!( H"ECD 1oy

G,G’
1 * ’ 1 - - i(k"—k)-R ’ ’
=5 2 Ain(G)Aw (6" d66r(k+8) | 2 e(Ro)- e(Ro)e of-(k'+G"). (19
G,G’ 0

Here, the strain tensa(x) is defined asiu/ax. In Eq. (16), we have made two approximations. First, we have ignored the
gradient operating on the Jacobi functidfx). This “smoothe(x) approximation” is valid when the change in the strain is
smooth in space. Second, we have broken down the full space int¥igrahto the integral inside one primary cell and the
summationERO over the primary cells. For the integral inside one primary cell, we have only considered the variation of

e'(®~6) # in the integrand, and thus obtainéd .. Now, if we define

" 1 R R )
a(k)=5 ; €(Ro) - e(Ry)e' o, (17)

0

we have
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1 -
(BrnlHal o) =5 % Ain(G) AL 1 (G)(k+G) - a(k’—k)- (k' +G). (18)

Next we will evaluate the matrix element for the potential péyt Let us first derive the formula for the matrix element in
the deformed plane-wave basis function of EL):

1 H ’ !
<k+G|H2|k’+G’>=Q—j J(X) D v (Xx—R—d, )W, (R)eK' &' ~k=8)- (X 3y
0 R,a
1 | _
-y > J(Ro)wa(Ro)e*“k*“'Rov—fva(x—R—da)e'q-[ﬂ<X>*Rold3x
Ry, a 0
:%2 gade S J(Ro)Wa(Ro)e—i(k—k’)-Roeiq-[é<Ro)-da(Ro)—d21
@ Ro

1 .

xv—f v (x—R—d,)e'd <(Ro)- x"R=dJ)g3(x —R—(d ). (19
0

Here,Vo=Q,/N is the volume of one primary cell. In E¢L9), we have used=k’+G’ —k—G ande=du/dx. Again,

we have ignored the change &fx) within one primary cell. We have also usgdx) — ROiE(RO) -(Xx—R). This is valid for

smallx— R, which is the case in the integral df(x—R—d,), where the pseudopotentia)(x— R—d,) decays rapidly with
increasingx—R—d, . Also notice that, we have chang®d,(R) to W,(Ry), since, as indiceR and R, refer to the same
primary cell. Now, let us define

Ad,(Rg) = €(Ry) - dy(Ro) — . (20)
Using Eqgs.(20) and (8), Eq. (19) can be rewritten as

1 . . ] . -
(k+GlHolk' +G) == 3 @99 J(Ry)W,(Ro)e™ k™) Rogit 44u(Foly |q. &(Ry)[2). (21)
a Rg

A direct evaluation of the matrix elements formed by the sum in (Bd) requires a large number of operationsl X (N,

X Ng)?, whereN is the number of the primary cells in the system. The number of plane Wéyes typically ~60 when a
5-7 Ry plane-wave cutoff energy is used. The numbérpdintsN, is typically around 1000. But the number of primary cells
N is of the order of millions. Thus a direct evaluation of EB1) is impractical. We thus prefer to simplify ER1). Notice

that Ad,(R,) denotes the internal displacement of the cation atom from its “ideal” positeor (dg), thusq-Ad,(Rp) is
usually much smaller than 1. As a result, we can expelfid (R into 1+iq-Ad,(Ry). Let us also defing(Ry) = e(Ro)
-e(Rg) =1, thenV,(|q- e(Ro)|)=V,(@?+q- x(Ro) - q). Assuming the strain is small, thep(R,) is small; thus we can
expandV, to second order irq-)}(Ro) -g. Substituting these expansions into E21), we have

1 . 4 ,
(ktGlH k' +G')= = 3 9% 3 I(R)W,(Ro)e™ €K Rol V() +1V,,(49)q- Ady(Ro)
a Ro

“ 1
+V;(q2)q~)((Ro)-q+§V';(q2) ilE » 0i10i29i3%i4Xi12(Ro) Xizja(Ro) |, (22

whereV/(q,)=dV,(gy)/dg, andvi;(qz):dzva(qz)/dq%. Each index ofil, ... 4 runs through the three dimensions of
vectorq.
Now let us define a few structure factors:

1 4
Wek) = 2 IRo)Wa(Ro)e ™R,
0
1 .
W5(K)= 5 3 IRo)W,(Ro)Ad, (Roje o,
0

A 1 A . (23
W (K) == X J(Ro)W,(Ro) x(Rg)e ¥ Ro,
N R
0

1 .
iLizisia(K = ; J(Ro)W,(Ro) xii2(Ro) xizja(Ro)e ™ Fo.
0
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Substituting these structure factors into E2R), we obtain

(k+G|Holk' +G") = €@l v, (qD)We(k—k')+iV,(67)a-Wg(k—k) + V4 (q?)g- Wi (k—k')-q

1 " 2 e} !
+ EVa(q )i12 ” i10i20i39iaWit2i3j4(K—K") | (24)

The replacement of E421) by Eq.(24) leads to a speedup by 4,&s will be discussed in Sec. IV. Finally, the matrix elements
in the deformed Bloch function basis can be expressed in terrtisG|H,|k' +G'),

(nlHol by nr)= > Al n(G)A /(G )(k+G[H k' +G'). (25
GG’

In our pseudopotential calculation, we have #8ed SLCBB results against the exact results in Sec. V indicate
smooth plane-wave cutoff functian(|k+ G|?). This is nec-  that such errors are small. One possible reason for this is that
essary because we have a small number of plane wavése wave functions are not localized around the interface.
(Ng~60) for each primary cell. Iivo(|]k+ G|?) is not used,
the bulk band structure as a function lofcould be discon-
tinuous due to sudden changes of the number of plane waves
as thek point changes. The use af(|k+ G|?) smooths out In deriving Eq.(24) from Eq.(21), we have used a Taylor
this discontinuity. However, the use af(|k+G|?) also in-  expansion ofe'%29(Ro) in powers ofq-Ad,(Ry), and a
troduces additional terms in our formulas above. For a deTayk)r expansion Of\/a(qz_}_q.;((Ro).q) aroundqz_ These
tailed description of these additional terms, see the Appenruncated expansions can lead to errors. These approxima-
dix. Notice that, althought we started the derivation of OUrtions exist even when the strain is uniform as |onM
formalism by introducing the maping(x), at the end, inEq. and y(R,) are not zero. Notice that we have expanded

(24) [or Eq. (A6)], we only neede(Ro) andJ(Ro), not the v [q2+q- ¥(Ry)-q] to the second order of(R,). That

B. Taylor expansion approximation

detailed maping(X). means, for a major part, we have retained the second-order
effects of the strain. To see how large the error resulting
IIl. DISCUSSIONS OF APPROXIMATIONS from the “Taylor expansion approximation” is, Fig. 1 shows

the SLCBB eigenenergies vs strain for bulk InAs compared

In contrast to the exact solutions of Hg), we have used with the exact result. The SLCBB was calculated with an
several approximations in our SLCBB approach. The firstunrelaxed reference systgiRy,k} defined as th&=0 point
type of approximations concerns the evaluation of the matrijn the figure. We consider three types of straids B, and
elements in Eqs(18), (24), and (25). Because of these ap- C) taken from an elastic calculatioi$ec. \} at three loca-
proximations, for a given basis §éq. (13)], the calculated tions (see the inset to Fig.)linside an InAs pyramidal dot.
matrix elements from Eqs¢18), (24), and(25) are not exact. We see that, with outsemi) second-order expansion, the
The “smoothe(x) approximation” and “Taylor expansion pulk electronic states of the different strain regions in the

approximation™ belong to this category. The second type ofquantum dot have been reproduced within an error of
approximations concerns the truncation of the basis sets. In<10 meV.

stead of using a complete basis set, we have taken advantage
of the fact that, in our Eq.15), the nanostructure wave func-

tions are expanded in the physically meaningful basis set of C. Choice of basis sets
bandsn and wave vectork. We have thus truncated the basis

! i 1. Unstrained system
set to include only physically relevafib,k}.

We first discuss the convergence of the LCBB method
with regard to the number of bulk bandsand wave vectors
A. Smooth €(x) approximation k for the unstrained AlAs/GaAs system. The issue is how
A major approximation we made in deriving Eq4.8) many bands an#l points should be included in the basis set

and (24) is that we have ignored the change&ﬁk) [hence to obtain accurate results_:. Nc_Jt|ce that, in f[hls unstrained het-
e . L N ~ erostructure, the approximations of matrix element evalua-
J(x)] within each primary cell. This is the “smooth(x)

X Lok - . .__tion discussed in Secs. IIIA and 111 B do not exist. Indeed,
approximation.” It is because of this useful approximation . -+ elements calculated via K@) are exact. Thus the
that we do not need to know the detailed functjofx), but

. only error comes from the limited basis set. As shown in Fig.
instead we need only to knoW(Ro) and (Ro) at each 2, when six GaAs bands and six AlAs bands are included in
primary cellRy. This “smooth e(x) approximation” is ex- the basis set, the electron eigenenergies for
pected to be accurate in the region away from the interfacg,GaAs),/(AlAs) , superlattices are within 2 meV of the ex-
but near the interface, this approximation could in principleact calculations fom down to 1 ML. When the number of
introduce some errors. However, our numerical tests of théands is reduced to two for eaghpoint, the eigenenergy
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SLCBB for strained bulk solids Band truncation in SLCBB
for (001) (GaAs)m/(AlAs)m
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FIG. 1. SLCBB calculations for bulk InAs under different 38 T
strains. The end poiniE 1) strains forA, B, andC are taken from N
the interior of the pyramidal quantum dot studied in SecAVs at 39 L L L S
the center of the pyramidB is at the center of the base of the 0 5 10 15 20

pyramid, andC is shifted from pointB along the(110) direction, Superlattice period m

one-third of the distance away from the corner of the pyramid.
The unrelaxed reference system=(0) has a lattice constant of
a=5.879 A . The basis functions used in the SLCBB calculation
for the lowest electron state; and the highest hole statg are
described in Sec. V. The strains &fB,C points, 3.4% relative to
the reference system af=0 (not to the nature bulk InAs are (A)
Tr(e)—3=3.4%, €xx= €yy= €5 €xy=€y,~€x,~0; (B) Tr(e)—3=0,
€, (=€) =T%, €y=€,~€6,~0; (C) Tr(e)—3=0.3%,
€~ €= €y,) =8%, €, ~€,,~2%, €,,=1%.

FIG. 2. The effects of the number of bulk band basis functions
used in the SLCBB calculations ¢801) (GaAs),/(AlAs), super-
lattices. The solid lines are the exact results, and the dashed lines
are the SLCBB resultsa) The number of bandblg used in the
basis set equals 12: six from GaAs and six from Al&s.Ng=2,
from the fifth and sixth bands of GaAs f@rnear thel’ point, and
from the fifth and sixth bands of AlAs fdk near theX points. (c)
Ng=1, from the fifth band of GaAs fok near thel’ point, and the
fifth band of AlAs for k near theX points. 24k points are used in

. the basis set, 13 near thiepoint, and 11 near th¥ points.
error increases te-5 meV form>10 ML. For large super- P P

lattices, e.g.m=20 ML, including only one band in the ba-
sis set is enough to obtain the electron energies within 1@eed to includé points near thd” point. An important fea-
meV. Thus, for the large nanostructures for which thisture of the LCBB and SLCBB methods is that for simple
method is designed, just a fe@ll-zone bands should be shaped nanostructures, when the size of the system increases,
enough to describe the electron states. Usually, because tife numbeiN, of thek points needs not to be increased. The
the degeneracy of the bulk bands nearlthgoint, more bulk  basic idea is that, when the size of the system increases, the
band basis functions are needed to converge the nanostrugnvelope function of the electronic state becomes smoother.
ture hole states than the electron states. Note further that ti&s a result, the maximum value of tHevector needed to
hole states and electron states of a given nanostructure can éescribe the envelope function becomes smaller. This results
calculated separately using different basis sets. in the same number & points in the basis set, and is thus
As for the choice ofk points in the basis, one usually independent of the system size. This is demonstrated in Fig.
places them in regions near spedigloints, e.g., thé” point, 3. The exact lowest electron state of thé0])
the X point, and thel. point. Here one can exercise physical (GaAs),/(AlAs), superlattice is analyzed using E).
judgment to achieve economy. For example, when studyindghe sum of coefﬁcient§n|Ck,n|2 is plotted as a function of
aI'-X coupling, as in Ref. 13, one needs to include regionk and the superlattice periogh. As m increases, we have
both near thd” and X points, while in studying a state pri- more and morek points within the BZ. However, if we
marily derived from the bul" point, as in Sec. V, we only choosek according to a magnitude criterion &f,|Cy |2,
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strain profile of the system. As will be discussed in Sec. IV,
to calculate a pyramidal InAs quantum dot, we need to in-
clude 3—-4 differently strained bulk systems in the basis set,
L ' PO B : ' such as in the calculation of Fig. 1. If we include only a
0.01 F ; single bulk system in the basis set, the eigenenergies can
o000tk T V4 R often be in error of up to 100 meV. Note that the unrelaxed
LE08 { 0.1% line - CBMstate reference system defined in the begining of Sec. II B is used

s s s i s to generate{Ry,k}, but not to generate the basis set. The
basis functior{coefficientsA, ,(G) in Eq. (6)] can be gen-

001k . +[(GaAS)o4/(AlAS), ] erated from strained bulk systems, as discussed here.
-_——— -_—— hd o___o

k-points truncation in SLCBB
for (GaAs)m/(AlAs),, (001) superlattices

Lo oo

0.0001 F

N Eeh . ; ©, IV. COMPUTATIONAL CONSIDERATIONS
o 1 . . — . . In this section, we discuss some numerical details of this
W ook o+ |(GaAs)p/(AlAS)g ] method, which are important for its implementation. There
R - are two computational aspects to the implementation of the
0.0001¢ 00%” : °°o°oo ] SLCBB method:(i) evaluation of the matrix elements using
LEOBF 0 . . LT the deformed Bloch function badiEgs.(18), (24) and(25)],
1 . . , n , , : and (ii) diagonalization of the resulting matrix to get the
ootk ¢ |(GaAs)gs/(AlAS)ge|] eigenenergies and eigenstates.
L. R SO [
0.0001 0w’ 1 _ .
3 0.0,90%° %000 o 1 A. Matrix element evaluation
1.E-06 ERACS ORI ) o
02 015 01 005 0 005 01 o015 o2 The key to the current implementation is to have a fast
X r X evaluation of the matrix elements. This is made possible by

k (reciprocal vector of supercell) (a.u.) the use of Eq(24) instead of Eq(21). As mentioned in Sec.
I, the derivation of Eq(24) from Eqg.(21) reduces the com-
FIG. 3. The selection ok points in the basis set and its size putational effort of the matrix elemenggqg. (25)] from «N
dependence for (GaAg)(AlAs), superlattices. Exact electron x (Npx N, X Ng)? operations toc30(Ng X N, X Ng)? opera-
wave functionsy(x) of the superlattices are analyzed using Eq. tjong, given that all the structure factors in E€7) and(23)
(15) [equivalent to Eq(5) in this casg The basis function contri-  5re known. Here a prefactor 30 is used to represents the
bution to the wave function from eadtpoint[2,|C, ,/?] is plotted evaluation of the many terms in E@4) [or Eq.(A6)]. Since

here as a function df and the superlattice periad. If only the k the number of primarv cell8l is tvpically about a million
points withEn|Cnyk|2>0.001 are chosen, the numbengdointsN the use of Eg (24) yinstead ofyqu ();1) represents :’;1
is independent of superlattice sine Thus one can use the same —10000-fold spéedup )

number of basis functions in SLCBB for different size systems. Since all theR, points in Egs(17) and (23) reside on a

O of
) 5 L regular fcc grid, fast Fourier transformation can be used to
€.9.,2y|Cy n| °>1x 10" (above the dashed line in Fig).3  c5jcylate the structure factors in Eqd7) and (23), in a

the number ofk points is almost independent of. This  faction (<5%) of the total matrix evaluation time. There
important feature of the LCBB and SLCBB methods makes,re only six components to be calculated for the tensor

. . O N
their computational efforts scale almost@$éN"~) (see Sec. VW*(k), and 15 grouped components to be calculated for

IV). Thus these methods are suited ideally to studying very, X .
Iar)ge systems y ying )(Nial,iz,is,m(k)- Furthermore, to save memory, not klpoints

within the first BZ need to be stored. This is because, for a
given basis set, onli), k points inside the first BZ are used.
Thenk—k' in Eq. (24) occupies only a small fraction of the
To calculate the effects of strain on the eigenenergy taotal k points in the first BZ and only on thosepoints need
second order requires tha the Hamiltonian matrix ele- e storeq(k), We(k), We(k), Wo(k), andWe ., 5i4(K).
ments should be evaluated correctly to second draemwe In Eq. (23 h bri ”f] R ! ’IdJJ R
did in Eq.(24) and discussed in Sec. ll[|Band(ii) the wave n q'( ), eac pnmgry cell has on€&(Ro) andJ(Ro).
function should be correct to first order in strain. This meandn Practice, we have assigned oeRo) andJ(R,) for each
that the basis set should have sufficient variational flexibilityatom in the zinc-blende primary cell. In other worggR,)

to allow the wave function to change with strain. We intro- and J(R,) in Eq. (23) should be changed t&a(RO) and

duce the strain dependence into the basis set by including (Ry). To evaluates for a given atom, we have considered

bulk Bloch functions corresponding to a few types of stainsha four atoms bonded to that atom. If we ubg (k=1, 2

For example, to describe a bulk solid under various degreeg,y 3 {4 denote the three edges of the four-atom-cornered
of hydrostatic strains, one needs to include in the basis o

) ) ) 2 ' trahedron, andlw, are the corresponding three edges in
hydrostatically strained system in addition to the unstraine ~
system. To describe tH&01) uniaxially strained systems, an the unrelaxed reference system, thenfor the a“lm at the
additional(001) uniaxially strained Bloch function is needed center of the tetrahedron is calculated @g =€, dX-
in the basis set. The idea here is to have enough variationdhereafterJ,(R,) is calculated aslete,(R,)|. Notice that
degrees of freedom for the wave function to cover the wholeAd,(Ry) in Eqg. (23) is nonzero only for cation atoms since

2. Strained systems
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the anion atoms are used to represent the position of thend compare the results with the exact solutions of (.
primary cell. In Eq.(17), we have used the averagede Nanometer-sized semiconductor quantum dots can be grown
from the cation and anion atoms. using the Stranski—Kzr;emstanow growth mode in molecular
The calculation of Eqs(24) and (25) can be further P€am epitaxy(MBE)™ or metal-organic chemical vapor
speeded up by carefully rearranging the “do loops” in thedep05|t|or|2. When al7-M IrlAS is deposited on a QaAs
program overk, k', G, G’ andn, n’. The idea is that Eq substrate during a 550-570°C MBE growth, Ruvimov

: et al® reported{ 101} -faceted InAs pyramids formed on the
(:Zi)—[lii ,nf Gth_e Gn?a#oguza;gr%fhfz(ﬁrﬁg ?heepzrr:wdes-c(;ﬂlé,u?nﬁg surface. These surface InAs pyramidal quantum dots are sub-

mu_ltiplications need not be repe,ated. In practice, instead o?e%gnﬂgvceoﬁlrfj?egysﬁgﬁyggE’;Qgeltae)éerli'AS pyramidal
doing a double loop ovek andk’, one can have an outer g antym dot embedded in a GaAs matrix. The crystal struc-
loop over all possiblé—k’ values, and an inner loop over e s zinc blende. The square base of the pyramid is
the possiblé for eachk—k’. Within each loop for the same — 119 A (i.e., 2@, wherea is the lattice constant of GaAs
k—k' value, we can then store the results of E2d) for  The height of the pyramid is them=b/2=55 A . The pyra-
eachG—G’, and use them for differer® andk values. I mid is placed in a 48x40ax 20a supercell, filled with
doing so, we have effectively reduced a major part of theGaAs. The whole system contains a quarter of a million at-
(NgX N X Ng)? scaling toNZB>< N X Ng scaling. oms.

To carry out Eq(25), one needs the coefficientg ,(G) There is a 7% lattice mismatch between InAs and GaAs.
of the bulk Bloch function. This is obtained by direct diago- The atomic positions are relaxed using a Keating valence
nalization of the bulk Hamiltonian at each individuapoint,  force field(VFF) model® The strain profile of this system is
and for each constituent material and bulk strain. Again, théeported in Ref. 31. The hydrostatic strain and uniaxial strain
band index, material index, and bulk strain index are com£an be as large as 10% inside the quantum dot. The strain

bined into “n” in A, ,(G). Furthermore, at eack point,  effects on the local confinement potential can be larger
A, (G)’s for different “n” are orthogonalized, as shown in thar™ 500 meV. Thus it is essential to treat these strain

Eq. (14). The generation o\ ,(G) for all of the needed Effects accurately. . . .
basis functions takes 5% of the total matrix evaluation The electronic structure of this system using Hamiltonian
time. (2) can be calculated exactly using the parallelized folded

12,24 H H
Finally, since the Hamiltoniai is real, one can exploit SPECtrum method=SM).”*“"A 5-Ry cutoff energy is used in

symmetries to reduce the number of matrix elements ond'€ Plane-wave expansion. A smooth cutoff function/f
=0.8 is used, as described in the Appendix. The FSM results

needs to evaluate. First, due to the Hermitian symmetry,” ' X -
(dinlHl i ny= (b n|Hld)*. Second, due to were reported in Ref. 24. That study reyealed relatlonsh_lps
the time-reversal symmetry, (e nlH| by o) betvv(.aen.the shape of the quantur_n dot with thg state splitting,
—(¢_nlH|b_w n)*. As a result, only a quarter of the poIar|zat|qn, and number of confined states in the quantum
(Ngx N,)2 matrix elements need to be explicitly calculated. dot- The time to calcglate the conduction and valence-band

states of this system is about 20 h on 128 nodes of the Cray
T3E parallel machine. Here we are interested in using this
] ) ) o dot system as a test for our approximated SLCBB method.

_ After the whole matrix(¢y o|H| ¢y ') is obtained, itis  First we calculate the electron states of the system. We
diagonalized to get the eigenenergies and eigenstates. Thisdfoose the lattice constant of our unrelaxed reference system
done using standard numerical packages, BARACK. USu- g pe 5.879 A, which is between the GaAs lattice constant
ally, only the band-edge states are needed for nanostructuig_653 A) and the InAs lattice constant (6.058 A). We
calculations. We found it necessary in some cases, 1o fir§{gye used a sphere around Thepoint to select thé points
obtainA=(H—Ee()? by a matrix multiplication, then solve i the SLCBB expansion of Eq15). About 800k points are
the eigenstates &k Here,E,¢ is a reference energy placed ,sed. This corresponds to a grid of ten discretgoint in
inside the band gap. This folded spectrum meffietianges  each direction. Four strained bulk systems were used to gen-
the band-edge states from the middle of the energy spectrugyate the Bloch wave-function basis. The first one is GaAs in
to the lowest-energy states of the folded spectrum. Thus Wgs natural lattice constant of 5.653 A . The second one is
solve for only a few states, instead of the whole spectrumiyas in a compressed lattice constant of 5.879 A . The third
The diagonalization step scales &< Ny)°. If the number e is InAs in an average lattice constant of 5.879 A but
NgX N of the basis set is larger than 4000-5000, the tim%nderezz—1=3% uniaxial strain £ is the pyramid height
for the diagonalization part becomes larger than the time fOEiirectior). The fourth system is InAs, as in the third case, but
th.e'HamiItonian evalqation part. For a system with a few,yith an additonal 3%e,y, €y Strain. The choice of these
million atoms and using a few thousand deformed Blochy, |k systems is designed to cover the strain profile of the
funct|ons_, as the basis set, it typ|cal_ly takes 1-2 h t_o_ evaluatgystem, as shown in Ref. 31. Note that for a simpler system
the matrix elements on a workstation and an additional feWjie quantum wells and superlattices, the strain profile would
hours to diagonalize the resulting matrix. However, up tope mych simpler. Thus a smaller number of strained bulk
~400-MB memory might be needed to store the largesysiems would be needed in the basis set. For each of the
Hamiltonian matrix. above four systems, we have chosen only one full-zone band
(the first conduction bandas the basis set. As a result, there
are a total of 3018 basis functions. It takes about 1.4 min on
In this section, we will apply the SLCBB method to cal- & IBM 595 workstation to generate all the basis functions

culate the single-electron states of a pyramidal quantum do#, ,(G); 1.2 min to obtain ther(k) in Eq. (17) andW(k)'s

B. Diagonalization of the Hamiltonian matrix

V. RESULTS FOR A PYRAMIDAL QUANTUM DOT
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‘ ferences, like the size of the isosurface. However, the
SLCBB wave function plotted in Fig. 4 is only an approxi-
mate one. That is, to plot Fig. 4, we have projected the wave
function ¢(x) in Eq. (15) to up ,(x) [with a multiplication
envelope functionF,(x)]. The use ofur ,(x) instead of
¢ n(X) introduces some small errors in the plotted wave-
function amplitudeX,|F,(x)|2. Thus the small isosurface
difference between SLCBB and direct calculation in Fig. 3
should not be taken too literally.

Next we calculate the hole states. Here more basis func-
tions are needed to describe the degenerated top of the va-
lence band. Like the conduction state calculation, an unre-
laxed reference system with a lattice constant of 5.879 A is
used. The same four strained bulk systems and the same
k-point selections are used as for the electron state calcula-
tion. However, more bands are taken in the basis set for each
strained system. For the first bulk system of natural GaAs,
four bands are taken, from the first to the fourih;{ and
-4.1545 I'15,). For the other three systems, the three top valence

bands ["45,) are taken in the basis set. This results in 9909

basis functions. On the same IBM 595 workstation, it takes
D:0520 the same time to generate the basis functidpg(G) and to
obtain thea(k) in Eq. (17) andW(k)’s in Eq.(23), as in the
case of electron state calculations. It takes however 150 min
to evaluate the matrix elements in E5) [or Eq.(A6)]; 109
min to carry out a matrix multiplication to obtainH(
—E,ef)?; and another 316 min to diagonalize the resulting

. FIG. 4. The SLCBB calcula_ted electron states Qf an InAs pyra-(H — E,er)? matrix. In total, the calculation of hole states
midal quantum dot embedded in a GaAs matrix, with a base lengthykes about 9.6 h. This is more than ten times slower than the
equal 110 A and a height equal to 55 A . The results are comparegy|cyjation of the electron state, but is still about 100 times
with the exact resul'ts of Fhe folded-.spectrum method. Thg pumber{saster than the direct calculatiovia the folded spectrum
are the corresponding eigenenerg(igseV) and energy splitings. o0 Notice that about three quarters of the computer
The isosurfaces are plotted from the wave-function squares. Th{aT e is spent in calculating-{— E,.()2 and diagonalizing th
level values of the green and blue isosurfaces equal 0.25 and 0.75 o¥n - P - ref/ | ! g - 1Ing - € .
the maximum wave-function square values, respectively. resulting matrlx. A standard exact diagonalization rout|2ne is
used to diagonalize the extrema states of the-E,¢s)

in Eq. (23); 21 min to evaluate the matrix elements in Eqg. matrix. There may be room to improve the situation by using
(25 [or Eqg. (A6)]; and 10 min to diagonalize the 3018 an iterative diagonalization scheme, like the Lanczos
X 3018 matrix. Thus, in total it takes about 34 min to calcu-method. To store a 99689909 complex Hermitian matrix,
late the electron states of the quantum dot. This is aboubout 400-MB memory is needed.
1000 times faster than the direct calculation using the FSM. Figure 5 shows the wave function of the dot’s hole states
Should the system be larger, this ratio could also be. This iand the eigenenergies. The SLCBB hole state energies are
because the time for the current approach will not changdypically 11-22 meV lower than the exact energy. Again,
while the time of FSM will increase linearly with the size of this is mainly due to the limited variational degree of free-
the system. dom in the basis set, especially due to the limikegoints.

Figure 4 shows the electron wave function and energies ofhis is a more acute problem for hole state, since they tend
the pyramidal InAs dot. We see that the SLCBB CBM en-to have finer features in their wave function, as shown in Fig.
ergy has an error of 12 meV compared with the exact FSMs. The energy splittings have a maximum error of 10 meV,
results. The energy of SLCBB CBMW3 has a larger error of with the average error being 5.6 meV. The order of the states
29 meV. Notice that the SLCBB energy is slightly higher are the same for the SLCBB and FSM. The wave functions
than the exact energy. This is an indication that the energgf the SLCBB and FSM look similar. However, for VBM
error comes from a limited SLCBB basis deather than and VBM-1, the two wave-function lumps are more sepa-
from the matrix element evaluation error in E@4)]. A  rated in the FSM than in the SLCBB. This may simply indi-
strong restriction on the basis set is the numbek pbints.  cate that there are not enoulgpoints in the SLCBB basis to
With the limitedk points, it is difficult to describe the more describe the small wave-function lumps. Again, some fine
complicated wave functions of CBM3, causing a larger structure differences between the SLCBB and FSM in Fig. 5
energy error for this state. Notice also that the energy splitshould not be taken too literally, since we have introduced
ting between states has been reproduced accurately by tlsenall errors in plotting the SLCBB wave functions.

SLCBB method. The largest error for the energy splitting is It is nontrivial to obtain the correct hole wave functions.
9 meV. So, in this regard, the result of SLCBB is quite Unlike the case for the electron states, where the nodal struc-
satisfactory. The wave functions of the SLCBB and the di-ture followss, p, andd classifications, the hole states are
rect calculation are quite similar. There are some small difimore complicated, e.g., they are so intermixed as to have no

| Electron states

CBM

CBM+1

S\ .4.1816

0.0290 0.0271

CBM+2

0.0587

-4.0725 CBM+3
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__ developed based on the current formalism. The SLCBB re-
Hole states . . . .
sults differ from the exact diagonalization results only by
=20 meV in absolute energy levels, astll0 meV in the
energy splittings. The wave functions of the SLCBB are very
similar to those obtained in direct diagonalization. However,
o -5.3018 for a system containing a quarter of a million atoms, the
{ V) SLCBB is 100—1000 times faster than the direct FSM calcu-
lation. For larger systems, this speedup ratio will be even
%3354 larger. With the SLCBB method, the atomisticot the en-

velope function electronic structure of a million-atom sys-

tem can be calculated within 10 h on a personal computer.
B Another use of the SLCBB method is to study the contri-
VBM-1 bution of different bulk states to the eigenstates of a nano-

structure. This can be done by monitoring the change of the
eigenstates when some of the bulk bands in the basis set are
removed. This can also be done by plottBgCy | ¢ ) in

Eq. (15) for different band indexn. A simple summation of

=, |Cy nl? will reveal the magnitudes of different bulk band
contributions in quantum dot states. For example, the dot's
hole states shown in Fig. 5 are consisted of typically 95% of
the bulk heavy hole and 5% of the bulk light hole.

Finally, throughout this paper, we have ignored the spin-
orbit interaction in our calculatiot?. To include this interac-
tion is not difficult. One approach is to add a spin-orbit in-
teraction term in Eq(25). One can double the basis set of
Eqg. (13), so that there are spin-up and spin-down compo-
nents. Under this basis set, the terms in E2p) are the
diagonal terms within the spin-up and spin-down compo-
nents. The spin-orbit coupling can be introduced as addi-
tional diagonal and off-diagonal terms between spin-up and
spin-down components. The same technique of FFT can be
used as in Eq.23). A nonlocal potentialVS°(k+G,k’
+G') can be used to repladg,(qg,) for the spin-orbit inter-
action. However, the formalism of these additional terms can

FIG. 5. The SLCBB calculated hole states of the same INAsya much simplified comparing to the terms in E2@), since
pyramidal quantum dot as in Fig. 4. The results are compared Wi”énergy involved in these additional terms is small and low
the exact results of the folded-spectrum method. The same as iy jor anproximations are acceptable. A recent implementa-
Fig. 4 for the isosurface values. tion of the spin-orbit interaction version of the SLCBB pro-
gram shows thafl) the memory of the program will only be

nodes. These wave functions cannot be estimated withooubled due to symmetry2) the time to evaluate the matrix
explicit calculation. If the error of our approximation were elements increases by about 25%.

on the order of 100 meV, instead of the current 10-meV
value [for example, by removing the second-order term
Wi%i2i3i4 IN EQ. (24) or by using only a single strained bulk
system in the basis §etompletely different hole wave func- We would like to thank J. Kim for testing the SLCBB
tions will result, bearing no resemblance to the states showprogram for different systems, and A. J. Williamson and A.
in Fig. 5. Franceschetti for useful discussions. This work was sup-
ported by the U.S. Department of Energy, OER-BES, under
Grant No. DE-AC36-83CH10093. The calculation of the py-
VI. CONCLUSIONS ramidal dot using the parallelized folded spectrum method
We have presented a strained, linear combination of bulvas carried out on the Cray T3E machine in the National
band (SLCBB) method for calculating single-particle wave- Energy Research Scientific Computer CerftiéERSOQ.
functions and energies of nanosystems. This method repre-
sents an extension of the LCBB method to the strained het- APPENDIX: ADDITIONAL TERMS CAUSED BY THE

VBM-2

0.0101

-5.3425 VBM-3

VBM-4

ACKNOWLEDGMENTS

erostructure systems. This method correctly treats the effects SMOOTH CUTOFF FUNCTION
of strain on the electronic structure up to a major part of the . )
second order. Unlike the conventiorialp method, no ex- In a plane-wave pseudopotential calculation, the plane

plicit strain deformation potential parameters are used to rep/@vek+G is included in the basis set if
resent this strain effect. What is needed are the atomic posi-
tions and the atomic pseudopotentials. Sufficient details are

1
= — 2\
presented in this paper, so that a workable program can be E(k+G) 2|k+G| =Eeut, (AD)
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whereE,,, is a cutoff energy, usually about 5-8 Ry in our A smooth cutoff functionw(|k+ G|?) can be defined 4%
calculations.

1 if E(k+G)<pBE.y,
. nzr[Ecut— E(k+G)]
S T 21— BBy

where8=<1 is a control factor $=0.8 is used in the current calculatjon
To use this smooth cutoff function, the potential plet of the Hamiltonian will be changed to a nonlocal operator

o(|k+G|?)= (A2)

if BEc,SE(Kk+G)<Ecy,

HZ(XliXZ):f w(X—Xl)[% va[x_R_da(R)]Wa(R)]w(X_XZ)d3X! (A3)

wherew(x) is the Fourier transformation @$(|k+ G|?) in real space, and is a short-range function. Then the matrix element
(k+GJ|H,|k’+G’) can be written as

(c+ Gl + 6= o [ ¢J<x1>e<k+G>'#<X1)w<x—xl>{2 0 o[x~R=d,(RIW,(R)
0

i,a
X (X~ Xp) VI(Xp) e T8 1 g3y d3x,d3x. (A4)

Using the same approximation as we did in EtP), especially making the expansiqr(x|)—,u(x)iE(R0)~(x|—x), for |
=1 and 2, we have

1 . . , )
<k+G|H2|k'+G’>:N 2 ewdﬂ%} J(RO)WQ(Ro)eil(kik )-Rogid-Ad,(Ro)
@ 0

XV o(|a- €(Ro) |2 (| (k+G) - €(Ro) D (| (k' +G') - (Ro)|?). (A5)

This equation is the counterpart of E@1). Following the same approximation after E81), and expand[ |k+ G|+ (k
+G)- x-(k+G)] to the first order of k+G)- x-(k+G), and we have our final result as

(k+GH k' +G) =3 @l w([k+ G w(k'+G'|?)| V(@)W (k—K')+iV (¢%)q- Wi(k—k')

+o(lk+G[? o' (k' +G' [PV, (gD (k' +G')-We(k—k')- (k' +G")

+o'(|k+ G|2)w(|k’+G’|2)Va(q2)(k+G)~\7Vf(‘(k—k’)~(k+ G), (AB)

wherew'(q,)=dw(q,)/dg,. Equation(A6) should be used to replace EG4) in cases where a smooth cutoff functienis
used in the calculation. The kinetic-energy d&tt). (18)] remains the same.
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