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Resonant multilead point-contact tunneling
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We analyze a model of resonant point-contact tunneling between multiple Luttinger-liquid leads. The model
is a variant of the multichannel Kondo model and can be related to the quantum Brownian motion of a particle
on lattices withp flux through each plaquette~in the three-lead case, it is a honeycomb lattice withp flux!. By
comparing the perturbative and instanton gas expansions, we find a duality property of the model. At the
boundary, this duality exchanges Neumann and Dirichlet boundary conditions on the Tomonaga-Luttinger
bosons, which describe the leads; in the bulk, it exchanges the ‘‘momentum’’ and ‘‘winding’’ modes of these
bosons. Over a certain range of Luttinger-liquid parameterg, a nontrivial intermediate coupling fixed-point
controls the low-energy physics. The finite conductance at this fixed point can be exactly computed for two
special values ofg. For larger values ofg, there is a stable fixed point at strong coupling that has enhanced
conductance resulting from an analogue of Andreev reflection at the point contact.@S0163-1829~99!06023-3#
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I. INTRODUCTION

Despite being a subject of intense interest in recent ye
the study of strongly correlated electron systems has ha
checkered history, primarily for two reasons. On the o
hand, nonperturbative techniques— of which there are p
cious few—are required for their analysis. At the same tim
these systems often exhibit unexpected phenomena, ren
ing useless our intuition culled from Fermi-liquid theory a
other essentially perturbative problems. The grea
progress has been made on one-dimensional systems
particularly, quantum impurity problems. In this arena, po
erful techniques such as conformal field theory1 and the Be-
the ansatz,2,3 have led to the discovery of a number of u
usual properties~including spin-charge separation! which are
fundamentally nonperturbative.

In this paper, we analyze a quantum impurity model t
can be physically realized in a resonant tunneling junct
between multiple quantum wires or quantum Hall edges. O
interest in this problem is threefold. First, the results
find—both intermediate-coupling fixed points and enhan
conductance due to an analogue of Andreev reflection
strongcoupling—are interesting in and of themselves
cause they truly are, to use a cliche, exotic. Second, both
methods used and the result may shed light on some of
recurrent themes in the study of correlated electron syst
in which a single-particle picture is not valid. In particula
we demonstrate a highly nontrivial duality that exchang
strong and weak coupling. Recent progress in supersym
ric field theory and string theory hints at the possibility th
such strong-weak coupling dualties are a common, perh
even generic, feature of stongly coupled field theories. T
duality discussed in this paper has a very rich structure an
one of the best examples of such a duality in a stron
PRB 590163-1829/99/59~24!/15694~11!/$15.00
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correlated electron system. Finally, this model appears to
more generic and less fine-tuned than many similar on
which leads us to hope that our findings could have con
quences for future measurements.

In the next section, we formulate a model describing s
eral Luttinger-liquid leads. Electrons can tunnel at a po
contact from one of the Luttinger liquids to a resonant st
~e.g., a quantum dot or island!; from the resonant state, the
can then proceed and tunnel to another of the Lutting
liquid leads. A renormalization-group analysis shows th
when the Luttinger-liquid parameterg is greater than 1/3, the
tunneling process is relevant. In Sec. III, following,4–6 we go
to a limit in which we can make an instanton gas expans
of the strong-coupling limit;7 an examination of this limit
suggests a strong-weak coupling duality. This duality lea
us to propose the phase diagram of Fig. 4. There are t
interesting points in this phase diagram at which we c
extract a more detailed understanding of the physics of
model. Atg51, the electrons in the leads are noninteracti
If we assume that there is no interaction between the e
trons at the ends of the leads and an electron on the reso
state, then the problem is a free fermion problem, and can
solved exactly; the solution is discussed in Sec. IV. If, ho
ever, we assume that there is such an interaction, as w
for gÞ1, a different fixed point results.~We need such an
interaction in order to pass to the Toulouse limit, as we d
cuss below. Theg51 model can be continuously deforme
into thegÞ1 models only when this interaction is nonva
ishing.! We make a conjecture about the relationship b
tween these fixed points. Atg5A3, the model is self-dual;
this property allows us to deduce the conductance. Fina
for g.9, the strong-coupling fixed point is stable. At th
fixed point, as we explain in Sec. V, we find an analog
Andreev reflection, which leads to enhanced conductan
15 694 ©1999 The American Physical Society
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G.g. We also compute charge-transfer selection rules
elucidate the nature of this fixed point. We emphas
throughout the place of this model within the general fram
work of boundary conformal field theory and describe t
most unusual features—namely, the duality and the Andr
processes—from several different points of view.

II. THE MODEL

A. The model and formalism

We consider a model in whichN leads are coupled to
each other through a resonant state, as in Fig. 1. One pos
realization of this model is a quantum Hall bar in whic
quasiparticles or electrons can tunnel between several e
by first hopping from one edge to a dot or antidot and th
hopping from there to another edge. An alternative imp
mentation of this model is a resonant tunneling junction
tween N quantum wires. The former is more natural
described8 by the ‘‘unfolded’’ formalism of Fig. 2~a! in
which the leads are described bychiral bosons on aninfinite
line:

S05E
2`

`

dxE dt
g

4p
]xf i~]t1v]x!f i . ~2.1!

t is the imaginary time, andg and v are, respectively, the
Luttinger paramater and velocity of the bosons, which
take, without loss of generality, to be the same in all lea
The chiral bosonf i is an angular variable,f i[f i12p.

The quantum wire problem is more naturally expressed
terms of a nonchiral Luttinger liquid. This can be visualiz
in terms of the ‘‘folded’’ setup3,9,10of Fig. 2~b!, in which the
lead is modeled by anonchiral Luttinger liquid on the
halfline x,0:

S05E
2`

0

dxE dt
1

8p
@~]tw i !

21v2~]xw i !
2#. ~2.2!

@The two models are not quite equivalent since in a quan
wire or any other nonchiral Luttinger liquid, the electro

FIG. 1. A multilead resonant tunneling setup.
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creation operator has spin~i.e., h2h̄) 1/2 and scaling di-
mension 1/2g ~i.e., h1h̄) while the electron creation opera
tor in a chiral Luttinger liquid~2.1! is a dimension-1/2g,
spin-1/2g operator. The two models can be mapped into e
other by a transformation that mixes left- and right-movi
modes, but point-contact tunneling is insensitive to this m
ing, so all of our results apply equally to both the ‘‘folded
and ‘‘unfolded’’ model.#

The fieldsw i are taken to be angular variables satisfyi
the periodicity conditionw i[w i12p(2Ag) ~see Appendix
C!. ~The quantityg is related to the usual compactificatio
radius r of the bosonic string11 via r 52Ag.! In terms of
chiral fields, w i5w iR1w iL . By this ‘‘folding’’ procedure,
we have mappedf(x.0) to wL , as depicted in Fig. 2. We
will use both the folded and unfolded languages as con
nient. Throughout this paper, we usef i for unfolded, andw i
for foldedbosons.

The term that transfers charge to the resonant level is~in
the ‘‘unfolded’’ formalism, the corresponding term is th
same, but withw i /2Ag replaced byf):

St5t E dt(
j

~h jS
1e2 iw j (0)/2Ag1h jS

2eiw j (0)/2Ag!.

~2.3!

Here, we have replaced the charge state of the resonant
by a spin-1/2 degree of freedom. The spin raising and lo
ering operatorsS6 are the creation and annihilation operato
for an electron or quasiparticle on the resonant level. T
cocyclesh i must anticommute,

$h i ,h j%52d i j , ~2.4!

FIG. 2. The physical picture in the~a! ‘‘unfolded’’ formalism
and ~b! ‘‘folded’’ formalism.
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so that the tunneling operators have the correct bosonic c
mutation relations. This is true even when Eq.~2.3! transfers
anyonic quasiparticles between the leads, so this mode
g53 describes tunneling between quantum Hall edges via
antidot in the interior of a Hall droplet atn51/3. ~See Ap-
pendix A.! In this paper, we focus in detail onN53. In this
case, theh i ’s can be represented by Pauli matrices. In g
eral, theh i ’s are determined by the condition~2.4!. When
the leads are decoupled (t50), the fieldsw i have Neumann
boundary conditions atx50; for tÞ0, some other confor-
mally invariant boundary condition is dynamically generat
in the infrared.

Here, we are assuming that the level is perfectly reson
and that the different leads are coupled to this level with
same hopping strengtht. In an experiment, the resonance c
be tuned by controlling one parameter, such as a back
voltage. If there are three leads~the simplest case with a
nontrivial phase diagram!, then two more parameters must b
tuned to ensure that the hopping strengths are equal.

The fieldsf i , w i can be interpreted in terms of the vol
age drops along and between leads.12 In the ‘‘unfolded’’ for-
malism, the fieldf i can be discontinuous acrossx50, and
this discontinuity,f i(01)2f i(02), is proportional to the
voltage drop acrossx50 in the i th lead. When the leads ar
decoupled, there is no voltage drop along the ‘‘unfolde
leads, f i(01)5f i(02) or, equivalently, wR(0)5wL(0)
~Neumann boundary condition; see Appendix C!. On the
other hand, the voltage drop between leadsi and j at the
contact is proportional tow i(0)2w j (0). In most of the fol-
lowing, we will use the ‘‘folded’’ formalism, but all of our
results can be reinterpreted in the other language. In App
dix C, we discuss the conventions for these bosonic fie
w i . In particular, we discuss the mode expansions of th
fields and the zero modes, which play a crucial role in
following analysis. In terms of the ‘‘momentum’’ zer
modes~see Appendix C!, the Neumann boundary condition
have the effect of reflecting the zero modes of incom
states into those of outgoing states,PL

i 5PR
i . When tÞ0,

these momenta are instead shifted,PL
i 5PR

i 1Qi . The al-
lowed shiftsQi lie on a lattice that is connected to the pro
lem of quantum Brownian motion in a periodic potential,
we will discuss in the next section.

First, however, we note that the Kubo formula for t
conductance~obtained in the usual way, see, e.g., Ref. 4,
introducing a vector potentialA between the resonant leve
and one of the leads, say lead three, and differentiating
partition function with respect toA) takes the following
form:

G52gF12
uvu
2p

^w3~x50,v!w3~x50,2v!&G . ~2.5!

When t50, w3 is a free field with Neumann boundary co
dition at x50, so uvu^w3(x50,v)w3(x50,v)&52p and
therefore,G50, as we would expect since the leads are
coupled.

B. The Toulouse limit and quantum Brownian motion

Let us focus, for the moment, on the caseN53. The case
of generalN can be worked out in an analogous fashion, b
we choose not to give details here. We rewrite Eqs.~2.1! and
~2.3! as
m-
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S5E
2`

0

dxE dt
1

8p
]mw i]

mw i

1t d~x!(
j

~h jS
1e2 i (Ri

j
•w1R'•w)1h jS

2ei (Ri
j
•w1R'•w)!

~2.6!

where w5(w1 ,w2 ,w3) and Ri
15(1/6Ag)(2,21,21), Ri

2

5(1/6Ag)(21,2,21), Ri
35(1/6Ag)(21,21,2), and R'

5(1/3A2g)(1,1,1). With this notation, we have anticipate
the mapping to the problem of quantum Brownian motion
a honeycomb lattice with lattice vectorsRi

1 , Ri
2 , Ri

3 , andSz

keeping track of the sublattice. There is one step left bef
such an identification can be complete, namely, decoup
R'•w by going to the Toulouse limit as in Refs. 5 and 6. T
do this, we modify the Hamiltonian related to Eq.~2.6! by

H→H1 t̃ zd~x!S (
i

P i DSzY2Ag, ~2.7!

whereP is the momentum conjugate tow. The added term is
an interaction between the charge of the resonant level
the charge density of the lead at the point contact. As a re
of this term, the modified Lagrangian describes an intera
ing system even atg51 although in this case the interactio
takes place only atx50. Such a term is not forbidden by an
symmetry of the model and is known not to affect the lo
energy physics in the multichannel Kondo problem. We w
assume that Eq.~2.6! and the modified Lagrangian flow t
the same infrared fixed point and restrict our attention to
~2.7! from now on. This assumption does not appear to
valid atg51, which might be special tog51, as we discuss
in Sec. IV. The advantage of adding such a term to the
grangian is that we can now5,6 perform a canonical transfor
mation generated byU5ei t̃ z( iw i (0)Sz/2Ag. ~To be more rigor-
ous, we should useU5ei t̃ z( iw i (0)Sz/2Age2 i t̃ z( iw i (2`) Sz/2Ag,
which is overall charge neutral since only integer charg
can be added to the systen. The second exponential com
sates the fractional charge added at 0 by removing an e
amount at2`.! This has the effect of simultaneously remo
ing the term, which we just added and removing theR'•w
terms from the exponentials in the tunneling Lagrangian
we chooset̃ z51/N. This leaves us, finally, with the Lagrang
ian

S5
1

8p
]mki]

mki1td~x!(
j

~h jS
1e2 iRj

•k1h jS
2eiRj

•k!,

~2.8!

where

k5~kx ,ky ,kz!5S 1

A2
~2w11w2!,

1

A6
~2w12w212w3!,

1

A3
~w11w21w3!D ~2.9!

and
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R15A 1

3g
~2A3/2,21/2,0!,

R25A 1

3g
~A3/2,21/2,0!, ~2.10!

R35A 1

3g
~0,1,0!.

]kx and]ky are the Cartan generators of an SU~3! that ‘‘ro-
tate’’ the leads~which is a symmetry of the free Lagrangia
at certain special points such asg51,1/2). Yi and Kane6

showed that the three-channel Kondo problem is one o
class of models~namely, theg51/2 point! which may be
formulated as the quantum Brownian motion of a particle
a honeycomb lattice. In Eq.~2.8!, we have almost the sam
problem. The crucial difference is the presence of theh i ’s,
which results in ap flux through each plaquette of the ho
eycomb lattice. This may be seen by considering the am
tude for a circuit around a plaquette, which involves t
producth1h2h3h1h2h3521.

The RG equation fort may be obtained from the scalin
dimension of the fieldeiRi

•k, which is uRi u251/3g:

dt

dl
5S 12

1

3gD t1•••. ~2.11!

Hence, forg,1/3, t flows to zero in the infrared and th
leads are decoupled. Forg.1/3, t grows with decreasing
energy scales. The upshot of this growth will be analyzed
the next section using a duality property of this model.

The partition function may be expanded perturbatively
powers oft

Z5(
n

(
$ l j %

tn

n! E dt1•••dtndS (
j

e jR
l j D

3expS (
i . j

e ie jR
l i
•Rl j lnut i2t j u1 ipu~t i2t j !

3~12d l i l j
! D ~2.12!

l i51,2,3, e i561, and thee i ’s must alternate chronologi
cally. If we ignore the second term in the exponential, this
the partition function~at g51/2) of the three-channel Kond
model. It is a two-component Coulomb gas. The second t
gives a minus sign whenever the order of two unlike hop
exchanged, thereby implementing thep flux.

C. An auxiliary model

We will also consider a simpler model~which is dis-
cussed in Ref. 6! for the purposes of comparison with an
illumination of the resonant tunneling model describ
above. This model can be analyzed without going to a T
louse limit, and it exhibits Andreev reflection at a stron
coupling fixed point and a duality property with a straigh
forward interpretation. This instills us with more confiden
a

n

li-

n

s

m
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-
-

that these properties of Eq.~2.8! are generic and are no
particular to the Toulouse limit. It is defined by

S5E
2`

`

dxE dt
1

4p
]xf i~]t1 i ]x!f i

1td~x! (
iÞ j 51,2,3

~e2 i (f i2f j )/A2g1ei (f i2f j )/A2g!.

~2.13!

This is a model of quantum Brownian motion on a triangu
lattice. In fact, this is the same triangular lattice that is t
underlying Bravais lattice of the above honeycomb lattice
may be seen by writing the Lagrangian~2.13! as (]mk)2

1td(x)( je
k•Rj

1H.c. with k as in Eq.~2.9! andRj given by
Eq. ~2.10! with the first and second components inte
changed. Atg51, Eq.~2.13! has a fermionic representatio

S5E
2`

`

dxE dtc i
†~]t1 i ]x!c i1td~x!e i jkhkc i

†c j .

~2.14!

This is not a free fermion problem because the fermion
teracts with a spin-1/2 degreee of freedomh i which is
present to give the correct commutation relations, as in
~2.3!. This model is actually a generalized multichann
Kondo model in which the conduction electrons transform
an SU~2! triplet. The infrared fixed point can be solved fo
exactly13 in complete analogy with the methods employed
the ordinary multichannel Kondo model.1 Interestingly, it is
related to the ordinary four-channel, spin-1/2 Kondo fix
point. According to Ref. 6, the model flows to strong co
pling at g51. Hence, the fixed point of Ref. 13 is an e
ample of the Andreev reflection phenomenon, which we d
cuss below. The advantage of this model lies in the fact t
there are no complications related to the Toulouse limit,
there are in Eq.~2.8!. It is particularly simple from the point
of view of duality.

III. DUALITY

If g.1/3, t is a relevant coupling, so an initially smallt
grows in the infrared. Whent is large, the interaction term
td(x)( i(h jS

1e2 iRi
•k1h jS

2eiRi
•k) will be dominant and, in

a semiclassical analysis,k will be localized at one of its
minima. These minima are just the minima of the ener
bands of a particle on a tight-binding honeycomb lattice w
p flux per plaquette. There are four such energy bands s
the p flux doubles the unit cell and since the honeycom
lattice, to begin with, is a triangular lattice with a two si
basis.~We representh j by Pauli matricest j .) They corre-
spond to the four possibleSz and t3 quantum numbers. At
low energies,k will be in one of the minima of the lowes
band. These also form a honeycomb lattice; the latt
displacements—i.e., the analogs of theRi ’s—on this honey-
comb lattice are
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K15
Ag

3
~0,1!,

K25
Ag

3
~A3/2,21/2!, ~3.1!

K35
Ag

3
~2A3/2,21/2!.

The partition function can be approximated by an inst
ton gas in which the instantons are solutions of the Euclid
equations of motion in whichk tunnels between differen
minima. As usual in this class of problem,7 the instanton gas
expansion can be formulated as a Coulomb gas. There i
additional subtlety here, however: there is a Berry’s ph
associated with the instanton solutions. Details will be giv
in an appendix; here we merely sketch the derivation. N
that the minima of the lowest band surround a point at wh
the two lowest bands touch. The Berry’s phase will be
same for any path surrounding this point, so we conside
path that is very close to this point. For such pat
( j (h jS

1e2 iRj
•k1h jS

2eiRj
•k) can essentially be approx

mated by2dkxsz2dkysx . Here, the four energy bands
acted on byh ^ S, are reduced to the two-dimensional su
space of the two lowest bands, acted on by thes ’s. dkx , dky
arekx , ky measured from the contact point of the two ban
As dk traces out a path around 0, the spins rotates by 2p
and therefore accrues a Berry phase ofp. Hence, the Cou-
lomb gas defined by the instanton expansion is a Coulo
gas with phases. In fact, it is of precisely the same variety
that defined by the perturbative expansion of Eq.~2.8!. More
concretely, the instanton—or strong-coupling—expansion
Eq. ~2.8! is equal to the perturbative—or weak-coupling
expansion of

LDual5E
2`

0

dxE dt
1

8p
]mr i]

mr i1vd~x!

3(
i

~h jS
1e2 iK j

•r1h jS
2eiK j

•r !. ~3.2!

@Here r i is the field dual to the fieldki of Eq. ~2.9! in the
usual way, as reviewed in Appendix C.# The v→0 limit of
Eq. ~3.2! is equivalent to thet→` limit of Eq. ~2.8! and,
conversely, thev→` limit is equivalent to thet→0 limit. In
effect, the duality exchangesg→3/g. For smallv, we can
obtain the RG equation forv just as we did fort above

dv
dl

5S 12
g

9D v1•••. ~3.3!

Combining Eqs.~2.11! and ~3.3!, we find that thet50
limit is stable forg,1/3 while thet5` limit is stable for
g.9. In the former, weak-coupling limit, the fieldskx ,ky
have Neumann boundary conditions atx50, while r x , r y
have Dirichlet boundary conditions. In the latter, stron
coupling limit,kx ,ky satisfy Dirichlet boundary conditions a
x50, while r x , r y have Neumann boundary condition
Sincekz decouples, it always has Neumann boundary con
tions and consequentlyr z always has Dirichlet boundar
-
n

an
e
n
te
h
e
a
,

-

.

b
s

f

-

i-

conditions. For 1/3,g,9, both limits are unstable and w
expect a stable fixed point at intermediate coupling or,
other words, a nontrivial conformally invariant bounda
condition. The situation is summarized by Fig. 2. There
two intermediate coupling fixed points at which we can c
culate the conductance exactly

~a! At g51, where a free fermion formulation is availab
for t̃ z50. We do not believe that thet̃ z50 model has the
same physics as thet̃ z51/N model, but it is instructive to
compare the two cases.

~b! At g5A3, the model is self-dual. It may be shown7

that the duality exchanges

~ uvu/2p!^kxkx&→12~ uvu/2p!^r xr x&

~and the same forky) as we discuss in an appendix. At th
self-dual point,̂ kxkx&5^r xr x&, soG5g(2/3)52/A3.

We will also discuss at length the conductance at~c! the
strong-coupling fixed point, which is stable forg.9.

First, however, we will make a few more comments
the duality between Eqs.~2.8! and ~3.2!. One point that
should be emphasized is that the duality is only approxim
It is strictly a duality between the instanton gas expansion
Eq. ~2.8! and the perturbative expansion of Eq.~3.2! ~and
vice versa!. In the asymptotic low-energy limit, the instanto
gas expansion of Eq.~2.8! is the dominant contribution to the
partition function whent is large, but at finite energy ther
are corrections. If we were to attempt to formulate an ex
duality, these corrections would be manifested by the pr
ence of a presumably infinite number of additional irreleva
terms in Eq.~3.2!.3

The perturbative expansion of Eq.~2.8! is an expansion in
current-generating charge-transfer events while the insta
gas is an expansion in voltage-generating phase slips@in Eq.
~3.2!, the roles are reversed#. This formulation of the duality
concentrates on the values of the fields at the point cont
A related but alternative way of understanding this dua
arises from the natural notion of duality inherent in the bu
~i.e., the duality of closed strings with toroidal compactific
tion!. Let us first look at the simpler model Eq.~2.13!. Fol-
lowing the same steps that led to Eq.~3.2!, we see that Eq.
~2.13! is dual to a theory described by the same Lagrang
~2.13!, but with the replacementg→3/4g.6 Let us consider
the finite temperature partition function of this model in
finite-size system of lengthL, with Neumann boundary con
dition at x5L and the interaction atx50, as in Fig. 3~a!.

FIG. 3. The ~a! finite-temperature partition function of thi
model can be represented as~b! the closed string amplitude fo
propagation between boundary statesD andN.
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This partition function can also be viewed~by turning it on
its side! as the closed string amplitude for propagation b
tween the dynamical boundary state atx50 and the Neu-
mann boundary state atx5L, as in Fig. 3~b!. The closed
string states are specified by their momenta, winding nu
bers, and oscillator mode occupancies~see Appendix C for a
brief summary!. The allowed momentaP for the fieldsk
5@(1/A2)(2w11w2),(1/A6)(2w12w212w3)# are deter-
mined by the condition that the operatoreiP•k be well defined
under the identificationw i[w i12pA2g; the momenta form
a triangular lattice with lattice constantA1/g. @As usual, we
ignore kz5(1/A3)(w11w21w3), which decouples.# The
winding numbersW are the set of identifications,k[k
1W; they form a triangular lattice with lattice consta
2Ag/3. There are two dual descriptions that result from e
changing the momenta and winding modes. This is precis
the same duality between triangular lattices, which
changes the strong- and weak-coupling limits of Eq.~2.13!.
The model~2.8! can be embedded within this picture. Th
only additional structure is that the displacements on the
angular lattice~i.e., charge transfers or phase slips! are split
into pairs of displacements on the honeycomb lattice in b
the original and dual theories. Yet another interpretation
terms ofS-matrix selection rules will be dicussed in the co
text of the Dirichlet boundary condition.14

IV. SOLUTION AT g51

At g51, the model defined by Eqs.~2.1! and~2.3! has the
free fermion representation~in particular, with t̃ z50)

L5E
2`

`

dxE dtc i
†~]t1 i ]x!c i1d†]td1td~x!(

i
c i

†d

1c id
†. ~4.1!

The creation and annihilation operators of charge on
resonant state are denoted byd†, d rather thanS6, and
$d,c%5$d,c†%50, $d,d†%51. This free fermion problem
can be solved exactly. The equations of motion forc andd
are

]tc i~x!5]xc i~x!1tdd~x!, ]td5t(
i

c i~0!. ~4.2!

Integrating the first equation betweenx52e and x5e and
Fourier transforming, we find

c i~v,01 !2c i~v,02 !52 i td~v!, vd~v!5t(
i

c i~v!.

~4.3!

In the second equation,c i5@c i(01)1c i(02)#/2. From
theseN11 equations, we can extractc i(v,01) andd(v) in
terms ofc i(v,02). The solution may be summarized by th
S matrix, c i(v,01)5Si j c j (v,02), where

Sii 5
N22

N
, Si j 5

22

N
for iÞ j . ~4.4!

The resulting conductance is
-

-

-
ly
-

i-

h
n

e

Gfree fermion5~N21!S 2

ND 2

, ~4.5!

which, for 3 leads isG58/9. It is somehwat remarkable tha
a free fermion problem could be an interediate-coupl
fixed point with a nontrivial conductance. However, this
the maximal possible conductance consistent with unita
and permutation symmetry for a three-lead free ferm
problem. In other words, if we assume that

Sii 5r , Si j 5t for iÞ j . ~4.6!

then unitarity, Si j S* k j5d ik , imposes the constraintur u
>1/3, and, hence,G<8/9. In the next section, we will dis
cuss even larger conductances and the physics behind t

First, however, we will comment on the relationship b
tween thet̃ z50 and t̃ z51/N fixed points. We do not believe
that they are the same for two reasons. First, we expectG/g
to be nondecreasing asg is increased. WhileG(g51, t̃ z

50),G(g5A3, t̃ z51/3), G(g51, t̃ z50).G(g5A3, t̃ z

51/3)/A3. Hence, we expect thatG(g51, t̃ z51/3),G(g
5A3, t̃ z51/3)/A3,G(g51, t̃ z50). An additional point
for consideration is that a smallt̃ z is an irrelevant perturba
tion at the t̃ z50 fixed point, as may be seen by direct ca
culation. Similarly, a small deviation oft̃ z from 1/3 is irrel-
evant at the t̃ z51/3 fixed point, as may be show
perturbatively forg→1/3; it is reasonable to assume that th
is true even atg51. Hence, it is plausible that thet̃ z50
fixed point described above lies out of the plane of the ph
diagram of Fig. 4 with an unstable fixed point separating
from the t̃ z51/3 fixed point.

V. DIRICHLET BOUNDARY CONDITIONS AND
ANDREEV REFLECTION

A remarkable feature of this model reveals itself when
consider the conductance at thet5` fixed point, which is
stable forg.9 @and forg.1 in the auxiliary model~2.13!#.
At this fixed point, kx5(1/A2)(2w11w2) and ky

5(1/A6)(2w12w212w3) have Dirichlet boundary condi

FIG. 4. The phase diagram. The horizontal axis measuresg, the
Luttinger-liquid parameter, and the vertical axis measurest, the
hopping strength, and its dual variablev. The RG flows are as
indicated. The intermediate coupling fixed points which are sta
for 1/3,g,9 are represented by the curve connecting the we
and strong-coupling fixed points atg51/3 andg59, respectively.
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tions atx50, whilek35(1/A3)(w11w21w3) has Neumann
boundary condition. As a result,

uvu
2p

^w3~x50,v!w3~x50,v!&5
2

3

uvu
2p

^kx~0,v!kx~0,v!&

1
1

3

uvu
2p

^k3~0,v!k3~0,v!&

5
2

3
~0!1

1

3
~1!5

1

3
, ~5.1!

where the second equality follows from the respective
richlet and Neumann boundary conditions ofkx and k3.
Hence, from Eq.~2.5! we have

G3
max5

4

3
g. ~5.2!

This is an astonishing result, since it implies that the cond
tance is greater than ‘‘perfect’’ conductance,G5g. @The
scrupulous reader might worry that this surprising finding
due entirely to the Toulouse limit and is therefore incorre
However, since the same conductance is found for Eq.~2.13!
~which does not involve a Toulouse limit! at its strong-
coupling fixed point, we believe that this result is robus#
We interpret this as the signature ofAndreev reflection: the
conductance is greater than its naive maximum value
cause a hole is backscattered at the point contact. Be
pursuing this point further, let us note that for generalN, the
corresponding formula for the conductance at the stro
coupling fixed point is

GN
max5gS 22

2

ND . ~5.3!

For N52, the maximum conductance isG5g, the naive
value. ForN.2, the maximum conductance is greater th
this value, saturating atG52g in the N→` limit.

Why do we say that the enhanced conductance is du
Andreev reflection? In Eq.~2.5!, 222(uvu/2p)^w3w3& is,
essentially, the transmitted fraction of the incoming curre
2(uvu/2p)^w3w3&21 is the reflected fraction. Atg51,
where the leads have a free fermion description, transmis
t and reflectionr coefficients can be defined;

2~ uvu/2p!^w3w3&215ur u2.

By charge conservation we also have (N21)utu21ur u251.
G.g precisely because the reflection coefficient isnegative.
In other words, the reflected current is anegativefraction of
the incoming current—i.e., it is a current of holes rather th
electrons.

Physically, the Dirichlet boundary condition correspon
to the limit in which there is no voltage difference betwe
the different leads. ForN21.1 only a fraction of the cur-
rent that leaves one lead enters any one of the otherN21
leads. Without Andreev scattering, this would lead to a vo
age drop between the leads, but Andreev processes offse
voltage. An alternative perspective on the multichannel
richlet boundary condition is reminiscent of the situation e
-

c-

s
t.

e-
re

-

n

to

t;

on

n

s

-
his
i-
-

plored in Ref. 14. Suppose we viewN21 of the leads as a
single, aggregate lead described by a single charge bo
with gaggr5g(N21). Then, tunneling between the remai
ing lead and the aggregate lead is precisely the problem
tunneling between dissimilar Luttinger liquids considered
Ref. 14. This problem can be transformed to one with t
identical Luttinger liquids with 1/ge f f5(1/g11/gaggr)/2
5N/2(N21)g. For such a problem, it is not surprising th
the maximal conductance isGmax5gef f52g(N21)/N.

Yet another means of characterizing the Dirichlet boun
ary condition is byS-matrix selection rules for soliton sca
tering at the junction. This can be most conveniently done
the unfoldedformalism. We use tildes to designate the u
folded counterparts of thefoldedfieldski and their dualsr i .
Following Ref. 14, we obtain these by rewriting the chir

fields f1 , f2 , f3 in terms of the dual fieldsr̃ x , r̃ y , which
are free fields at the strong-coupling Dirichlet boundary co
dition fixed point. Working in the chiral~‘‘unfolded’’ ! nota-

tion, where k̃x5(f12f2)/A2, k̃y5(2f12f212f3)/A6,

we can define dual free fieldsr̃ x , r̃ y via

k̃x5 r̃ xu~2x!2 r̃ xu~x!, k̃y5 r̃ yu~2x!2 r̃ yu~x!.
~5.4!

This allows us to calculate the matrix elements

K expS 2 i(
j

qj
outf j~x5`!/A2gD

3expS i(
j

qj
inf j~x52`!/A2gD L . ~5.5!

The operatorse7 iq j
in,outf j (6`)/A2g create or destroy states wit

well-defined charges in the leads; the matrix elements~5.5!
are proportional to theS-matrix elements between these d
ferent charge sectors. For genericqj

in,out, Eq. ~5.5! will van-
ish, which means that there is no scattering between th
charge sectors in the strong-coupling~Dirichlet boundary
condition! limit. Equation~5.5! will be nonvanishing only if
the correlation function is charge neutral for each of the f

fields r̃ x , r̃ y , k̃z . Since these fields have Neumann bound
conditions, Eq.~5.4! has the following implications for Eq
~5.5!:

q1
in1q2

in1q3
in5q1

out1q2
out1q3

out,

q1
in2q2

in52~q1
out2q2

out!, ~5.6!

2q1
in2q2

in12q3
in52~2q1

out2q2
out12q3

out! .
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Solving for the charges of the ‘‘out’’ states, one finds th
the charge transfers lie on a honeycomb lattice,

DqW [S q1
in

q2
in

q3
in
D 2S q1

out

q2
out

q3
out
D 5

2

3 F S 2

21

21
D q1

in1S 21

2

21
D q2

in

1S 21

21

2
D q3

inG . ~5.7!

Note that, for general ‘‘in’’ states, which carry i
each lead multiples of the unit of charge, the charges
the ‘‘out’’ state in the individul leads are in general n
longer multiples of the unit charge. This is a phenomen
analogous to theN>3 flavor Callan-Rubakov effect.15

In fact, the ‘‘auxiliary model’’ at g51, discussed at the
end of Sec. II, is an example where this situation occ
at an infrared fixed point for free electron leads. F
example,

^e2 if j (x5`)/A2geif1(2`)/A2g&50 ~5.8!

for j 51,2,3. In other words, a unit of charge cannot be tra
ferred from one lead to another or even reflected by the ju
tion. On the other hand,

^eif1(x5`)/A2ge22if2(`)/A2ge22if3(`)/A2ge3if1(2`)/A2g&Þ0.
~5.9!

This is a clear illustration of the Andreev reflection prope
of the Dirichlet boundary condition forN.2. Three incom-
ing electrons in lead 1 are scattered into two electrons
each of leads 2 and 3 and an Andreev reflected hole in
1.
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APPENDIX A: COMMUTATION RELATIONS
FOR THE KLEIN FACTORS

We need to introduce the all-important Klein factorsh i ,
because we would like to treat the fieldsw i as independen
bosons that commute with each other. Since the underly
electron or quasiparticle operators are mutually fermionic
even anyonic, Klein factors must be introduced to comp
sate.

We begin with the commutation relations for the chir

version of the tunneling operators,Ti j 5ei *
xj

xi ]xf, which are
t

f

n

s
r

-
c-

to
ad

.

.

-
-

g
r
-

l

obtained from those of a single-chiral boson by imagini
that the three-lead dot/antidot setup is deformed as in Fig
As a result of the chiral boson commutations relations,
tunneling operators commute since they do not cross~see
Fig. 5!. This holds whether the objects which tunnel are f
mions or anyons.

In our model, we representTi j by Ti j 5h jS
6e7 if j

where h j and S6 commute with each other and withf j ,
and the f j ’s are mutually commuting. To ensure th
the tunneling operators commute, we must ta
h ih j52h jh i .

As an aside, we note that if the tunneling paths were
cross, however, the commutation relations are modified
Ti j Tkl1e2p i /gTklTi j 50. It is hard to imagine a setup in
which this occurs, but for such a scenario, we would need
take the even more exotic conditionh1h252e2p i /gh2h1

and cyclic permutations.

APPENDIX B: INSTANTON GAS BERRY’S PHASE
CALCULATION

As we briefly sketched in Sec. III, whent is large,
the interaction term dominates the action~2.8!. If we treat
k classically, it will be localized at one of the minima o
this term. To find these minima, we need to diagonal

the 434 matrix ( i(h iS
1e2 iRi

•k1h iS
2eiRi

•k). There
are four solutions for eachk, corresponding to the fou
bands of a particle on a honeycomb lattice withp flux
per plaquette. Physically, the fourfold multiplicity is du
to the two charge states of the resonant level and
two states of the auxiliary two-state system~i.e., h)
which keeps track of the statistics, whilek represents the
amount of charge that has been transferred betw
the leads. Diagonalizing( i(h iS

1e2 iRi
•k1h iS

2eiRi
•k) ~we

represent theh i ’s by Pauli matricest i), we find the four
eigenvalues

FIG. 5. Deformation of the resonant tunneling arrangement i
a chiral boson on a circle.
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e~k!56@36A92~312 cosky /A2!22 cos~kxA3/2g1ky /A2g!22cos~kxA3/2g2ky /A2g!#1/2. ~B1!
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The minima of each of these bands form a honeycomb lat
with translation vectors 2pQi , where theQi are given in Eq.
~3.1!.

We now consider the instanton gas expansion of the
tition function, where the instantons are solutions of the cl
sical equations of motion in whichk tunnels between neigh
boring minima. The modulus of the amplitude for the
tunneling events can be obtained in the standard way.7 The
phase can be obtained from the following Berry’s phase
gument. The eigenvector associated with the lowest ene
band is determined by two spinors, i.e., it lies in the dir
product space of the two two-dimensional spaces acted o
S6 and h i . As k tunnels from minimum to minimum
around a plaquette, these two spinors rotate. The ph
aquired in a circuit around a plaquette is determined by
angles traced out by these spinors,eifBerry5ei (uS1uh)/2, where
the factor of 1/2 follows from the fact thatSandh are spin-
1/2 degrees of freedom. Since, for any circuit,uS and uh
must be multiples of 2p, the only possible nontrivial phas
is p.

Let us consider the plaquette formed by the following
minima: (0,6pA2g/3), (pA2g/3,62pA2g/3),
(2pA2g/3,6pA2g/3). These six minima surround a max
mum of the lowest band, at (pA2g/3,0), where the two low-
est bands touch. The Berry phase will be the same for
loop that encloses (pA2g/3,0) precisely once since suc
loops can be adiabatically deformed into each other. T
Berry phase is most simply computed for an infinitesim
loop enclosing (pA2g/3,0). For such a loop, we can ap
proximatek5(pA2g/3,0)1p, and

(
i

~h j ^ S1e2 iRi
•k1h j ^ S2eiRi

•k!'S 1

2
Sx2

A3

2
SyD ^ 1

1SA3

2
Sx1

1

2
SyD ^ ~hz1hx!2pxSA3

2
Sx1

1

2
SyD ^ 1

1S 1

2
Sx2

A3

2
SyD ^ F SA3

2
py2

1

2
pxDhz

2SA3

2
py1

1

2
pxDhzG . ~B2!

As p adiabatically traces out a loop enclosingp50, the ef-
fective Zeeman field ‘‘seen’’ byh traces out a circle but the
effective Zeeman field ‘‘seen’’ byS does not. In other words
uh52p while uS50. This can be made more transparent
projecting Eq. ~B2! onto the two-dimensional subspac
which is degenerate atp50. In an orthonormal basis of th
two eigenvectors with degenerate eigenvalues atp50, Eq.
~B2! can be rewritten as

h~px ,py!t1const, ~B3!

wheret are a set of Pauli matrices andh(px ,py) rotates by
2p asp adiabatically traces out a loop enclosingp50.
e

r-
-

r-
gy
t
by

se
e

y

e
l

y

Hence, ap phase is aquired in a circuit about a plaque
Combining this with the magnitudes of the terms in the st
dard Coulomb gas expansion for the instanton gas,7 we see
that the dual theory to Eq.~2.8! is also a theory defined on
honeycomb lattice withp flux, namely, Eq.~3.2!.

APPENDIX C: BOUNDARY CONDITIONS ON BOSONS

In this appendix, we summarize the conventions that
use for compactified bosons. Consider a single bosonw(x,t)
compactified on a circle of radiusr. On a space of sizel with
periodic boundary conditions the action is

S05
1

8pE0

l

dxE
2`

`

dt~]mw!~]mw!,

where the functional integral is to be performed under
identification

w~x,t!5w~x,t!12pr 5w~x1 l ,t!.

In the Hamiltonian formalism, the field operator is

w~x!5wL~x!1wR~x!,

where

wL~x!5XL1x PL

2p

l
1 i (

n51

`
1

An

3@bL;neixn2p/ l1bL;n
† e2 ixn2p/ l #,

wR~x!5XR2x PR

2p

l
1 i (

n51

`
1

An
@bR;ne2 ixn2p/ l

1bR;n
† eixn2p/ l #. ~C1!

bL;n and bR;n are independent boson creation and annih
tion operators, and

@XL ,PL#5@XR ,PR#5 i S l

2p D
are two independent zero-mode coordinate and momen
operators. In these conventions, the two-point funtion of
boson is

^w~x,t!w~0,0!&52 ln~ uzu2!, ~z5t1 ix !. ~C2!

The momentum operator, conjugate to the fieldw(x) is

P~x!5~1/2!
2p

l H ~PL1PR!1 (
n51

`

An@bL;neixn2p/ l

1bL;n
† e2 ixn2p/ l #1 (

n51

`

An@bR;ne2 ixn2p/ l

1bR;n
† eixn2p/ l #J . ~C3!
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The total momentum

P5E
0

l

dxP~x!5~1/2!@PL1PR#
2p

l

is canonical conjugate to the total zero-mode coordinatX
[XL1XR . Since the latter is periodic with period 2pr , the
eigenvalues of ‘‘dimensionless momentum’’P must be of
the form

P5@PL1PR#5
2n

r
, nPZ. ~C4!

On the other hand, periodicity underx→x1 l gives, using
Eq. ~C1!

W[PL2PR5rm, mPZ, ~C5!

where we denote this quantity by thewinding number W.
The two conditions~C4! and ~C5! imply together that

PL5
n

r
1

1

2
rm, PR5

n

r
2

1

2
rm. ~C6!

The ~normal ordered! Hamiltonian is

H5
2p

l FL0;L1L0;R2
1

12G , ~C7!

where

L0;L5
1

2
PL

21 (
n51

`

n bL;n
† bL;n ,

~C8!

L0;R5
1

2
PR

21 (
n51

`

n bR;n
† bR;n .

Note that

1

2
@PL

21PR
2 #5@~n/r !21~rm/2!2#

gives the total scaling dimension.
The ~imaginary time evolved! Heisenberg operators ar

obtained from the expressions in Eqs.~C1! and ~C3! by ix
→z5t1 ix for left movers, and byix→z* 5t2 ix for right
movers.

Of interest is also thedual boson field,

w̃~x!5wL~x!2wR~x!. ~C9!

We see that the automorphism of the canonical commuta
relations

XR→2XR , PR→2PR , bR,n→2bR,n,
~C10!

bR,n
† →2bR,n

† , r→ r̃[2/r

~all left-movers unchanged! maps the boson fieldw(x) into
its dual w̃(x). The dual field then satisfies the periodici
condition w̃(x)5w̃(x)12p r̃ where r̃ is the dual compacti-
fication radius. Note that, most importantly, the duality au
morphism exchanges the lattice of momentaP ~C4! with the
lattice of winding numbersW ~C5!.
n

-

1. Boundary conditions

Next, consider the compactified boson insemi-infinite
space, 0,x,`. First, we impose a Neumann boundary co
dition ~bc! on the boson field atx50,

]xw~x,t!→0 ~x→0! ~C11!

For the purpose of analyzing this bc it is convenient
view the imaginary time coordinate as a spatial coordin
x̃[t, and the original spatial coordinatex as ~imaginary!
time, t̃[2x. The new complex coordinates, are just rotat
by 90° with respect to the original ones,z̃[t̃1 i x̃5 iz, z̃*
[t̃2 i x̃5(2 i )z* ~this may be viewed as a trivial conforma
transformation!. We may quantize the system as before, b
now on equalt̃ slizes. The ‘‘spatial’’ coordinatex̃5t is now
compact, corresponding to the original system being at fin
inverse temperatureb,`. The Heisenberg operators in th
quantization become

wL~ x̃,t̃ !5XL2 i ~ t̃1 i x̃ ! PL

2p

b
1 i (

n51

`
1

An
@bL;ne( t̃1 i x̃)n2p/b

1bL;n
† e2( t̃1 i x̃)n2p/b#,

wR~ x̃,t̃ !5XR2 i ~ t̃2 i x̃ ! PR

2p

b
1 i (

n51

`
1

An
@bR;ne( t̃2 i x̃)n2p/b

1bR;n
† e2( t̃2 i x̃)n2p/b#. ~C12!

Note that the currents associated with translations of
two chiral bosons are the left/right momenta

JL5 i ] z̃wL5PL

2p

b
1oscillators,

JR5 i ] z̃̄wR5PR

2p

b
1oscillators

The Neumann bc now becomes an identity for Heisenb
operators, acting on a boundary stateuN&:

]t̃ŵ~ x̃,t̃ !uN&→0 ~ t̃→0!. ~C13!

Integrating this equation overx̃ implies in particular that the
total momentum operatorP̂5 P̂L1 P̂R annihilates the Neu-
mann boundary state but the winding numberW5PL2PR
52PL may take on any value on the lattice specified in E
~C5!. ~This is clear since the Neuman bc only constrains
derivative of the field.! Specifically, the only momentum
states which the Neumann boundary condition supports
those withn50 in Eq.~C6!. Unfolding the semi-infinite sys-
tem with a boundary thus gives an infinite chiral system
bosons with only those momenta allowed.

Next consider the Dirichlet boundary condition

w~x,t!→0 ~x→0!.

After 90° rotation, this becomes an identity for Heisenbe
operators, acting on a ‘‘Dirichlet’’ boundary stateuD&:
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ŵ~ x̃,t̃ !uD&→0 ~ t̃→0!.

This implies that the total winding-number operator,Ŵ

5 P̂L2 P̂R annihilates the Dirichlet boundary state, but t
total momentumP52PL lies on the lattice specified in Eq
~C4!. ~The winding number is seen to be zero also becaus
the operator identityXL1XR50, which follows from the
Dirichlet bc.! Specifically, the only momentum states, whi
the Dirichlet boundary condition supports are those withm
50 in Eq. ~C6!. Unfolding the semi-infinite systems give
thus an infinite chiral system with only those momenta
lowed.

2. Duality and boundary conditions

It immediately follows from the discussion above that t
duality operation exchanges Dirichlet and Neuman bound
conditions. In other words, a Dirichlet bc on the fieldw is a
Neuman bc on the dual fieldw̃ and vice versa.

APPENDIX D: TRANSFORMATION
OF THE CONDUCTANCE UNDER DUALITY

The conductance can be obtained from the two-po
function

^J3~t1 ,x1!J3~t2 ,x2!&,

where

J3~t,x!5JL
31JR

3

andJR,L
3 is proportional to]wR,L

3 . At the location of the point
contact, we obtain four terms, which are pairwise equal,

^J3~t1,0!J3~t2,0!&52~11A!/~t12t2!2,

whereA is the amplitude of the right-left current-current co
relator,

^JL
3~t1 ,x1!JR

3~t2 ,x2!&5A/~z12z2* !2

(zi5t i1 ix i), and
d.
of

-

ry

t

^JL
3~t1 ,x1!JL

3~t2 ,x2!&51/z12
2

~similar for right movers!.
The conductance can be written as

G5g~12A!.

This we may rewrite as

G52g@1/22A/2#52g@12~11A!/2#.

On the other hand, we have

~11A!/25
uvu
2p

^w3~x50,v!w3~x50,v!&,

wherev is a real frequency, andw35wL
31wR

3 . Under dual-
ity, A→2A, which may also be written as

uvu
2p

^w3~x50,v!w3~x50,v!&

→F12
uvu
2p

^w̃3~x50,v!w̃3~x50,v!&G .
Clearly, for Neumann boundary conditions, we have ha
A51, yielding G50. For Dirichlet boundary condition on
w3 ~as opposed to Dirichlet boundary conditions onkx , ky!,
A521, yielding,G52g.

Since we will not impose boundary conditions on t
fieldsw j directly, we rewrite the conductance in terms of t
fields defined in Eq.~2.7!, giving

G5
4g

3 F12
uvu
2p

^kxkx&vG .
Under the duality transformation,kx→ k̃x5r x , we have

G→G̃5
4g̃

3

uvu
2p

^r xr x&v

At the self-dual point,g5g̃5A3, and

@12~ uvu/2p!^kxkx&v#5~ uvu/2p!^r xr x&v51/2.
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