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We analyze a model of resonant point-contact tunneling between multiple Luttinger-liquid leads. The model
is a variant of the multichannel Kondo model and can be related to the quantum Brownian motion of a particle
on lattices withsr flux through each plaquettin the three-lead case, it is a honeycomb lattice witfiux). By
comparing the perturbative and instanton gas expansions, we find a duality property of the model. At the
boundary, this duality exchanges Neumann and Dirichlet boundary conditions on the Tomonaga-Luttinger
bosons, which describe the leads; in the bulk, it exchanges the “momentum” and “winding” modes of these
bosons. Over a certain range of Luttinger-liquid paramgtea nontrivial intermediate coupling fixed-point
controls the low-energy physics. The finite conductance at this fixed point can be exactly computed for two
special values o0§. For larger values of), there is a stable fixed point at strong coupling that has enhanced
conductance resulting from an analogue of Andreev reflection at the point cd®at63-182009)06023-3

[. INTRODUCTION correlated electron system. Finally, this model appears to be
more generic and less fine-tuned than many similar ones,
Despite being a subject of intense interest in recent yearsyhich leads us to hope that our findings could have conse-
the study of strongly correlated electron systems has had guences for future measurements.
checkered history, primarily for two reasons. On the one In the next section, we formulate a model describing sev-
hand, nonperturbative techniques— of which there are preeral Luttinger-liquid leads. Electrons can tunnel at a point
cious few—are required for their analysis. At the same timegcontact from one of the Luttinger liquids to a resonant state
these systems often exhibit unexpected phenomena, rendée.g., a quantum dot or islapdrom the resonant state, they
ing useless our intuition culled from Fermi-liquid theory and can then proceed and tunnel to another of the Luttinger-
other essentially perturbative problems. The greatediquid leads. A renormalization-group analysis shows that
progress has been made on one-dimensional systems anehen the Luttinger-liquid parametgris greater than 1/3, the
particularly, quantum impurity problems. In this arena, pow-tunneling process is relevant. In Sec. I, followifid,we go
erful techniques such as conformal field thécapd the Be-  to a limit in which we can make an instanton gas expansion
the ansatZ? have led to the discovery of a number of un- of the strong-coupling limif; an examination of this limit
usual propertiegincluding spin-charge separatjowhich are  suggests a strong-weak coupling duality. This duality leads
fundamentally nonperturbative. us to propose the phase diagram of Fig. 4. There are three
In this paper, we analyze a quantum impurity model thatinteresting points in this phase diagram at which we can
can be physically realized in a resonant tunneling junctiorextract a more detailed understanding of the physics of this
between multiple quantum wires or quantum Hall edges. Oufmodel. Atg=1, the electrons in the leads are noninteracting.
interest in this problem is threefold. First, the results welf we assume that there is no interaction between the elec-
find—both intermediate-coupling fixed points and enhancedrons at the ends of the leads and an electron on the resonant
conductance due to an analogue of Andreev reflection &&tate, then the problem is a free fermion problem, and can be
strongcoupling—are interesting in and of themselves besolved exactly; the solution is discussed in Sec. IV. If, how-
cause they truly are, to use a cliche, exotic. Second, both thever, we assume that there is such an interaction, as we do
methods used and the result may shed light on some of tHer g+ 1, a different fixed point resultsWe need such an
recurrent themes in the study of correlated electron systenigteraction in order to pass to the Toulouse limit, as we dis-
in which a single-particle picture is not valid. In particular, cuss below. Thgg=1 model can be continuously deformed
we demonstrate a highly nontrivial duality that exchangednto theg# 1 models only when this interaction is nonvan-
strong and weak coupling. Recent progress in supersymmeishing) We make a conjecture about the relationship be-
ric field theory and string theory hints at the possibility thattween these fixed points. At= /3, the model is self-dual;
such strong-weak coupling dualties are a common, perhagbis property allows us to deduce the conductance. Finally,
even generic, feature of stongly coupled field theories. Thdéor g>9, the strong-coupling fixed point is stable. At this
duality discussed in this paper has a very rich structure and ifixed point, as we explain in Sec. V, we find an analog of
one of the best examples of such a duality in a stronglyAndreev reflection, which leads to enhanced conductance,
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FIG. 1. A multilead resonant tunneling setup. .
L ]
G>g. We also compute charge-transfer selection rules tha
elucidate the nature of this fixed point. We emphasize
throughout the place of this model within the general frame- N

work of boundary conformal field theory and describe the
most unusual features—na_mely, the qluallty a_nd the Andreev s 5 The physical picture in the) “unfolded” formalism
processes—from several different points of view. and (b) “folded” formalism.

Il. THE MODEL creation operator has spifie., h—h) 1/2 and scaling di-

A. The model and formalism mension 1/3 (i.e., h+h) while the electron creation opera-

We consider a model in whicN leads are coupled to tor_ in a chiral Luttinger liquid(2.2) is a dimensionTllg,
each other through a resonant state, as in Fig. 1. One possikle'n'llzJ operator. The'two mode!s can be mapPed into Qach
realization of this model is a quantum Hall bar in which Other by a transformation that mixes left- and right-moving
quasiparticles or electrons can tunnel between several edgBdes, but point-contact tunneling is insensitive to this mix-

by first hopping from one edge to a dot or antidot and ther"d; SO all of our results apply equally to both the “folded”
and “unfolded” model]

hopping from there to another edge. An alternative imple- , ) o
mentation of this model is a resonant tunneling junction be- 1Ne€ fieldse; are taken to be angular variables satisfying

tween N quantum wires. The former is more naturally the periodicity _ConditiOWPiE<pi+27T(2\/§) (see Appendix
describedl by the “unfolded formalism of Fig. 2@ in C). (The quantityg is related to the usual compactification

which the leads are described bjiral bosons on ainfinite ~ radiusr of the bosonic strintf via r=2yg.) In terms of
line: chiral fields, ¢;= ¢ir+ ¢;. . By this “folding” procedure,

we have mappe@(x>0) to ¢, , as depicted in Fig. 2. We
o g will use both the folded and unfolded languages as conve-
So= f_xdxf d7,— dxdi(9-+vd) i (22 nient. Throughout this paper, we uge for unfolded and¢;
for folded bosons.
7 is the imaginary time, and andv are, respectively, the The term that transfers charge to the resonant levghis
Luttinger paramater and velocity of the bosons, which wethe “unfolded” formalism, the corresponding term is the
take, without loss of generality, to be the same in all leadssame, but withp;/2\/g replaced bye):
The chiral bosonyp; is an angular variablep;= ¢+ 2.
The quantum wire problem is more naturally expressed in o = o =
terms of a nonchiral Luttinger liquid. This can be visualized S=t J d"Ej: (7;S"e 191020+ 5,57 el¢i(0/209),

in terms of the “folded’ setup®®%of Fig. 2(b), in which the 2.3
lead is modeled by aonchiral Luttinger liquid on the
halfline x<0: Here, we have replaced the charge state of the resonant level

by a spin-1/2 degree of freedom. The spin raising and low-
0 1 _ ) ering operator§™ are the creation and annihilation operators
So= f_wdxf dr g[(‘wi) +o(xei)]. (22 for an electron or guasiparticle on the resonant level. The
cocyclesn; must anticommute,
[The two models are not quite equivalent since in a quantum
wire or any other nonchiral Luttinger liquid, the electron {mi.m}=26;, (2.9
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so that the tunneling operators have the correct bosonic com- 0 1

mutation relations. This is true even when E23) transfers S=j dXJ d7g—dueid“ei
anyonic quasiparticles between the leads, so this model at ~~~ m

g=3 describes tunneling between quantum Hall edges via an

antidot in the interior of a Hall droplet at=1/3. (See Ap- +to(x) Y, (an+e‘i(Rﬁ'¢+Ri'¢)+ an‘e‘(R\jl"”Ri"P))
pendix A) In this paper, we focus in detail dd=3. In this J
case, then,'s can be represented by Pauli matrices. In gen- (2.6)

eral, then;'s are determined by the conditidi2.4). When

the leads are decoupleti<0), the fieldse; have Neumann where ¢=(¢;,¢,,¢3) and R|1=(1/6\/§)(2,— 1,—1), Rﬁ
boundary conditions ax=0; for t+0, some other confor- —(1/6,/g)(-1,2,-1), Rﬁ’=(1/6\/§)(—1,— 1,2), and R,
mally invariant boundary condition is dynamically generated:(US@)(l,l,l)_ With this notation, we have anticipated

in the infrared. . ; :
. : the mapping to the problem of quantum Brownian motion on
Here, we are assuming that the level is perfectly resonanphoneycomb lattice with lattice vectaRe | Rﬁ, Rf, ands,

and that the different leads are coupled to this level with th . ) i
same hopping strengthln an experiment, the resonance can eeping t_rack_o_f th_e sublattice. There is one step left bef(_)re
be tuned by controlling one parameter, such as a backgaﬁyCh an |de.nt|f|cat|on can be co_m_plete', namely, decoupling
voltage. If there are three leadthe simplest case with a Rl"P, by going t(.) the Touloqse I.|m|t as in Refs. 5 and 6. To
nontrivial phase diagramthen two more parameters must be d° this, we modify the Hamiltonian related to E@.6) by
tuned to ensure that the hopping strengths are equal.

The fields¢;, ¢; can be interpreted in terms of the volt- 3
age drops along and between le&dtis the “unfolded” for- H=HA 1500
malism, the field¢; can be discontinuous acrogs-0, and
this discontinuity,¢;(0+)— ¢;(0—), is proportional to the Wherell is the momentum conjugate o The added term is
voltage drop across=0 in theith lead. When the leads are an interaction between the charge of the resonant level and
decoupled, there is no voltage drop along the “unfolded”the charge density of the lead at the point contact. As a result
leads, ¢;(0+)=¢;(0—) or, equivalently, ¢r(0)= ¢, (0) of this term, the modified Lagrangian describes an interact-
(Neumann boundary condition; see Appendix ©n the ing system even a=1 although in this case the interaction
other hand, the voltage drop between leadmd | at the takes place only at=0. Such a term is not forbidden by any
contact is proportional tg;(0)— ¢;(0). In most of the fol- ~ Symmetry of the model and is known not to affect the low-
lowing, we will use the “folded” formalism, but all of our energy physics in the multichannel Kondo problem. We will
results can be reinterpreted in the other language. In Apperassume that Eq2.6) and the modified Lagrangian flow to
dix C, we discuss the conventions for these bosonic fieldéhe same infrared fixed point and restrict our attention to Eq.
;. In particular, we discuss the mode expansions of thes&.7) from now on. This assumption does not appear to be
fields and the zero modes, which play a crucial role in thevalid atg=1, which might be special tg=1, as we discuss
following analysis. In terms of the “momentum” zero in Sec. IV. The advantage of adding such a term to the La-
modes(see Appendix & the Neumann boundary conditions grangian is that we can néWperform a canonical transfor-
have the effect of reflecting the zero modes of incomingmation generated by = e'tz*i¢i(9S/28, (To be more rigor-
states into those of outgoing statéd,=Pr. Whent#0, guys we should usdJ = etz2ii(0)S,/2g - it,2i¢i(~ =) $,/23
these momenta are instead shifté®|,=Pr+Q'. The al- which is overall charge neutral since only integer charges
lowed shiftsQ' lie on a lattice that is connected to the prob- can be added to the systen. The second exponential compen-
lem of quantum Brownian motion in a periodic potential, assates the fractional charge added at 0 by removing an equal
we will discuss in the next section. amount at—.) This has the effect of simultaneously remov-

First, however, we note that the Kubo formula for theing the term, which we just added and removing Rie ¢
conductanceobtained in the usual way, see, e.g., Ref. 4, byterms from the exponentials in the tunneling Lagrangian if

introducing a vector potentiah between the resonant level | o choosd.=1/N. This leaves us finally, with the Lagrang-
and one of the leads, say lead three, and differentiating thg,, z ' '

partition function with respect tA) takes the following
form:

2 I, | S, / 2\g, 2.7

1 - -

ol S= g dukiaki+1800 2 (7,STe Rkt p5melR Ky,
= - = =0 — ]

G=2¢g|1 2W(¢3(x 0,0)p3(x=0,—w))|. (2.5 2.9

Whent=0, ¢3 is a free field with Neumann boundary con- \yhere
dition at x=0, s0 |w|(¢@3(x=0,0)¢3(Xx=0,w))=27 and
therefore,G=0, as we would expect since the leads are de- 1 1
coupled. k= (Kky,ky k)= ( E(_ P11t €02)a%( — @17 @21 2¢3),
B. The Toulouse limit and quantum Brownian motion

Let us focus, for the moment, on the cd$ée 3. The case
of generalN can be worked out in an analogous fashion, but
we choose not to give details here. We rewrite Egsl) and
(2.3 as and

(2.9

1
—(@1+ @2+ ¢3)
\/§(<P1 P27 @3
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1 that these properties of Eq2.8) are generic and are not
Rl= @(_ J312,-1/2,0), particular to the Toulouse limit. It is defined by

1 _ (" 1 -
RP=\/35(\312-1120), (2.10 S= | Ox] g dxdi(0: 4100,

+t8(x). 2 (e~ 1(4i=¢)N20 4 gi(i— #)/\29)
R= \/=(0,.1,0. e
39 (2.13

dky anddk, are the Cartan generators of an(Slthat “ro-

tate” the leadgwhich is a symmetry of the free Lagrangian This is a model of quantum Brownian motion on a triangular
at certain special points such as=1,1/2). Yi and Kan® lattice. In fact, this is the same triangular lattice that is the
showed that the three-channel Kondo problem is one of anderlying Bravais lattice of the above honeycomb lattice, as
class of modelgnamely, theg=1/2 poiny which may be may be seen by writing the Lagrangid®.13 as (a#k)2
formulated as the quantum Brownian motion of a particle °”+t5(x)EjeK'R'+H.c. withk as in Eq.(2.9) andR! given by

a honeycomb lattice. In Eq2.8), we have almost the same gq. (2.10 with the first and second components inter-

problem. The crucial difference is the presence of ﬂﬂ'e, Changed_ Ag=1, Eq(213) has a fermionic representaﬁon
which results in ar flux through each plaquette of the hon-

eycomb lattice. This may be seen by considering the ampli-

tude for a circuit around a plaquette, which involves the % -

product 7, 7, m3m17om3=— 1. S= f dxf dTlﬂiT(ar"'iax) ¢i+t5(x)5”k7]k¢r¢j .
The RG equation fot may be obtained from the scaling o (2.14

dimension of the fiele'R"', which is|R|2=1/3g: '

dt 1 This is not a free fermion problem because the fermion in-
a=(1—3— t+---. (2.1)  teracts with a spin-1/2 degreee of freedom which is
present to give the correct commutation relations, as in Eq.
Hence, forg<1/3, t flows to zero in the infrared and the (2.3. This model is actually a generalized multichannel
leads are decoupled. Fgr>1/3, t grows with decreasing Kondo model in which the conduction electrons transform in
energy scales. The upshot of this growth will be analyzed iran SU2) triplet. The infrared fixed point can be solved for

the next section using a duality property of this model.  exactly* in complete analogy with the methods employed in
The partition function may be expanded perturbatively inthe ordinary multichannel Kondo modelnterestingly, it is
powers oft related to the ordinary four-channel, spin-1/2 Kondo fixed

point. According to Ref. 6, the model flows to strong cou-
pling at g=1. Hence, the fixed point of Ref. 13 is an ex-
f dry-- 'dTn5( 2 €j le) ample of the Andreev reflection phenomenon, which we dis-
. cuss below. The advantage of this model lies in the fact that
A ) there are no complications related to the Toulouse limit, as
Xex;{ 2 €i€R-RI In[7j— 7| +im0(7— 7)) there are in Eq(2.9). It is particularly simple from the point
= of view of duality.

-3 > &

no e

><(1_5|i|j)) (212

I1l. DUALITY
[,=1,2,3, ¢=*1, and thee;’s must alternate chronologi- . . I
cally. If we ignore the second term in the exponential, this is rc:\tvgi>nlt/r?é tirll‘?r:r(;?jle://\?r?é t? iosug 'rng’ fk?eﬁrr:tg]rlgiilgnsg?rlllq
the partition function(at g=1/2) of the three-channel Kondo 9 iRk e iRk g. ' i o
model. It is a two-component Coulomb gas. The second terrhd(X)2i(7;S"e +7;S€™) will be dominant and, in

gives a minus sign whenever the order of two unlike hops i€ semiclassical analysig will be localized at one of its
exchanged, thereby implementing theflux. minima. These minima are just the minima of the energy

bands of a particle on a tight-binding honeycomb lattice with
. 7 flux per plaquette. There are four such energy bands since
C. An auxiliary model the 7 flux doubles the unit cell and since the honeycomb

We will also consider a simpler modéihich is dis- lattice, to begin with, is a triangular lattice with a two site
cussed in Ref. 6for the purposes of comparison with and basis.(We representy; by Pauli matricesr;.) They corre-
illumination of the resonant tunneling model describedspond to the four possiblg, and 73 quantum numbers. At
above. This model can be analyzed without going to a Toulow energiesk will be in one of the minima of the lowest
louse limit, and it exhibits Andreev reflection at a strong-band. These also form a honeycomb lattice; the lattice
coupling fixed point and a duality property with a straight- displacements—i.e., the analogs of Rés—on this honey-
forward interpretation. This instills us with more confidencecomb lattice are
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\/5 N

1YY TN
K*==-(0.1), S
K2=\/?§(\/§/2,—1/2), (3. P L
K3=§(— V312,~1/2). "L *=0 ~_

D
(@)
The partition function can be approximated by an instan-
ton gas in which the instantons are solutions of the Euclidean FIG. 3. The (a) finite-temperature partition function of this
equations of motion in whictk tunnels between different model can be represented @ the closed string amplitude for
minima. As usual in this class of problehthe instanton gas propagation between boundary staBesnd N.
expansion can be formulated as a Coulomb gas. There is an
additional subtlety here, however: there is a Berry’'s phaseonditions. For 1/3g<9, both limits are unstable and we
associated with the instanton solutions. Details will be giverexpect a stable fixed point at intermediate coupling or, in
in an appendix; here we merely sketch the derivation. Not@ther words, a nontrivial conformally invariant boundary
that the minima of the lowest band surround a point at whichcondition. The situation is summarized by Fig. 2. There are
the two lowest bands touch. The Berry’s phase will be thewo intermediate coupling fixed points at which we can cal-
same for any path surrounding this point, so we consider aulate the conductance exactly

path that is very close to this point. For such paths, (a) At g=1, where a free fermion formulation is available
3(7;Ste R k+ 5,5 €RK) can essentially be approxi- for T,=0. We do not believe that thg,=0 model has the
mated by — 6k,a,— dkyo,. Here, the four energy bands, same physics as thig=1/N model, but it is instructive to
acted on byp®S, are reduced to the two-dimensional sub-compare the two cases.
space of the two lowest bands, acted on bydte &k, , 5k, (b) At g=+3, the model is self-dual. It may be shofvn
arek, , ky measured from the contact point of the two bandsnat the duality exchanges
As 6k traces out a path around 0, the spirrotates by 2r
and therefore accrues a Berry phasemofHence, the Cou- (|w|/27) (keky)— 1= (|| /27)(r yr )
lomb gas defined by the instanton expansion is a Coulomb
gas with phases. In fact, it is of precisely the same variety aéand the same fok,) as we discuss in an appendix. At the
that defined by the perturbative expansion of E48). More  self-dual point(k.k,)=(rr,), soG=g(2/3)=2/\/3.
concretely, the instanton—or strong-coupling—expansion of We will also discuss at length the conductancécatthe
Eq. (2.8) is equal to the perturbative—or weak-coupling— strong-coupling fixed point, which is stable fgi>9.
expansion of First, however, we will make a few more comments on
the duality between Eqs2.8) and (3.2). One point that
should be emphasized is that the duality is only approximate.
It is strictly a duality between the instanton gas expansion of
Eqg. (2.8) and the perturbative expansion of E§.2) (and
vice versa. In the asymptotic low-energy limit, the instanton
gas expansion of E@2.8) is the dominant contribution to the
partition function whert is large, but at finite energy there
[Herer; is the field dual to the fielk; of Eq. (2.9) in the  are corrections. If we were to attempt to formulate an exact
usual way, as reviewed in Appendix]Cthev—0 limit of  duality, these corrections would be manifested by the pres-
Eq. (3.2 is equivalent to the— limit of Eq. (2.8) and,  ence of a presumably infinite number of additional irrelevant
conversely, the — o limit is equivalent to theé—0 limit. In terms in Eq,(glz),?’
effect, the duality exchangeg— 3/g. For smallv, we can The perturbative expansion of E@.8) is an expansion in
obtain the RG equation far just as we did fort above current-generating charge-transfer events while the instanton

4 gas is an expansion in voltage-generating phase [shp&q.

v ( g
1_ -

®)

0 1
Lpyal= fﬁdeJ' d@ﬁﬂri(ﬂ‘rﬁv&(x)

x> (g,Ste K psek . (3.2
|

dv_ 3.3 (3.2, the roles are reversgdrhis formulation of the duality
dl 9 ' concentrates on the values of the fields at the point contact.
A related but alternative way of understanding this duality
Combining Egs.(2.11) and (3.3, we find that thet=0  arises from the natural notion of duality inherent in the bulk
limit is stable forg<<1/3 while thet=o limit is stable for  (i.e., the duality of closed strings with toroidal compactifica-
g>9. In the former, weak-coupling limit, the fields,,k,  tion). Let us first look at the simpler model E.13). Fol-
have Neumann boundary conditionsat 0, while r,,r,  lowing the same steps that led to Hg.2), we see that Eq.
have Dirichlet boundary conditions. In the latter, strong-(2.13 is dual to a theory described by the same Lagrangian
coupling limit, k, , k, satisfy Dirichlet boundary conditions at (2.13, but with the replacemerg— 3/4g.° Let us consider
x=0, while r,,r, have Neumann boundary conditions. the finite temperature partition function of this model in a
Sincek, decouples, it always has Neumann boundary condifinite-size system of length, with Neumann boundary con-
tions and consequently, always has Dirichlet boundary dition atx=L and the interaction at=0, as in Fig. 8.

v
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This partition function can also be viewéldy turning it on

its side as the closed string amplitude for propagation be-*=
tween the dynamical boundary statexat 0 and the Neu- \
mann boundary state at=L, as in Fig. 3b). The closed

string states are specified by their momenta, winding num-

bers, and oscillator mode occupandisse Appendix C for a

brief summary. The allowed momentd® for the fieldsk
=[(IV2)(~ ¢1+ @2),(1N6)(— o1~ 9o+ 2¢3)] are deter-

mined by the condition that the opera®? * be well defined |
under the identificationp, = ¢; + 27\/2g; the momenta form =
a triangular lattice with lattice constanﬁg. [As usual, we
ignore k,=(1/\/3)(¢1+ ¢»+ @3), Which decouple$. The
winding numbersW are the set of identificationk=k FIG. 4. The phase diagram. The horizontal axis measyrése
+W; they form a triangular lattice with lattice constant Luttinger-liquid parameter, and the vertical axis measurethe
2@. There are two dual descriptions that result from ex-hopping strength, and its dual variabde The RG flows are as
changing the momenta and winding modes. This is preciselindicated. The intermediate coupling fixed points which are stable
the same duality between triangular lattices, which exfor 1/3<g<9 are represented by the curve connecting the weak-
changes the strong- and weak-coupling limits of Ef13.  and strong-coupling fixed points gt=1/3 andg=9, respectively.
The model(2.8) can be embedded within this picture. The

only additional structure is that the displacements on the tri- 2

angular lattice(i.e., charge transfers or phase slipse split Gree fermion:(N_l)(N) ' (4.5

into pairs of displacements on the honeycomb lattice in both

the original and dual theories. Yet another interpretation irwhich, for 3 leads i$&5=8/9. It is somehwat remarkable that
terms ofSmatrix selection rules will be dicussed in the con-a free fermion problem could be an interediate-coupling
text of the Dirichlet boundary conditiot. fixed point with a nontrivial conductance. However, this is
the maximal possible conductance consistent with unitarity
and permutation symmetry for a three-lead free fermion
problem. In other words, if we assume that

g

IV. SOLUTION AT g=1

At g=1, the model defined by Eq&.1) and(2.3) has the o
free fermion representatioiin particular, witht,=0) Si=r, §;=t for i#]. (4.6

then unitarity, S;;S*y;= 8k, imposes the constrainfr|

ﬁZJw dXJ dryf (9, +i00 ¢ +dTo,d+18(x) > ¢id =1/3, and, henceG=<8/9. In the next section, we will dis-
- i cuss even larger conductances and the physics behind them.
First, however, we will comment on the relationship be-

tween thet,=0 andt,= 1/N fixed points. We do not believe
The creation and annihilation operators of charge on th¢hat they are the same for two reasons. First, we expégt
resonant sta;te are (;Je(zjr;oted H?r,]_dfrath?r thans®, End to be nondecreasing ag is increased. WhileG(g=1,1,
E:g'nwlie gj)'l\glbeij egélétl);. #heléqza;ison;eif ;rgilgr?dz:a%dzm =0)<G(g=13,1,=1/3), G(g=1, t,=0)>G(g= V3,1,
are =1/3)/\/3. Hence, we expect thab(g=1,1,=1/3)<G(g
=3, 1,=1/3)/\3<G(g=1,t,=0). An additional point
for consideration is that a smal} is an irrelevant perturba-
tion at thet,=0 fixed point, as may be seen by direct cal-
culation. Similarly, a small deviation df, from 1/3 is irrel-

evant at theTZ= 1/3 fixed point, as may be shown
perturbatively forg— 1/3; it is reasonable to assume that this
is true even ag=1. Hence, it is plausible that the,=0
$i(0,0+)— #hi(0,0-)=—itd(w), wd(w)=t> ¥i(w). fixed point described above lies out of the plane of the phase
' diagram of Fig. 4 with an unstable fixed point separating it

+d’. (4.1

9b(X)=dypi(X)+tdS(x), 9, d=t>, %(0). (4.2

Integrating the first equation betwear — e andx=e€ and
Fourier transforming, we find

“3 from thet,=1/3 fixed point.
In the second equationy;=[;(0+)+ ¢;(0—)]/2. From
theseN+ 1 equations, we can extragt(w,0+) and.d(w) in V. DIRICHLET BOUNDARY CONDITIONS AND
terms of¢;,(w,0—). The solution may be summarized by the ANDREEV REFLECTION
Smatrix, ¢i(w,0+)=S;#;(w,0—), where _ _
A remarkable feature of this model reveals itself when we
N—2 -2 o consider the conductance at the« fixed point, which is
Si=—y STy for i# (4.4  stable forg>9 [and forg>1 in the auxiliary mode(2.13].

At this fixed point, k.=(1/\2)(—¢1+¢,) and ky
The resulting conductance is =(1/\/6)(— ¢1— @,+2¢3) have Dirichlet boundary condi-
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tions atx=0, whileks= (1//3)(¢;+ ¢»+ @3) has Neumann plored in Ref. 14. Suppose we vieM— 1 of the leads as a

boundary condition. As a result, single, aggregate lead described by a single charge boson
With gagq,=9(N—1). Then, tunneling between the remain-
|| 2 || ing lead and the aggregate lead is precisely the problem of
ﬁ<¢3(X=0,w)QD3(X:0,w)>= 3 E('&(O,w)kx(o'w)) tunneling between dissimilar Luttinger liquids considered in
Ref. 14. This problem can be transformed to one with two
1 |o identical Luttinger liquids with Mes=(1/g+ 1/9,401)/2
t3 Z<k3(0"")k3(0"")> =N/2(N—1)g. For such a problem, it is not surprigigng that
the maximal conductance G,,,,=09:=2g(N—1)/N.
2 1 1 Yet another means of characterizing the Dirichlet bound-
:§(0)+ 5(1): 3’ (5.3) ary condition is byS-matrix selection rules for soliton scat-

tering at the junction. This can be most conveniently done in
“the unfoldedformalism. We use tildes to designate the un-
folded counterparts of thimldedfieldsk; and their duals; .
Following Ref. 14, we obtain these by rewriting the chiral

4 fields ¢1, ¢,, ¢3 in terms of the dual fields,,T,, which
GI¥=_g. (5.2  are free fields at the strong-coupling Dirichlet boundary con-
3 dition fixed point. Working in the chiral“unfolded”) nota-

This is an astonishing result, since it implies that the conduction, wherek,=(¢1— $2)/V2, ky=(— ¢1— d2+2¢3)/ /6,
tance is greater than “perfect” conductand®=g. [The e can define dual free fie|&'§,?y via

scrupulous reader might worry that this surprising finding is

due entirely to the Toulouse limit and is therefore incorrect.

However, since the same conductance is found folE4.3

(which does not involve a Toulouse linigt its strong- Ke=Tx0(—X)—T1x0(X),  K,=Ty0(—X)—T,0(x).
coupling fixed point, we believe that this result is roblst. (5.9
We interpret this as the signature Ahdreev reflectionthe

conductance is greater than its naive maximum value be- )

cause a hole is backscattered at the point contact. BeforEis allows us to calculate the matrix elements
pursuing this point further, let us note that for genédathe

corresponding formula for the conductance at the strong-

where the second equality follows from the respective Di
richlet and Neumann boundary conditions lkf and ks.
Hence, from Eq(2.5 we have

coupling fixed point is
<exp( —i2 q?%j(x:w)/@)
2 J
Gﬁax:g<2—ﬁ . (5.3 '
xexpl(iz q;“¢j(x=—oo)/@)>. (5.5
For N=2, the maximum conductance G=g, the naive !

value. ForN>2, the maximum conductance is greater than

this value, saturating & =2g in the N—oo limit. MOt (o i
Why do we say that the enhanced conductance is due tbhe operatore ™4 #i(**)\?3 create or destroy states with

Andreev reflection? In Eq(2.5), 2—2(|w|/2m){@ze3) is, well-defined charges in the leads; the matrix elemébis

essentially, the transmitted fraction of the incoming currentre proportional to th&matrix elements between these dif-

2(|w|/2m){@3ps)—1 is the reflected fraction. Ag=1, ferent charge sectors. For genegit®", Eq. (5.5 will van-

where the leads have a free fermion description, transmissiosh, which means that there is no scattering between these

t and reflectiorr coefficients can be defined; charge sectors in the strong-couplifBirichlet boundary
condition limit. Equation(5.5) will be nonvanishing only if
2(|o|127) @303y —1=]r|?. the correlation function is charge neutral for each of the free

fieldst,, Ty, k,. Since these fields have Neumann boundary

G>g precisely because the reflection coefficientégative and_'tlons’ Eq/(5.4) has the following implications for Eq.
In other words, the reflected current isvagativefraction of (5.5:
the incoming current—i.e., it is a current of holes rather than
electrons.

Physically, the Dirichlet boundary condition corresponds qi1n+ qi2n+ qisn: qQUt+ g9U+ g3,
to the limit in which there is no voltage difference between
the different leads. FON—1>1 only a fraction of the cur-
rent that leaves one lead enters any one of the dthed
leads. Without Andreev scattering, this would lead to a volt-
age drop between the leads, but Andreev processes offset this
voltage. An alternative perspective on the multichannel Di- n i in outout out
richlet boundary condition is reminiscent of the situation ex- —01 =0 +203=—(—0; —d; +2q3).

By charge conservation we also hawe—1)|t|?+|r|?=1.

qP—qi=—(a"'- 3", (5.6
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Solving for the charges of the “out” states, one finds that
the charge transfers lie on a honeycomb lattice,

qy g5 [ [ 2 1
ag=| a7 | -| @2"|=5| | ~1|af+| 2 |aF
as/ \ag" -1 -1
-1
+| —1]q%|. (5.7)
2

Note that, for general “in” states, which carry in
each lead multiples of the unit of charge, the charges of
the “out” state in the individul leads are in general no
longer multiples of the unit charge. This is a phenomenon
analogous to theN=3 flavor Callan-Rubakov effect. FIG. 5. Deformation of the resonant tunneling arrangement into
In fact, the “auxiliary model” atg=1, discussed at the 3 chiral boson on a circle.
end of Sec. Il, is an example where this situation occurs
at an infrared fixed point for free electron leads. For
example,

obtained from those of a single-chiral boson by imagining
that the three-lead dot/antidot setup is deformed as in Fig. 5.
(e719i(x==)\20gi $2(==)/\20) = (5.8 As a result of the chiral boson commutations relations, the
o . tunneling operators commute since they do not crese
for j=1,2,3. In other words, a unit of charge cannot be tr_ansi:ig. 5. This holds whether the objects which tunnel are fer-
ferred from one lead to another or even reflected by the junc-

) mions or anyons.
tion. On the other hand, £ Tid
In our model, we represenT;; by Tij=77]-S—e+'¢J

_ - _ - N where »; and S© commute with each other and wiif; ,
(el $1(x=")20g = 21d2(*)/ 29~ 21 ¢3(*)/V20g31 ¢1(~*)V20)y £ 0 and the ¢;'s are mutually commuting. To ensure that
(5.9 the tunneling operators commute, we must take

This is a clear illustration of the Andreev reflection property 7i7i= — 7 i - . .

of the Dirichlet boundary condition faX>2. Three incom- As an aside, we note that if the tunneling paths were to
ing electrons in lead 1 are scattered into two electrons intG"0SS: hc;vv_(/aver, the commutation relations are modified to
each of leads 2 and 3 and an Andreev reflected hole in lealij TkiT €™ ?TiT;j=0. It is hard to imagine a setup in

1. which this occurs, but for such a scenario, we would need to
take the even more exotic condition, 7,=—e>""99,7,
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9528578, the interaction term dominates the acti¢h8). If we treat

k classically, it will be localized at one of the minima of
this term. To find these minima, we need to diagonalize

i +4—iR -k — iRk
APPENDIX A: COMMUTATION RELATIONS the 4x4 matrix 2i(7;,S e " "+ 7S €7, There
FOR THE KLEIN FACTORS are four solutions for eack, corresponding to the four

_ _ . bands of a particle on a honeycomb lattice with flux

We need to introduce the all-important Klein factofs,  per plaquette. Physically, the fourfold multiplicity is due
because we would like to treat the fielgs as independent to the two charge states of the resonant level and the
bosons that commute with each other. Since the underlyingvo states of the auxiliary two-state systethe., %)
electron or quasiparticle operators are mutually fermionic ofivhich keeps track of the statistics, whilerepresents the
even anyonic, Klein factors must be introduced to compenamount of charge that has been transferred between
sate. o _ _ _the leads. Diagonalizing;(7:S" e 'R ¥+ .5 €R k) (we

We begin with the commutation relations for the chiral represent they's by Pauli matricesr), we find the four

i X\ . .
version of the tunneling operator%ij:e'fxﬂx‘ﬁ, which are eigenvalues
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(k)= =[3+V9—(3+2 cosk, /\2) — 2 cogk,\/3/2g+k, /1/2g) — 2cogk,\3/20— k, 1v2g) ]2 (B1)

The minima of each of these bands form a honeycomb lattice Hence, ar phase is aquired in a circuit about a plaguette.
with translation vectors 2Q; , where theQ; are given in Eq. Combining this with the magnitudes of the terms in the stan-
(3.2). dard Coulomb gas expansion for the instanton ‘gas, see
We now consider the instanton gas expansion of the parthat the dual theory to Eq2.8) is also a theory defined on a

tition function, where the instantons are solutions of the clashoneycomb lattice withr flux, namely, Eq(3.2).
sical equations of motion in whick tunnels between neigh-
boring minima. The modulus of the amplitude for these APPENDIX C: BOUNDARY CONDITIONS ON BOSONS
tunneling events can be obtained in the standard WHye . ] ) )
phase can be obtained from the following Berry’s phase ar- N this appendix, we summarize the conventions that we
gument. The eigenvector associated with the lowest energyse for compactified bosons. Consider a single bason7)
band is determined by two spinors, i.e., it lies in the directcompactified on a circle of radius On a space of siziewith
product space of the two two-dimensional spaces acted on gieriodic boundary conditions the action is
S* and ;. As k tunnels from minimum to minimum,

. 1 %
arognd a plaquefcte, these two spinors rotate. The phase Soz_f dxf d7(d,e) ("),
aquired in a circuit around a plaquette is determined by the 87Jo —o
angles traced out by these spin@¢gery=e'(?s*9,)/2 \where

where the functional integral is to be performed under the
the factor of 1/2 follows from the fact th&and » are spin- g P

identification
1/2 degrees of freedom. Since, for any circu#g and 6,
must be multiples of Z, the only possible nontrivial phase o(X,7)=@(X,7)+27r = @(X+1,7).
is . _— . ) .
Let us consider the plaquette formed by the following sixIn the Hamiltonian formalism, the field operator is
minima: (0 m+/29/3), (m\29/3,%=27/2g/3), o(X)= @ (X) + or(X),

(2m\/29/3,% w+/2g/3). These six minima surround a maxi-
mum of the lowest band, at«(y2g/3,0), where the two low- Where
est bands touch. The Berry phase will be the same for any

loop that enclosgsﬂ(\/.29/3,0) precisely once since such @L(X) =X, +X pL2_7T+i i
loops can be adiabatically deformed into each other. The | A=1 \n

Berry phase is most simply computed for an infinitesimal cn2mfl ot —ixn2afl
loop enclosing ¢+/29/3,0). For such a loop, we can ap- X[by;ne +bi;ne 1
proximatek=(7+/2g/3,0)+p, and

3 PRr(X)=Xg—X F’Rz_q-r‘H i[bR ne~ xn2ml
o o 1 3 I = ?
> <m®8+e"R'k+m®S‘e'R'k>~(53x—73y)®1 = n
! +bE;neixn2w/I]. (CD
B 1 (@ 1 : i ihi
+ s +=s|e(n+r)—pl —s+-S |1 b.., andbg., are independent boson creation and annihila-
2 Sty |t md =P 5 S e Sy tion operators, and
1. 43 31 (]
385 S)® | 5Py gP 7 [xL.PL]=[xR,PRJZI(5)
\/§ 1 are two independent zero-mode coordinate and momentum
| 5 Pyt Px| 72| (B2) operators. In these conventions, the two-point funtion of the

boson is
As p adiabatically traces out a loop enclosipg 0, the ef- ) _
fective Zeeman field “seen” by traces out a circle but the (e(x,71)¢(0,0)=—-In(|Z|*), (z=7+ix). (C2)
effective Zeeman field “seen” by does not. In other words _ i )
9,= 2 while §s=0. This can be made more transparent by The momentum operator, conjugate to the figlc) is
projecting Eg.(B2) onto the two-dimensional subspace, 5 ®
which_ is degeneratg @=0. In an orthonormal basis of the H(x)=(1/2)—7r (P_+Pg) + E \/ﬁ[bL.neianﬂn-/I
two eigenvectors with degenerate eigenvaluep=a0, Eq. | n=1 ’
(B2) can be rewritten as -
T a—ixn2a/l —ixn2a/l
h(px.py) 7+ const, (B3) +b e ]+r121 \/ﬁ[bRi“e
where T are a set of Pauli matrices ahdp,,p,) rotates by _
27 asp adiabatically traces out a loop enclosipg 0. +bh. X2 ] (C3
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The total momentum
I 21
H=f dxH(x)=(1/2)[P|_+PR]|—
0

is canonical conjugate to the total zero-mode coordinate
=X, +Xg. Since the latter is periodic with periodn2, the
eigenvalues of “dimensionless momentun®’ must be of
the form
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1. Boundary conditions

Next, consider the compactified boson semi-infinite
space, 8<x<<eo, First, we impose a Neumann boundary con-
dition (bc) on the boson field at=0,

dxp(X,7)—0  (x—0) (C11

For the purpose of analyzing this bc it is convenient to

view the imaginary time coordinate as a spatial coordinate

2n
P=[PL+PR]=T, neZ. (C4

On the other hand, periodicity under-x+1 gives, using
Eq. (CD
W= PL—PR=rm, (CS)

where we denote this quantity by tlinding number W
The two conditiongC4) and (C5) imply together that

meZ,

n 1 n

1
——srm.

PL:F+§rm, PR:r 2 (C6)
The (normal orderegHamiltonian is
2 1
H:|_ LO;L+LO;R_1_2 : (C7)
where
1, S +
LO;L:EPL+r§1 n bL;nbL;nl
i} (C8)
1
Lo:RZEPZR"‘ngl N bl brin-
Note that

%[PE-F PZ1=[(n/r)?+(rm/2)?]

gives the total scaling dimension.

The (imaginary time evolvedHeisenberg operators are
obtained from the expressions in E¢€1) and (C3) by ix
—z=7+ix for left movers, and byx—z* = r—ix for right
movers.

Of interest is also thélual boson field,

@(X) =@ (X)— @r(X). (C9

We see that the automorphism of the canonical commutatio
relations
Xr—~Xr, Pr——Pg, bR,n—> - bR,na
(C10

bhn——bk,, r—r=2r

(all left-movers unchangednaps the boson fielgh(x) into

its dual ¢(x). The dual field then satisfies the periodicity
condition ¢(x) = ¢(x) + 271 wherer is the dual compacti-
fication radius. Note that, most importantly, the duality auto-
morphism exchanges the lattice of momeRt&C4) with the
lattice of winding number$V (C5).

x=r7, and the original spatial coordinate as (imaginary
time, 7= —x. The new complex coordinates, are just rotated
by 90° with respect to the original ones=7+ix=iz, z*
=7—ix=(—i)z* (this may be viewed as a trivial conformal
transformation We may quantize the system as before, but
now on equak slizes. The “spatial” coordinat&= 7 is now
compact, corresponding to the original system being at finite

inverse temperatur8<<«. The Heisenberg operators in this
gquantization become

~~ ~ o~ 2 1 ~ o~
e (X, 7)=X_ —i(7+ix) P_ 2 _[bL:ne(THX)nZﬂ-/,B
n

—+I
B i1 n
+ b[;ne— (r+ i;)nZWIB],
~~ ~ o~ 2 1 - o~
(2} (XIT)ZX _I(T_lx) P _+| _— b . e(T*|X)n2ﬂ'/ﬂ
R R R,B - \/ﬁ[ R:n

+ b‘};;ne—(r—ix)nZW/B]_ (C12
Note that the currents associated with translations of the
two chiral bosons are the left/right momenta

: 2m :
J =idzo = PLF + oscillators,

: 27 :
Jr=idor= PR?+ oscillators

The Neumann bc now becomes an identity for Heisenberg
operators, acting on a boundary stgtg:
(7—0).

2¢(x,7)|N)—0 (C13

Integrating this equation overimplies in particular that the
total momentum operatdP =P, + P annihilates the Neu-
mann boundary state but the winding numbée= P, —Pg
B 2P, may take on any value on the lattice specified in Eq.
(C5). (This is clear since the Neuman bc only constrains the
derivative of the field. Specifically, the only momentum
states which the Neumann boundary condition supports are
those withn=0 in Eq.(C6). Unfolding the semi-infinite sys-
tem with a boundary thus gives an infinite chiral system of
bosons with only those momenta allowed.

Next consider the Dirichlet boundary condition

e(X,7)—0 (x—0).

After 90° rotation, this becomes an identity for Heisenberg
operators, acting on a “Dirichlet” boundary state):
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(:0(7(,~T)| D)—0 (7—0). <‘]E(Tl :Xl)JE(Tz X2)) = 1/252

(similar for right movers

This implies that the total winding-number operat(\ﬁs/, .
The conductance can be written as

=P, — PR annihilates the Dirichlet boundary state, but the

total momentumP=2P, lies on the lattice specified in Eq. G=g(1-A).

(C4). (The winding number is seen to be zero also because of _

the operator identityX, + Xg=0, which follows from the This we may rewrite as

Dirichlet bc) Specifically, the only momentum states, which G=2g[1/2— Al2]=2g[1— (1+A)/2].

the Dirichlet boundary condition supports are those wiith
=0 in Eq. (C6). Unfolding the semi-infinite systems gives On the other hand, we have
thus an infinite chiral system with only those momenta al- |

o]
lowed. (1+A)/2= Z<go3(x=o,w)<,o3(x=o,w)>,
2. Duality and boundary conditions wherew is a real frequency, angd®= ¢+ o3 . Under dual-

It immediately follows from the discussion above that theity, A— —A, which may also be written as
duality operation exchanges Dirichlet and Neuman boundary ol
conditions. In other words, a Dirichlet bc on the fiedds a E<<p3(x=0,w)<p3(x=0,w)>
Neuman bc on the dual field and vice versa.
|of ~; ~3
APPENDIX D: TRANSFORMATION = 1-5 (¢ (x=00)¢*(x=0,0))|.

a
OF THE CONDUCTANCE UNDER DUALITY .
Clearly, for Neumann boundary conditions, we have have

The conductance can be obtained from the two-poinja=1, yielding G=0. For Dirichlet boundary condition on

function ¢° (as opposed to Dirichlet boundary conditionsign k),
A=—1, yielding, G=2g.
3 3
(I(71,%0) (72, %2)) Since we will not impose boundary conditions on the
where fields ¢! directly, we rewrite the conductance in terms of the

fields defined in Eq(2.7), giving
PB(rx)=3+33 ol
w

49
1_ E<kxkx>w '

andJ} | is proportional taley | . At the location of the point G=>
contact, we obtain four terms, which are pairwise equal,

(371,00 33(7,0)) = 2(1+ A (71— 15)2, Under the duality transformatiok,—k,=r,, we have

whereA is the amplitude of the right-left current-current cor- GB= @ M r
relator, —PT3 27T< X o

(371, x0) 3372, %)) = Al (2, — Z5)? At the self-dual pointg=g= /3, and
(z,=r,+ix;), and [1—(|o]/2m) (k) u]= (|l/2m)(r 1 ) 0 =112
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