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Classification and stability of phases of the multicomponent one-dimensional electron gas
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The classification of the ground-state phases of complex one-dimensional electronic systems is considered in
the context of a fixed-point strategy. Examples are multichain Hubbard models, the Kondo-Heisenberg model,
and the one-dimensional electron gas in an active environment. It is shown that, in order to characterize the
low-energy physics, it is necessary to analyze the perturbative stability of the possible fixed points, to identify
all discrete broken symmetries, and to specify the quantum numbers and elementary wave vectors of the
gapless excitations. Many previously proposed exotic phases of multichain Hubbard models are shown to be
unstable because of the “spin-gap proximity effect.” A useful tool in this analysis is a generalization of
Luttinger's theorem, which shows that there is a gapless even-charge mode in any incommensurate
N-component systenfS0163-182609)03124-0

I. INTRODUCTION low-energy dynamics possess an exact translatitoiatal)
symmetry.
The basic theory of the low-energy physics of the inter-
acting one-dimensional electron gdDEG), both with and
without spin, has been well established for two decades. The
purpose of this paper is to extend this general analysis to Itis a remarkable feature of 1DEG’s that all the properties
obtain a classification of the stable fixed pointsmilticom- ~ of such systems, including fermionic correlation functions,
ponent one-dimensional electronic systems. Examples ofan be expressed in terms of bosonic fieldssonization
such problems include one-dimensional metals with severagorresponding to the quasi-Goldstone modes. Thus it is pos-
bands crossing the Fermi surface, such as multichain Hutsible to classify all thermodynamically distinct ground-state
bard ladders;*and the “1DEG in an active environment,” phases of any multicomponent 1DEG by specifyiag any
of which the most studied example is the Kondo-HeisenbergpPontaneously broken discrete symmetries, such as the lattice
model®” i.e., a 1DEG interacting with a periodic array of translation symmetry or parity, ari@) the number and quan-
localized spins. While these models are still one dimenium numbers of the fundamental gapless modes. The mini-
sional, and are amenable to the same methods of solution &al quantum numbers of the gapless modes are charge, spin,
the 1DEG, their added richness brings in significant newand(crysta) momentum. Our convention will be to focus on
physics. In particular, in the context of the theory of high-Spin and charge modes with the smallest nonzero momen-
temperature superconductivity, this class of models includeim. Here “spin modes” have spin 1 and charge 0, and
some in which a spin gap and a strongly divergent supercon<charge modes” have spin 0 and chargm® wheremis an
ducting susceptibility derive from purely repulsive interac-integer. Simply counting gapless modes is insufficient; for
tions. Moreover, in these cases, the driving force for thdnstance, a state with one gapless charge and one spin mode
superconductivity is a lowering of the kinetic enerdy. with the samemomentum(which we label[c,s;2kg], or
In one dimension, even at zero temperature, states with [£s] for shor} is distinct from the state in which they have
broken continuous symmetry are destabilized by quantundifferent momentaj, c; 2k [ s; 2k (or [c][s] for shorb.
fluctuations. However, there are states with quasi-long-range This scheme differs from the traditional meth®df clas-
order which can be characterized by the existence of “quassifying phases of the 1DEG in terms of the most divergent
Goldstone modes,” i.e., gapless collective modes of thesusceptibilities, which is appropriate when the goal is to un-
system with a soundlike spectrum. The canonical example aferstand the properties a@fuastone dimensional systems,
a quasi-Goldstone mode is the longitudinal sound modsince, in most cases, weak higher-dimensional couplings will
of a harmonic chaifi.For a simple 1DEG, the relevant con- stabilize a true broken symmetry state with the correspond-
tinuous symmetries are spin rotation invarian&J(2)], ing order at finite temperature. However, in the context of
global gauge invariancgJ(1)] associated with charge con- the 1DEGper se the Luttinger exponents, and hence the
servation, and Galilean invariance. The latter is not an exaaxponents governing the divergenceTas 0 of the various
symmetry for the electron gas on a lattice but, so long asusceptibilities, vary continuously with parameters. For ex-
the electron density is incommensurate with the crystal, themple, one can pass from a region in which the supercon-

A. Classification of phases
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ducting susceptibility is the most divergent to one in whichcifically, the classification of the possible fixed points in
the CDW susceptibility is the most divergent without en-terms of their spectrum and broken symmetries is discussed,
countering any thermodynamic singularities. Thus,the  and the conditions for perturbative stability are derived. This
strictly one-dimensional contexthe present classification is section also contains a discussion of generalizations of Lut-
more appropriate and, in this respect, it extends and correctisger's theorem to one dimension, including a review of a
the ground-breaking work of Lin, Balents, and Fistlesn  recent proof of the existence of a gapless neutral collective
this subject, while expanding on our earlier work on the genexcitation with momentum 2 , and a theorem concerning

eral problem of a “1DEG in an active environmert.” the existence of a gapless charge@mode, wheren is an
appropriate integer. The classification of phases and the
B. Fixed-point strategy proof of this theorem makes use of the continuum represen-

. . o tation of the so-called;-pairing operator, which is a product
The concept of a fixed point of the renormahzaﬂon-groupof fermion creation operators with treamemomentum'-°

equati0r21$ of a field-theory Hamiltonian was introduced by Readers who are familiar with the theory of the 1DEG
W|Itso|n1 fordthe_tstudy Of ctrltlcal ph%n%metl;l]a. This |(rj]ea UIttr'] and are primarily interested in the illustrative examples may
mately made 1ts way Into- many-body theory, whereé iné, .o 14 proceed directly to Sec. IV, where this general

renprmat_liza}tion group had been used for some “”.‘e- Th cheme is applied to the analysis of the global phase diagram
main pointis j[hat the low-energy, Iong-dlstance physics of %f the multichain Hubbard model and the Kondo-Heisenberg
given mo_del IS co_ntrolled by_t_he properties O.f the relevantmodel_ Specifically, it is shown thatl) many of the pro-
stable f_|xeq point or critical _flxed point. of the posed partially gapped phadksf the multichain Hubbard
renormalization-group flows. A particularly effective way of ladder are destabilized by the “spin-gap proximity effeét;”

d_etermining this behavior is to identify an exactly solvable(z) the charge-ordered “stripe” structures which have been
field-theory model that starts in the neighborhood of an UNypbserved in numerical studies of multichain-J models

stable fixed point and flows to the same fixed point as th . - . )
model in question. This strategy justifies the use of thj]a\/e a(possibly nontrivial relation to the value of & de

“Toulouse limit” to solve the single-channel Kondo rived from the generalized Lutting(_—:tr’s the(_)réﬁ]and (?’)
problem?®® and of field-theory solutions of the 1DEG with there are several, thermodynamically distinct spin-gap

attractive backward scattering or umklapp scattetthy.is phases of the Kondo-Heisenberg motel.
important to note that a field-theory model that does not

exhibit spin-rotation invariance may flow to a spin-rotation- Il. ONE-COMPONENT 1DEG
invariant fixed-point Hamiltonian. The flexibility in the

choice of sol\_/able models_ allowed by thi; behavior is fre-4¢ the single component 1DEG with spin from the perspec-
quently exploited, and it will be used later in this paper. e of its quasi Goldstone modes. All known zero-
A fixed-point strategy is more difficult to implement when (o e rature thermodynamic states of the 1DEG can be iden-
there are many degrees of freedom, as in multicomponenjsieq py (1) spontaneously broken discrete symmetries, such
systs_:rr_]s. There may be several stable or critical f|?<ed_p0|ntsds parity;(2) whether or not there is a gapless spin and/or
and it is necessary to carry out a “global renormalizatish” charge collective modé3) the smallest nonzero wave vector
in order to dgtermlne which one controls the low-energy,; \vhich these modes are gapless, which in analogy with
physics of a given model. Usually, such a procedure must bge i jiquid theory is called - (equivalently, Xq charac-
carried out numerically. Also, it is necessary to do a different i, a5 the long-distance oscillatory behavior of appropriate

stability analysis for each fixed point separately. The Sca"nQ:orrelation functions and (4) the velocityu and “Luttinger
dimension of any given operator is generally different at dif'exponent” K of each gapless mode.

ferent fixed points, so an interaction that is irrelevant at one
fixed point may become relevant at another.

One of our major findings is that “the spin-gap proximity
effect”® is a powerful force fodestabilizingmany putative The definition of the terms used above requires some dis-
fixed points of multicomponent one-dimensional systemsgcussion since, in much previous work, the identification of
and enhancing superconducting correlations. The physicsnodes is derived from a particular calculational scheme
which is driven by singlet pair tunneling, is analogous to therather than from general principles. Because of the absence
proximity effect in superconductivity. It serves to lock the of spontaneously broken spin-rotational symmetry, it is pos-
superconducting phases of two subsystems, and either gesible even in the thermodynamic limit to classify all states by
erates a spin gap in both subsystems, or transfers a spin gégeir spin quantum numbers. Thus, by a “spin mode,” we
from one subsystem to another. We have proposed this effegieart® a neutral excitation with spin 1; the existence of a
as a mechanism of high-temperature superconductivity. Ayapless spin excitation will typically show up as an
more detailed discussion is given in Sec. Ill. asymptotic power-law behavior of the spin-spin correlation
function, (S (1) - S-2.(0)) ~|[t|* ~%. (Here g is the scal-
ing dimension of this operat9grA charge excitation refers to

The paper is organized as follows: In Sec. Il the theory ofexcitations made by adding a small number of electrons to
the 1DEG is reviewed from a statistical mechanical point ofthe system. Typically, this mealisan excitation with spin 0
view, and the perspective required for the analysis of theand charge 2 produced by adding a singlet pair of electrons
general problem is developed. In Sec. lll it is shown how thiswith total momentum Rg, which will show up in the
analysis can be extended to multicomponent systems. Spasymptotic form of the ‘-pairing” operator:® defined be-

To begin with, we consider th@evell understood theory

A. Definition of terms

C. Outline of paper
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low. It is implicit in the above classification scheme that a B. Formal implementation (bosonization)

state without a gapless spin mode has a "spin gap,” and that pormglly, the above discussion is equivalent to the state-
a state without a gapless charge mode has a “charge gap.ment that the low-energy properties of the 1DEG are directly

The physics of Re is central to the following consider- related to the properties of two independent bosonic field
ations. A remarkable theorem of Yamanaka, Oshikawa, an¢heories with Hamiltonian densities

Affleck,*® which we refer to as the “generalized Luttinger’s
theorem,” fixes Xz=27n/g at the same value as it would
have in a noninteracting electron gas; heiis the total elec-

tron density andy=2 because electrons have sgin The -~ - :
theorem, which we will discuss in more detail in Sec. Il Whgrea—candgfor the charge ar_1d splnflelds,_respectwely,
R ; N i ' 0, is the dual field to¢,, or equivalentlys, 6, is the mo-
implies the existence of a gapless ngutral excitation with MO antum conjugate té,, . V., can be set equal to z&kat the
mentum X as long as the 1DEG is not commensuratelygapless fixed point. Otherwise, wh¥h, is nonzero and rel-

locked to the_ _underlylng crys_talllne lattice. We also Showevant; i.e., when,< 8, it sets the scale of the gap,
that the »-pairing operator, with the exact same value of

L . i i iod ~ 1-p%/8n
2kg, creates a gapless excitation in the same circumstanceccording to the scaling refatiod ,~ V4 (A/V,) ’

When there are both gapless spin and charge mégesan where A is an ultrayiolet cutoff parameter. The Luttinger
also be identified as the location of a nonanalyticity in theSXPONENtX, determine the value o, to be 87K, and

single-particle occupation probabilityn), but when there also specify the relationship between correlation functions

is a spin or charge gap, there is no sharp structure in thexpressed in terms of the bosonic field operators and physi-

&al correlation functions, expressed in terms of the original
single-particle spectral function at all. Thus one must be , &XP g

AR . electronic field operators,
careful in thinking ofkg as a Fermi momentum.
Throughout this paper we will distinguish between the I (X)) =N exgiNkex—i®, ,(X)], 2
“excitations” and the “modes” of the system. By a gapless
“excitation” with given quantum numbers we mean a set of

exmte;j stta;te§ \;\ath t:nerglgs Wh.'Chl. a.ng)ﬁCh dth?t c;f th which can be implemented in many way thaty, ,(x)
ground state in the thermodyharmic fimit. modeTelers 4 nticomutes with\V,, for o# o' and commutes with it for
to an elementary excitation, which therefore has a well-

. : : . =o'. Also

defined dispersion relation. For example, above, we taked
about the spin-1, charge-0 excitations of the system, al- O, = y ~ y ~

. N . L =\7T2[(0.+\ +o(0+N\ , 3
though, in one dimension, under a broad range of circum- Mo [(6et X o) _ (65 .¢S)] ®
stances, the elementary excitations are, in fact, “spinons’wherex =+ 1 refers to left- and right-moving electrons, and
with spin 3 and charge 0. What this means is that the spino=*1 refers to the spin polarization. In E(B), we have
dynamic structure factor will exhibit a branch cut, corre-expressed the fermion operators in terms of “bare” bosonic

sponding to a continuum of two spinon excitations, rathefields, ¢, which are related to the interaction-shifted nor-
than a pole corresponding to a magnon mode. When classinal fields® that appear in Eq1) by the canonicaiBogoliu-
fying states in terms of gapless excitations, we have chosefoy) transformation
not to distinguish which are elementary and which are mul-
tiparticle excitations. b = 0 = _

With this distinction in mind, the definiton of the _ ¢”‘_ ¢“J,K_“’ i 9“_/@ , @ ,
collective-mode velocities is obvious. The existence of Lut-1his transformation brings the Hamiltonian into a canonical

tinger exponentsk and K. is one of the triumphs of for_m, so that the Luttinger_exponents appear only in'the re-
bosonization; they dictate the relation between correlatiof@tion between the fermionic and bosonic fields, and implic-
functions expressed in terms of the original electronic variltly in the values ofg,,.
ables, and eigenmodes of the underlying bosonic free-field From Eq.(2), it is a straightforwardand standar’(_f?) ex-
theory. For any given lattice model, the quantum critical ex-€Cisé to _qbtam bosonic representations o_f all interesting
ponentsK, must be determined by carrying out a global electron b|I|n_ear and quartic operators. Physmdﬂyandq?S
renormalizatio®® to the appropriate fixed point, and match- @re, respectively, the phases of th&-2CDW and spin-
ing to the continuum theory. In general, this procedure musfliensity-wave fluctuations, and. is the superconducting
be implemented numerically, either by studying the long-Phase. The long-wavelength components of the chapde (
distance behavior of correlation functions, or by studying theand spin §,) densities are given by
finite-size scaling behavior of energy levels.

Two of the physically most important low energy fluctua- X) = f =2ke [+ 2K /(0. b)),
tions of the 1DEG are thekg charge-density-waveCDW) p(x) gr oo™ 2k o/ m(dxbo)
fluctuations and the zero-momentBCS-like) pairing fluc-
tuations. CDW fluctuations are neutral and spinless. For ex-
ample, for the repulsivé) Hubbard model with a half-filled
band, the Rg density-density correlation function has the
same asymptoti¢power-law form as the &g spin-spin cor- We also explicitly bosonize they-pairing operator®
relation function, although there is manifestly a chargewhose correlations are sensitive to the presence or absence of
gap?02t a charge gap,

Ho= (030,07 + (3b0) 1+ Vo 008 B, ). (D)

where V,, contains both a normalization factéwhich de-
ends on the ultraviolet cutoffand a “Klein” factor®

sz<x>=%§ oY o= 2K (I bs).



15644 V. J. EMERY, S. A. KIVELSON, AND O. ZACHAR PRB 59

m=ul Tlﬂ; ~exi 27K (0.+ Kbe) + 2ikex]. (5) In the continuum limit, the Hamiltonian density of this
o system consists of three terms:

This operator is not usually studied as its scaling dimension

8,= (Kc+Kg /2 is greater than 1 foK.>0, so the corre- H=Hc+Hst Hint- ®
sponding susceptibility is never divergent. However, it is in-pare 1/ includes all the marginal interactions involving the
teresting in the present context as it has finite momentum an arge degrees of freedom

is independent of the spin fields. It is easy to see from(Eq. '

that spatial translation by, is equivalent to the chiral trans- _ig T ~ ~T ~
formation ¢p.— ¢.— KXo 2/mK ., which must be a symme- He=2{(9x0c)We(ybe) + (9xde)Vel dye)} ©

try of the Ham'|lton|'an for an mcommensurate sys'tem'. S'”,"'Wherebc and?ﬁc are column vectors with components~9ci
larly, gauge invariance implies that the Hamiltonian is ~= - )
invariant under 6.— 6.+const. As a consequence, the and d; regpectwely, and¥; and V, are real, symmetric
Hamiltonian must depend only on derivativeséfand ¢, , N XN matrices. So that the spectrum is bounded below it is

so then operator defined above must always create a gapleggecessary .and sgﬁiqient that the all eigenval_uengand
excitation. V. be positive H, is similarly defined for the spin degrees of

A final comment is in order at this point. The Abelian f_reedom;_ however, at the spin rotationally (ibr;variapt gapless
representation favored in the present paper is not manifestii*€d point, W=V =us, where [us]ap=Us"5ap is the
spin rotationally invariant. This is an advantage wheneve@Pin-velocity matrix. Finally iy, contains the terms nonlin-
spin-rotational symmetry is broken at the Hamiltonian level,€ar in the field variablesthe various cosine interactions
as there is no need for special treatment of symmetryWhich when relevant lead to the opening of gaps in the spec-
breaking terms. Spin-rotational invariance implies a specifidum, and when irrelevant can be ignored. _
value of the Luttinger exponetits, which may be obtained ~ For the case in which the nonlinear interactions are per-
by comparing the spin-spin correlation functions for diﬁeremturbatlvely irrelevantH is the fixed point Haml_ltonlan for a
spin directions. For example, where there is no spin gapsyStem withN gapless charge arld gapless spin modes. In
spin-rotation invariance can easily be seen to intply-1 at this case, as in the single-component problem, we perform a
the fixed point(Slow flows ask s approaches 1 also can give Bogoliubov transformation to normal coordinafésh more
logarithmic corrections to various correlation functipnSo  detailed derivation is given in Appendix A. First define the
far as we know, in all cases studied to date, the fixed poin€olumn vectorsy; such that
value ofKy in a spin-gap phase .= (or in other words, - 5
Bs=\/27), at which point the spin correlations are asymp- WcVeni=ugmi (10
totically equivalent to those of a dimerized sginHeisen-
berg model, but it is conceivable that other discrete value
could occur in other circumstances. ziTwc—lzj: 5. (11)

gvhereuci are the normal mode velocities, and

. MULTICOMPONENT 1DEG With these definitions, it is straightforward to show that

This section begins with a formal bosonized description -

of the multicomponent 1DEG, continues with a discussion of We= EI nini (12)
the generalized Luttinger theorems for this problem, and
concludes with a detailed analysis of the specific example oénd
the two-component 1DEG. In particular, in this latter part, it

will be shown how the perturbative stability of each potential -1 2 Torr—1
fixed point Hamiltonian can be assessed. Ve=W, Z Ucizri 7 We ™ (13
Then the Hamiltonian may be diagonalized by a canonical

] i o . transformation to new fieldg; and their conjugate momenta
First consider a system of distinct LDEG'’s, which may 00! :
-

be bosonized as in Eq2):

A. Bosonizing the multicomponent system

_ 12 T\ 17
Voo =N eXINKEXHI DR, (0], it e L »
_ _ _ . (6) o —u-22,7%
O®) = 772 [60 4+ NGO+ o2 60 + A D], = e
) _In transformed variables, the Hamiltonian consistiNofle-
whereb=1 to N labels the different subsystems, the Klein coupled acoustic normal modes
factors N anticommute for 4,0)#(b,s’), and the '

bosonic fields satisfy canonical commutation relations L 5 5
He=3 2, Ui{ x5+ [xbei]?}- (15

[ DY), 0508 (X)]=1 8550, 55X —Y). v
xp abfap The relation between the fermionic fields and the normal
The tilde field variables appearing here are the bare fieldsnode coordinates is easily derived from this expression and
unshifted by interactions. Eq. (6).
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Finally, correlation functions of the untransformed fields There is a second general constraint governing the exis-
can be expressed in terms of the transformed fields using Etgnce of a gapless charge excitation, which to our knowledge

(14). A typical operator has the form is discussed here for the first time. This argument generalizes
5 5 our earlier discussion of the-pairing mode. Consider the
O(x)=exp{i[aT¢(x)+bTA(X) ]}, (16)  generalizedn operator, which createsNg, right-moving

) electrons with spin O:
wherea andb are N component real vectors, and its zero-

temperature equal-time correlation function is given by N¢ L
0= L1 92552, = OexdinN2m(6c+ go) +i2Kex],

(22)

whereN. is the number of “extended” charge modes and

(O()0T(0))=[Alx|]"%* (17)

whereA is an ultraviolet cutoff, and the scaling dimension

1
5=-—[a'"M la+b"™™b], 18 ~ ~ ~ ~
G2 M atbMb] 19 5= WONN, and B=S BN, (23
b b
where
are the global superconducting phase and the dual CDW

M=W"Y2Nw 12 (19 phase. Global gauge invariance implies that the Hamiltonian

with is invariant under the transformatiah— 6.+ const. Opera-

tionally, “extended” charge modes are defined to be those
N2=Wl2anw 12 (20) modes that acquire a nonzero phase under a global gauge
transformation. Similarly, spatial translation is equivalent to

The perturbative stability of the free-boson fixed point canthe phase shiftg.— ¢.+ const. As a consequence of these
be readily analyzed by studying the scaling dimension qf th‘?nvariances,Him must dependent only on derivativesqu
various operators which enter intd,; . As usual, the stabil- _and(so long as the system is incommensuratederivatives

ity of the fixed point turns on whether there are any physi- = ~ i _
cally allowed vectorsx andb that lead to a scaling dimen- ©f ¢c. Thus the associated modes must be gapless. This
implies thatyy ; (and of coursey _; as wel) must create a

sion less than 1, which would imply that the operator is _ T, - ;
relevant. If any of these interactions is relevant, it is necesd2PIess, spin-0 chargehze excitation with crystal momen-

sary to identify the new fixed point to which the system Um 2kg , and that thep correlations must fall like a power
flows, and to study its properties. Typically, the effect of alaw with distance. In many casesk=2kf andN =N, the
relevant interaction irf{;,, is to freeze out certain fluctua- nNumber of “bands” which cross the Fermi surface, but we
tions(i.e., to gap some modgand at the same time produce Will encounter cases, such as the Kondo-Heisenberg model
a renormalization of the matricas andW. This leads to a discussed in Sec. Il B, in whicN.<N.
new fixed-point Hamiltonian, whose stability must be reas- This proof relies on the field-theoretic representation of
sessed, since operators that were irrelevant at the origin@Perators; it is desirable to generalize it to the actual lattice
fixed point could become relevant at the new fixed pointsSystem, but we have not yet succeeded in doing so. Since a
This stability analysis will be performed more explicitly in gapless, spinless, neutral excitation with momentug al-
the two-component example discussed below. ways exist on general grounds, it need not be listed when
classifying phases.

B. Generalization of Luttinger’'s theorem

The generalized Luttinger's theoréfimposes an impor- C. Classification of fixed points

tant constraint on the allowed momenta at which gapless The essential steps in extending the above analysis are to
neutral excitations occur. No matter how complex the systenidentify the possible fixed points of a multicomponent sys-
(e.g., no matter how many bands cross the Fermi surfacetem, and then examine their perturbative stability. As for the
unless there is an even-integer number of electrons per urgingle-component systerstates are identified by their dis-
cell, there must be a zero-energy excited state with charge €rete broken symmetries and by the “irreducible” or mini-
and(for the case of zero net magnetizationith crystal mo-  mal set of charge and spin-carrying gapless excitatidrise
mentum Xf =any, whereny is the total electron density, gapless, spinless excitation dRimplied by the generalized
including all bands. Thus if a multicomponent system had_uttinger's theorem may be left implicit. In contrast to the
gapless modes at only one crystal momentum, it must bsingle-component 1DEG, it is necessary to specify not only
2kg , and in a system with multiple values ok,(i?), there the modes but also their momenrt&side from 0, which are
must be a set of integers,, such that no longer completely determined by the generalized Lutting-
er's theorem. For instance, it will be seen that it is possible to
encounter a state with a gapless charge excitation at crystal
2kE = Z my2k® + (reciprocal lattice vector (21)  momentum &, and a gapless spin mode at crystal momen-
b=t tum 2k.#2kg. Such a state will be labeled 2k :
(If some modes are charged, there is an obvious further cors][2kg:s] or, leaving the values of the crystal momentum
straint on the integers implied by the neutrality of the com-implicit, [c][s]. In the canonical ordering to be adopted
posite mode at & .) here, the modes with the larger momenturk; 2 2k, will

N
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be listed first. An interesting feature of the multicomponent

system which is obviated by the generalized Luttinger's SOX)= 2 Wy oTeo Yoo s (29

theorem for the single-component case is that, when there are \oo!

multiple values ofkg, their values carfand generally will

shift continuously as a function of interactions. FO0= 2 N oTore Bonors (30
Of course, it is always implicit that, if there exists a gap- o0 T o

less excitation at crystal momenturk2, then one can make
gapless excitations with integer multiples ok2 as well.
However, it is clearly not sufficient tp specify the number of Hé:[jsA(l)TA(2)+ H.C.]_i_[th"(l)‘r.A')(Z)_i_ H.c],
gapless modes, as proposed by Lin, Balents, and Fisher. (31)
For example, the state with gapless charge and spin modes

with the same crystal momenturfgs], is thermodynami- where

cally distinct from the statec][ s] and[s][c] in which they

occur at distinct crystal momenta. A(b)(x)zg lpg,x,ﬂ/’g,—)\,lr (32)

and

D. Two-component 1DEG

To make the discussion more concrete, and in particular AO) = 1 Toathh 1o (33
to illustrate the nature of the stability analysis, we now con- o0’
sider the case of a two-component 1DBGs 2. Two inde- - . . . .

. . i Here 7 are the Pauli matrices. Of these interactions, the
pendent, decoupled, and generally inequivalent 1DEG's are o . . .
separately described by an appropriate fixed-pdfree- pharge and current—d'en'sny mteracuanHrﬁ are marginal,
boson Hamiltonian. Clearly no coupling between the two l.e., they are qua(_jratlc n bogo_r! vanables,_ and SO rfarsd .
subsystems can be generated by any reasonabFém be absorbed into the definition of the fixed-point Hamil-

renormalization-group transformation. Thus the fixed pointstonlan density and treated exactly, as in Sec. Il A. The per-

may be specified for each subsystem separately. The discu%—rbative stability analysis is then performed with respect to

>t SO \ .
sion will be restricted to the spin rotationally invariant case,!"® femaining interaction${, and %3 by computing the
although this is easily generalized. scaling dimensions of these operators, as in (E§).

The next step is to determine the circumstances in which 1hiS stability analysis was carried out previously for the
each fixed point is stable with respect to weak interactiond© chain problem in Refs. 24 and 5. The results are alge-
between the two 1DEG's. In general, whenever a given fixecPraically complicated, but are simplified, without significant
point is stable for some range of parameters, there is no mol@SS Of physical insight, by considering systems in which
to say. If the fixed point is unstable, the character of the ,
stablg fixed point t(? which the Hamiltonian flows under V'= (0o (KEPKEDV, (34)
renormalization must be determined. The new fixed poin(,vherngb) andv(ab) are the Luttinger exponent and velocity

could, in principle, have only gapless modes, although, usuat the decoupled fixed point of subsystém 1 and 2, with
ally some modes that were gapless become gapped. a=c ands for charge and spin modes, respectively. In this
If the two subsystems are mutually mcommensurablecase,

[kM/k&) = (irrational)], the only potentially perturbatively
relevant couplings are those that do not transfer momentum 88,8)= LKW+ KO+ KO+ 1KD),
between the two systems. The most relevant terms are quar-
tic in fermion operators and are of three types. The interac-

. : o L O~ 0(5,-8)
tion piece of the Hamiltonian density is given by 172 172

(35
H'=H1+Ho+ M, (24) Sa = HAKD+ BIKD+KP+KD),
where
85, 5,= s (AIKD+BIKP + 1KD+1KP),
H1=Vp(l)p(2)+V’j(l)j(2), (25) _
with
with
A /1+ VAV
PP00=2 P oW (26) (mo@)?
2VKD) 2 VAR
j(®) 1 B=|1" O (o D)2 (36
iP00= 2 My o 27 ! (o)

The weak-coupling fixed point of two incommensurate
Hp=J8D. 8@ 4 3] j@) (28)  1DEG's s stable if all of these dimensions are greater than 1,
and is unstable otherwise. For weak interactions, any gapless
with charge modes hawé{® near 1, an®) generally increases
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with increasingly strong repulsive interactions. When thestable for nonzerq7;, and flows to thdc] fixed point. The
fixed-point Hamiltonian is spin rotationally invarianks;  effect of a relevant triplet pair tunneling interactigh has
=1. not yet been thoroughly investigated.

The expressions in E¢35) were derived for the gapless ~ When the two subsystems are mutually commensurate, or
fixed-point Hamiltonian, but it is relatively easy to deduce nearly commensurate, the above stability analysis becomes
how these scaling dimensions are altered at a strongmore complicated. We defer detailed discussion of this prob-
coupling fixed point in which certain fluctuations are frozenlem to a later date. However, a few interesting features of the
out by the presence of relevant interactions of the formproblem can be understood on the basis of very general con-
co§ 4] and/or cofB¢4P] which open a gap. This is siderations. In the first place, the decoupled fixed point of
equivalent to replacing® by an effective Luttinger expo- two 1DEG's with the same values okg is always pertur-
nent, K —0 and/ork® 0. Conversely, if the fluctua- batively unstable, unless at least one system has a fully
tions of the dual phases are suppressed by a relevant int gpp_ed spectrum. This follows directly from the observation
action of the form cdwé®] andior coggé®] these at in all the known phases of the 1DEG, at least one sus-

. hould b IC ted in th I'Kﬁ'i?) s % and/ cept|b|I|§y is enhanged_relatlvg to nonlnter_actmg electrbhs.
eﬁ))ressmns should be evaluated In the IREE—ce anaior — \\hat this also implies is that, if we start with two decoupled
K/ —o. cher types of str_ong—coupllng fixed points can bepeG's with 2kf:1) nearly equal to R(Fz)’ and then gradually
analyzed in the same fashion. . turnon interactions between them, there is a strong tendency
_ Itis worth commenting, briefly, on the physical implica- , jnqyce transfer of electrons between the two subsystems,
tions of the dependgnce of. these various §calmg dlmenspr\]ﬁith a cost of unperturbed energy but a gain of energy from
on the _parame,ters in the fixed-point Hamiltonian. The Spie elative commensurate locking of the two subsystems. As
interactions,H ,, are manifestly unimportantés,.s,) and 4 result, one expectsralative incommensurate to commen-
6(51.52) are infinitg if either subsystem has a spin gap. Thissurate transition as a function of increasing interaction
makes good physical sense. If neither system has a spin gagifength in such systems. As for the 1DEG itself, the situa-
then the constraints of spin-rotation invariance imply thattion is somewhat more complicated for higher-ordeative
these interactions are marginﬁ(él_éz)z 1); further analysis commensgrabilities, since ne\_/vly allqwed . interactions are
(i.e., carrying out the perturbative analysis to ord®, fol- generally irrelevant when the interactions in .th.e 1DEG are
lowing on the work of Ref. 7 on the Kondo-Heisenberg prob-eak, and relevant only when they are sufficiently strong
lem, shows that for antiferromagnetic coupling$>0), and sufficiently long rangetf
these interactions are marginally relevant while for ferro-
magnetic couplingsJ<0), they are marginally irrelevant. v, APPLICATION TO SPECIFIC MODEL PROBLEMS
The authors of Ref. 7 speculated that in the antiferromag-
netic case, the system scales to a strong-coupling fixed point T0 demonstrate the utility of this analysis, we conclude
with J large and a total spin gap. This conclusion is Sup_with a discussion of four specific problems that have been of
ported by numerical studies carried out by these same aonsiderable recent theoretical interest.
thors, and by additional analytic work by one ofs.

The singlet pair tunneling interactiol 3 has its scaling . critique of the perturbative RG analysis of the N-chain
dimension significantly reduced if either or both subsystems Hubbard model
have a spin gap, since then the effecti<®) in Eq. (35) is
zero. For instance, if subsystem 1 has a spin gap, and suﬁj—
system 2 does not, then, from E§5)

There have been a number of recent papers concerning
e phases of thé-chain Hubbard model, following the
early work of Varma and ZawadowsKi In particular, in two
interesting papers, Balents, Fisher, andLtianalyzed the
renormalization-groupRG) flows in the neighborhood of the
The underlying physics is analogous to the proximity eﬁect[;?;égtteg?ggp ?nf;:)x()evse?é) |3j’jk;)t/ ﬂgmr"g tt:::ﬂ 02252?2;&_

in superconductivity, and we have namettite “spin gap  sjon between electrons, ahds the intersite hopping matrix.
proximity effect”: because subsystem 1 has a spin gap, it i§more generally, they allowed for possibly different values
already substantially superconductiigso it can readily in- of the hopping amplitudes,andt’, parallel and perpendicu-
fect any coupled subsystem with its superconducting charagar, respectively, to the chain directiorSpecifically, they
ter. From this point of view, one would expect a relevant pairigentified which interactions are perturbatively most relevant
tunneling interaction to induce pairing correlations in sub-for various geometries of the chains, and as a function of the
system 2(i.e., to open a spin ga@and to lock the supercon- electron concentration per site and the ratitt. They then
ducting phases of the two subsystefis., to gap the out-of-  conjectured a phase diagram by analyzing the nature of the
phase CDW mode We have confirmed the validity of this fixed point, obtained by bosonizing the model with the rel-
expectation by an exact solution of this problem in a particueyant interactions taken to infinity, and all others neglected.
lar solvable limit? When J; is relevant, i.e., whenever  This analysis has, we believe, three flaws, which lead to
d(a,-4,)<1, the stable fixed-point behavior is characterizedsignificant errors in the resulting phase diagram and other
by a total spin gap, and a locking of the charge degrees afonclusions.(1) The only rigorous conclusion that can be
freedom of the two subsystems. Indeed, this effect is verglrawn from a perturbative RG analysis when there are rel-
efficient at destabilizing any fixed point with a partial spin evant interactions is that the initial fixed point is unstable,
gap; for instance, anycs][c] fixed point is most often un- and that therefore the asymptotic physics is controlled by

Saga,)=s(AIKP+BIKP) + 5. (37
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another fixed point(Tracing the effects of the perturbatively B. Example of the spin-gap proximity effect:
relevant interactions to strong coupling &,best suggestive The asymmetric three-chain Hubbard model
of the character of the new fixed point2) Even if we ac- . oo .

. . . In Ref. 5, where the spin-gap proximity effect was first
cepted the perturbative analysis of the nature of the interac- pin-gap p Y

. ) . S . elucidated, the simplest model system to which it was ap-
tions which are important at the strong-coupling fixed point lied was the asvmmetric three-leq Hubbard ladder. The pre-
to which the Hamiltonian flows, it is essential to perform aP Y 9 ' P

perturbative stability analysis at the new conjectured strong(—j":tIons made there were later confirmed in numerical ex-

coupling fixed point to make certain that it is, in fact stable. Periments on the symmetric three-leg) Iad(_jer.?’ For the
This was not done by Balents, Fisher, and Lin. Specifically€as0ns outlined abpye, these results are in clear ghsagree—
their analysis ignored the possibility that interactions that ardn€nt with the predictions based on the perturbative RG
marginal or irrelevant at the weak-coupling fixed point, cananalysis of Lin, Balents, and FishErWe briefly review the
become relevant at the strong-coupling fixed poij.Be-  analysis here, as an illustrative example.
cause of the presence of marginal interactions, e.g., interac- As in Ref. 5, consider an asymmetric system, with a two-
tions which shift the various collective-mode velocities, it is leg Hubbard ladder weakly coupled to a one-leg Hubbard
an incorrect procedure to perturb about theninteracting “chain,” with a difference in site energy. For concrete-
fixed point. The proper perturbative RG analysis should innhess, takéJ to be large, and consider the phase diagram as a
clude the effects of the marginal interactiomsactly as in  function of electron density, although in Ref. 5 it was con-
Sec. IllA, and should be performed about the appropriatgtructed as a function of. The method of analysis, as pre-
free boson fixed point. Since the various collective modesented above, first neglects the coupling between the ladder
velocities enter the one-loop RG equations, this makes smalind the chain, and then assesses its effect on the final resuilt.
(but at times importantdifferences in the character of the  \when the electron density per siteris=1, the system is
weak-coupling flows. manifestly insulating. The two-leg ladder, on its own, has a
spin gap while the chain has a gapless spinon mode. Because
of the spin gap, this fixed point is stable for weak chain-
How do these general observations affect the conclusionisdder couplings, so the phase .
of Lin, Balents, and Fishé&t concerning the phase diagram?  For >0, when the density of electrons is reduced
Where they find no relevant interactions in their approachslightly to n=1—x with the number of “doped holes’k
and conclude that all of the modes of the noninteracting sys< 1, the added holes go onto the chain. Because the interac-
tem remain ungappete.g., where they find phases of the tions in the chain are repulsive and spin rotationally invari-
form [cs]", or CnSn in their notation or where they find ant, and the electron density is incommensurate, the chain
completely gapped phases, or phases with only a single, unvill form a Luttinger-liquid state with gapless charge and
gapped charge mode.g., phases labeldad] or C1S0 in spin modes. Pair tunneling between the chain and the ladder
their notation the only differences between our analysis andinduces an effective attraction between spinons, but because
theirs areO(U/t) shifts of the locations of various phase there is an energy denominatoe’2 (wheree* is the renor-
boundaries due to the effect of marginal interactions. Howmalized energy to transfer a singlet pair of electrons from the
ever, all of the partially spin-gapped phasésch as the ladder to the chainthe bare repulsion between electrons on
phasd cs][c], which, in their notation iSC2S1), are desta- the chain is the dominant interaction, so the decoupled fixed
bilized by the spin-gap proximity effect. To see this, notepoint is stable; this phase [€s].
that the pair tunneling interaction, like all other interactions, Finally, with increasing doping, although still in the re-
has scaling dimensiod=1+ O(U/t) at the noninteracting gime x<1/3, the value ofe* decreases steadily due to the
fixed point; the opening of a spin gap, with all other interac-repulsion between doped holes so|€f is not too large, we
tions held smallof orderU/t) reduces this dimension by a reach a regime in which the pair tunneling between the chain
finite amount, e.g., t&= 3+ 0O(U/t) in the example in Eq. and the ladder becomes significant. Now, via the spin-gap
(37). Thus, of all the conjectured phases in their phase diaproximity effect, the chain becomes infected with the spin
grams, only the familiar phases with one or fewer gaplesgap of the ladder. The result is a phase which has a total spin
charge and spin modes, and the totally gapless plhasgs, gap, and only the chargee2and neutral spinless modes im-
are stable at weak interactions. plied by the generalized Luttinger's theorem; this phase is
Of course, as is implied by poirfil) above, it cannot be [c].
ruled out that during the flow to strong coupling, interactions The system studied numericallys, in fact, the three-
other than the ones identified in perturbation theory will be-chaint-J ladder. The differences between td and Hub-
come large, and this could alter the stability of the partiallybard models for intermediate to strobigare not believed to
gapped phases. However, we suspect that the partiallge very significant in the present context. Because of the
gapped phases are not, generically, stabilized for latffe  boundary conditions, the central chain of the ladder is physi-
because strong interactions can produce significant shifts ically distinct from the two edge chains. Even though the bare
the values ofk®® , which then permits the commensurate difference in site energy=0, there is manifestly a nonzero
locking of different subsystems; indeed, this conclusion wagalue ofe*. Thus there is, in fact, a very clogalthough not
reached, previously, by Schuf2.In this regard it is worth  entirely quantifiedirelation between the system we analyzed
noting that there have been extensive numeficstlidies of  theoretically, and that studied in the numerical experiments,
various N-leg Hubbard ladders for intermediate to strongso it is not surprising that the reported phase diagrams agree.
U/t, in none of which has evidence for these exotic phase# the numerical experiments, witd/t~0.5, the critical
been reported. value of doping at which the transition fropes] to [c] oc-

Stability of phases
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curs isx~0.06; the very small value of this critical density D. Kondo-Heisenberg array

reveals the robustness and strength of the spin-gap proximity The Kondo-Heisenberg model is the simplest example of
effect. The perturbative RG analysis of Lin, Balents, andy metallic systenihere, a 1DEG coupled to an insulating
Fisher leads to a phase diagram in which the Undoped Systeahtiferromagne(here’ a Sp”’é. Heisenberg Cha)m The |arge

is (correctly in the [s] phase, but has the doped system eX-(or infinite) charge gap in the spin chain implies that charge-
hibiting the[ s][ cs] phase over the relevant rangexpthis is  transfer interactions, such as pair tunneling, are unimportant.
a specific case of a partially spin-gapped phase which, as wWehe dominant interactions involve the spin density, i.e., they
argued above, should be generally unstable to the formatioare the Kondo interaction between the conduction electron
of a fully spin-gappedc] phase due to pair tunneling inter- spins(x) and localized “impurity” spinsz;,

actions.

HKZJKE ;j'—é(xj)- (39)
C. Concerning theN=6 t-J cylinder :
here x; are the positions of the localized spins and the

Recent important advqnces in the numerical evaluation 0Heisenberg interaction between nearest-neighbor localized
the ground-state properties of correlated systems have aé'pins

lowed the study of much largerJ and Hubbard clusters

than before. White and Scalapfhoonsidered six-component Heis ..

t-J systems with cylindrical boundary conditions, i.e., peri- Ho :JHZ TiTi+1- (39)

odic boundary conditions in the finite direction and open .

boundary conditions along the chains. To draw conclusion#lso it will be assumed thal<Eg, which is typically true

concerning the 200-J model, it is necessary to perform a in physical applications. The resulting Kondo-Heisenberg

two-dimensional finite-size scaling analysis of these result$lamiltonian is

in order to extrapolate to the thermodynamic limit. So far, it _

has not been possible to do so, and the conclusions of White H=HGPECHHE Hy, (40

Sg?aaia:gf 9']20 s?/lsstae??r\‘z(\a/vmgﬂ tdhigsg 00];0;:’:1?tl‘e_sstil.lzdeless cg{ir? ; mvvlhere the subs_chript 0 refers to the Hamiltonian of the decou-

analysis. Consequently, it is still unclear to what extent thes® ed system wit

results are representative of the actual ground state of the

two-dimensional system. However, we may imagine that the HIPEC= —jp. > )\f dX ) Ot - (41)

results of White and Scalapino are representative of the oA

ground-state properties of an infinite-length six-leg cylinder,  \yjjl be assumed that the relative concentration of localized

w_h|ch _|tself is an example of a multicomponent one-gpins isc=1/h<1, ie., x;=jb, that the two systems are

dimensional system. _ _ _ relatively incommensurate, and thakg2is incommensurate
The principal finding of White and Scalapirfobtained \yith the  underlying lattice. The effective Fermi wave num-

for J/t=0.35) is that the ground state exhibits “stripe” cor- pgr (in the sense of the generalized Luttinger's theoréon

relations in the expectation value of the charge-density opg,o 1pEG and the spin chain aré2and Z(Eeis: /b, re-

erator. For the six-leg cylinder at a small density of dOpE_’dspectiver, so, for the coupled systéfthere must be a gap-

holes, x, the period of the observed density oscillations IS|ass neutral excitation with wave numberk’2= 2k

Ne=2/3X. .(Here units of length are ghosen. S0 that thg Iattlce+(7_r/b)’ and a charge<2 excitation with momentum i
constant is equal to 1Of course, since this is one dimen-

sion, the density-wave order observed by White and Scala- The determination of the phase diagram of this model
L density Y. rovides a further example of the application of the methods
pino on finite length systems should be interpreted as thg

) ¥ ) . e eveloped above. We shall give a brief physical description
Kg\:\?d ?;:O\\’/V;Lleawong,Y Ecgrf;:':;f n \t/\r/]r?elg”ge izys;em.of the origin of the various phases—the theoretical manipu-
) F— 1

. . ) lations may be found in Appendix B and in the published and
reciprocal-lattice vector, corresponds to density-wave corre-

; ; 717
lations with a wavelength§ = 1/3x, so the period found by unpublished literaturé:
White and Scalapino is twice that required by the generalized
Luttinger's theorem. In other words, the fundamental gap-
less, spinless neutral CDW mode of the system occurs at a As discussed above, spin-rotation invariance implies that,
wave numberi27/\*, and the excitation atk is thus a  to lowest order, the spin coupling between two gapless sys-
second harmonic. tems is marginal, while to second order, as pointed out by

It is also easy to see from the present analysis that thesaikkema, Affleck, and Whité; the interactions are perturba-
cylinders are not good candidates for high-temperature suively irrelevant forJ, <0 (ferromagnetic interactiopsand
perconductors, since there are no gapless chaegexgita-  relevant forJ>0. Thus, for ferromagnetic Kondo coupling,
tions of this system. At present, it is not clear to us whethethe decoupled fixed point is perturbatively stable. This phase
the system supports gapless excitations with chamyecdr-  has, trivially, one gapless spin excitation at momentum
responding to the injection of an additional “stripe” into the 2KF°'"*, and gapless spin and charge excitations at momen-
system, or whether because there is a tendency for spin coium 2kg. Since Xg>2kg®', this phase is labeled
relations to suffer ar phase shift across a stripe, it is neces-[c,s;2kg][s;2kE®'], and has no discrete broken symme-
sary to inject charge@corresponding to a pair of “stripes.” tries. In shorthand notation, the decoupled fixed point is clas-

1. Decoupled Luttinger liquid: ;> —Jx=0
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sified ag c,s][s]. However, for future reference, it is impor- the Toulouse limit is spin rotationally invariaht>3 which

tant to note that there is also a gapless, odd-parity chaege-2mplies that spin-rotational symmetry-breaking terms are ir-
composite pairing excitation aﬂéeis, as discussed in Ap- relevant at the fixed point, so it is unlikely that the behavior
pendix B. Because this is a composite excitation, its exiswe found is an artifact of the model. This phase may be
tence is already implied by the existence of the other gaplegdistinguished from the weak-coupling J;>Jx) spin-gap
modes. However, as we shall now show, when the Kondstate by classifying its gapless excitations.

coupling produces a spin gap, this composite mode can still Clearly, as before, there must exist a gapless neutral ex-

remain gapless. citation with a minimal momentumKkZ , a gapless charge-
2e excitation, produced by the-pairing operator, with mo-
2. Antiferromagnetic Kondo coupling: 4>0 mentum X, and as a consequence of these two general

a. Odd-parity singlet pairing: 1> Jc>0. If J,>0, the sta&e_ments, a gaples; char@—éxcitatiqn at momentum
decoupled fixed point is unstable, and the low-energy phys2Kr- - However, we finf that there exist both even and
ics is governed by a strong-coupling fixed point with a spinodd-parity gapless chargee2excitations at momentum
gap®! This phase has several unexpected features. Of coursekp®'®, so that there is, in fact, one more finite-momentum
as required by the generalized Luttinger’s theorem, there is gapless charge mode in this state than in the weak-coupling
neutral, spinless gapless excitation of this system with @&pin-gap state. This phase is labeJed[ cc], or more fully
minimal momentum R*, as pointed out by Yamanaka, as[c;2kg][(c,odd)(c,even);XE®'"]. This solution also pro-
Oshikawa, and Affleck® Remarkably, the effective Fermi vides an example of the fact that an analysis of the relevant
sea “knows” about the localized electrons as well as theoPerators at weak coupling does not necessarily tell us the
itinerant ones. In addition, this system clearly has a gaplesgharacter of the stable fixed point. It is long-distance physics
spinless charge€excitation created by the-pairing opera- (fo.rward scatteringthat destabilizes the weak-coupling fixed
tor of the 1DEG; in this case, since the localized spins ar@0int, but the character of the strong-coupling fixed point is
unaffected by a global gauge transformation, our theorenf€termined by short-distance physics.
implies that this mode carries momenturk:2 Of course ~ An elaborate compariséh of the two spin-gap phases
these two statements, taken together imply that there existsreveals that the additional gapless mode in the Toulouse limit
gapless, spinless charge-2excitation with momentum phase may be associated with an additional hidden broken
2|¢‘eis, Because KEeis=2w/b is a reciprocal-lattice vector, translation symmetry. A further distinction between the
2kHes and — 2kH®'S are equivalent; as a consequence, exci-States may be made by considering the origin of the spin gap
tations with momentum |¢Ieis can simultaneously be char- and its consequences for enhanced pairing correlations; an

acterized by their parity. As discussed in Appendix B, it rnayintuitive, strong-coupling picture of the origin of the spin gap

be shown that, in the present case, the only gapless chargié'-the Toulouse limit phase involves pairing of the spins ir!
2e excitation with momentum |¢|eis has odd parity? This each subsystem, separately. The existence of the two spin-
phase is labeled[c][c], or more fully a's [c: gap fixed points of the one dimensional Kondo-Heisenberg

.o Hei . model underscores the need to consider the explicit solutions
2ke][(c,0dd);2kg""] (where we put the modes in parenthe- he strong coupling fixed points, which do not follow from

" o f t
ses when an additional descriptive element, such as even/o@ﬂnply establishing the existence of a spin gap based on the

pa[|rtr3]/, must be noted kable feat fthe ch fluct weak coupling perturbative renormalization group analysis.
ere are Some remarkabe features of the charge fuctua- Strong coupling: J>Eg>Jy. Finally, for complete-

tions in this state” Whereas the decoupledHiinstem ha(_j 98Phess, it is important to remark that there exists a direct
less CDW modes atkg and ¢ =2ke+2Ke"", the spin- gy 000 coupling” limit of the modeld,>Eq>Jy, which
gap phase retains only the composite CDW modekgt@ee g gistinct physics from either of the spin-gap phases dis-
Appendix B. As a result, because of the mismatch betweeny ,ssed above. In particular, via a mapping to temodel,
2kg®'* and X, there are no spinless charge-gapless ex- it has been shown that in this limit the system is governed by
citations at momentum zero, and the system cannot be & | uttinger-liquid fixed point with no spin gai:*® (Note

conventional superconductor with pairing at total momentunhat if J,~Eg there is also the possibility of a strong-
zero induced by spin fluctuation exchange. An intuitive feel-coypling spin gap phasé)

ing for the origin of the spin gap can be obtained by consid-

ering the strong-coupling limit of the model, although care is

always needed in identifying the specific strong-coupling

fixed point to which a given weak-coupling Hamiltonian  We are grateful to I. Affleck and S. Sondhi for discussions

flows. In the present case, the natural candidate is a model end comments. This work was supported, in part, by the NSF

which the conduction electrons form singlets with the local-under Grant No. DMR98-14289 at UCL{S.A.K and 0.2),

ized spins, and any remaining localized spins form singletgy the Department of Energy under Contract No. DE-AC02-

with each othe?? 98CH10886(V.J.E), and by the Chateaubriand Foundation
b. Staggered pairing: >J4>0. An exact solution of and TMR No. ERB4001GT97294.Z.).

the modef also with a spin gap, may be obtained from a

field theory with explicitly broken spin-rotational symmetry APPENDIX A: MULTICOMPONENT EREE BOSON

and in a special “Toulouse limit,” in which one component FIXED POINT

of the Kondo coupling takes a specific valueEr. The

renormalization-group strategy behind this solution was de- This appendix gives a derivation of Eq42), (13), (18),

scribed in Sec. I. The long-distance behavior of the system if19), and(20). First of all, Eq.(10) may be rewritten as the

ACKNOWLEDGMENTS
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eigenvalue equation of a real symmetric mathig2v W2, TABLE |. Gapless SDW excitations.
with eigenvaluesu? and eigenvectorsV?». . It follows
9 ¢l 9 c 7 Operator Wave
that
number
1 I nT T
b

Equation(12) may now be obtained by premultiplying this
equation byW? and postmultiplying byw; ¥2v_*, and
using Eq.(10). Similarly Eq.(13) may be obtained by pre-  The low energy spin currents of the 1DE&x), can be

multiplying and postmultiplying Eq(A1) by W_ 2. decomposed into two parts;
To derive Eq.(18), first use Eq(12) to rewrite Eqs(14)
as S(X) = J1(X) +[ny(x)e'ZF*+ H.c] (B1)
~ =4 — l 1- d -
aTd):Z Ui_l/2¢éiaT7li (A2) where J1=32) 6.0/ ¥ 0T 0.0 VN0 and n,
ks A ol

=15 o ¥l 40 o1 h-1, are thek=0 andk=2kg compo-
nents of the SDWcharge 0, spin 1) of the 1DEG, respec-
tively.

bT’b:uiUZeéibTngni _ (A3) The He|ser.1berg chain spin currem},,.rr?ay be similarly
- - - decomposed into B=0 partJ,, and a finite momenturk

=/b part (—1)jﬁT (where 27/b is the reciprocal-lattice
vector of the Heisenberg chaijn

and

Then, if Eq.(16) is written as

O(x)=2 (fid +96)), (A4) .. -
! Tj:JT(Xj)+(—1)JnT(Xj). (BZ)

where As explained in Sec. I, we count only the number of
_ 2T (A5) finite-momentum excitations. It follows from time-reversal

symmetry that, for finite momentum, if there is a gapless
and mode at momenturg than there is also a gapless mode with
momentum—q. We count them as one mode. To summa-

gi=uTW_ 1y (AB)  rize, the gapless spin-1 excitations of the 1DEG and the

h o Heisenberg spin chain, and the operator whose correlation
function is most directly sensitive to it are listed in Table I.

The incommensurate 1DEG has one charge-0, spin-0

the critical exponen® is given by

S= 4i > (f2+g?), (A7)  CDW excitation with momentum¥ , created by the opera-
T 5 tor
from which Eq.(18) follows with the aid of Eqs(11) and A 1
(12), and Ocow=7 2 ¥ho¥ro- (83)
M=W_ ™ u; 7 ﬂiTWEl- (A8)  The reader may notice an apparent conflict with the “predic-
=~ S

tion” of the generalized Luttinger theorem that there must be

This equation mav be rearranged to give and (20 a gapless CDW mode akg = 2kg+ (7/b). This conflict is
bylusir?gljJ Elq (A1) ¢ J give EGS) 20 resolved by realizing the existence of composite-CDW
| ' (Refs. 32 and 3Border parameters which are formed by
combining a spin-1 SDW of the 1DEG with a spin-1 SDW of

APPENDIX B: GAPLESS MODES OF THE DECOUPLED . L . LA
the Heisenberg chain into a composite sin@etcpw,

KONDO-HEISENBERG ARRAY

The study of the different stable phases of the Kondo- O, cpw=5s-7=J1-J,+J;-n(—1)I+[n;-J e+ H.c]
Heisenberg array begins with an analysis of the gapless ex- oL A
citations of the decoupled fixed point. From there, as usual, +[ny-n,e? ¥+ H.cl(— 1), (B4)
we sort the phases by determining which of these excitations - -
become gapped, and which remain gapless in the presence Bf€ Staggered componentn, has momentum i = 2k
the (Kondo) couplings between the 1DEG and the Heisen-*(7/b), and is thus the CDW excitation required by the
berg chain. In this appendixl then' we ana|yze the System igenerallzed Luttlnger theorem. There is also a ComDOSIte—
the absense of any Kondo interactions. However, since oUtDW excitationJ-n_ at k= #/b. To summarize, the nonin-
ultimate goal is to study the coupled system, we will con-teracting two-chain system of a Luttinger liquid and a
sider the character of gapless excitations constructed of contdeisenberg spin chain hagapless CDW modes at three
posites of the gapless modes of the two subsystems, as weallave vectorgTable Il). Note that the composite-CDW exci-
as the excitations of each, separate subsystem. tations at wave vectorg/b and Xg+ (w/b) are not inde-
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TABLE Il. Gapless CDW excitations. TABLE lll. Gapless charge-2 pairing excitations.
Operator Wave Operator Wave
number number
n.-n 2k
nl n, 2kF+ % 67] 7TF
éCDW 2ke esP b
Jin, z
b
) Lo i OddEE_E_ :S AJ#T wT (B]J)
pendent, since they can be related through a multiplication Y 2 Es MR

by the 1DEGOcpy (Which has wave vectorig).

The charge-2 singlet pairing modes also require careful
consideration. In addition to the usua+ 0 BCS even-parity
singlet pairing,

The above relations are a manifestation of the fact that for
each gapless pairing mode there is a corresponding gapless
CDW mode. Therefore, we adopt the custom of dropping the
1 CDW modes from the explicit notatiorfbut their “trivial”
A=-—=2 4l TlvbT—)\ L existence should be implicitly understood in any fixed point

V2 X ' ' which has the corresponding gapless chargegapless
mode.

we note also the existence of aapairing mode iy, ;¥ |, In summary, there are two independent gapless, finite-

at momentumt 2k, corresponding to right- and left-going i
: : momentum, chargee&pairing modes.
singlet pairs. The gapless modes in Tables I-Ill characterize the non-
As with the CDW modes, in addition to the singlet pairing interact% pfixed oint of a two-chain system consisting of a
modes of the 1DEG, it is necessary to considerciraposite 9 point ot . y 9
. C . S 1DEG Luttinger liquid with Fermi wave numberkg and a
singlet pairing,O..sp, (@ product of a triplet pairing in the

OB Wi i ot o e el e[S S chan i bt et
turns out to be odd parit$f,;*’ p : y g

charge-2 and spin-1, charge-0 modes at finite momentum,
Og.sp= —i%(z//I&crzz//Z) . (B5) the decoupled fixed point is denoted by

where the sum over the spin indices of the spinors is implicit.

It is decomposed into two momentum components: a uni- [c,s:2Ke] S.f (B12)
form k=0 composite odd-parity singlet ERE T p

AKk=0,\y— i1, 1> ST

OcspX) = —i3(¢1002¢3) - I, (B6) or [c,s][s] for short. However, as emphasized in the above,

and ak= /b, i.e., astaggereccomposite odd-parity singlet this description leaves implicit the gapless, odd-parity
charged excitation at momentumib. Since this excitation is

A stagger o, 1 .. b J. a composite of the excitations already listed, it can be omit-

Ocsp” (X)=—i5(§1002¢3)-n(=1)".  (B7)  ted in a minimal labeling scheme. But because of this, it
looks a bit mysterious that there appeara gapless compos-
The pairing and CDW modes can be related through théte pairing mode with momentum/b in the spin-gap states

»-pairing modes by using the identitis which appear under the influence of a relevant
R perturbation—it lookgincorrectly) as if the relevant interac-

[Ocpw, 7% =A, (B8)  tion is generating new gapless excitations. From this view-

point, one might be tempted to label the decoupled fixed
[Oc.cow, 7°94=0¢.sp. (B9)  point [c][c,s], and to view the spin-1 excitation of the

1DEG as a composite of the three other modes, however far

that is from the actual physics of two decoupled systems.

The nonuniqueness of the label associated with each state is
) ‘ﬂI,T‘ﬂI,L (B10) ggrmtnnsm feature of the approach taken in the present pa-
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