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Classification and stability of phases of the multicomponent one-dimensional electron gas

V. J. Emery
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000

S. A. Kivelson
Department of Physics, University of California, Los Angeles, California 90095

O. Zachar
Laboratoire de Physique des Solides, Universite´ Paris-Sud, 91405 Orsay, France

~Received 14 October 1998!

The classification of the ground-state phases of complex one-dimensional electronic systems is considered in
the context of a fixed-point strategy. Examples are multichain Hubbard models, the Kondo-Heisenberg model,
and the one-dimensional electron gas in an active environment. It is shown that, in order to characterize the
low-energy physics, it is necessary to analyze the perturbative stability of the possible fixed points, to identify
all discrete broken symmetries, and to specify the quantum numbers and elementary wave vectors of the
gapless excitations. Many previously proposed exotic phases of multichain Hubbard models are shown to be
unstable because of the ‘‘spin-gap proximity effect.’’ A useful tool in this analysis is a generalization of
Luttinger’s theorem, which shows that there is a gapless even-charge mode in any incommensurate
N-component system.@S0163-1829~99!03124-0#
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I. INTRODUCTION

The basic theory of the low-energy physics of the int
acting one-dimensional electron gas~1DEG!, both with and
without spin, has been well established for two decades.
purpose of this paper is to extend this general analysi
obtain a classification of the stable fixed points ofmulticom-
ponent one-dimensional electronic systems. Examples
such problems include one-dimensional metals with sev
bands crossing the Fermi surface, such as multichain H
bard ladders,1–4 and the ‘‘1DEG in an active environment,’’5

of which the most studied example is the Kondo-Heisenb
model,6,7 i.e., a 1DEG interacting with a periodic array o
localized spins. While these models are still one dim
sional, and are amenable to the same methods of solutio
the 1DEG, their added richness brings in significant n
physics. In particular, in the context of the theory of hig
temperature superconductivity, this class of models inclu
some in which a spin gap and a strongly divergent superc
ducting susceptibility derive from purely repulsive intera
tions. Moreover, in these cases, the driving force for
superconductivity is a lowering of the kinetic energy.5,8

In one dimension, even at zero temperature, states w
broken continuous symmetry are destabilized by quan
fluctuations. However, there are states with quasi-long-ra
order which can be characterized by the existence of ‘‘qu
Goldstone modes,’’ i.e., gapless collective modes of
system with a soundlike spectrum. The canonical exampl
a quasi-Goldstone mode is the longitudinal sound m
of a harmonic chain.9 For a simple 1DEG, the relevant con
tinuous symmetries are spin rotation invariance@SU~2!#,
global gauge invariance@U~1!# associated with charge con
servation, and Galilean invariance. The latter is not an ex
symmetry for the electron gas on a lattice but, so long
the electron density is incommensurate with the crystal,
PRB 590163-1829/99/59~24!/15641~13!/$15.00
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low-energy dynamics possess an exact translational~chiral!
symmetry.

A. Classification of phases

It is a remarkable feature of 1DEG’s that all the propert
of such systems, including fermionic correlation function
can be expressed in terms of bosonic fields~bosonization!
corresponding to the quasi-Goldstone modes. Thus it is p
sible to classify all thermodynamically distinct ground-sta
phases of any multicomponent 1DEG by specifying~1! any
spontaneously broken discrete symmetries, such as the la
translation symmetry or parity, and~2! the number and quan
tum numbers of the fundamental gapless modes. The m
mal quantum numbers of the gapless modes are charge,
and~crystal! momentum. Our convention will be to focus o
spin and charge modes with the smallest nonzero mom
tum. Here ‘‘spin modes’’ have spin 1 and charge 0, a
‘‘charge modes’’ have spin 0 and charge 2me, wherem is an
integer. Simply counting gapless modes is insufficient;
instance, a state with one gapless charge and one spin m
with the samemomentum~which we label@c,s;2kF#, or
@cs# for short! is distinct from the state in which they hav
different momenta,@c;2kF

(1)#@s;2kF
(2)# ~or @c#@s# for short!.

This scheme differs from the traditional method10 of clas-
sifying phases of the 1DEG in terms of the most diverg
susceptibilities, which is appropriate when the goal is to u
derstand the properties ofquasi-one dimensional systems
since, in most cases, weak higher-dimensional couplings
stabilize a true broken symmetry state with the correspo
ing order at finite temperature. However, in the context
the 1DEGper se, the Luttinger exponents, and hence t
exponents governing the divergence asT→0 of the various
susceptibilities, vary continuously with parameters. For
ample, one can pass from a region in which the superc
15 641 ©1999 The American Physical Society
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ducting susceptibility is the most divergent to one in whi
the CDW susceptibility is the most divergent without e
countering any thermodynamic singularities. Thus,in the
strictly one-dimensional context, the present classification i
more appropriate and, in this respect, it extends and corr
the ground-breaking work of Lin, Balents, and Fisher11 on
this subject, while expanding on our earlier work on the g
eral problem of a ‘‘1DEG in an active environment.’’5

B. Fixed-point strategy

The concept of a fixed point of the renormalization-gro
equations of a field-theory Hamiltonian was introduced
Wilson12 for the study of critical phenomena. This idea ul
mately made its way into many-body theory, where t
renormalization group had been used for some time.
main point is that the low-energy, long-distance physics o
given model is controlled by the properties of the relev
stable fixed point or critical fixed point of th
renormalization-group flows. A particularly effective way
determining this behavior is to identify an exactly solvab
field-theory model that starts in the neighborhood of an
stable fixed point and flows to the same fixed point as
model in question. This strategy justifies the use of
‘‘Toulouse limit’’ to solve the single-channel Kond
problem,13 and of field-theory solutions of the 1DEG wit
attractive backward scattering or umklapp scattering.10 It is
important to note that a field-theory model that does
exhibit spin-rotation invariance may flow to a spin-rotatio
invariant fixed-point Hamiltonian. The flexibility in the
choice of solvable models allowed by this behavior is f
quently exploited, and it will be used later in this paper.

A fixed-point strategy is more difficult to implement whe
there are many degrees of freedom, as in multicompon
systems. There may be several stable or critical fixed po
and it is necessary to carry out a ‘‘global renormalization’14

in order to determine which one controls the low-ener
physics of a given model. Usually, such a procedure mus
carried out numerically. Also, it is necessary to do a differ
stability analysis for each fixed point separately. The sca
dimension of any given operator is generally different at d
ferent fixed points, so an interaction that is irrelevant at o
fixed point may become relevant at another.

One of our major findings is that ‘‘the spin-gap proximi
effect’’5 is a powerful force fordestabilizingmany putative
fixed points of multicomponent one-dimensional system
and enhancing superconducting correlations. The phys
which is driven by singlet pair tunneling, is analogous to t
proximity effect in superconductivity. It serves to lock th
superconducting phases of two subsystems, and either
erates a spin gap in both subsystems, or transfers a spin
from one subsystem to another. We have proposed this e
as a mechanism of high-temperature superconductivity
more detailed discussion is given in Sec. III.

C. Outline of paper

The paper is organized as follows: In Sec. II the theory
the 1DEG is reviewed from a statistical mechanical point
view, and the perspective required for the analysis of
general problem is developed. In Sec. III it is shown how t
analysis can be extended to multicomponent systems.
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cifically, the classification of the possible fixed points
terms of their spectrum and broken symmetries is discus
and the conditions for perturbative stability are derived. T
section also contains a discussion of generalizations of L
tinger’s theorem to one dimension, including a review o
recent proof15 of the existence of a gapless neutral collecti
excitation with momentum 2kF* , and a theorem concernin
the existence of a gapless charge 2me mode, wherem is an
appropriate integer. The classification of phases and
proof of this theorem makes use of the continuum repres
tation of the so-calledh-pairing operator, which is a produc
of fermion creation operators with thesamemomentum.16

Readers who are familiar with the theory of the 1DE
and are primarily interested in the illustrative examples m
prefer to proceed directly to Sec. IV, where this gene
scheme is applied to the analysis of the global phase diag
of the multichain Hubbard model and the Kondo-Heisenb
model. Specifically, it is shown that~1! many of the pro-
posed partially gapped phases11 of the multichain Hubbard
ladder are destabilized by the ‘‘spin-gap proximity effect;5

~2! the charge-ordered ‘‘stripe’’ structures which have be
observed4 in numerical studies of multichaint-J models
have a~possibly nontrivial! relation to the value of 2kF* de-
rived from the generalized Luttinger’s theorem;15 and ~3!
there are several, thermodynamically distinct spin-g
phases of the Kondo-Heisenberg model.17

II. ONE-COMPONENT 1DEG

To begin with, we consider the~well understood! theory
of the single component 1DEG with spin from the persp
tive of its quasi Goldstone modes. All known zer
temperature thermodynamic states of the 1DEG can be id
tified by ~1! spontaneously broken discrete symmetries, s
as parity;~2! whether or not there is a gapless spin and
charge collective mode;~3! the smallest nonzero wave vecto
at which these modes are gapless, which in analogy w
Fermi-liquid theory is called 2kF ~equivalently, 2kF charac-
terizes the long-distance oscillatory behavior of appropri
correlation functions!; and~4! the velocityu and ‘‘Luttinger
exponent’’K of each gapless mode.

A. Definition of terms

The definition of the terms used above requires some
cussion since, in much previous work, the identification
modes is derived from a particular calculational sche
rather than from general principles. Because of the abse
of spontaneously broken spin-rotational symmetry, it is p
sible even in the thermodynamic limit to classify all states
their spin quantum numbers. Thus, by a ‘‘spin mode,’’ w
mean18 a neutral excitation with spin 1; the existence of
gapless spin excitation will typically show up as a
asymptotic power-law behavior of the spin-spin correlati

function,^SW 2kF
(t)•SW 22kF

(0)&;utu122dS. ~HeredS is the scal-
ing dimension of this operator.! A charge excitation refers to
excitations made by adding a small number of electrons
the system. Typically, this means19 an excitation with spin 0
and charge 2e produced by adding a singlet pair of electro
with total momentum 2kF , which will show up in the
asymptotic form of the ‘‘h-pairing’’ operator,16 defined be-
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low. It is implicit in the above classification scheme that
state without a gapless spin mode has a ‘‘spin gap,’’ and
a state without a gapless charge mode has a ‘‘charge ga

The physics of 2kF is central to the following consider
ations. A remarkable theorem of Yamanaka, Oshikawa,
Affleck,15 which we refer to as the ‘‘generalized Luttinger
theorem,’’ fixes 2kF52pn/g at the same value as it woul
have in a noninteracting electron gas; heren is the total elec-
tron density andg52 because electrons have spin1

2 . The
theorem, which we will discuss in more detail in Sec.
implies the existence of a gapless neutral excitation with m
mentum 2kF as long as the 1DEG is not commensurat
locked to the underlying crystalline lattice. We also sho
that theh-pairing operator, with the exact same value
2kF , creates a gapless excitation in the same circumstan
When there are both gapless spin and charge modes,kF can
also be identified as the location of a nonanalyticity in t
single-particle occupation probability,^nk&, but when there
is a spin or charge gap, there is no sharp structure in
single-particle spectral function at all. Thus one must
careful in thinking ofkF as a Fermi momentum.

Throughout this paper we will distinguish between t
‘‘excitations’’ and the ‘‘modes’’ of the system. By a gaples
‘‘excitation’’ with given quantum numbers we mean a set
excited states with energies which approach that of
ground state in the thermodynamic limit. A ‘‘mode’’ refer
to an elementary excitation, which therefore has a w
defined dispersion relation. For example, above, we tal
about the spin-1, charge-0 excitations of the system,
though, in one dimension, under a broad range of circu
stances, the elementary excitations are, in fact, ‘‘spinon
with spin 1

2 and charge 0. What this means is that the s
dynamic structure factor will exhibit a branch cut, corr
sponding to a continuum of two spinon excitations, rath
than a pole corresponding to a magnon mode. When cla
fying states in terms of gapless excitations, we have cho
not to distinguish which are elementary and which are m
tiparticle excitations.

With this distinction in mind, the definition of the
collective-mode velocities is obvious. The existence of L
tinger exponentsKs and Kc is one of the triumphs of
bosonization; they dictate the relation between correla
functions expressed in terms of the original electronic va
ables, and eigenmodes of the underlying bosonic free-fi
theory. For any given lattice model, the quantum critical e
ponentsKa must be determined by carrying out a glob
renormalization14 to the appropriate fixed point, and matc
ing to the continuum theory. In general, this procedure m
be implemented numerically, either by studying the lon
distance behavior of correlation functions, or by studying
finite-size scaling behavior of energy levels.

Two of the physically most important low energy fluctu
tions of the 1DEG are the 2kF charge-density-wave~CDW!
fluctuations and the zero-momentum~BCS-like! pairing fluc-
tuations. CDW fluctuations are neutral and spinless. For
ample, for the repulsiveU Hubbard model with a half-filled
band, the 2kF density-density correlation function has th
same asymptotic~power-law! form as the 2kF spin-spin cor-
relation function, although there is manifestly a char
gap.20,21
at
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B. Formal implementation „bosonization…

Formally, the above discussion is equivalent to the sta
ment that the low-energy properties of the 1DEG are direc
related to the properties of two independent bosonic fi
theories with Hamiltonian densities

Ha5
ua

2
@~]xua!21~]xfa!2#1Va cos~bafa!, ~1!

wherea5c ands for the charge and spin fields, respective
ua is the dual field tofa , or equivalently]xua is the mo-
mentum conjugate tofa . Va can be set equal to zero22 at the
gapless fixed point. Otherwise, whenVa is nonzero and rel-
evant; i.e., whenba,A8p, it sets the scale of the gap,23

according to the scaling relationDa;Va(L/Va)12ba
2 /8p,

where L is an ultraviolet cutoff parameter. The Luttinge
exponentsKa determine the value ofba to beA8pKa, and
also specify the relationship between correlation functio
expressed in terms of the bosonic field operators and ph
cal correlation functions, expressed in terms of the origi
electronic field operators,

cl,s~x!5Ns exp@ ilkFx2 iFl,s~x!#, ~2!

whereNs contains both a normalization factor~which de-
pends on the ultraviolet cutoff! and a ‘‘Klein’’ factor10

~which can be implemented in many ways! so thatcl,s(x)
anticomutes withNs8 for sÞs8 and commutes with it for
s5s8. Also

Fl,s5Ap/2 @~ ũc1lf̃c!1s~ũs1lf̃s!#, ~3!

wherel561 refers to left- and right-moving electrons, an
s561 refers to the spin polarization. In Eq.~3!, we have
expressed the fermion operators in terms of ‘‘bare’’ boso

fields, f̃a , which are related to the interaction-shifted no
mal fields10 that appear in Eq.~1! by the canonical~Bogoliu-
bov! transformation

f̃a5faAKa, ũa5ua /AKa. ~4!

This transformation brings the Hamiltonian into a canoni
form, so that the Luttinger exponents appear only in the
lation between the fermionic and bosonic fields, and imp
itly in the values ofba .

From Eq.~2!, it is a straightforward~and standard10! ex-
ercise to obtain bosonic representations of all interes
electron bilinear and quartic operators. Physicallyfc andfs
are, respectively, the phases of the 2kF CDW and spin-
density-wave fluctuations, anduc is the superconducting
phase. The long-wavelength components of the charger)
and spin (Sz) densities are given by

r~x!5(
l,s

cl,s
† cl,s52kF /p1A2Kc /p~]xfc!,

Sz~x!5 1
2 (

l,s
scl,s

† cl,s5A2Ks /p~]xfs!.

We also explicitly bosonize theh-pairing operator,16

whose correlations are sensitive to the presence or absen
a charge gap,
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hl5cl,↑
† cl,↓

† ;exp@ iA2p/Kc~uc1Kcfc!12ikFx#. ~5!

This operator is not usually studied as its scaling dimens
dh5(Kc1Kc

21)/2 is greater than 1 forKc.0, so the corre-
sponding susceptibility is never divergent. However, it is
teresting in the present context as it has finite momentum
is independent of the spin fields. It is easy to see from Eq.~2!
that spatial translation byx0 is equivalent to the chiral trans
formationfc→fc2kFx0A2/pKc, which must be a symme
try of the Hamiltonian for an incommensurate system. Sim
larly, gauge invariance implies that the Hamiltonian
invariant under uc→uc1const. As a consequence, th
Hamiltonian must depend only on derivatives ofuc andfc ,
so theh operator defined above must always create a gap
excitation.

A final comment is in order at this point. The Abelia
representation favored in the present paper is not manife
spin rotationally invariant. This is an advantage whene
spin-rotational symmetry is broken at the Hamiltonian lev
as there is no need for special treatment of symme
breaking terms. Spin-rotational invariance implies a spec
value of the Luttinger exponentKs , which may be obtained
by comparing the spin-spin correlation functions for differe
spin directions. For example, where there is no spin g
spin-rotation invariance can easily be seen to implyKs51 at
the fixed point.~Slow flows asKs approaches 1 also can giv
logarithmic corrections to various correlation functions!. So
far as we know, in all cases studied to date, the fixed p
value ofKs in a spin-gap phase isKs5

1
4 ~or in other words,

bs5A2p), at which point the spin correlations are asym
totically equivalent to those of a dimerized spin-1

2 Heisen-
berg model, but it is conceivable that other discrete val
could occur in other circumstances.

III. MULTICOMPONENT 1DEG

This section begins with a formal bosonized descript
of the multicomponent 1DEG, continues with a discussion
the generalized Luttinger theorems for this problem, a
concludes with a detailed analysis of the specific exampl
the two-component 1DEG. In particular, in this latter part
will be shown how the perturbative stability of each potent
fixed point Hamiltonian can be assessed.

A. Bosonizing the multicomponent system

First consider a system ofN distinct 1DEG’s, which may
be bosonized as in Eq.~2!:

cb,l,s~x!5N s
b exp@ ilkF

bx1 iFl,s
b ~x!#,

~6!

Fl,s
(b) 5Ap/2 @ ũc

(b)1lf̃c
(b)#1sAp/2@ ũs

(b)1lf̃s
(b)#,

whereb51 to N labels the different subsystems, the Kle
factors Ns

(b) anticommute for (a,s)Þ(b,s8), and the
bosonic fields satisfy canonical commutation relations

@f̃a
(a)~y!,]xũb

(a)~x!#5 ida,bda,bd~x2y!. ~7!

The tilde field variables appearing here are the bare fie
unshifted by interactions.
n
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In the continuum limit, the Hamiltonian density of thi
system consists of three terms:

H5Hc1Hs1Hint . ~8!

HereHc includes all the marginal interactions involving th
charge degrees of freedom,

Hc5 1
2 $~]xũc

T!Wc~]xũc!1~]xf̃c
T!Vc~]xf̃c!%, ~9!

whereũc andf̃c are column vectors withN componentsũci

and f̃ci respectively, andWc and Vc are real, symmetric
N3N matrices. So that the spectrum is bounded below i
necessary and sufficient that the all eigenvalues ofWc and
Vc be positive.Hs is similarly defined for the spin degrees o
freedom; however, at the spin rotationally invariant gaple
fixed point, Ws5Vs5us , where @us#a,b5us

(b)da,b is the
spin-velocity matrix. Finally,Hint contains the terms nonlin
ear in the field variables~the various cosine interactions!,
which when relevant lead to the opening of gaps in the sp
trum, and when irrelevant can be ignored.

For the case in which the nonlinear interactions are p
turbatively irrelevant,H is the fixed point Hamiltonian for a
system withN gapless charge andN gapless spin modes. In
this case, as in the single-component problem, we perfor
Bogoliubov transformation to normal coordinates.24 A more
detailed derivation is given in Appendix A. First define th
column vectorh i such that

WcVch i5uci
2 h i ~10!

whereuci are the normal mode velocities, and

h i
TWc

21h j5d i j . ~11!

With these definitions, it is straightforward to show that

Wc5(
i

h ih i
T ~12!

and

Vc5Wc
21(

i
uci

2 h ih i
TWc

21 . ~13!

Then the Hamiltonian may be diagonalized by a canon
transformation to new fieldsf i8 and their conjugate moment
]xu i8 :

f i5ui
1/2h i

TWc
21f̃c ,

~14!

u i5ui
21/2h i

Tũc .

In transformed variables, the Hamiltonian consists ofN de-
coupled acoustic normal modes,

Hc5 1
2 (

i
uci$]xuci

2 1@]xfci#
2%. ~15!

The relation between the fermionic fields and the norm
mode coordinates is easily derived from this expression
Eq. ~6!.
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Finally, correlation functions of the untransformed fiel
can be expressed in terms of the transformed fields using
~14!. A typical operator has the form

Ô~x![exp$ i @aTf̃~x!1bTũ~x!#%, ~16!

wherea and b are N component real vectors, and its zer
temperature equal-time correlation function is given by

^Ô~x!Ô†~0!&5@Luxu#22d ~17!

whereL is an ultraviolet cutoff, and the scaling dimensio

d5
1

4p
@aTM21a1bTMb#, ~18!

where

M[W21/2NW21/2, ~19!

with

N2[W1/2VW1/2. ~20!

The perturbative stability of the free-boson fixed point c
be readily analyzed by studying the scaling dimension of
various operators which enter intoHint . As usual, the stabil-
ity of the fixed point turns on whether there are any phy
cally allowed vectorsa andb that lead to a scaling dimen
sion less than 1, which would imply that the operator
relevant. If any of these interactions is relevant, it is nec
sary to identify the new fixed point to which the syste
flows, and to study its properties. Typically, the effect o
relevant interaction inHint is to freeze out certain fluctua
tions ~i.e., to gap some modes! and at the same time produc
a renormalization of the matricesV andW. This leads to a
new fixed-point Hamiltonian, whose stability must be rea
sessed, since operators that were irrelevant at the orig
fixed point could become relevant at the new fixed po
This stability analysis will be performed more explicitly i
the two-component example discussed below.

B. Generalization of Luttinger’s theorem

The generalized Luttinger’s theorem15 imposes an impor-
tant constraint on the allowed momenta at which gapl
neutral excitations occur. No matter how complex the sys
~e.g., no matter how many bands cross the Fermi surfa!,
unless there is an even-integer number of electrons per
cell, there must be a zero-energy excited state with char
and~for the case of zero net magnetization! with crystal mo-
mentum 2kF* 5pnT , wherenT is the total electron density
including all bands. Thus if a multicomponent system h
gapless modes at only one crystal momentum, it must
2kF* , and in a system with multiple values of 2kF

(b) , there
must be a set of integersmb such that

2kF* 5 (
b51

N

mb2kF
(b)1~reciprocal lattice vector!. ~21!

~If some modes are charged, there is an obvious further c
straint on the integers implied by the neutrality of the co
posite mode at 2kF

! .!
q.

e
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-

-
al
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s
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s
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-

There is a second general constraint governing the e
tence of a gapless charge excitation, which to our knowle
is discussed here for the first time. This argument general
our earlier discussion of theh-pairing mode. Consider the
generalizedh operator, which creates 2Nc right-moving
electrons with spin 0:

hT,15 )
b51

Nc

cb,1,↑
† cb,1,↓

† 5~ !exp@ iA2p~ũc1f̃c!1 i2kF
c x#,

~22!

whereNc is the number of ‘‘extended’’ charge modes and

ũc5(
b

ũc
(b)/ANc and f̃c5(

b
f̃c

(b)/ANc ~23!

are the global superconducting phase and the dual C
phase. Global gauge invariance implies that the Hamilton

is invariant under the transformationũc→ ũc1const. Opera-
tionally, ‘‘extended’’ charge modes are defined to be tho
modes that acquire a nonzero phase under a global g
transformation. Similarly, spatial translation is equivalent

the phase shift,f̃c→f̃c1const. As a consequence of the

invariances,Hint must dependent only on derivatives ofũc
and~so long as the system is incommensurate! on derivatives

of f̃c . Thus the associated modes must be gapless.
implies thathT,1 ~and of course,hT,21 as well! must create a
gapless, spin-0 charge-2Nce excitation with crystal momen-
tum 2kF

c , and that theh correlations must fall like a powe
law with distance. In many cases, 2kF

c 52kF* andNc5N, the
number of ‘‘bands’’ which cross the Fermi surface, but w
will encounter cases, such as the Kondo-Heisenberg m
discussed in Sec. III B, in whichNc,N.

This proof relies on the field-theoretic representation
operators; it is desirable to generalize it to the actual lat
system, but we have not yet succeeded in doing so. Sin
gapless, spinless, neutral excitation with momentum 2kF* al-
ways exist on general grounds, it need not be listed w
classifying phases.

C. Classification of fixed points

The essential steps in extending the above analysis a
identify the possible fixed points of a multicomponent sy
tem, and then examine their perturbative stability. As for
single-component system,states are identified by their dis
crete broken symmetries and by the ‘‘irreducible’’ or min
mal set of charge and spin-carrying gapless excitations. The
gapless, spinless excitation at 2kF* implied by the generalized
Luttinger’s theorem may be left implicit. In contrast to th
single-component 1DEG, it is necessary to specify not o
the modes but also their momenta~aside from 0!, which are
no longer completely determined by the generalized Lutti
er’s theorem. For instance, it will be seen that it is possible
encounter a state with a gapless charge excitation at cry
momentum 2kF , and a gapless spin mode at crystal mome
tum 2kF8Þ2kF . Such a state will be labeled@2kF :
c] @2kF8 :s# or, leaving the values of the crystal momentu
implicit, @c#@s#. In the canonical ordering to be adopte
here, the modes with the larger momentum, 2kF.2kF8 , will
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be listed first. An interesting feature of the multicompone
system which is obviated by the generalized Luttinge
theorem for the single-component case is that, when there
multiple values ofkF , their values can~and generally will!
shift continuously as a function of interactions.

Of course, it is always implicit that, if there exists a ga
less excitation at crystal momentum 2kF , then one can make
gapless excitations with integer multiples of 2kF , as well.
However, it is clearly not sufficient to specify the number
gapless modes, as proposed by Lin, Balents, and Fish11

For example, the state with gapless charge and spin m
with the same crystal momentum,@cs#, is thermodynami-
cally distinct from the states@c#@s# and@s#@c# in which they
occur at distinct crystal momenta.

D. Two-component 1DEG

To make the discussion more concrete, and in partic
to illustrate the nature of the stability analysis, we now co
sider the case of a two-component 1DEG,N52. Two inde-
pendent, decoupled, and generally inequivalent 1DEG’s
separately described by an appropriate fixed-point~free-
boson! Hamiltonian. Clearly no coupling between the tw
subsystems can be generated by any reason
renormalization-group transformation. Thus the fixed poi
may be specified for each subsystem separately. The dis
sion will be restricted to the spin rotationally invariant cas
although this is easily generalized.

The next step is to determine the circumstances in wh
each fixed point is stable with respect to weak interacti
between the two 1DEG’s. In general, whenever a given fi
point is stable for some range of parameters, there is no m
to say. If the fixed point is unstable, the character of
stable fixed point to which the Hamiltonian flows und
renormalization must be determined. The new fixed po
could, in principle, have only gapless modes, although, u
ally some modes that were gapless become gapped.

If the two subsystems are mutually incommensura
@kF

(1)/kF
(2)5(irrational)#, the only potentially perturbatively

relevant couplings are those that do not transfer momen
between the two systems. The most relevant terms are q
tic in fermion operators and are of three types. The inter
tion piece of the Hamiltonian density is given by

H85H 181H 281H 38 , ~24!

where

H 185Vr (1)r (2)1V8 j (1) j (2), ~25!

with

r (b)~x!5(
l,s

cb,l,s
† cb,l,s , ~26!

j (b)~x!5(
l,s

lcb,l,s
† cb,l,s , ~27!

H 285JSW (1)
•SW (2)1J8 jW (1)

• jW (2), ~28!

with
t
s
re

f
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ar
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ar-
c-

SW (b)~x!5 (
l,s,s8

cb,l,s
† tWs,s8cb,l,s8 , ~29!

jW (b)~x!5 (
l,s,s8

lcb,l,s
† tWs,s8cb,l,s8, ~30!

and

H 385@J sD
(1)†D (2)1H.c.#1@J tDW

(1)†
•DW (2)1H. c.#,

~31!

where

D (b)~x!5(
l

cb,l,↑
† cb,2l,↓

† , ~32!

DW (b)~x!5 (
s,s8

cb,1,s
† tWs,s8cb,21,s8

† . ~33!

Here tW are the Pauli matrices. Of these interactions,
charge and current-density interactions inH 18 are marginal,
i.e., they are quadratic in boson variables, and so must~and
can! be absorbed into the definition of the fixed-point Ham
tonian density and treated exactly, as in Sec. III A. The p
turbative stability analysis is then performed with respect
the remaining interactionsH 28 and H 38 by computing the
scaling dimensions of these operators, as in Eq.~18!.

This stability analysis was carried out previously for t
two chain problem in Refs. 24 and 5. The results are al
braically complicated, but are simplified, without significa
loss of physical insight, by considering systems in which

V852~vc
(2)/vc

(1)!~Kc
(1)Kc

(2)!V, ~34!

whereKa
(b) andva

(b) are the Luttinger exponent and veloci
at the decoupled fixed point of subsystemb51 and 2, with
a5c ands for charge and spin modes, respectively. In th
case,

d (SW 1•SW 2)5
1
4 ~Ks

(1)1Ks
(2)11/Ks

(1)11/Ks
(2)!,

d ( jW1• jW2)5d (SW 1•SW 2) ,

~35!

d (D1D2)5
1
4 ~A/Kc

(1)1B/Kc
(2)1Ks

(1)1Ks
(2)!,

d (DW 1•DW 2)5
1
4 ~A/Kc

(1)1B/Kc
(2)11/Ks

(1)11/Ks
(2)!,

with

A5A11
4VV8

~pvc
(2)!2

,

B5S 12
2VKc

(1)

pvc
(1) D 2S 11

4VV8

~pvc
(1)!2D 21/2

. ~36!

The weak-coupling fixed point of two incommensura
1DEG’s is stable if all of these dimensions are greater tha
and is unstable otherwise. For weak interactions, any gap
charge modes haveKc

(b) near 1, andKc
(b) generally increases
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with increasingly strong repulsive interactions. When t
fixed-point Hamiltonian is spin rotationally invariant,Ks j
51.

The expressions in Eq.~35! were derived for the gaples
fixed-point Hamiltonian, but it is relatively easy to dedu
how these scaling dimensions are altered at a stro
coupling fixed point in which certain fluctuations are froz
out by the presence of relevant interactions of the fo
cos@bfc

(b)# and/or cos@bfs
(b)# which open a gap. This is

equivalent to replacingKc
(b) by an effective Luttinger expo

nent, Kc
(b)→0 and/or Ks

(b)→0. Conversely, if the fluctua
tions of the dual phases are suppressed by a relevant i
action of the form cos@buc

(b)# and/or cos@bus
(b)#, these

expressions should be evaluated in the limitKc
(b)→` and/or

Ks
(b)→`. Other types of strong-coupling fixed points can

analyzed in the same fashion.
It is worth commenting, briefly, on the physical implica

tions of the dependence of these various scaling dimens
on the parameters in the fixed-point Hamiltonian. The s
interactions,H 28 , are manifestly unimportant (d (SW 1•SW 2) and

d (DW 1•DW 2) are infinite! if either subsystem has a spin gap. Th
makes good physical sense. If neither system has a spin
then the constraints of spin-rotation invariance imply th
these interactions are marginal (d (SW 1•SW 2)51); further analysis

~i.e., carrying out the perturbative analysis to orderJ2), fol-
lowing on the work of Ref. 7 on the Kondo-Heisenberg pro
lem, shows that for antiferromagnetic couplings (J.0),
these interactions are marginally relevant while for fer
magnetic couplings (J,0), they are marginally irrelevant
The authors of Ref. 7 speculated that in the antiferrom
netic case, the system scales to a strong-coupling fixed p
with J large and a total spin gap. This conclusion is su
ported by numerical studies carried out by these same
thors, and by additional analytic work by one of us.17

The singlet pair tunneling interactionH 38 has its scaling
dimension significantly reduced if either or both subsyste
have a spin gap, since then the effectiveKs

(b) in Eq. ~35! is
zero. For instance, if subsystem 1 has a spin gap, and
system 2 does not, then, from Eq.~35!

d (D1D2)5
1
4 ~A/Kc

(1)1B/Kc
(2)!1 1

4 . ~37!

The underlying physics is analogous to the proximity eff
in superconductivity, and we have named it5 the ‘‘spin gap
proximity effect’’: because subsystem 1 has a spin gap,
already substantially superconducting,25 so it can readily in-
fect any coupled subsystem with its superconducting cha
ter. From this point of view, one would expect a relevant p
tunneling interaction to induce pairing correlations in su
system 2~i.e., to open a spin gap! and to lock the supercon
ducting phases of the two subsystems~i.e., to gap the out-of-
phase CDW mode!. We have confirmed the validity of thi
expectation by an exact solution of this problem in a parti
lar solvable limit.5 When Js is relevant, i.e., wheneve
d (D1•D2),1, the stable fixed-point behavior is characteriz
by a total spin gap, and a locking of the charge degree
freedom of the two subsystems. Indeed, this effect is v
efficient at destabilizing any fixed point with a partial sp
gap; for instance, any@cs#@c# fixed point is most often un-
e
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stable for nonzeroJs , and flows to the@c# fixed point. The
effect of a relevant triplet pair tunneling interactionJt has
not yet been thoroughly investigated.

When the two subsystems are mutually commensurate
nearly commensurate, the above stability analysis beco
more complicated. We defer detailed discussion of this pr
lem to a later date. However, a few interesting features of
problem can be understood on the basis of very general
siderations. In the first place, the decoupled fixed point
two 1DEG’s with the same values of 2kF is always pertur-
batively unstable, unless at least one system has a f
gapped spectrum. This follows directly from the observat
that in all the known phases of the 1DEG, at least one s
ceptibility is enhanced relative to noninteracting electrons10

What this also implies is that, if we start with two decoupl
1DEG’s with 2kF

(1) nearly equal to 2kF
(2) , and then gradually

turn on interactions between them, there is a strong tende
to induce transfer of electrons between the two subsyste
with a cost of unperturbed energy but a gain of energy fr
the relative commensurate locking of the two subsystems
a result, one expects arelative incommensurate to commen
surate transition as a function of increasing interact
strength in such systems. As for the 1DEG itself, the sit
tion is somewhat more complicated for higher-orderrelative
commensurabilities, since newly allowed interactions
generally irrelevant when the interactions in the 1DEG
weak, and relevant only when they are sufficiently stro
and sufficiently long ranged.26

IV. APPLICATION TO SPECIFIC MODEL PROBLEMS

To demonstrate the utility of this analysis, we conclu
with a discussion of four specific problems that have been
considerable recent theoretical interest.

A. Critique of the perturbative RG analysis of the N-chain
Hubbard model

There have been a number of recent papers concer
the phases of theN-chain Hubbard model, following the
early work of Varma and Zawadowski.27 In particular, in two
interesting papers, Balents, Fisher, and Lin11 analyzed the
renormalization-group~RG! flows in the neighborhood of the
noninteracting fixed point, by computing theb function to
lowest order in powers ofU/t, whereU is the on-site repul-
sion between electrons, andt is the intersite hopping matrix
~More generally, they allowed for possibly different valu
of the hopping amplitudes,t andt8, parallel and perpendicu
lar, respectively, to the chain direction.! Specifically, they
identified which interactions are perturbatively most relev
for various geometries of the chains, and as a function of
electron concentration per site and the ratiot8/t. They then
conjectured a phase diagram by analyzing the nature of
fixed point, obtained by bosonizing the model with the r
evant interactions taken to infinity, and all others neglect

This analysis has, we believe, three flaws, which lead
significant errors in the resulting phase diagram and ot
conclusions.~1! The only rigorous conclusion that can b
drawn from a perturbative RG analysis when there are
evant interactions is that the initial fixed point is unstab
and that therefore the asymptotic physics is controlled
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another fixed point.~Tracing the effects of the perturbative
relevant interactions to strong coupling is,at best, suggestive
of the character of the new fixed point.! ~2! Even if we ac-
cepted the perturbative analysis of the nature of the inte
tions which are important at the strong-coupling fixed po
to which the Hamiltonian flows, it is essential to perform
perturbative stability analysis at the new conjectured stro
coupling fixed point to make certain that it is, in fact stab
This was not done by Balents, Fisher, and Lin. Specifica
their analysis ignored the possibility that interactions that
marginal or irrelevant at the weak-coupling fixed point, c
become relevant at the strong-coupling fixed point.~3! Be-
cause of the presence of marginal interactions, e.g., inte
tions which shift the various collective-mode velocities, it
an incorrect procedure to perturb about thenoninteracting
fixed point. The proper perturbative RG analysis should
clude the effects of the marginal interactionsexactly, as in
Sec. III A, and should be performed about the appropr
free boson fixed point. Since the various collective mo
velocities enter the one-loop RG equations, this makes s
~but at times important! differences in the character of th
weak-coupling flows.

Stability of phases

How do these general observations affect the conclus
of Lin, Balents, and Fisher11 concerning the phase diagram
Where they find no relevant interactions in their approa
and conclude that all of the modes of the noninteracting s
tem remain ungapped~e.g., where they find phases of th
form @cs#n, or CnSn in their notation!, or where they find
completely gapped phases, or phases with only a single,
gapped charge mode~e.g., phases labeled@c# or C1S0 in
their notation! the only differences between our analysis a
theirs areO(U/t) shifts of the locations of various phas
boundaries due to the effect of marginal interactions. Ho
ever, all of the partially spin-gapped phases,~such as the
phase@cs#@c#, which, in their notation isC2S1), are desta-
bilized by the spin-gap proximity effect. To see this, no
that the pair tunneling interaction, like all other interaction
has scaling dimensiond511O(U/t) at the noninteracting
fixed point; the opening of a spin gap, with all other intera
tions held small~of orderU/t) reduces this dimension by
finite amount, e.g., tod5 3

4 1O(U/t) in the example in Eq.
~37!. Thus, of all the conjectured phases in their phase
grams, only the familiar phases with one or fewer gapl
charge and spin modes, and the totally gapless phases@cs#m,
are stable at weak interactions.

Of course, as is implied by point~1! above, it cannot be
ruled out that during the flow to strong coupling, interactio
other than the ones identified in perturbation theory will b
come large, and this could alter the stability of the partia
gapped phases. However, we suspect that the part
gapped phases are not, generically, stabilized for largeU/t,
because strong interactions can produce significant shift
the values ofkF

(b) , which then permits the commensura
locking of different subsystems; indeed, this conclusion w
reached, previously, by Schulz.28 In this regard it is worth
noting that there have been extensive numerical29 studies of
various N-leg Hubbard ladders for intermediate to stro
U/t, in none of which has evidence for these exotic pha
been reported.
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B. Example of the spin-gap proximity effect:
The asymmetric three-chain Hubbard model

In Ref. 5, where the spin-gap proximity effect was fir
elucidated, the simplest model system to which it was
plied was the asymmetric three-leg Hubbard ladder. The p
dictions made there were later confirmed in numerical
periments on the symmetric three-legt-J ladder.3 For the
reasons outlined above, these results are in clear disag
ment with the predictions based on the perturbative
analysis of Lin, Balents, and Fisher.11 We briefly review the
analysis here, as an illustrative example.

As in Ref. 5, consider an asymmetric system, with a tw
leg Hubbard ladder weakly coupled to a one-leg Hubb
‘‘chain,’’ with a difference in site energye. For concrete-
ness, takeU to be large, and consider the phase diagram a
function of electron density, although in Ref. 5 it was co
structed as a function ofe. The method of analysis, as pre
sented above, first neglects the coupling between the la
and the chain, and then assesses its effect on the final re

When the electron density per site isn51, the system is
manifestly insulating. The two-leg ladder, on its own, has
spin gap while the chain has a gapless spinon mode. Bec
of the spin gap, this fixed point is stable for weak cha
ladder couplings, so the phase is@s#.

For e.0, when the density of electrons is reduc
slightly to n512x with the number of ‘‘doped holes’’x
! 1

3 , the added holes go onto the chain. Because the inte
tions in the chain are repulsive and spin rotationally inva
ant, and the electron density is incommensurate, the c
will form a Luttinger-liquid state with gapless charge an
spin modes. Pair tunneling between the chain and the lad
induces an effective attraction between spinons, but beca
there is an energy denominator 2e* ~wheree* is the renor-
malized energy to transfer a singlet pair of electrons from
ladder to the chain!, the bare repulsion between electrons
the chain is the dominant interaction, so the decoupled fi
point is stable; this phase is@cs#.

Finally, with increasing doping, although still in the re
gime x,1/3, the value ofe* decreases steadily due to th
repulsion between doped holes so, ifueu is not too large, we
reach a regime in which the pair tunneling between the ch
and the ladder becomes significant. Now, via the spin-
proximity effect, the chain becomes infected with the sp
gap of the ladder. The result is a phase which has a total
gap, and only the charge-2e and neutral spinless modes im
plied by the generalized Luttinger’s theorem; this phase
@c#.

The system studied numerically3 is, in fact, the three-
chain t-J ladder. The differences between thet-J and Hub-
bard models for intermediate to strongU are not believed to
be very significant in the present context. Because of
boundary conditions, the central chain of the ladder is phy
cally distinct from the two edge chains. Even though the b
difference in site energye50, there is manifestly a nonzer
value ofe* . Thus there is, in fact, a very close~although not
entirely quantified! relation between the system we analyz
theoretically, and that studied in the numerical experime
so it is not surprising that the reported phase diagrams ag
In the numerical experiments, withJ/t;0.5, the critical
value of doping at which the transition from@cs# to @c# oc-
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curs isx'0.06; the very small value of this critical densi
reveals the robustness and strength of the spin-gap proxi
effect. The perturbative RG analysis of Lin, Balents, a
Fisher leads to a phase diagram in which the undoped sy
is ~correctly! in the @s# phase, but has the doped system e
hibiting the@s#@cs# phase over the relevant range ofx; this is
a specific case of a partially spin-gapped phase which, as
argued above, should be generally unstable to the forma
of a fully spin-gapped@c# phase due to pair tunneling inte
actions.

C. Concerning theN56 t-J cylinder

Recent important advances in the numerical evaluatio
the ground-state properties of correlated systems have
lowed the study of much largert-J and Hubbard clusters
than before. White and Scalapino4 considered six-componen
t-J systems with cylindrical boundary conditions, i.e., pe
odic boundary conditions in the finite direction and op
boundary conditions along the chains. To draw conclusi
concerning the 2Dt-J model, it is necessary to perform
two-dimensional finite-size scaling analysis of these res
in order to extrapolate to the thermodynamic limit. So far
has not been possible to do so, and the conclusions of W
and Scalapino disagree with those of other studies of c
parably large systems30 which did do a finite-size scaling
analysis. Consequently, it is still unclear to what extent th
results are representative of the actual ground state of
two-dimensional system. However, we may imagine that
results of White and Scalapino are representative of
ground-state properties of an infinite-length six-leg cylind
which itself is an example of a multicomponent on
dimensional system.

The principal finding of White and Scalapino~obtained
for J/t50.35) is that the ground state exhibits ‘‘stripe’’ co
relations in the expectation value of the charge-density
erator. For the six-leg cylinder at a small density of dop
holes,x, the period of the observed density oscillations
l652/3x. ~Here units of length are chosen so that the latt
constant is equal to 1.! Of course, since this is one dimen
sion, the density-wave order observed by White and Sc
pino on finite length systems should be interpreted as
period of power-law CDW correlations in the infinite syste
Now, the value of 2kF* 5G12p/l* , where G is a
reciprocal-lattice vector, corresponds to density-wave co
lations with a wavelengthl6* 51/3x, so the period found by
White and Scalapino is twice that required by the generali
Luttinger’s theorem. In other words, the fundamental g
less, spinless neutral CDW mode of the system occurs
wave number12 2p/l* , and the excitation at 2kF* is thus a
second harmonic.

It is also easy to see from the present analysis that th
cylinders are not good candidates for high-temperature
perconductors, since there are no gapless charge-2e excita-
tions of this system. At present, it is not clear to us whet
the system supports gapless excitations with charge 4e, cor-
responding to the injection of an additional ‘‘stripe’’ into th
system, or whether because there is a tendency for spin
relations to suffer ap phase shift across a stripe, it is nece
sary to inject charge 8e corresponding to a pair of ‘‘stripes.’
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D. Kondo-Heisenberg array

The Kondo-Heisenberg model is the simplest example
a metallic system~here, a 1DEG! coupled to an insulating
antiferromagnet~here, a spin-12 Heisenberg chain!. The large
~or infinite! charge gap in the spin chain implies that charg
transfer interactions, such as pair tunneling, are unimport
The dominant interactions involve the spin density, i.e., th
are the Kondo interaction between the conduction elect
spin sW(x) and localized ‘‘impurity’’ spinstW j ,

HK5JK(
j

tW j•s¢~xj !, ~38!

where xj are the positions of the localized spins and t
Heisenberg interaction between nearest-neighbor local
spins,

H0
Heis5JH(

j
tW j•tW j 11 . ~39!

Also it will be assumed thatJH!EF , which is typically true
in physical applications. The resulting Kondo-Heisenbe
Hamiltonian is

H5H0
1DEG1H0

Heis1HK , ~40!

where the subscript 0 refers to the Hamiltonian of the dec
pled system with

H0
1DEG52 ivF(

s,l
lE dx cl,s

† ]xcls . ~41!

It will be assumed that the relative concentration of localiz
spins is c51/b,1, i.e., xj5 jb, that the two systems ar
relatively incommensurate, and that 2kF is incommensurate
with the underlying lattice. The effective Fermi wave num
ber ~in the sense of the generalized Luttinger’s theorem! for
the 1DEG and the spin chain are 2kF and 2kF

Heis5p/b, re-
spectively, so, for the coupled system,15 there must be a gap
less neutral excitation with wave number 2kF* 52kF

1(p/b), and a charge-2e excitation with momentum 2kF .
The determination of the phase diagram of this mo

provides a further example of the application of the metho
developed above. We shall give a brief physical descript
of the origin of the various phases—the theoretical mani
lations may be found in Appendix B and in the published a
unpublished literature.6,7,17

1. Decoupled Luttinger liquid: JH@2JK>0

As discussed above, spin-rotation invariance implies th
to lowest order, the spin coupling between two gapless s
tems is marginal, while to second order, as pointed out
Sikkema, Affleck, and White,31 the interactions are perturba
tively irrelevant forJK,0 ~ferromagnetic interactions! and
relevant forJK.0. Thus, for ferromagnetic Kondo coupling
the decoupled fixed point is perturbatively stable. This ph
has, trivially, one gapless spin excitation at moment
2kF

Heis , and gapless spin and charge excitations at mom
tum 2kF . Since 2kF.2kF

Heis , this phase is labeled
@c,s;2kF#@s;2kF

Heis#, and has no discrete broken symm
tries. In shorthand notation, the decoupled fixed point is c
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sified as@c,s#@s#. However, for future reference, it is impor
tant to note that there is also a gapless, odd-parity charge
composite pairing excitation at 2kF

Heis , as discussed in Ap
pendix B. Because this is a composite excitation, its e
tence is already implied by the existence of the other gap
modes. However, as we shall now show, when the Kon
coupling produces a spin gap, this composite mode can
remain gapless.

2. Antiferromagnetic Kondo coupling: JK>0

a. Odd-parity singlet pairing: JH@JK.0. If JK.0, the
decoupled fixed point is unstable, and the low-energy ph
ics is governed by a strong-coupling fixed point with a sp
gap.31 This phase has several unexpected features. Of co
as required by the generalized Luttinger’s theorem, there
neutral, spinless gapless excitation of this system wit
minimal momentum 2kF* , as pointed out by Yamanaka
Oshikawa, and Affleck.15 Remarkably, the effective Ferm
sea ‘‘knows’’ about the localized electrons as well as
itinerant ones. In addition, this system clearly has a gap
spinless charge-2e excitation created by theh-pairing opera-
tor of the 1DEG; in this case, since the localized spins
unaffected by a global gauge transformation, our theor
implies that this mode carries momentum 2kF . Of course
these two statements, taken together imply that there exi
gapless, spinless charge-2e excitation with momentum
2kF

Heis . Because 4kF
Heis52p/b is a reciprocal-lattice vector

2kF
Heis and22kF

Heis are equivalent; as a consequence, ex
tations with momentum 2kF

Heis can simultaneously be cha
acterized by their parity. As discussed in Appendix B, it m
be shown that, in the present case, the only gapless cha
2e excitation with momentum 2kF

Heis has odd parity.32 This
phase is labeled @c#@c#, or more fully as @c;
2kF] @(c,odd);2kF

Heis# ~where we put the modes in parenth
ses when an additional descriptive element, such as even
parity, must be noted!.

There are some remarkable features of the charge fluc
tions in this state.32 Whereas the decoupled system had g
less CDW modes at 2kF and 2kF* 52kF12kF

Heis , the spin-
gap phase retains only the composite CDW mode at 2kF* ~see
Appendix B!. As a result, because of the mismatch betwe
2kF

Heis and 2kF , there are no spinless charge-2e gapless ex-
citations at momentum zero, and the system cannot b
conventional superconductor with pairing at total moment
zero induced by spin fluctuation exchange. An intuitive fe
ing for the origin of the spin gap can be obtained by cons
ering the strong-coupling limit of the model, although care
always needed in identifying the specific strong-coupl
fixed point to which a given weak-coupling Hamiltonia
flows. In the present case, the natural candidate is a mod
which the conduction electrons form singlets with the loc
ized spins, and any remaining localized spins form sing
with each other.31

b. Staggered pairing: JK@JH.0. An exact solution of
the model,6 also with a spin gap, may be obtained from
field theory with explicitly broken spin-rotational symmet
and in a special ‘‘Toulouse limit,’’ in which one compone
of the Kondo coupling takes a specific value;EF . The
renormalization-group strategy behind this solution was
scribed in Sec. I. The long-distance behavior of the system
2
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the Toulouse limit is spin rotationally invariant,13,33 which
implies that spin-rotational symmetry-breaking terms are
relevant at the fixed point, so it is unlikely that the behav
we found is an artifact of the model. This phase may
distinguished32 from the weak-coupling (JH@JK) spin-gap
state by classifying its gapless excitations.

Clearly, as before, there must exist a gapless neutral
citation with a minimal momentum 2kF* , a gapless charge
2e excitation, produced by theh-pairing operator, with mo-
mentum 2kF , and as a consequence of these two gen
statements, a gapless charge-2e excitation at momentum
2kF

Heis . However, we find6 that there exist both even an
odd-parity gapless charge-2e excitations at momentum
2kF

Heis , so that there is, in fact, one more finite-momentu
gapless charge mode in this state than in the weak-coup
spin-gap state. This phase is labeled@c#@cc#, or more fully
as@c;2kF#@(c,odd)(c,even);2kF

Heis#. This solution also pro-
vides an example of the fact that an analysis of the relev
operators at weak coupling does not necessarily tell us
character of the stable fixed point. It is long-distance phys
~forward scattering! that destabilizes the weak-coupling fixe
point, but the character of the strong-coupling fixed point
determined by short-distance physics.

An elaborate comparison32 of the two spin-gap phase
reveals that the additional gapless mode in the Toulouse l
phase may be associated with an additional hidden bro
translation symmetry. A further distinction between t
states may be made by considering the origin of the spin
and its consequences for enhanced pairing correlations
intuitive, strong-coupling picture of the origin of the spin ga
in the Toulouse limit phase involves pairing of the spins
each subsystem, separately. The existence of the two s
gap fixed points of the one dimensional Kondo-Heisenb
model underscores the need to consider the explicit solut
of the strong coupling fixed points, which do not follow from
simply establishing the existence of a spin gap based on
weak coupling perturbative renormalization group analys

c. Strong coupling: JK@EF@JH. Finally, for complete-
ness, it is important to remark that there exists a dir
‘‘strong-coupling’’ limit of the modelJK@EF@JH , which
has distinct physics from either of the spin-gap phases
cussed above. In particular, via a mapping to thet-J model,
it has been shown that in this limit the system is governed
a Luttinger-liquid fixed point with no spin gap.34,35 ~Note
that if JH;EF there is also the possibility of a strong
coupling spin gap phase.31!
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APPENDIX A: MULTICOMPONENT FREE BOSON
FIXED POINT

This appendix gives a derivation of Eqs.~12!, ~13!, ~18!,
~19!, and~20!. First of all, Eq.~10! may be rewritten as the
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eigenvalue equation of a real symmetric matrixWc
1/2VcWc

1/2,
with eigenvaluesuci

2 and eigenvectorsWc
1/2h i . It follows

that

Wc
1/2VcWc

1/25Wc
21/2(

i
uci

2 h ih i
TWc

21/2. ~A1!

Equation~12! may now be obtained by premultiplying th
equation byWc

1/2 and postmultiplying byWc
21/2Vc

21 , and
using Eq.~10!. Similarly Eq. ~13! may be obtained by pre
multiplying and postmultiplying Eq.~A1! by Wc

21/2.
To derive Eq.~18!, first use Eq.~12! to rewrite Eqs.~14!

as

aTf̃5(
i

ui
21/2fci8 aTh i ~A2!

and

bTũ5ui
1/2uci8 bTWc

21h i . ~A3!

Then, if Eq.~16! is written as

Ô~x!5(
i

~ f if i81giu i8!, ~A4!

where

f i5ui
21/2aTh i ~A5!

and

gi5ui
1/2bTWc

21h i ~A6!

the critical exponentd is given by

d5
1

4p (
i

~ f i
21gi

2!, ~A7!

from which Eq.~18! follows with the aid of Eqs.~11! and
~12!, and

M5Wc
21(

i
uih ih i

TWc
21 . ~A8!

This equation may be rearranged to give Eqs.~19! and ~20!
by using Eq.~A1!.

APPENDIX B: GAPLESS MODES OF THE DECOUPLED
KONDO-HEISENBERG ARRAY

The study of the different stable phases of the Kon
Heisenberg array begins with an analysis of the gapless
citations of the decoupled fixed point. From there, as us
we sort the phases by determining which of these excitat
become gapped, and which remain gapless in the presen
the ~Kondo! couplings between the 1DEG and the Heise
berg chain. In this appendix, then, we analyze the system
the absense of any Kondo interactions. However, since
ultimate goal is to study the coupled system, we will co
sider the character of gapless excitations constructed of c
posites of the gapless modes of the two subsystems, as
as the excitations of each, separate subsystem.
-
x-
l,

ns
of

-
in
ur
-
m-
ell

The low energy spin currents of the 1DEG,sW(x), can be
decomposed into two parts;

sW~x!5JW1~x!1@nW 1~x!ei2kFx1H.c.# ~B1!

where JW15 1
2 (l,s,s8cl,s

† sW s,s8cl,s8 and nW 1

5 1
2 ( ,s,s8c1,s

† sW s,s8c21,s8 are thek50 andk52kF compo-
nents of the SDW~charge 0, spin 1) of the 1DEG, respe
tively.

The Heisenberg chain spin current,tW j , may be similarly
decomposed into ak50 part JW t , and a finite momentumk
5p/b part (21) jnW t ~where 2p/b is the reciprocal-lattice
vector of the Heisenberg chain!;

tW j5JW t~xj !1~21! jnW t~xj !. ~B2!

As explained in Sec. I, we count only the number
finite-momentum excitations. It follows from time-revers
symmetry that, for finite momentum, if there is a gaple
mode at momentumq than there is also a gapless mode w
momentum2q. We count them as one mode. To summ
rize, the gapless spin-1 excitations of the 1DEG and
Heisenberg spin chain, and the operator whose correla
function is most directly sensitive to it are listed in Table

The incommensurate 1DEG has one charge-0, sp
CDW excitation with momentum 2kF , created by the opera
tor

ÔCDW5
1

2 (
l,s

cl,s
† c2l,s . ~B3!

The reader may notice an apparent conflict with the ‘‘pred
tion’’ of the generalized Luttinger theorem that there must
a gapless CDW mode at 2kF* 52kF1(p/b). This conflict is
resolved by realizing the existence of composite-CD
~Refs. 32 and 33! order parameters which are formed b
combining a spin-1 SDW of the 1DEG with a spin-1 SDW
the Heisenberg chain into a composite singletÔc-CDW ,

Ôc-CDW5sW•tW5JW1•JW t1JW1•nW t~21! j1@nW 1•JW te
i2kFx1H.c.#

1@nW 1•nW te
i2kFx1H.c.#~21! j . ~B4!

The staggered componentnW •nW t has momentum 2kF* 52kF

1(p/b), and is thus the CDW excitation required by th
generalized Luttinger theorem. There is also a compos
CDW excitationJW•nW t at k5p/b. To summarize, the nonin
teracting two-chain system of a Luttinger liquid and
Heisenberg spin chain hasgapless CDW modes at thre
wave vectors~Table II!. Note that the composite-CDW exc
tations at wave vectorsp/b and 2kF1(p/b) are not inde-

TABLE I. Gapless SDW excitations.

Operator Wave
number

nW 1
2kF

nW t
p

b
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pendent, since they can be related through a multiplica
by the 1DEGÔCDW ~which has wave vector 2kF).

The charge-2e singlet pairing modes also require caref
consideration. In addition to the usualk50 BCS even-parity
singlet pairing,

D5
1

A2
(
l

cl,↑
† c2l,↓

† ,

we note also the existence of anh-pairing mode,cl,↑
† cl,↓

† ,
at momentum62kF , corresponding to right- and left-goin
singlet pairs.

As with the CDW modes, in addition to the singlet pairin
modes of the 1DEG, it is necessary to consider thecomposite
singlet pairing,Oc-SP, ~a product of a triplet pairing in the
1DEG with a spin-1 mode of the Heisenberg chain! which
turns out to be odd parity,36,37

Oc-SP52 i 1
2 ~c1

†sW s2c2
†!•tW ~B5!

where the sum over the spin indices of the spinors is impli
It is decomposed into two momentum components: a u
form k50 composite odd-parity singlet

Ôc-SP
k50 ~x!52 i 1

2 ~c1
†sW s2c2

†!•JW t ~B6!

and ak5p/b, i.e., astaggeredcomposite odd-parity single

Ôc-SP
stagger~x!52 i

1

2
~c1

†sW s2c2
†!•nW t~21! j . ~B7!

The pairing and CDW modes can be related through
h-pairing modes by using the identities32

@ÔCDW ,heven#5D, ~B8!

@Ôc-CDW ,hodd#5Ôc-SP. ~B9!

where

heven[
1

A2
(

l56
cl,↑

† cl,↓
† ~B10!

TABLE II. Gapless CDW excitations.

Operator Wave
number

nW 1•nW t 2kF1
p

b
ÔCDW

2kF

JW1•nW t
p

b

n

t.
i-

e

hodd[
1

A2
(

l56
lcl,↑

† cl,↓
† . ~B11!

The above relations are a manifestation of the fact that
each gapless pairing mode there is a corresponding gap
CDW mode. Therefore, we adopt the custom of dropping
CDW modes from the explicit notation,~but their ‘‘trivial’’
existence should be implicitly understood in any fixed po
which has the corresponding gapless charge-2e gapless
mode!.

In summary, there are two independent gapless, fin
momentum, charge-2e pairing modes.

The gapless modes in Tables I–III characterize the n
interacting fixed point of a two-chain system consisting o
1DEG Luttinger liquid with Fermi wave number 2kF and a
Heisenberg spin chain with a reciprocal-lattice vectorp/b.
In our compact notation, which counts only the sing
charge-2e and spin-1, charge-0 modes at finite momentu
the decoupled fixed point is denoted by

@c,s;2kF#Fs;
p

b G ~B12!

or @c,s#@s# for short. However, as emphasized in the abo
this description leaves implicit the gapless, odd-par
charged excitation at momentump/b. Since this excitation is
a composite of the excitations already listed, it can be om
ted in a minimal labeling scheme. But because of this
looks a bit mysterious that there appears a a gapless compos
ite pairing mode with momentump/b in the spin-gap states
which appear under the influence of a releva
perturbation—it looks~incorrectly! as if the relevant interac
tion is generating new gapless excitations. From this vie
point, one might be tempted to label the decoupled fix
point @c#@c,s#, and to view the spin-1 excitation of th
1DEG as a composite of the three other modes, howeve
that is from the actual physics of two decoupled system
The nonuniqueness of the label associated with each sta
an intrinsic feature of the approach taken in the present
per.

TABLE III. Gapless charge-2e pairing excitations.

Operator Wave
number

h 2kF

Ôc-SP
p

b
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