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Correlation holes in a spin-polarized dense electron gas
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Double perturbation theory is used to calculate the form of the correlation hole in polarized and unpolarized
dense electron gas. The analytical dependence on the polarization of the correlation hole at the origin is
obtained. The normalized hole depth at the origin is minimal for the unpolarized gas. The correlation hole is
always negative. It can be adequately described at the short range by the product of a spin-independent and
density-dependent function on the uncorrelated pair-distribution fundi®1.63-182899)05324-3

[. INTRODUCTION for a sufficiently dense electron gas, assuming the expansion
series to be convergent at least partially. The exact polariza-
The development of density functional thedfFT) and  tion data for a dense gas may help to improve the existing
its successful applications to many atomic and moleculaglensity functionals based on the electron gas mbdel.
systems has focused renewed attention on the description of
correlation effects in a uniform electron gas. Adequate de- Il. METHOD
scription of the electron pair distribution is important in
building exchange-correlation functionals in the framework
of the local spin densitfL.SD) approximationt? For mo-
lecular environments, it is particularly important to know
pair-distribution functiong(R) of a polarized electron gas
for relatively short electron separation distanBe§ he pair-
distribution function is defined as the probability to find an
electron at a given distané&from another electron. Depend-
ing on the relative spins of these two electrons, the pair- E:E Eij .
distribution function can be subdivided int®«, «fB, and B
BB parts. The correlation hole for a given spin pair is defined
as the difference between the exact pair-distribution function E10=(Vo|Pc| Vo), (1)
for these spins and the corresponding pair distribution in the
uncorrelated system. Knowledge of the correlation holes Eo1=(¥olPsr)|¥o),
would permit separation of the correlation energy into short-
and long-range parts and may help in building LSD density E, = 22 <W0|P6(R)|q’k><q’k|PC|q’0>
functionals suited for molecular environments. ’ K Ex—Eo
The pair distribution in the uncorrelated electron gas can
be obtained through the Hartree-Fock calculation. For the
pair of electrons of opposite spins this function is constant. S ) )
The pair-distribution function for the uncorrelated electrons The pair-distribution functiom(R) at electron separation
of the same spin is defined as the exchange hole and wégcan be found through such expansion by considering the
obtained by Diraé.The current knowledge about the corre- term corresponding to the first derivative of the total energy
lation holes comes either from Monte Carlo calculatfoms ~ With respect to the perturbation parameterThis derivative
through interpolation of data from(0) for a dense unpolar- is proportional to the pair-distribution function at the point
ized gas, coupled with the cusp condiththe value of the Where the probings function is not zero.

We use double perturbation thedtyto explore the pair
correlation function. The noninteracting electron gas is si-
multaneously perturbed by the Coulombic electron repulsion
Pc=e?/r;, and by the § function probe Psry=Ao(R
—ri5). The energy of such a system can be written as a
Taylor expansion

aB correlation hole at the origin for the unpolarized dense

electron _ga§,and knowlec_ige o_f the exphange-only hoI_e of g(R)= lim (E) :E gi(R), 2)
the polarized ga%® There is no information on the polariza- x—0\ IN i

tion dependence of the correlation hole near the origin, apart

from numerical Monte Carlo simulations. Such simulations, Ei,

while very useful in the investigation of existing models, are 9i(R)=—~ )

difficult to use for the construction of new models.

The aim of the present work is to study further the corre-This expression gives the pair-distribution function as a se-
lation hole near the origin in a dense polarized electron gasies with respect to the strength of the electron-electron in-
Double perturbation theotYis well suited for this purpose, teraction. It is convenient to replace the effective coupling
giving the exchange-only hole at the lowest order of perturconstante? with the dimensionless Wigner-Seitz radius
bation, and describing perturbation of the electron distribu= (me?/%2)/[97/2(a®+ B%) 13, wherea and B are Fermi
tion through electron correlation at higher orders. It is exacimomenta for alpha and beta electrons, respectively. This cor-
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responds to the radius of a sphere containing a single elecaomentum space. Theﬁ(R_,lz)/)\ perturbation transforms
tron, in atomic units. For a dense electron gass small, SO i3 momentum space to smiR/(qR). Taking care of proper
the leading terms of Eq. 2 are the most important. The firshormalization factors, we get

term go(R) gives the pair-distribution function for a nonin-

teracting electron gas, or the exchange-only pair-distribution 167 (=

function. The correlation part of the pair-distribution func- gfﬁ(R)= — EJ qquf d®p;

tion is defined agy(R) —go(R), g1(R) being the leading (2m)°Jo Py(a[py+al)e

term for smallr.

The computation of terms beyord (R) suffers from di- xf d3 w
vergence of the integrals, similar to divergence of integrals p2A(B.Ip2—al)s g’qR
involved in calculation of correlation energy for the dense
electron gas? Fortunately, the importarg,(R) term is free « 1
from this problem and can be calculated in relatively (p1+0)2— P2+ (p—q)2—p3
straightforward fashion, although large values of interelec-
tron distanceR require careful handling, as numerical stabil- -1 (= sin(gR)
ity deteriorates for the limitR—o. Since the pair- = 7f > dp,d cost,
distribution function is well described at long range through 16w’ /o QR Jpyalprta)e
its Fourier transfornf, this study primarily focuses on the
short-range part of the pair-distribution function. Xf dp,d cosé,

It is convenient to analyze the pair-distribution function in P2(B:lp2=dl)p
terms of distributions of electrons of particular spin combi- 1

nationsg®“(R), g*/(R), andgP?(R). (5)
A significant amount of information about the pair-

distribution function can be obtained from its value at thewhere « is the Fermi momentum for electron B, is the

origin. Combining this information with proper cusp behav- Fermi momentum for electron 2, arj, 6, are angles be-

ior allows construction of relatively accurate correlation tween the momentum transfgrand initial momenta of elec-

holes for short separation distanéeBecause of antisymme- trons 1 and 2, respectively.

try requirementg**(0)=g##(0)=0. The value ofg}*(0) It is convenient to introduce an inverse Laplace transform

was computed by Gelddrfor the unpolarized electron gas. to separate variables of two electrons,

The present approach enables us to derive an analytic expres-

X
g+ p1C0SH;— p,CosbH,’

sion for g§#(0) for a dense electron gas of arbitrary polar- 1 = fmds @ SU—SP1COSO +5P,C080,
ization. g+ p,€0sH;—p,cosh, Jo '
(6)
Ill. COMPUTATION Now we can integrate electrons 1 and 2 out to get
We will use atomic units through the rest of the manu- —1 (= singR) (=
script. The pair-distribution function of a dense electron gas gfﬁ(R): — | dq ds e‘qua(s,q)Jﬁ(s,q),
is 47°Jo q’R Jo
0
2 <\[/O|pc|qf?vjb><\[fiavjb| P sl Vo) where auxiliary functiong are
g(R= X = i . @
iiSab A €t €~ €€ J(5,9)
. . . . 1
where WV is the wave function for a noninteracting electron —3[(sx+ 1)(e S*—e S~y +5q9?] if g<=2x
gas. The excited state° describes double electron excita- S

I, —
tion from occupied statJeSandj with momentap,; and p, 1
and energie; = p7/2 ande; = p3/2 into statesa andb with S[(sx—1)e™+(sx+1)e”>] if g=2x. ®)
momentap,+q and p,+q’ and orbital energies,=(p; s

+0)?/2 ande,= (p,+q’)?/2, respectively. The conservation

of momentum requires thay=-q’. The g7“(R) and  This equation can be further reduced to expressions which
97#(R) contain both direci—a, j—b and cross-terms of involve integration of a single variablg by analytically in-
typei—b, j—a with respect to both perturbations, while the tegrating over variabls. The final integration ofj was per-
g7?(R) term contains only direct terms. This makE§f  formed numerically for moderate values gf and analyti-
significantly simpler to compute. cally for largeq. Details can be found in the Appendix. The
plots of the pair-distribution function are given in Fig. 1.
It can be easily shown that the interelectron cusp
conditior?*® yields dg/dR|gr_o=1. Pair-distribution func-
Integrating plane waves over coordinate space, one easiljons in Fig. 1 satisfy this with 0.1% accuracy.
finds that, for the excitation with momentum exchaiggéhe An important feature ogf'g(R) is that it is negative for
Coulombic repulsion operator rk) transforms to 4r/g? in any finiteR. Therefore, it does not satisfy the normalization

A. Pair-distribution function of electrons of opposite spins
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0.0 r == ] ~ [J (S,q)], ’ e—SX(l_eSQ) if qszx
[ T L i Jsq) = — = o
- ST . X e*+e if gq=2x.
04 - / / i-:ézg'(s)m% J Since we have to integrate E(LO) with respect to param-
gg’ i y o 'C=0:92857 j etersa and B it is convenient to represent it as series
B I s {=0.99726 | - Vo " i1
7_/: =10 1 (%) _i (_ 1)| ’BI « 2) : 1
08 & . aB |, w1 ol S0 2j+1°
i ] (12
-1.0 | | | | | | | ] _ . . . X
00 05 10 15 20 25 30 35 a0 where[(l_ 1)/2] implies the mtgger part oflel)lz. _
Rz, The biggest problem now is to recover the integration

constants when we transform E42) back to obtairg,(0).
FIG. 1. Correlation hole in the dense electron gas for electrong his is easier to do in steps, first recovering constants lost in
of opposite spins. Both distribution function and separation distancghe final differentiation in Eq(10). It is also helpful to re-

are normalized per Wigner-Seitz radiug Distribution functionis  memper that from the dimensional argumefis is propor-
given per electron pair of opposite spins. Values of polarization argjgnal to the fifth power of momentum, i.€E;;~ aylgs—y.
given for different curves. '

" 2
condition fg¢#(r)r2dr=0 which is required for any finite w: _15(,31+o(132)> (13
system. Effectively, part of the electronic cloud is pushed to ap 4 2
infinity. Since the correlation energy can be expressed as the
integral of the pair-distribution function with Coulomb op-
erator over the whole space, the all-negative pair-distribution )
function may lead to the overestimation of the correlation [91(0)7" :__1 aﬁ21—2,83
energy, as compared to that in the finite system. 1 B g5 2

The correlation hole of the fully polarized gas is signifi-

cantly deeper than for the unpolarized one. This shows the F o (—1)igit2etti DA
weakness of the original Perdew-Wa(®V) modef which +4Z i Z i :

¢ ] =2 i(i+1) i=o 2j+1
adopts the exchange-only spin dependence of the correlation
hole. The exchange-only dependence is essentially a normal- (14

ization factor, making the PW correlation hole normalized
per number ofa-B pairs polarization independent. Deepen-
ing of thea-B correlation hole with the polarization increase
is expected as the averagep electron pair becomes less
constrained with the polarization increase.

The remaining two constants of integration of Etd) are of
the orderB® and o®. From physical meaning we know that
limg_o[91(0)]=0, so the only remaining constant to re-
cover is the one on the order @°. We cannot study the
limit «a—0 of Eq. (7) directly since we used the condition

Pair-distribution function at the origin a= 3, so we investigate the asymptotic behavior of

Due to the presence of the Fermi hole in the pair- [91(0)]%\" -1 a\ 2
distribution function for electrons of parallel spin, the only (—B> =—4 In —) 5 +0(B), (15
contribution tog(0) comes from excitations of electrons of B ppp AT B

opposite spins. Setting the electron separation distdhce

0, we get from Eq(7) which, together with Eq(14), leads to

-1 [ 7%a?B® ap? 61 w2 2 @
—1 (=dq (= 01(0)= —| —5—— 5+ 552~ s + 7| 5| |°
01(0)=— [ —| dse*U,(s,q)dp(s,a), (9 475 12 2 225 60 15°\p
475Jo 9 Jo
* (_1)iBi+3a2—i [(i-1)12]
where auxiliary functiong are defined in Eq(8). —42 . — - 2 —} (16)
Now we transform with respect to parametersand g8 =3 (1-2)i(i+1)(i+3) =0 2j+1
and integrate the transformed expression After normalizing per density ofe3 electron pairs
[91(0)12;B>” —1J°°dq - s 2
————| =——=| —| dse*U,(s,0)I4s,0) 1 f 33
aB g 47°Jo 4 Jo Pap/g—(zﬂ_)e 37 a’B 17
-1 2 atp . .
- = n ) (10) and expressing Fermi momentaand 8 through more con-
45 atB \a—B ventional Wigner-Seitz radiuss and polarization=(a>

~ —B%)/(a®+ B3), we get for the density of electrons at the
We assumex= 3. The auxiliary functions) are coalescence point
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324 \"¥([#2 1/1-¢\18 —1 (=
9:(0)= —fs(m |§— > 1+§) g91“(R)= ﬁjo ququ1<l,|p1+ql>1d3pl

W ”[E_zazn 1+ < & (_;)
1+¢) [225 60 457 11-¢ paLlpa-abl | G2 (G+py—po)’
_52 1-¢\"® (sin(qR)_sin(lq+p1—pz|R))
1+ 1+¢ @R (|g+p1—p2R)

i [i/2+1]
X(i+1)(i+(3)(1i)+4)(i+6) ,Zo 21%1} ><2q(q+Tol—|Oz)' 2

+O(r§). (18)  The integrand of this equation does not dependpott p,,
although such dependence is implicit in the limits of integra-
For the special case of unpolarized electron &a®, and  tion. We can change variables as
we get

_Putpe
oo, 324 (=103 =T
g( ) =—Tg 17_4 15 450 (22)
. ; Yy=P1—P2-
T A D(+3)(+4)(+6) & 2j+1) Msgves
=—0.731670,. 19 -1 (= 2 -
S (19 g‘f“(R)z—GJ qqu dyf sinfdé
This is in agreement with-0.7317% calculated by Geldart. 4m>Jo o Jo
For a fully polarized electron gas=1 and the density of 1 1
a electrons on top of a singl@ electron looks especially x(——
simple, g°> g%+y’+2qycosd

qR Vo2 +y?+2qy coséR

U3 _ _ —
sin(gR) si +y“+20gycosiR
9(0)§=1=—rs<3—772) ~—0.974444. (20) n(qR) _sin(vg’+y*+2qy )>

Both fully polarized and unpolarized correlation holes at the
origin, as well as it dependence have been recently calcu-
lated by Burke, Perdew, and Ernzerti$fOur expression

looks somewhat simpler, especially for the fully polarized _1f dey q+y S( 1 1)

XWV(Q,)’,H)

gas. It is interesting to note that the correlation hole in the
polarized gas is deeper than that of the unpolarized one. Of
course, the contribution of this hole to total correlation en- ) ,
ergy in the latter case will be less significant, since the num- X(sm(qR) _ sm(sR)) V(9,y,s) 29
ber of opposite-spin electron pairs will be lower. gR sR q2_y2+32’

2 2

la— yl q° s

B. Pair-distribution function of electrons of same spins s=g2+y?+2qy cosé,

The value ofg{“(R), normalized per number of-a
electron pairs, does not depend on the amour efectrons
in the system, and vice versa. This is not true for hlghe
orders ing;, but at the level of our analysis this allows us to
construct pair-distribution functions for electrons of parallel
spins that are independent of polarization. Let us then as:
sume for simplicity that we are considering a fully polarized
gas withg=0.

Now we have contributions from both direct and cross-
terms with respect to both Coulomb amdfunction probe
operators. For direct contributions the momentum represen
tation of both operators is identical to that for tgéﬂ case,
being 4m/q? for the Coulomb operator and sgqi)/(qR) for
the § function probe. For cross-terms these operators ar _ _ _ _
dnd (G D) and S Do PRI G s palR). Y(a.y,0)=v(p1,p2)—v(P1.,P2,P1+0) —v(P1,P2,P2— 1)
Assuminga=1 we get +v(p1,p2.P1+0Q,P2— 1), (29

where 0 is the angle between andy, and V(q,y,6), or
V(q y,S) is a result of integration of variabbeand is equal
to the volume of a figure shown in Fig. 2. The origin is
marked with 0. Placement of vectarwithin the sphere,,
which is the unit sphere shifted from the origin byy/2,
ensures that momentupy <1. In addition to that, the re-
quirement|p;+g|>1 constrainsx to be outside the sphere
created by displacing sphepg by —q. Similar requirements
with respect to the momentum of the second electron keep
within the crescent of spheng,. Therefore, the volume of
integration ofx is represented by the intersection of two cres-
cents, or
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) . ) FIG. 4. Correlation holes in dense electron gas normalized per
FIG. 2. Volume of integration in momentum space with respect, _ anq divided by the uncorrelated distribution functians Both

to average momentum of two electrons, labeled by the overlappingame. and opposite-spin correlation holes are given for comparison.
vertical and horizontal grids. The center of symmetry is marked

with “0.”

L sinx—x cosx | > 97\ B3R -
where v(a,b, ...) is volume of intersection of spheres 9o= 3 XN vy (25
a,b, ... . The volume of intersection of three spheres of unit

radii was calculated by Powéfl. The volume of intersection The first term describes the classical distribution of the elec-
of four spheres can be reduced to those for two and threlions, and the second term is due to the exchange interaction.

spheres due to the symmetry of the problghe whole pic- It is nonpositive everywhere, and breaks the whole space
ture has center of symmetry at the origifFor q=1 this into shells. On the surface of each shell the exchange term is

volume is reduced to (py,p,). equal to zero. The physical effect of the exchange interaction
Due to the complexity oM(q,y,s) Eq. (23) has to be ©N the distribution function is to remove parts of the electron

calculated numerically. The numerical integration is Comp”_distribution from between the shells, and leave it constant on

cated by large derivatives iN(q,y,s), especially near the (heir surfaces. _

critical region of smalls wheng=y. Unfortunately, analyti- To the leading order, the correlation eff_ects are more pro-

cal representation of is very complicated even as a Taylor Nounced between shells, further reducing the exchange-

series for smalk, so we had to resort to a very dense inte-depleted electron distribution. Unlike the exchange interac-

gration grid in this region. The calculatef“(R) is shown EI[?]”’ tlhetdlstrlbutlon ohn ;hte shedll ?“fr_f"’fes 1S alsoége(juced.
in Fig. 3, along with maxima ofig“(R). Unfortunately, lim- € electrons are pushed towards infinity, smceg{( .).'S

) ) . nonpositive everywhere. This effect is due to the infiniteness
ited numerical accuracy prevents checking the cus

T . . ' . Rt the electron gas, and, like the correlation distribution for
condition, since it requires numerical computation of the S
third derivative. aB electrons, may lead to the overestimation of the correla-

The exchange-only pair-distribution function for the uni- tion energy in the finite systems.

form fully polarized electron gas is ) S )
C. Comparison of the pair-distribution functions

N e S A I ] The absolute values of the-a and -8 correlation holes

‘ 1 are very different. This difference is, however, much less
pronounced for the correlation pair distribution relative to
the uncorrelated pair distribution. The relative distribution
functions, defined ag(R)/gq(R) are given in Fig. 4. The
values of the relativer-a correlation hole very close to the
origin (R/rg<0.1) may be unreliable as they involve the
division of two small numbers.

The relativea-g distribution is equivalent to the absolute
one, since the exchange-only distribution function for the
a-B pairs is a constant. The relative-a correlation hole,
however, reveals its similarity with the-g hole. Its short-
e b L b range R/rg=<1) part is similar to the fully polarized:-8
hole, while its tail R/rs=2) is quite close to the unpolarized
a-f3 correlation hole. This suggests that the density function-

FIG. 3. Correlation hole in the dense electron gas for electrong!S based on the Hartree-Fock-Kohn-Sham méttuan be
of same spins. Both distribution function and separation distanc&Pin independent.
are normalized per. Distribution function is given per electron The correlation hole computed via perturbation theory is
pair of same spins. The tail of the distribution function is given in €xact for a dense electron gas. To find the range of the small-
the inset. ness parameter; for which the leading term is expected to
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FIG. 5. Spin-integrated correlation hole of unpolarized dense )
electron gas normalized pet, and compared with the Perdew-  FIG. 6. Comparison of the Perdew-Wangs€0.01) and the
Wang model for different values af,. exact correlation holes in dense electron gas for different values of

the polarization parametet

dominate the shape of correlation hole, we plot in Fig. 5 the

spin-integrated PW correlation hole of an unpolarized elec-ShOWS that in the dense electron gas limit both same- and

the range between 0.1 and 0.01 the PW correlation hole di Y pace. '

vided byr is nearly constant and is slightly different from ?gavﬁzisri?gt\:ﬁz;dzr?g tr?lee‘?(t)r\f)er]riofrrr()ergtrgr?”Ir:se::?raogréz_
the exact correlation holghe PW hole divided by, starts to gion. . . - ' P
diverge forr g below 0.0). This difference is probably due to to the correlation energy in the finite system.

s .02 : -
the use of Padapproximation for the correlation hole shape From comparison .W'th the PW model, the dense glectron
in the PW modef. Taking this discrepancy as an acceptablegas corre_latlon hole is satisfactory foy<<1. The polarized
margin of error, the dense electron gas correlation hole igas hole in the .PW model reprodupes that of _dense _ele_ctron
satisfactory forr.<1., gas near the origin for the unpolarized case, is qualitatively

0 ) ; .
Comparison of the PW model for polarized electron gascorrect but 50% deeper in the fully polarized case, and is

. . ; incorrect for intermediate polarizations. At the same time,
with present calculations shows some shortcomings of th

. e ratio of the correlation to the exchange holes is similar
PW model. Figure 6 compares the PW model for very smal or the same- and the opposite-spin electron pairs. This sug-
value of r¢=0.01 with the exact result. In the absence of P P bairs. 9

polarization the agreement is very good. In a fully polarizedges'tS modeling the correlation hole as a spin-independent

gas the PW model has a qualitatively correct shape, but iﬁﬂ?io?]egfs'ttgédﬁrl?ce:r‘:ggt;‘é”scygtgrf:ump"ed on the pair distri-

deeper near the origin. The discrepancy with the exact resu The present study of the correlation hole in the polarized

starts very near the origin and is probably due to the absenc . i ]
of the interelectron cusp constrdintor the parallel-spin Electron gas near the origin is very appropriate for the mod

electrons The laraest discrepancy is for the partially polar- eling of correlation potentials for molecular environments
ived as. The PV%/ correlatign ho)qe fr0.5 42 86 (cgrfe- due to the importance of relatively short-range correlation
sponging. to Fermi momentum ¢f elecqtjroné 2/3 of that for effects there. The correlation effects in the electron gas are

° o . energetically important at the longer length scale on the or-
a oneg is qualitatively different from the exact result. As g y Imp 9 9

. . - der rs,9 which is not described at the level of perturbation
Fig. 4 shows, a more accurate approximation of the correla-

tion hole would model it as a universal and possibly spin-used here.

independent function multiplied on the uncorrelated pair-
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APPENDIX

third in the fully polarized gas. This contradicts the Perdew- -1 (= sin(gR)
Wang modél which assumes the polarization-independent gl(o):ﬁ . dg = F(a,8,9), (A1)
correlation hole. q

Our study of the correlation hole away from the origin where
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4 + 2 3 2 + 3 2 +
%(Mw2+28aﬁ+44ﬁ2—3q2)—%ln(a—ﬁ)—ﬁqun(a—Eé)
atBtq), af  (atptg)atB) (a+Btq)
_1“( at B ) ("‘+B+")3(_—'+ 24 T 120 )
_l(a+B—q Vo ( aB (a+B—q)(a+B)_(a+ﬂ—q)2)
N arg @ 8- 24 120
B'q g\’ q ( c/)( ) ( q)
’7[(”ﬁ)( “23) (”w) "T3p\ TP T2
a'q g\’ q g\ q g
—E (1+E) (—3+ﬁ)1n(]+—)—(]*ﬁ) (—3—§)ln(l—g)} if q=<28
E%-i)(44a2+14aq+44ﬂz 3¢%)~In(a- B+q)(a—B+q)}
af (a-B+q)(B-a) (a=B+q)’
(__6"+ 24 MY )
+B-gUB+a) (a+pB+q)?
Fla.B.9)= 4 —1n(a+ﬂ+q><a+/3+q>3(~%é+(“ AL LLAL ,‘;,"’)
_ 2
—ln(a—ﬁ)<a—ﬂ)’(“—ﬂ+(“—3(f@—)
2
_hﬂa+BXa+B)(aB (a;f))
q q9(q q 3 q)
+ln(——B 3(5—3) —+8) B) ( )(T_E) if 28<q<2a
a+ a ; —a— —a—B)?
2B 11014 1187+ g7y ] qﬂ)w . B 4. Blath) (4= a=p)
a+B\(g+a+p)? (g-a-Bra- By (g+a+p)?
+ln(1+ p 3 (aB— 3 - 70 )
a—B\(g—a+p)’ (¢ a-Bra By (g-a+p)
+ln(1- p ) 3 (aﬁ— 3 - >0 )
-B\(g+a-B)? (‘aBllaﬁ)(ﬁ——)z
\ +ln(1+aqg)(q c; B (aﬂ+ 4 3 A ZOB ) if 2a<gq. (A2)
For g> 30« the functionF(«a,8,q) was approximated by
4 |1 o®+p? 15a*+422°B*+158" 5a®+27a°B(a’+ %) +5p°
F(Q.B,Q)Zg(aﬁ) = 3 s + 7 (A3)
5q 175 105

This expansion was computed with teTHEMATICA package for symbolic computatidf.
Numerical integration of Eq{A1) was performed up tgq>100 org>100*R (whatever is greater The rest of the range
of q was integrated analytically over the power expansion from the above equation.
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