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Correlation holes in a spin-polarized dense electron gas
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Double perturbation theory is used to calculate the form of the correlation hole in polarized and unpolarized
dense electron gas. The analytical dependence on the polarization of the correlation hole at the origin is
obtained. The normalized hole depth at the origin is minimal for the unpolarized gas. The correlation hole is
always negative. It can be adequately described at the short range by the product of a spin-independent and
density-dependent function on the uncorrelated pair-distribution function.@S0163-1829~99!05324-2#
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I. INTRODUCTION

The development of density functional theory~DFT! and
its successful applications to many atomic and molecu
systems has focused renewed attention on the descriptio
correlation effects in a uniform electron gas. Adequate
scription of the electron pair distribution is important
building exchange-correlation functionals in the framewo
of the local spin density~LSD! approximation.1,2 For mo-
lecular environments, it is particularly important to kno
pair-distribution functionsg(R) of a polarized electron ga
for relatively short electron separation distancesR. The pair-
distribution function is defined as the probability to find
electron at a given distanceR from another electron. Depend
ing on the relative spins of these two electrons, the p
distribution function can be subdivided intoaa, ab, and
bb parts. The correlation hole for a given spin pair is defin
as the difference between the exact pair-distribution func
for these spins and the corresponding pair distribution in
uncorrelated system. Knowledge of the correlation ho
would permit separation of the correlation energy into sho
and long-range parts and may help in building LSD dens
functionals suited for molecular environments.

The pair distribution in the uncorrelated electron gas c
be obtained through the Hartree-Fock calculation. For
pair of electrons of opposite spins this function is consta
The pair-distribution function for the uncorrelated electro
of the same spin is defined as the exchange hole and
obtained by Dirac.3 The current knowledge about the corr
lation holes comes either from Monte Carlo calculations4 or
through interpolation of data fromg(0) for a dense unpolar
ized gas, coupled with the cusp condition,5,6 the value of the
ab correlation hole at the origin for the unpolarized den
electron gas,7 and knowledge of the exchange-only hole
the polarized gas.8,9 There is no information on the polariza
tion dependence of the correlation hole near the origin, a
from numerical Monte Carlo simulations. Such simulatio
while very useful in the investigation of existing models, a
difficult to use for the construction of new models.

The aim of the present work is to study further the cor
lation hole near the origin in a dense polarized electron g
Double perturbation theory10 is well suited for this purpose
giving the exchange-only hole at the lowest order of pert
bation, and describing perturbation of the electron distri
tion through electron correlation at higher orders. It is ex
PRB 590163-1829/99/59~24!/15625~7!/$15.00
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for a sufficiently dense electron gas, assuming the expan
series to be convergent at least partially. The exact polar
tion data for a dense gas may help to improve the exis
density functionals based on the electron gas model.11

II. METHOD

We use double perturbation theory10 to explore the pair
correlation function. The noninteracting electron gas is
multaneously perturbed by the Coulombic electron repuls
PC5e2/r 12 and by the d function probe Pd(R)5ld(R
2r 12). The energy of such a system can be written a
Taylor expansion

E5(
i , j

Ei j ,

E1,05^C0uPCuC0&, ~1!

E0,15^C0uPd(R)uC0&,

E1,152(
k

^C0uPd(R)uCk&^CkuPCuC0&
Ek2E0

A

The pair-distribution functiong(R) at electron separation
R can be found through such expansion by considering
term corresponding to the first derivative of the total ene
with respect to the perturbation parameterl. This derivative
is proportional to the pair-distribution function at the poi
where the probingd function is not zero.

g~R!5 lim
l→0

S ]E

]l D5(
i

gi~R!, ~2!

gi~R!5
Ei ,1

l
. ~3!

This expression gives the pair-distribution function as a
ries with respect to the strength of the electron-electron
teraction. It is convenient to replace the effective coupli
constante2 with the dimensionless Wigner-Seitz radiusr s
5(me2/\2)/@9p/2(a31b3)#1/3, wherea and b are Fermi
momenta for alpha and beta electrons, respectively. This
15 625 ©1999 The American Physical Society
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15 626 PRB 59RASSOLOV, POPLE, AND RATNER
responds to the radius of a sphere containing a single e
tron, in atomic units. For a dense electron gas,r s is small, so
the leading terms of Eq. 2 are the most important. The fi
term g0(R) gives the pair-distribution function for a nonin
teracting electron gas, or the exchange-only pair-distribu
function. The correlation part of the pair-distribution fun
tion is defined asg(R)2g0(R), g1(R) being the leading
term for smallr s .

The computation of terms beyondg1(R) suffers from di-
vergence of the integrals, similar to divergence of integr
involved in calculation of correlation energy for the den
electron gas.12 Fortunately, the importantg1(R) term is free
from this problem and can be calculated in relative
straightforward fashion, although large values of interel
tron distanceR require careful handling, as numerical stab
ity deteriorates for the limit R→`. Since the pair-
distribution function is well described at long range throu
its Fourier transform,8 this study primarily focuses on th
short-range part of the pair-distribution function.

It is convenient to analyze the pair-distribution function
terms of distributions of electrons of particular spin com
nationsgaa(R), gab(R), andgbb(R).

A significant amount of information about the pai
distribution function can be obtained from its value at t
origin. Combining this information with proper cusp beha
ior allows construction of relatively accurate correlati
holes for short separation distances.9 Because of antisymme
try requirementsgaa(0)5gbb(0)50. The value ofg1

ab(0)
was computed by Geldart7 for the unpolarized electron gas
The present approach enables us to derive an analytic ex
sion for g1

ab(0) for a dense electron gas of arbitrary pola
ization.

III. COMPUTATION

We will use atomic units through the rest of the man
script. The pair-distribution function of a dense electron g
is

g1~R!5 (
i , j→a,b

2

l

^C0uPCuC i , j
a,b&^C i , j

a,buPd(R)uC0&
e i1e j2ea2eb

, ~4!

whereC0 is the wave function for a noninteracting electro
gas. The excited stateC i , j

a,b describes double electron excit
tion from occupied statesi and j with momentap1 and p2

and energiese i5p1
2/2 ande j5p2

2/2 into statesa andb with
momentap11q and p21q8 and orbital energiesea5(p1
1q)2/2 andeb5(p21q8)2/2, respectively. The conservatio
of momentum requires thatq52q8. The g1

aa(R) and
g1

bb(R) contain both directi→a, j→b and cross-terms o
type i→b, j→a with respect to both perturbations, while th
g1

ab(R) term contains only direct terms. This makesE11
ab

significantly simpler to compute.

A. Pair-distribution function of electrons of opposite spins

Integrating plane waves over coordinate space, one ea
finds that, for the excitation with momentum exchangeq, the
Coulombic repulsion operator 1/r 12 transforms to 4p/q2 in
c-
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n
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-

-

es-

-
s
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momentum space. ThePd(R2r 12)
/l perturbation transforms

in momentum space to sin(qR)/(qR). Taking care of proper
normalization factors, we get

g1
ab~R!52

16p

~2p!9E0

`

q2dqE
p1^a,up11qu&a

d3p1

3E
p2^b,up22qu&b

d3p2

4p sin~qR!

q2qR

3
1

~p11q!22p1
21~p22q!22p2

2

5
21

16p7E0

`

dq
sin~qR!

q2R
E

p1^a,up11qu&a
dp1d cosu1

3E
p2^b,up22qu&b

dp2d cosu2

3
1

q1p1cosu12p2cosu2
, ~5!

where a is the Fermi momentum for electron 1,b is the
Fermi momentum for electron 2, andu1 , u2 are angles be-
tween the momentum transferq and initial momenta of elec-
trons 1 and 2, respectively.

It is convenient to introduce an inverse Laplace transfo
to separate variables of two electrons,

1

q1p1cosu12p2cosu2
5E

0

`

ds e2sq2sp1cosu11sp2cosu2.

~6!

Now we can integrate electrons 1 and 2 out to get

g1
ab~R!5

21

4p5E0

`

dq
sin~qR!

q2R
E

0

`

ds e2sqJa~s,q!Jb~s,q!,

~7!

where auxiliary functionsJ are

Jx~s,q!

55
1

s3
@~sx11!~e2sx2e2s(x2q)!1sqesq/2# if q<2x

1

s3
@~sx21!esx1~sx11!e2sx# if q>2x. ~8!

This equation can be further reduced to expressions wh
involve integration of a single variableq by analytically in-
tegrating over variables. The final integration ofq was per-
formed numerically for moderate values ofq, and analyti-
cally for largeq. Details can be found in the Appendix. Th
plots of the pair-distribution function are given in Fig. 1.

It can be easily shown that the interelectron cu
condition5,13 yields ]g/]RuR5051. Pair-distribution func-
tions in Fig. 1 satisfy this with 0.1% accuracy.

An important feature ofg1
ab(R) is that it is negative for

any finiteR. Therefore, it does not satisfy the normalizatio
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PRB 59 15 627CORRELATION HOLES IN A SPIN-POLARIZED DENSE . . .
condition *g1
ab(r )r 2dr50 which is required for any finite

system. Effectively, part of the electronic cloud is pushed
infinity. Since the correlation energy can be expressed as
integral of the pair-distribution function with Coulomb op
erator over the whole space, the all-negative pair-distribu
function may lead to the overestimation of the correlat
energy, as compared to that in the finite system.

The correlation hole of the fully polarized gas is signi
cantly deeper than for the unpolarized one. This shows
weakness of the original Perdew-Wang~PW! model9 which
adopts the exchange-only spin dependence of the correla
hole. The exchange-only dependence is essentially a nor
ization factor, making the PW correlation hole normaliz
per number ofa-b pairs polarization independent. Deepe
ing of thea-b correlation hole with the polarization increas
is expected as the averagea-b electron pair becomes les
constrained with the polarization increase.

Pair-distribution function at the origin

Due to the presence of the Fermi hole in the pa
distribution function for electrons of parallel spin, the on
contribution tog(0) comes from excitations of electrons
opposite spins. Setting the electron separation distancR
50, we get from Eq.~7!

g1~0!5
21

4p5E0

`dq

q E
0

`

ds e2sqJa~s,q!Jb~s,q!, ~9!

where auxiliary functionsJ are defined in Eq.~8!.
Now we transform with respect to parametersa and b

and integrate the transformed expression

S @g1~0!#ab9

ab D
ab

9
5

21

4p5E0

`dq

q E
0

`

ds e2sqJ̃a~s,q!J̃b~s,q!

5
21

4p5

2

a1b
lnS a1b

a2b D . ~10!

We assumea>b. The auxiliary functionsJ̃ are

FIG. 1. Correlation hole in the dense electron gas for electr
of opposite spins. Both distribution function and separation dista
are normalized per Wigner-Seitz radiusr s . Distribution function is
given per electron pair of opposite spins. Values of polarization
given for different curves.
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J̃x~s,q![S @Jx~s,q!#x8

x D
x

8
5H e2sx~12esq! if q<2x

esx1e2sx if q>2x.
~11!

Since we have to integrate Eq.~10! with respect to param-
etersa andb it is convenient to represent it as series

S @g1~0!#ab9

ab D
ab

9
5

1

p5 (
i 51

`

~21! i
b i

a i 11 (
j 50

[( i 21)/2]
1

2 j 11
,

~12!

where@( i 21)/2# implies the integer part of (i 21)/2.
The biggest problem now is to recover the integrati

constants when we transform Eq.~12! back to obtaing1(0).
This is easier to do in steps, first recovering constants los
the final differentiation in Eq.~10!. It is also helpful to re-
member that from the dimensional argumentsE11 is propor-
tional to the fifth power of momentum, i.e.,E11;ayb52y.

@g1~0!#ab9

ab
5

21

4p5 S b
p2

2
1O~b2! D ~13!

so

@g1~0!#ab9 5
21

4p5 S ab2
p2

2
22b3

14(
i 52

`
~21! ib i 12a12 i

i ~ i 11! (
j 50

[( i 21)/2]
1

2 j 11D .

~14!

The remaining two constants of integration of Eq.~14! are of
the orderb5 anda5. From physical meaning we know tha
limb→0@g1(0)#50, so the only remaining constant to re
cover is the one on the order ofb5. We cannot study the
limit a→0 of Eq. ~7! directly since we used the conditio
a>b, so we investigate the asymptotic behavior of

S @g1~0!#b8

b D
bbb

-
5

21

4p5 F4 lnS a

b D2
p2

2 G1O~b!, ~15!

which, together with Eq.~14!, leads to

g1~0!5
21

4p5 H p2a2b3

12
2

ab4

2
1F 61

225
2

p2

60
1

2

15
lnS a

b D Gb5

24(
i 53

`
~21! ib i 13a22 i

~ i 22!i ~ i 11!~ i 13! (
j 50

[( i 21)/2]
1

2 j 11J . ~16!

After normalizing per density ofab electron pairs

rarb5
1

~2p!6 S 4

3
p D 2

a3b3 ~17!

and expressing Fermi momentaa andb through more con-
ventional Wigner-Seitz radiusr s and polarizationz5(a3

2b3)/(a31b3), we get for the density of electrons at th
coalescence point

s
e
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15 628 PRB 59RASSOLOV, POPLE, AND RATNER
g1~0!52r sS 324

p4~11z!
D 1/3H p2

12
2

1

2 S 12z

11z D 1/3

1S 12z

11z D 2/3F 61

225
2

p2

60
1

2

45
lnS 11z

12z D G
14

12z

11z (
i 50

` S 12z

11z D i /3

3
~21! i

~ i 11!~ i 13!~ i 14!~ i 16! (
j 50

[ i /211]
1

2 j 11J
1O~r s

2!. ~18!

For the special case of unpolarized electron gasz50, and
we get

g~0!z5052r sS 324

p4 D 1/3S p2

15
2

103

450

14(
i 50

`
~21! i

~ i 11!~ i 13!~ i 14!~ i 16! (
j 50

[ i /211]
1

2 j 11D
.20.731 670r s . ~19!

This is in agreement with20.7317r s calculated by Geldart.7

For a fully polarized electron gasz51 and the density of
a electrons on top of a singleb electron looks especially
simple,

g~0!z5152r sS 3p2

32 D 1/3

.20.974 444r s . ~20!

Both fully polarized and unpolarized correlation holes at
origin, as well as itsz dependence have been recently cal
lated by Burke, Perdew, and Ernzerhof.14 Our expression
looks somewhat simpler, especially for the fully polariz
gas. It is interesting to note that the correlation hole in
polarized gas is deeper than that of the unpolarized one
course, the contribution of this hole to total correlation e
ergy in the latter case will be less significant, since the nu
ber of opposite-spin electron pairs will be lower.

B. Pair-distribution function of electrons of same spins

The value ofg1
aa(R), normalized per number ofa-a

electron pairs, does not depend on the amount ofb electrons
in the system, and vice versa. This is not true for hig
orders ingi , but at the level of our analysis this allows us
construct pair-distribution functions for electrons of paral
spins that are independent of polarization. Let us then
sume for simplicity that we are considering a fully polariz
gas withb50.

Now we have contributions from both direct and cros
terms with respect to both Coulomb andd function probe
operators. For direct contributions the momentum repres
tation of both operators is identical to that for theg1

ab case,
being 4p/q2 for the Coulomb operator and sin(qR)/(qR) for
the d function probe. For cross-terms these operators
4p/(q1p12p2)2 and sin(uq1p12p2uR)/(uq1p12p2uR).
Assuminga51 we get
e
-

e
Of
-
-

r

l
s-

-

n-

re

g1
aa~R!5

21

8p7E0

`

q2dqE
p1^1,up11qu&1

d3p1

3E
p2^1,up22qu&1

d3p2S 1

q2
2

1

~q1p12p2!2D
3S sin~qR!

~qR!
2

sin~ uq1p12p2uR!

~ uq1p12p2uR! D
3

1

2q~q1p12p2!
. ~21!

The integrand of this equation does not depend onp11p2,
although such dependence is implicit in the limits of integ
tion. We can change variables as

x5
p11p2

2
,

~22!
y5p12p2 .

This gives

g1
aa~R!5

21

4p6E0

`

qdqE
0

2

dyE
0

p

sinudu

3S 1

q2
2

1

q21y212qy cosu
D

3S sin~qR!

qR
2

sin~Aq21y212qy cosuR!

Aq21y212qy cosuR
D

3
1

q1y cosu
V~q,y,u!

5
21

2p6E0

`

qdqE
0

2dy

y E
uq2yu

q1y

sdsS 1

q2
2

1

s2D
3S sin~qR!

qR
2

sin~sR!

sR D V~q,y,s!

q22y21s2
, ~23!

s5Aq21y212qy cosu,

where u is the angle betweenq and y, and V(q,y,u), or
V(q,y,s) is a result of integration of variablex and is equal
to the volume of a figure shown in Fig. 2. The origin
marked with 0. Placement of vectorx within the spherep1,
which is the unit sphere shifted from the origin by2y/2,
ensures that momentump1,1. In addition to that, the re-
quirementup11qu.1 constrainsx to be outside the spher
created by displacing spherep1 by 2q. Similar requirements
with respect to the momentum of the second electron keex
within the crescent of spherep2. Therefore, the volume o
integration ofx is represented by the intersection of two cre
cents, or

V~q,y,u!5v~p1 ,p2!2v~p1 ,p2 ,p11q!2v~p1 ,p2 ,p22q!

1v~p1 ,p2 ,p11q,p22q!, ~24!
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where v(a,b, . . . ) is volume of intersection of sphere
a,b, . . . . The volume of intersection of three spheres of u
radii was calculated by Powell.15 The volume of intersection
of four spheres can be reduced to those for two and th
spheres due to the symmetry of the problem~the whole pic-
ture has center of symmetry at the origin!. For q>1 this
volume is reduced tov(p1 ,p2).

Due to the complexity ofV(q,y,s) Eq. ~23! has to be
calculated numerically. The numerical integration is comp
cated by large derivatives inV(q,y,s), especially near the
critical region of smalls whenq.y. Unfortunately, analyti-
cal representation ofV is very complicated even as a Taylo
series for smalls, so we had to resort to a very dense in
gration grid in this region. The calculatedg1

aa(R) is shown
in Fig. 3, along with maxima ofg0

aa(R). Unfortunately, lim-
ited numerical accuracy prevents checking the c
condition,6 since it requires numerical computation of th
third derivative.

The exchange-only pair-distribution function for the un
form fully polarized electron gas is

FIG. 2. Volume of integration in momentum space with resp
to average momentum of two electrons, labeled by the overlap
vertical and horizontal grids. The center of symmetry is mark
with ‘‘0.’’

FIG. 3. Correlation hole in the dense electron gas for electr
of same spins. Both distribution function and separation dista
are normalized perr s . Distribution function is given per electron
pair of same spins. The tail of the distribution function is given
the inset.
it

e

-

-

p

g05129S sinx2x cosx

x3 D 2

, x5S 9p

4 D 1/3 R

r s
. ~25!

The first term describes the classical distribution of the el
trons, and the second term is due to the exchange interac
It is nonpositive everywhere, and breaks the whole sp
into shells. On the surface of each shell the exchange ter
equal to zero. The physical effect of the exchange interac
on the distribution function is to remove parts of the electr
distribution from between the shells, and leave it constant
their surfaces.

To the leading order, the correlation effects are more p
nounced between shells, further reducing the exchan
depleted electron distribution. Unlike the exchange inter
tion, the distribution on the shell surfaces is also reduc
The electrons are pushed towards infinity, since theg1(R) is
nonpositive everywhere. This effect is due to the infiniten
of the electron gas, and, like the correlation distribution
ab electrons, may lead to the overestimation of the corre
tion energy in the finite systems.

C. Comparison of the pair-distribution functions

The absolute values of thea-a anda-b correlation holes
are very different. This difference is, however, much le
pronounced for the correlation pair distribution relative
the uncorrelated pair distribution. The relative distributi
functions, defined asg1(R)/g0(R) are given in Fig. 4. The
values of the relativea-a correlation hole very close to th
origin (R/r s,0.1) may be unreliable as they involve th
division of two small numbers.

The relativea-b distribution is equivalent to the absolut
one, since the exchange-only distribution function for t
a-b pairs is a constant. The relativea-a correlation hole,
however, reveals its similarity with thea-b hole. Its short-
range (R/r s<1) part is similar to the fully polarizeda-b
hole, while its tail (R/r s>2) is quite close to the unpolarize
a-b correlation hole. This suggests that the density functi
als based on the Hartree-Fock-Kohn-Sham method2 can be
spin independent.

The correlation hole computed via perturbation theory
exact for a dense electron gas. To find the range of the sm
ness parameterr s for which the leading term is expected t

t
g

d

s
e

FIG. 4. Correlation holes in dense electron gas normalized
r s and divided by the uncorrelated distribution functionsg0. Both
same- and opposite-spin correlation holes are given for compari
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15 630 PRB 59RASSOLOV, POPLE, AND RATNER
dominate the shape of correlation hole, we plot in Fig. 5 t
spin-integrated PW correlation hole of an unpolarized ele
tron gas for different values ofr s . For small values ofr s in
the range between 0.1 and 0.01 the PW correlation hole
vided by r s is nearly constant and is slightly different from
the exact correlation hole~the PW hole divided byr s starts to
diverge forr s below 0.01!. This difference is probably due to
the use of Pade´ approximation for the correlation hole shap
in the PW model.8 Taking this discrepancy as an acceptab
margin of error, the dense electron gas correlation hole
satisfactory forr s,1.

Comparison of the PW model for polarized electron g
with present calculations shows some shortcomings of
PW model. Figure 6 compares the PW model for very sm
value of r s50.01 with the exact result. In the absence
polarization the agreement is very good. In a fully polariz
gas the PW model has a qualitatively correct shape, bu
deeper near the origin. The discrepancy with the exact re
starts very near the origin and is probably due to the abse
of the interelectron cusp constraint6 for the parallel-spin
electrons.9 The largest discrepancy is for the partially pola
ized gas. The PW correlation hole forz'0.542 86~corre-
sponding to Fermi momentum ofb electrons 2/3 of that for
a ones! is qualitatively different from the exact result. A
Fig. 4 shows, a more accurate approximation of the corre
tion hole would model it as a universal and possibly sp
independent function multiplied on the uncorrelated pa
distribution function.

III. CONCLUSIONS

We used double perturbation theory to study the corre
tion hole in the polarized electron gas. This enabled us
derive analytically the depth of the correlation hole at t
origin. For the special case of the unpolarized gas our f
mula yields the value obtained by Geldart7 and it agrees with
Burke, Perdew, and Ernzerhof for the fully polarized case14

When normalized per opposite-spin electron pairs, this de
is smallest in the unpolarized case and grows by almos
third in the fully polarized gas. This contradicts the Perde
Wang model9 which assumes the polarization-independe
correlation hole.

Our study of the correlation hole away from the orig

FIG. 5. Spin-integrated correlation hole of unpolarized den
electron gas normalized perr s and compared with the Perdew
Wang model for different values ofr s .
e
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shows that in the dense electron gas limit both same-
opposite-spin components of the correlation hole are n
positive everywhere in space. Therefore, the correlation
fectively removes some electrons from the interaction
gion. This effect leads to the ‘‘overcorrelation,’’ as compar
to the correlation energy in the finite system.

From comparison with the PW model, the dense elect
gas correlation hole is satisfactory forr s,1. The polarized
gas hole in the PW model reproduces that of dense elec
gas near the origin for the unpolarized case, is qualitativ
correct but 50% deeper in the fully polarized case, and
incorrect for intermediate polarizations. At the same tim
the ratio of the correlation to the exchange holes is sim
for the same- and the opposite-spin electron pairs. This s
gests modeling the correlation hole as a spin-independ
and density-dependent function multiplied on the pair dis
bution of the uncorrelated system.

The present study of the correlation hole in the polariz
electron gas near the origin is very appropriate for the m
eling of correlation potentials for molecular environmen
due to the importance of relatively short-range correlat
effects there. The correlation effects in the electron gas
energetically important at the longer length scale on the
der Ar s,

9 which is not described at the level of perturbatio
used here.
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APPENDIX

Integration with respect tos transforms Eq.~7! into

g1~0!5
21

4p5E0

`

dq
sin~qR!

q2R
F~a,b,q!, ~A1!

where

FIG. 6. Comparison of the Perdew-Wang (r s50.01) and the
exact correlation holes in dense electron gas for different value
the polarization parameterz.

e
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~A2!

For q.30a the functionF(a,b,q) was approximated by

F~a,b,q!.
4

9
~ab!3F1

q
1

a21b2

5q3
1

15a4142a2b2115b4

175q5
1

5a6127a2b2~a21b2!15b6

105q7 G . ~A3!

This expansion was computed with theMATHEMATICA package for symbolic computation.16

Numerical integration of Eq.~A1! was performed up toq.100 orq.100*R ~whatever is greater!. The rest of the range
of q was integrated analytically over the power expansion from the above equation.
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