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Pyramid growth without deposition noise
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~Received 25 November 1997; revised manuscript received 24 September 1998!

Several models of molecular-beam epitaxy, both atomistic and ones based on Langevin equations, have as
one of their generic growth scenarios the formation of three-dimensional structures such as mounds or pyra-
mids. The characteristic sizeR of these structures increases as a function of deposition time with a power law
R;tn. In order to investigate the dependence of the growth exponentn on the characteristics of the fluctuations
of the deposition flux we compare results of Monte-Carlo simulations for random deposition and for deposition
on an artificially constructed deterministic sequence of sites. Although the latter algorithm leads to much
smaller height fluctuations on each site, the growth exponent in both cases is found to be close to 0.25.
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I. INTRODUCTION

Experimental work in molecular-beam epitaxy has sho
a variety of different growth modes, including the formatio
of three-dimensional structures on initially flat surfaces. T
paper deals with one of these modes: the formation of p
mids in homoepitaxial growth. Experiments on different sy
tems have shown that three-dimensional structures o
only for some material parameters and surface orientati
and can produce mounds or pyramids.1–7 The systems tha
do show three-dimensional growth have as a common
ture a characteristic size of the structuresR, which grows as
R;tn, with n between3–7 0.16 and 0.33.

The microscopic mechanism that gives rise to this thr
dimensional growth mode is generally believed to be a
tential energy barrier at step edges8,9 that particles diffusing
on a terrace must cross in order to reach a lower terr
Such a diffusion bias10 results in a positive or uphill contri
bution to the adatom diffusion current that causes the
tially flat high-symmetry surface orientation to becom
unstable.10,11

Other effects, such as the transient mobility12,13 of newly
deposited atoms and effects due to crystalline symmetrie
the growing film,14 give rise to a negative contribution to th
surface current. At sufficiently large slopes these contri
tions can perfectly balance the current due to the step-e
barriers.15 At these characteristic slopes the net surface c
rent is zero and the corresponding surface orientations
stable.14–16 This phenomenon is commonly called slope s
lection.

As soon as pyramids or mounds with side planes co
sponding to the characteristic slopes have developed the
erage magnitude of the slope remains approximately c
stant. However, the pyramids and mound formations coa
as more and more material is deposited: smaller pyram
disappear and larger pyramids grow. This coarsening p
nomenon has been the subject of several rec
publications13–15,17–24and is also the topic of this paper.

II. LANGEVIN DESCRIPTION

Within a continuum theory, the evolution of surface mo
phology can be described by a Langevin equation of
form
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52DDDh2¹• j ~m!1h, ~1!

where h(r ,t) is random noise andj is the nonequilibrium
surface current, which is a function of the local slo
m(r ,t)5¹h(r ,t). Terms that break the h→2h
symmetry10,25may be added to the right-hand side of Eq.~1!
as well. However, results obtained by Politi23 show that such
terms, at least in one dimension, do not change the gro
law; therefore, we omit such contributions to the surface c
rent for the sake of simplicity.

The form of the nonequilibrium surface current resu
from a combination of different effects. Diffusion bia
leads10,11,14 for small slopesm to a current that is propor
tional to the slope,jb5cm with c.0. This causes the high
symmetry orientationm50 to become unstable. For large
slopesm in the step-flow regime this currentj b.F/m. Both
regimes can be described~at least in one dimension! within
the Burton-Cabrera-Frank theory.26 Transient mobility ef-
fects give rise to a contribution15 j tm52p2Fm. The coeffi-
cient p is usually of order one leading to a zero in the n
currentj5 jb1 j tm in the step-flow regime atm0.1/p. Crys-
talline anisotropies of the growing film ensure that there
only a finite number of such stable orientations.14,24 In the
framework of the Langevin description all this is taken in
account by choosing an appropriate interpolati
formula6,14,15,18,21,24for the surface currentj (m).

It is important to note, however, that although the relat
size of these different mechanisms determines thedirection
of the slope-dependent current, the very existence of su
current is due to deposition. In the absence of deposit
detailed balance guarantees that there is no slope-depen
current. Therefore, in experiments the evolution of the s
face morphology is necessarily influenced by fluctuations
the deposition flux corresponding to a nonzero noise stren
h. In principle, thermal noise¹•hth due to the stochastic
nature of surface diffusion should also be added to the rig
hand side of Eq.~1!. This is commonly omitted because th
long-wavelength modes are believed to dominate the ev
tion of surface morphology for sufficiently late times. Sin
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the spectrum of¹•hth is smaller by a power ofk than that of
h, thermal fluctuations are usually neglected in the Lange
approach.

III. EFFECTS OF THE NOISE

Numerical integrations of the Langevin equation~1! have
generally found that the characteristic sizeR of pyramids or
mounds increases like a power law,14,18,27,24R;tn with typi-
cally n&0.25. Most of these integrations were done for ze
noiseh50 following the common belief that noise is irre
evant for such growth processes.15 This is confirmed in nu-
merical integrations of Langevin equations with nonze
noise, where within the numerical uncertainties no differen
in the growth exponent could be found.18

Recently Tanget al.22 ~TSV! have proposed that th
deposition noiseh can play a dominant role in the coarse
ing dynamics of pyramids. For uncorrelated noise the nu
ber of particles falling into any given region of the surface
a random walk, independent of any other region. This cau
the mass fluctuations to grow with the square root of
number of particles deposited. From this, TSV deduce
power lawR;t1/4, i.e., n51/4. In their picture, the curren
j ~m! determines the slope of the pyramids and also play
role in the initial development of three-dimensional stru
ture, but does not contribute to the growth of these structu
once they reach their steady-state shape.

The above argument relies on the assumptions that t
is single length scale that dominates the coarsening prob
and that the surface performs a random walk due to the fl
tuations of the flux. Both assumptions are high
questionable:24 The dynamics are governed by at least tw
different length scales with different time dependences,
the coarsening is hampered by metastable states that te
trap the evolution, if several adjacent pyramids are
roughly the same size. However, the question of whethe
not stochastic fluctuations play an important role for t
coarsening dynamics remains relevant, if rephrased in
following way: Is it possible that such fluctuations provide
mechanism to overcome the barriers in such metast
states? In a Langevin description this question can be
swered by varying the strength of the noiseh. In Fig. 1 we
show the results of numerical integrations of Eq.~1! with a
surface current14,15,24 with componentsj x,y5mx,y(12mx,y

2 )
for different noise strengthse defined via the noise correla
tion ^h(x,t)h(x8,t8)&52ed(x2x8)d(t2t8). There are two
noticeable effects of the noise that both lead to a larger p
mid size for increasing noise strengths after a fixed dep
tion time. Firstly, the initial instability develops faster wit
stronger fluctuations. This leads to a parallel shift of the d
to larger pyramid sizes for largere that is easily visible in
Fig. 1. Secondly, for all noise strengthse that are shown in
Fig. 1 except fore51 the pyramid sizeR(t) saturates. This
asymptotic valueR`5R(t→`) also increases withe. As
explained in Ref. 24, the growth of pyramids is hampered
metastable states. When the system becomes trapped in
a state, the coarsening stops until fluctuations drive the
tem over the barriers of that metastable state. Since th
barriers increase linearly with the pyramid size,24 a largerR`

requires a larger noise strengthe. Conversely, for any fixed
noise strength the pyramid sizeR(t) will become so large
in
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that the noise fluctuations are insufficient to drive the syst
out of such metastable states, i.e., even for the noise stre
e51 it is expected that coarsening will cease at some la
time. For timest such thatR(t)!R` the coarsening is wel
described by a power lawR(t);t1/4 as indicated by the solid
line.24 All these results lead to the conclusion that in a co
tinuum description noise is indeed irrelevant for the coars
ing dynamics. It only affects the initial pyramid size and t
time to reach the asymptotic sizeR` .

IV. MONTE CARLO SIMULATIONS
WITH DETERMINISTIC DEPOSITION

In the remainder of this article we show how this proble
can be investigated by means of Monte Carlo simulatio
We used the same dynamics as in previous work18 to de-
scribe the deposition and diffusion of particles on a grow
surface. The surface is described by a column of particle
height h(x,y,t) at each lattice site on a square lattice, w
additional particles dropped from above. This solid-on-so
model is intended to describe growth without voids or ov
hangs, which are usually not observed in molecular-be
epitaxy.

To simulate the effect of transient mobility and to produ
a downward component of the nonequilibrium diffusion cu
rent, we allow each newly deposited particle to immediat
attempt one further move. If one or more of the neare
neighbor columns of the deposition site are atlower height,
the deposited particle hops to one of them with a probabi
p50.1.18

After incorporation, all particles that are not fully burie
are allowed to diffuse by hopping to the top of one of t
nearest-neighbor columns. This diffusion process is c
trolled by a local energy function and obeys detailed balan
Thus, in the absence of deposition, the surface relaxes t
equilibrium state~faceted or rough!. The energy of a particle
at the top of the column atr is composed of two terms

E~r !52E1n1~r !2Ebn2~r !, ~2!

FIG. 1. Numerical integration of the Langevin equation~1! for
different noise strengthse. In all cases, the system sizeL5192 is
much larger than the pyramid sizeR at the latest time so that finite
size effects due to the periodic boundary conditions cannot be
served. The solid line indicates a power lawR(t);tn with n51/4.
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wheren1(r ) is the number of lateral nearest neighbors of
particle atr andn2(r ) is the number of particles in the neigh
boring columns at heightsh(r )61. The hopping rates ar
chosen so as to model the activated nature of surface d
sion and to produce diffusion bias. We take

W@h~r !→h~r !21,h~r 8!→h~r 8!11#5W1Wb ~3!

where

W1@n~r !#5
1

tdi f
expF2

E1

kbT
n1~r !G ~4!

and

Wb@n2~r 8!2n2~r !#5expH Eb

kBT
@n2~r 8!2n2~r !#J ~5!

for n2(r 8),n2(r ), and 1 otherwise. The first partW1 de-
pends only on the configuration of the particle at siter and is
an Arrhenius-like activated process. The second piece,Wb ,
produces diffusion bias: When a particle attempts to hop
the edge of a terrace from the upward side, it is required
cross a barrier of energyEb and this process is therefor
suppressed. The parameters in the above rates were cho
put the zero in the current at a reasonable slope and to m
mize cross-over effects. See Ref. 18 for a discussion of h
the appropriate parameters were determined.

In order to investigate the effects of fluctuations partic
are no longer deposited randomly. Instead, they are de
ited in a pattern with much smaller fluctuations in the nu
ber of particles in a given area. In fact, the size of the fl
tuations is bounded, and can reach zero for some times.
patterns chosen are based on Sobol’ sequences,28 which are
used for numerical integration. These sequences are ch
to uniformly cover an area, without the fluctuations in nu
ber that are associated with a random set of points. The
quences also cover the area in a ‘‘well-spread-out’’ fashi
later points fill in the areas between earlier ones. The po
are not placed on a fixed grid, so there is no built-in len
scale, and they are distributed evenly over the surface
there is no imposed current. There are many different p
sible Sobol’ sequences, each defined by a set of binary f
tions calleddirection numbers, and by a few initializing
points. Each number in a Sobol’ sequence is generated f
the previous one by a bitwise exclusive or with one of the
direction numbers, chosen to produce binary fractions w
slowly increasing denominators. See Presset al.28 for a de-
scription of the algorithm used to generate these sequen
and the version of the Sobol’ sequence used, the Sob
Antonov-Saleev sequence. If two of these sequences are
to choose the lattice sites for deposition, the fluctuation in
height at any site is small and bounded~see Fig. 2!.

For deposition in a Sobol’ sequence, the structures
result are similar to those for random deposition. Since
deposition is much more uniform, the Sobol’ case produ
more regular structures, as the random case does for sm
deposition rates. See Fig. 3 for an example of the surf
morphology that does appear. The fluctuations that obs
pyramid formation for the same deposition rate in the r
dom case, and in experiments at high deposition rates an
low temperatures, do not occur. This makes it clear t
deposition drives an uphill current, which causes thr
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dimensional structures to appear. Random fluctuations
not necessary to trigger the instability.

To determine the growth law for the size of the structu
on the surface, the slope-slope correlation functionC(r ,t)
5^m(0,t)m(r ,t)& was calculated, and its first zero used a
measure of the size of domains. For both random deposi
and deposition in a Sobol’ sequence, the growth obeye
power law for large times, with exponentn'0.25 for the
random case andn'0.22 for Sobol’ deposition on a 642

lattice andn'0.24 for a 1282 lattice, as shown in Fig. 4. The
difference does not seem to be significant and is certa
less than any reasonable estimate of the uncertainty in e
n. The behavior at short times is clearly different in the ca

FIG. 2. Root mean square deviation of the height at each lat
site of aL25642 lattice, for deposition only, in two different Sobol
sequences~dashed and dotted lines, respectively!. The two se-
quences are defined by different sets of direction numbers.
sequence corresponding to the dashed line is constructed such
all lattice sites are visited before any site in the next layer is fill
whereas for the other sequence it takes four layers until a perfe
flat surface is reestablished.

FIG. 3. Typical structure for a 1282 lattice after 104 monolayers
deposited, for Sobol’ deposition. The height differences range fr
210 ~black! to 110 ~white! monolayers.
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of Sobol’ deposition, as might be expected. It takes lon
for the more uniform Sobol’ sequence to deposit enou
particles in one place to destabilize the initial high-symme
orientation of the surface, and to enter the three-dimensio
growth regime. This difference in the initial behavior is th
only significant difference that allows us to differentiate b
tween random and deterministic deposition in our simu
tions. The deposition rate used in these simulations is r
tively large ~in fact, if compared to experiments, un
realistically large!. However, in the case of Sobol’ depositio
the integral over time of the fluctuations in the depositi
rate is bounded. Therefore, any noise-driven coarsening m
stop when the characteristic length scale becomes l
enough. If there were any contribution to the coarsen
from such a mechanism one would expect to see a cross
at this characteristic length scale. This was not observe
our simulations.

In all our Monte Carlo simulations, with random or dete
ministic deposition, we were not able to observe a slowing
the coarsening rate due to metastable states. This is al
certainly due to the high deposition rates used in our sim

FIG. 4. The position of the first zero of the height-height cor
lation function, for both random deposition and deposition in
Sobol’ sequence, for 642 and 1282 surfaces, and a deposition rate
1022 depositions/diffusion move.
n
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lations. Even for the deterministic deposition using Sob
sequences the evolving morphologies as shown in Fig. 3
far more random and rougher than the morphologies
tained in numerical integrations of Langevin equations c
responding to the late times of Fig. 1. Currently, we a
unable to simulate substantially smaller deposition rates
cause of the enormous amount of necessary computer t
However, using different techniques29 it should be possible
to detect these effects of metastable states at small depos
rates also in a Monte Carlo simulation. It should also
noted that thermal noisehth is inevitably present in Monte
Carlo simulations, and this may also help to overcome b
riers between states.

V. CONCLUSION

The coarsening behavior of three-dimensional growth
molecular-beam homoepitaxy was studied by numerical
tegrations of Langevin equations with and without noise a
by Monte Carlo simulations of a microscopic model wi
random or deterministic deposition. In the case of the Lan
vin equation, the breaking of detailed balance that is nec
sary for the slope-dependent surface currents to occur is
in by hand@ j (m) in ~1!#. The presented Monte Carlo simu
lations show that, as expected, even quite regular irrevers
deposition is sufficient to break detailed balance and to se
motion the deterministic part of the coarsening process.

Our results obtained from numerical integrations
Langevin equations as well as from Monte Carlo simulatio
show that white noise in the deposition process leads
coarsening behavior that is indistinguishable from the beh
ior found for deterministic deposition. Only the initial regim
that describes the onset of the instability is different. In t
case of Langevin dynamics it is found that coarsening slo
down and stops at late times even for nonzero noise stren
All these results are in agreement with a recent theor24

which explains that the coarsening exponentn'1/4 is due
to the interactions between the topological defects in
system.

ACKNOWLEDGMENT

This research was supported by the NSERC of Canad

-

L.

m
es
s,
1G. W. Smith, A. J. Pidduck, C. R. Whitehouse, J. L. Glasper, a
J. Spoward, J. Cryst. Growth127, 966 ~1993!.

2C. Orme, M. D. Johnson, K. T. Leung, and B. G. Orr, inCom-
pound Semiconductor Epitaxy, edited by C. W. Tu, L. A.
Kolodziejski, and V. R. McCrary, MRS Symposia No. 340~Ma-
terials Research Society, Pittsburgh, 1994!, p. 233.

3H.-J. Ernst, F. Fabre, R. Folkerts, and J. Lapujoulade, Phys. R
Lett. 72, 112 ~1994!.

4K. Thürmer, R. Koch, M. Weber, and K. H. Rieder, Phys. Re
Lett. 75, 1767~1995!.

5J.-K. Zuo and J. F. Wendelken, Phys. Rev. Lett.78, 2791~1997!.
6J. A. Stroscio, D. T. Pierce, M. D. Stiles, A. Zangwill, and L. M

Sander, Phys. Rev. Lett.75, 4246~1995!.
7F. Tsui, J. Wellman, C. Uher, and R. Clarke, Phys. Rev. Lett.76,

3164 ~1996!.
d

v.

.

8G. Ehrlich and F. G. Hudda, J. Chem. Phys.44, 1039~1966!; S.
C. Wang and G. Ehrlich, Phys. Rev. Lett.70, 41 ~1993!.

9R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys.37, 3682
~1966!; R. L. Schwoebel,ibid. 40, 614 ~1969!.

10J. Villain, J. Phys. I1, 19 ~1991!.
11M. D. Johnson, C. Orme, A. W. Hunt, D. Graff, J. Sudijono,

M. Sander, and B. G. Orr, Phys. Rev. Lett.72, 116 ~1994!.
12M. C. Bartelt and J. Evans, Surf. Sci.298, 421 ~1993!; J. W.

Evans, Phys. Rev. B43, 3897 ~1991!; H. C. Kang and J. W.
Evans, Surf. Sci.269-270, 784 ~1992!.

13M. C. Bartelt and J. W. Evans, Phys. Rev. Lett.75, 4250~1995!.
14M. Siegert and M. Plischke, Phys. Rev. Lett.73, 1517~1994!.
15M. Siegert, inScale Invariance, Interfaces, and Non-Equilibriu

Dynamics, Vol. 344 ofNATO Advanced Studies Institute, Seri
B: Physics, edited by A. J. McKane, M. Droz, J. Vannimenu



n-

s.

PRB 59 15 527PYRAMID GROWTH WITHOUT DEPOSITION NOISE
and D. Wolf ~Plenum, New York, 1995!, pp. 165–202.
16J. Krug, M. Plischke, and M. Siegert, Phys. Rev. Lett.70, 3271

~1993!.
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