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Pyramid growth without deposition noise
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Several models of molecular-beam epitaxy, both atomistic and ones based on Langevin equations, have as
one of their generic growth scenarios the formation of three-dimensional structures such as mounds or pyra-
mids. The characteristic siZ of these structures increases as a function of deposition time with a power law
R~t". In order to investigate the dependence of the growth expanentthe characteristics of the fluctuations
of the deposition flux we compare results of Monte-Carlo simulations for random deposition and for deposition
on an artificially constructed deterministic sequence of sites. Although the latter algorithm leads to much
smaller height fluctuations on each site, the growth exponent in both cases is found to be close to 0.25.
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I. INTRODUCTION Jh
—=—DAAh-=V.j(m)+ 75, 1)
. . . ot
Experimental work in molecular-beam epitaxy has shown
a variety of different growth modes, including the formation
of three-dimensional structures on initially flat surfaces. This,hare 7(r,t) is random noise ang is the nonequilibrium
pe}ger_ dﬁals with on_elof the?]e modes: the forméa_gon Of PYIay, tace current, which is a function of the local slope
mids in homoepitaxial growth. Experiments on different Sys_rp(r,t)th(r,t). Terms that break the h —h

tems have shown that three-dimensional structures occu 025 . ;
only for some material parameters and surface orientation§ymmetry***may be added to the right-hand side of Ex).

and can produce mounds or pyram}dgThe Systems that as We” HOWeVer, resu|tS Obtained by PaﬁEhOW that SUCh

do show three-dimensional growth have as a common federms, at least in one dimension, do not change the growth
ture a characteristic size of the structuReswvhich grows as law; therefore, we omit such contributions to the surface cur-
R~t", with n betweeA~" 0.16 and 0.33. rent for the sake of simplicity.

The microscopic mechanism that gives rise to this three- The form of the nonequilibrium surface current results
dimensional growth mode is generally believed to be a pofrom a combination of different effects. Diffusion bias
tential energy barrier at step ed@shat particles diffusing  |aadd®1%4or small slopesm to a current that is propor-
on a terrace must cross in order to reach a lower terracg i o the slopej,=cm with ¢>0. This causes the high-

Such a diffusion bid results in a positive or uphill contri- . o
bution to the adatom diffusion current that causes the ini_symmetry orientatiom=0 to become unstable. For larger

tially flat high-symmetry surface orientation to become SIoP€sMin the step-flow regime this curreqg=F/m. Both
unstablet®1! regimes can be describédt least in one dimensigmwithin

Other effects, such as the transient mobffit} of newly ~ the Burton-Cabrera-Frank thed?y. Transient mobility ef-
deposited atoms and effects due to crystalline symmetries décts give rise to a contribution j,,,= — p?Fm. The coeffi-
the growing film!* give rise to a negative contribution to the cientp is usually of order one leading to a zero in the net
surface current. At sufficiently large slopes these contribucurrentj=j,+j, in the step-flow regime any=1/p. Crys-
tions can perfectly balance the current due to the step-edgalline anisotropies of the growing film ensure that there is
barriers'® At these characteristic slopes the net surface Curpnly a finite number of such stable orientatidfié* In the
rent is zero and the corresponding surface orientations a#gamework of the Langevin description all this is taken into
stable. """ This phenomenon is commonly called slope se-gccount by choosing an appropriate interpolation
lection. _ L formuld14151821.2%0r the surface currerj{m).

As soon as pyramids or mounds with side planes corre- 1 iq important to note, however, that although the relative
sponding to the characteristic slopes have developed the ay;,q of these different mechanisms determinesdinection

erage magnitude of the slope remains approximately COfy yhe siope-dependent current, the very existence of such a

stant. However, the pyramids and mound formations coarsef irent is due to deposition. In the absence of deposition,

as more and more material is deposited: smaller pyramidgesjled balance guarantees that there is no slope-dependent
disappear and larger pyramids grow. This coarsening ph&srent. Therefore, in experiments the evolution of the sur-
nomenon has been the subject of several recenhce morphology is necessarily influenced by fluctuations of
publications®~***""*and is also the topic of this paper. ¢ deposition flux corresponding to a nonzero noise strength
7. In principle, thermal noisé&’ - 5, due to the stochastic
nature of surface diffusion should also be added to the right-
Within a continuum theory, the evolution of surface mor- hand side of Eq(1). This is commonly omitted because the
phology can be described by a Langevin equation of thdong-wavelength modes are believed to dominate the evolu-
form tion of surface morphology for sufficiently late times. Since

Il. LANGEVIN DESCRIPTION
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the spectrum oV - i, is smaller by a power df than that of o =0
7, thermal fluctuations are usually neglected in the Langevin 301 €=0.01 *
approach. o o0 o0
<
o e=0.2 v
IIl. EFFECTS OF THE NOISE +  e=1 . ; v XX
- . . . i to6° ,w¥0%0
Numerical integrations of the Langevin equatidn have 10 Do m”
generally found that the characteristic sR@®f pyramids or 8 1 ="
mounds increases like a power 1&f82724R~t" with typi- 6 - %
cally n=0.25. Most of these integrations were done for zero 1 P g . ®
noise =0 following the common belief that noise is irrel- 44 9%
evant for such growth processgsThis is confirmed in nu- f S —
merical integrations of Langevin equations with nonzero 10 100 1000 10* 10%
noise, where within the numerical uncertainties no difference t

in the growth exponent could be fouhd.
Recently Tanget al?? (TSV) have proposed that the FIG. 1. Numerical integration of the Langevin equatidj for

deposition noisey can play a dominant role in the coarsen- different noise strengthe. In all cases, the system site=192 is

ing dynamics of pyramids. For uncorrelated noise the nummuch larger than the pyramid sikeat the latest time so that finite

ber of particles falling into any given region of the surface issize effects due to the periodic boundary conditions cannot be ob-

a random walk, independent of any other region. This causei€"ved. The solid line indicates a power I&(t) ~t" with n=1/4.

the mass fluctuations to grow with the square root of the

number of particles deposited. From this, TSV deduce thehat the noise fluctuations are insufficient to drive the system

power lawR~t4 i.e.,n=1/4. In their picture, the current out of such metastable states, i.e., even for the noise strength

j(m) determines the slope of the pyramids and also plays a=1 it is expected that coarsening will cease at some later

role in the initial development of three-dimensional struc-time. For timest such thatR(t) <R, the coarsening is well

ture, but does not contribute to the growth of these structuredescribed by a power laR(t) ~t¥* as indicated by the solid

once they reach their steady-state shape. line2* All these results lead to the conclusion that in a con-
The above argument relies on the assumptions that thetéhuum description noise is indeed irrelevant for the coarsen-

is single length scale that dominates the coarsening problening dynamics. It only affects the initial pyramid size and the

and that the surface performs a random walk due to the fluaime to reach the asymptotic Sif, .

tuations of the flux. Both assumptions are highly

questionablé* The dynamics are governed by at least two

different length scales with different time dependences, and IV. MONTE CARLO SIMULATIONS

the coarsening is hampered by metastable states that tend to WITH DETERMINISTIC DEPOSITION

trap the evolution, if several adjacent pyramids are of

roughly the same size. However, the question of whether or In the_ rema_lnder of this article we show how th'$ prob_lem
. . : can be investigated by means of Monte Carlo simulations.
not stochastic fluctuations play an important role for the

coarsening dynamics remains relevant, if rephrased in thé\éﬁblésfhde t(;]:: zgmgnda}lr:]ciag]ilf?js%i 'Qf p;;gg: (\)%f?;k (:g\_/vin
following way: Is it possible that such fluctuations provide a P ; X P o 9
mechanism to overcome the barriers in such metastabl%urface' The surface is described by a column of particles of

states? In a Langevin description this question can be arp_eighth(x,y,t) at each lattice site on a square lattice, with
swered by var ing the stren 51 of the ng' eln Fig. 1 we additional particles dropped from above. This solid-on-solid
show theyresu?{s %f numericgl inte ration?of lﬁh)gWith a model is intended to describe growth without voids or over-
1524, gra o hangs, which are usually not observed in molecular-beam
surface currenf-*>**with components, ,=m, ,(1-m,) epitaxy
f_or different noise strengths defined via the noise correla- To simulate the effect of transient mobility and to produce
tion {m(x.0) 7(x".t )>:265(.X_X )o(t—1'). There are Wo 5 4o nyard component of the nonequilibrium diffusion cur-
nquoegble effects Of.the noise that both lead to a larger PY"%ent, we allow each newly deposited particle to immediately
mid size for increasing noise strengths after a fixed deDOS'étte}npt one further move. If one or more of the nearest-
tion time. Firstly, the initial instability develops faster with neighbor columns of the déposition site ardaater height
stronger quctua’Flon.s. This leads to a pgrallel ?h'ft. O.f the_ datthe deposited particle hops to one of them with a probability
to larger pyramid sizes for larger that is easily visible in —0.118

Fig. 1. Secondly, for all noise strengtlesthat are shown in
Fig. 1 except fore=1 the pyramid sizéx(t) saturates. This ;.o sllowed to diffuse by hopping to the top of one of the

asymptotic valueR,,=R(t—) also increases Witle. AS  oaregtneighbor columns. This diffusion process is con-
explained in Ref. 24, the growth of pyramids Is hampere_d BYrolled by a local energy function and obeys detailed balance.
metastable states. When the system becomes trapped in Sugfys i’ the absence of deposition, the surface relaxes to its

a state, the coarsgning stops until fluctuations driv_e the sy%’quilibrium state(faceted or rough The energy of a particle
tem over the barriers of that metastable state. Since thesoﬁ the top of the column atis composed of two terms

barriers increase linearly with the pyramid sf?e largerR.,
requires a larger noise strength Conversely, for any fixed
noise strength the pyramid si&(t) will become so large E(r)=—Eny(r)—Epny(r), 2

After incorporation, all particles that are not fully buried
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wheren(r) is the number of lateral nearest neighbors of the
particle atr andn,(r) is the number of particles in the neigh-
boring columns at heighte(r)=1. The hopping rates are
chosen so as to model the activated nature of surface diffu-
sion and to produce diffusion bias. We take

WLh(r)—h(r)=21h(r")—=h(r")+1]=W;W, 3 _§
where %
"Ol L i
Wyn(r)]= — r{ o <>} @
n(r)]= —exg — —ny(r
T T
AWAWA N AWa SN AW AN ANSAN AN A NN ANy ANFa
and / \ \‘/ \'l \f \\f \\’/ \ \‘/ \,'I \ \‘.rl \\’/ \1,' \ \‘/ \'\,’/ y \‘/ ‘\'I\'
i Py i
E, NERRERRNERRERRRREERE
Wb[nz(f')—nz(f)]=exp’kB—T[nz(r’)—nz(r)]} (5) 0 10 20

t (monolayers)
for ny(r’')<n,(r), and 1 otherwise. The first paw,; de-
pends only on the configuration of the particle at sitend is
an Arrhenius-like activated process. The second pié4e,
produces diffusion bias: When a particle attempts to hop t
the edge of a terrace from the upward side, it is required t

FIG. 2. Root mean square deviation of the height at each lattice
site of aL?= 64 lattice, for deposition only, in two different Sobol’
&equences{dashed and dotted lines, respectiyelfhe two se-
guences are defined by different sets of direction numbers. The

cross a barrier of ener and this process is therefore Sequence corresponding to the dashed line is constructed such that
9¥s P all lattice sites are visited before any site in the next layer is filled,

suppressed. T he parameters in the above rates were chosg—:‘ reas for the other sequence it takes four layers until a perfectly
put the zero in the current at a reasonable slope and to MiNj; o\ rface is reestablished.

mize cross-over effects. See Ref. 18 for a discussion of how
the appropriate parameters were determined. di ional struct i Rand fluctuati
In order to investigate the effects of fluctuations particles Imensional structures o appear. Random fluctuations are

are no longer deposited randomly. Instead, they are depogpt_rnegetssary tot;c]rlggerv'\c,?r? I'nSt?b"H o f the struct
ited in a pattern with much smaller fluctuations in the num- 0 determine the gro aw for the size ot the structure
on the surface, the slope-slope correlation funct@r,t)

ber of particles in a given area. In fact, the size of the fluc- g
tuations is bounded, and can reach zero for some times. The(M(0.)m(r.t)) was calculated, and its first zero used as a

patterns chosen are based on Sobol' sequeiiaghich are measure of the size of domains. For both random deposition

used for numerical integration. These sequences are chos@ﬂd deposition in a S_obol' sequence, thewgrowth obeyed a
to uniformly cover an area, without the fluctuations in num-POWer law for large times, with exponent=0.25 for the

ber that are associated with a random set of points. The s&&ndom case and~0.22 for Sobol' deposition on a 64

quences also cover the area in a “well-spread-out” fashion!attice andn~0.24 for a 128 lattice, as shown in Fig. 4. The

later points fill in the areas between earlier ones. The pointdifférence does not seem to be significant and is certainly
are not placed on a fixed grid, so there is no built-in Iength'ess than any reasonable estimate of the uncertainty in either

scale, and they are distributed evenly over the surface, S8 The behavior at short times is clearly different in the case

there is no imposed current. There are many different pos-
sible Sobol’ sequences, each defined by a set of binary frac-
tions calleddirection numbersand by a few initializing
points. Each number in a Sobol’ sequence is generated from
the previous one by a bitwise exclusive or with one of these
direction numbers, chosen to produce binary fractions with
slowly increasing denominators. See Pressal? for a de-
scription of the algorithm used to generate these sequences,
and the version of the Sobol’ sequence used, the Sobol-
Antonov-Saleev sequence. If two of these sequences are used
to choose the lattice sites for deposition, the fluctuation in the
height at any site is small and boundege Fig. 2

For deposition in a Sobol’ sequence, the structures that
result are similar to those for random deposition. Since the
deposition is much more uniform, the Sobol’ case produces
more regular structures, as the random case does for smaller
deposition rates. See Fig. 3 for an example of the surface
morphology that does appear. The fluctuations that obscure
pyramid formation for the same deposition rate in the ran-
dom case, and in experiments at high deposition rates and/or FIG. 3. Typical structure for a 138attice after 16 monolayers
low temperatures, do not occur. This makes it clear thatieposited, for Sobol’ deposition. The height differences range from
deposition drives an uphill current, which causes three—10 (black to +10 (white) monolayers.
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i ' ' lations. Even for the deterministic deposition using Sobol’
:rsa“lf“l{“Mz sequences the evolving morphologies as shown in Fig. 3 are
.Sgbgl,’ 128 far more random and rougher than the morphologies ob-
B A tained in numerical integrations of Langevin equations cor-
10| ] responding to the late times of Fig. 1. Currently, we are
g |- t unable to simulate substantially smaller deposition rates be-
k> cause of the enormous amount of necessary computer time.
g However, using different techniqu@st should be possible
= to detect these effects of metastable states at small deposition
LE) rates also in a Monte Carlo simulation. It should also be
noted that thermal noisey, is inevitably present in Monte
Carlo simulations, and this may also help to overcome bar-
R R * riers between states.
10° 10 10° 10° 10* V. CONCLUSION

t (monolayers)
The coarsening behavior of three-dimensional growth in
FIG. 4. The position of the first zero of the height-height corre- molecular-beam homoepitaxy was studied by numerical in-
lation function, for both random deposition and deposition in ategrations of Langevin equations with and without noise and
Sobol’ sequence, for 64and 128 surfaces, and a deposition rate of by Monte Carlo simulations of a microscopic model with
1072 depositions/diffusion move. random or deterministic deposition. In the case of the Lange-
- ) vin equation, the breaking of detailed balance that is neces-
of Sobol’ deposition, as might be expected. It takes longekary for the slope-dependent surface currents to occur is put
for the more uniform Sobol' sequence to deposit enoughp by hand[j(m) in (1)]. The presented Monte Carlo simu-
particles in one place to destabilize the initial high-symmetrjations show that, as expected, even quite regular irreversible
orientation of the surface, and to enter the three-dimensiongleposition is sufficient to break detailed balance and to set in
growth regime. This difference in the initial behavior is the mgtion the deterministic part of the coarsening process.
only significant difference that allows us to differentiate be- oyr results obtained from numerical integrations of
tween random and deterministic deposition in our simulaq gngevin equations as well as from Monte Carlo simulations
tions. The deposition rate used in these simulations is relashow that white noise in the deposition process leads to
tively large (in fact, if compared to experiments, un- coarsening behavior that is indistinguishable from the behav-
realistically large. However, in the case of Sobol’ deposition jor found for deterministic deposition. Only the initial regime
the integral over time of the fluctuations in the depositionthat describes the onset of the instability is different. In the
rate is bounded. Therefore, any noise-driven coarsening mughse of Langevin dynamics it is found that coarsening slows
stop when the characteristic length scale becomes larggown and stops at late times even for nonzero noise strength.
enough. If there were any contribution to the coarsening| these results are in agreement with a recent thébry,
from such a mechanism one would expect to see a cross ovV@hich explains that the coarsening exponert1/4 is due

at thi_s char_acteristic length scale. This was not observed iy the interactions between the topological defects in the
our simulations. system.

In all our Monte Carlo simulations, with random or deter-
ministic deposition, we were not able to observe a slowing of
the coarsening rate due to metastable states. This is almost
certainly due to the high deposition rates used in our simu- This research was supported by the NSERC of Canada.
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