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Supercell approach to the optical properties of porous silicon
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We calculate the optical constants of porous sili¢por-Si from the electronic band structure obtained by
means of arsp’s* tight-binding Hamiltonian and a supercell model, in which the pores are columns dug in
crystalline Si. The position of the absorption edge of the material is defined by two competing dffects:
transitions assisted by the scattering of carriers on the lattice of pores, which effectively decrease the “indi-
rectness” of por-Si and result in a redshift of the absorption edge,(&hdjuantum confinement, which
increases the band gap. The interplay between these effects is illustrated by calculating the imaginary part of
the dielectric function for 8-, 32-, and 128-atom supercells with different porosities. We also show how the
supercell model can be extended to take into account weak disorder, which produces nonvertical optical
transitions ink space and smoothens the absorption spectra. Our results, obtained without any adjustable
parameters, are compared with experimental J&a163-182@9)05023-7

[. INTRODUCTION are simple enough to be applied to large supercells with
complex morphologies. It is known that thep®s* model
One of the dominant trends in current research in materieverestimates the effective masses in the conduction band
als science and solid-state physics is the study of materialsnd, correspondingly, underestimates the opening of the
and devices at the nanometer scale. Porous silipon-Sj, band gap due to quantum confinem&htiowever, including
in particular, represents a very interesting nanostructured orbitals® or next-nearest-neighbor hoppiginto this
solid, rather than a simple collection of quantum dots orscheme not only leads to a substantial increase in computing
wires. This material has been extensively studied during théime, but also does not necessarily improve the agreement
last eight years since the discovery of its efficient visiblewith experimental dat&’
luminescencé.However, the effects of the pore morphology  In this paper we apply the semiempirical supercell
on the optical properties are not well understood. approach to calculate the interband optical transitions in
Extensive experimental studi¢for a recent comprehen- por-Si. In this model, the pores are produced by removing
sive review see Ref.)have shown that the observed optical columns of atoms within a supercell of crystalline(8iSi).
properties depend not only on the porosity but also on thé&ince the supercells are periodically repeated in the space,
way the por-Si sample is prepared. The preparation procehe resulting band structure can be described using the re-
dure modifies the morphology of por-Si, i.e., sizes, shapegjuced Brillouin zone corresponding to the supercell, and all
and interconnection of silicon quantum wires, which formvalence- and conduction-band states are characterized by the
por-Si. Therefore, it is important to have a model, beyond thevave vectoik belonging to this Brillouin zone. This zone is
effective mass approximation, which provides a better desmaller in size than the c-Si one, and the band structures of
scription of the energy-level structure of por-Si, and is ablec-Si and por-Si in the supercell model are substantially dif-
to incorporate the interconnectivity of the system. First-ferent. A peculiar feature of the band structure within this
principles method¥* are very successful in the calculation of model for por-Si is the decrease in the difference between the
the electronic structure of small Si nanocrystallites. Theredirect and indirect gaps, both in energies and in their sepa-
fore, they give a good understanding of luminescence andation in thek space, which could be referred to as a de-
recombination in por-Si, because it is now generally ac-crease in the indirectness of the material. This tends to move
cepted that localized electron states are responsible for thesige absorption edge to lower frequencies. On the other hand,
phenomena.However, cluster methods are not suitable forthe presence of pores produces partial quantum confinement
the analysis of extended states in the interconnected structuod the carriers, which in turn leads to an increase of the band
of por-Si, which could be very important for certain optical gap. This last effect depends substantially on the thickness of
responses, such as absorption. This problem can be athe silicon skeleton left between the pores, i.e., the spatial
dressed within the framework of the supercell tight-bindingseparation of the pores, and on their morphology. In particu-
model® Semiempirical tight-binding calculatiods; which lar, when the porosity is kept fixed, the value of the band gap
use phenomenological parameters to include many-body efacreases with a decrease of the pore size and separation. We
fects not fully considered in a first-principles Hamiltonian, show in this paper that the onset of the absorption and the
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frequency dependence of the absorption coefficient are de-
fined by the interplay between these two competing effects.
This is illustrated by the calculation of the imaginary part of
the por-Si dielectric functiorz,(w) in different supercells

for a wide range of porosities. The results are compared also
with available experimental ddfifor £,(w).

Clearly, the supercell model does not contain any disor-
der, which is present in real por-Si samples, and in this ide-
alized model for por-Si only vertical ik-space(momentum
conserving transitions are optically allowed. However, the
pores in real samples are neither exactly parallel nor periodic
columns, and moreover, there is an undulation of the silicon
wires® The existence of disorder is believed to be of key
importance for the luminescence efficiency of por-Si, be-
cause it leads to the localization of electron-hole pairs, pre-
venting their migration to nonradiative recombination
centers® The disorder affects the delocalized states as well,
and the wave functions of carriers are not perfect Bloch func-
tions. While the localization cannot easily be described
within the supercell model, it is possible to incorporate some
effects of disorder on the extended states, which are most
relevant for the calculation of the absorption spectrum. FIG. 1. Showing the 128-atom supercell with 25 Si atoms re-
Smooth and small disorder produces the dephasing of th@oved (19.53% porosi)yThe_ s_urface of the pore is s_aturat_ed with
electron wave function. When the typical lengton which ~ hydrogen atoms, and por-Si is modeled by repeating this sort of
the phase of the electron wave function becomes completef§HPercell periodically.
randomized due to the scatterifithe dephasing lengths
much greater than the wavelength of a carfier2=/k, one  supercell is a cube of side,=5.431 A ; a 32-atom super-
can allow for the disorder by replacing tégfunction, which ~ Cell is built by joining four such cubes in th¢—Y plane,
reflects momentum conservation in the transition-matrix eleleading to a tetragonal structure with parametags-a,
ment, by a weighting function with typical width * in k ~ =a&=2a, and a,=a;=a,. For a 128-atom supercell, the
space. This results in non-vertical interband transitions, givParameters are,=4a, anda, = a,; an example of such su-
ing a significant enlargement of the optically activeone.  Percell is shown in Fig. 1. Since por-Si exhibits a very large
The typical interval around eack-vector (“optical win- ~ Surface mainly hydrogen passivated, we saturate the pore
dow”), where non-vertical transitions contribute, is about theSurface with hydrogen atoms. In previous whbrke have
inverse of the dephasing length. We present a discussion &@lculated the electronic band structure in a perfectly peri-
this optical window and possible weighting functions. The©0dic porous structure, observing an enlargement and a ten-
optical window results mainly in overall smoothing of the dency towards a direct energy band gap. To obtain optical
absorption spectra. The dephasing of extended states inC@nstants from this model, it is necessary to evaluate also the
random medium, responsible for the existence of an opticafliPole matrix elementéor oscillator strength and within the
window, is a general effect. In particular, such dephasing idight-binding method there exist different approaches for
important for quantum phase transitions, like thethese calculation€~2*We begin this section presenting the
superconductor-insulator transition produced by disotfler. details of the approach we have used.

The paper is organized as follows. In Sec. Il below we The optical properties of a material can be calculated
describe the supercell model and give the details of oufrom the oscillator strengtf%
evaluation of optical matrix elements with a comparative dis-
cussion of different approaches existing in the literature. . Nek'evlv,k)l?

Also, we present an extension of the supercell model to in- fok,ckr =2m EJk')—E, (k) ' @
clude small disorder. Section Ill contains the results of the ¢ v

calculations of the imaginary part of the dielectric function.where |v,k) and |c,k’) are valence- and conduction-band
Some of the results are compared with experimental dataigenstatepwith energiesE, (k) andE.(k’), respectively, v
Section IV is devoted to the conclusions. Finally, the Appen-s the electron velocity operator, amds the polarization of
dix considers the optical transitions in one undulating wirelight. In the tight-binding scheme the Bloch functions in Eq.
within the effective mass approximation to illustrate the ex-(1) are linear combinations of atomic orbitdRj ), e.g.,
istence of an optical window ik space.

1 )
ky=— D, ek RTUWAY (K)|Rju), 2
Il. THE SUPERCELL MODEL AND INTERBAND vk \/N% ju(IRI 1) @

OPTICAL TRANSITIONS _ o -
whereR are the Bravais vectors giving the positions of su-

In the supercellsp®s* tight-binding model, empty col- percells,j enumerates atoms within the supercellidenti-
umns are produced by removing columns of Si atoms withirfies the orbital of the atomy; is the position of a given atom
the supercell along thg001] direction @ axis. An 8-atom in supercell(so thatR+ u; is its actual position in the spake



PRB 59

SUPERCELL APPROACH TO THE OPTICAL ...

15 383

andN is the number of supercells. In what follows, we will gested in Refs. 20 and 21 using different arguments. The

also use one combined index={j,u}, to avoid making
some expressions too cumbersome.

The matrix elements of the electron velocity in Ed)
can be expressed, applying the definition(i/#)[H,r], via
the matrix elements of the electron coordinatén the spirit

second contributio, (k,k’) [Eq. (8)] can be called the lo-
cal term. This term cannot be expressed using the Hamil-
tonian matrix alone, since one needs additional information
about ther-space behavior of the atomic orbitdRj ) to
calculate the dipole matrix elemertds, , in Egs.(3) and(8).

of the tight-binding model, the basic assumption is then tdt is clear also if one considers the limiting case of no over-

neglect the interatomic matrix elementsrofsince the over-

lapping orbitals, when the energy bands are completely flat,

lapping of orbitals belonging to different atoms is supposedso that all derivatives oH,,(k) go to zero. In this case,

to be small. Namely,
(R'a'[r|[Ra)=(R"j" u'|r|Rj u)
:{(R_}—uj)(sp,p,’+d,u,’,u,}5RR’5jj’l (3)

however, thed ./, are finite and®,(k,k") describes the op-
tical response of a collection of individual, independent at-
oms.

The dispersion and local terms, Eqg) and (8), can be
compared by estimating the value®f(k,k') aswry, where

where the diagonal term is simply the position of the atomy ; is about the atomic radius. For most semiconductors the
andd,, is the intra-atomic dipole matrix element betweenmain contribution comes from the dispersion teby(k,k’);
different orbitals fu# w"). To transform the matrix element for narrow-gap semiconductors, as InSb and, HEd, Te,
of velocity, we use the definition of the tight-binding Hamil- one has the strong inequaliyy(k,k’)>®,(k,k’). This im-

tonian matrix ink spacé®

Ha’a(k)ZE e—ik~(R'+ua/)(R/a/|H|Ra)eik-(R+ua),
R
4)

whose eigenfunctions are the expansion coefficielfﬁ‘s)(k)
for the Bloch functions, as in E@2). Using Eqs(4) and(3),
we obtain

1 . )
(c.k'levlv k)= (k' k) ; kKR (5)

Dk’ k)=Dg(k’ k) + P (K k), (6)
where
Dy(k’ k)= ei<k—k'>-ua'Afj$(k')[e.—ngéﬁk)}Ag(k),
aa (7)

and

(I)|(k’,k)=iw_2, KD UAT (k') (e dyr ) AY,(K).
s
8
In Eq. (80 w stands for the transition frequencyy

=[Ec(k") —E,(K)1/A.
Functions® 4(k,k") and®,(k,k’) [Eqg. (6)] originate, re-

spectively from the first and the second term within the curly
brackets of Eq.3), and they describe physically different

contributions to the velocity matrix elemef#). ®4(k,k")

plies that the polarizability of free atoms is much smaller
than that of corresponding semiconducithe dispersion
term only[in ther-representation, i.e., as the first term in Eq.
(3)], was taken into account in Ref. 19 when analyzing the
optical properties of Ga ,Al,As microclusters. It is not
clear, however, whether this approximation is sufficient for
the supercell por-Si model, especially for high porosities.
First, this model exhibits substantial flattening of the energy
bands, and second, it is believed that the relevance of the
local term is increased when surface effects are considered.
We allowed for both terms in our calculations and used the
parameters of Ref. 18 fod,,, obtained by fitting to the
experimental data foe,(w) in crystalline Si. Fore|x, the
values of the nonzero matrix elements are-dgp)
=027 A and @du,)=1.08 A. It turns out that
®,(k,k") remains small with respect tby(k,k’). Neverthe-
less,®,(k,k") is important because the interference between
local and dispersion terms makes a 25% contribution to the
total absorption.

Using Egs.(1) and (5) one can express the oscillator
strength as

2m 1 . /
Fuko =7 | DK ; RICSTORY ©

By means off .+ we calculate the imaginary part of the
dielectric functione,(w) as?

27%he?
mwV

> Zk for.ck OLEc(k") = Ey(K) — o],
ck' U
(10)

€(w)=

exists as long as the Hamiltoni&hhas nonzero off-diagonal

matrix elements between neighboring atoms, i.e., due twhereV=Na? is the normalization volume.
“hopping” of the electron from one atom to another, which ~ When the sum oveR in Eg. (9) is expanded over all
produces the dispersion of the energy bands. This is why wepace, the oscillator strengths are nonzero onhkfek’, so
refer tod4(k,k’) as the dispersion term. This contribution is that only “vertical” transitions in thek space of the reduced
specific to solids and can be expressed entirely through thBrillouin zone are allowed. In reality, however, there is sub-
Hamiltonian matrix, as is done in E/). In the perfect case, stantial disorder in the sizes and distribution of pores, and
when the sum oveR in Eq. (5) results ink=k’, itis just the  also there exist fluctuations in the diameter of the columns,
off-diagonal element of thé-space gradient of the tight- which could be thought of as undulating rather than straight
binding Hamiltonian matrix, which resembles the usual defi-wires!® The simplest way to break the perfect periodicity
nition of velocity in free space. This way of calculating the and introduce disorder in the model under consideration
oscillator strengths for the tight-binding scheme was sugeould be to assume that the sum oWrbe restricted to a
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finite volume with a typical lengtt. This value ofl can be
regarded as the typical dephasing length for the electror
wave function. In this case, instead 8fk—k’) in Eq. (9)

we have

kR sin(31 Ak, )sin(31,Aky)sin(31,Ak,)
R sin(3a, Ak sin(3aAk,)sin(3aAk,)
(11

rgy (eV)

wherea,; anda, are the supercell constants, dpé@ndl, are
the transverse and longitudinal dephasing lengths, respec®
tively. In this approximation not only vertical, but also non- W
vertical transitions within a windowk; ~1;"* around eaclk
vector are allowed. These transitions are weighted with a
function given by Eq(11). The lengthd; should obviously
be much greater than the supercell consthgata;, other-
wise the use ok space for classifying the states would be
not valid. The existence of an optical window is a conse-
guence of the disorder in the system; we illustrate this state- \
ment in the Appendix, where we consider the dipole matrix T X M TT X M T
e_Iement for one u.ndullating guantum \_/vire within the.effec— Wave vector
tive mass approximation. As shown in the Appendix, the
shape of the weighting function depends on the type of dis- FIG. 2. Showing the band structure for por-Si of porosity
order. 12.5%, using@) an 8-atom superce(lvith 1 atom removey (b) a
Before proceeding to the results of our calculations, we32-atom supercellwith 4 atoms removed and (c) a 128-atom
would like to make some qualitative remarks about the opti-Supercell(with 16 atoms removed
cal properties of the supercell model. As mentioned already,
the por-Si structure is simulated in this model by a periodictical transitions in crystalline Si are accompanied by Bragg
repetition the space of a large Si supercethich could con- ~ scattering on the superlattice of the introduced pores.
tain up to 128-Si atomsand the wave vectors andk’ in
Egs.(1),(10) belong to a reduced Brillouin zone. If we apply ;. cALCULATIONS OF THE DIELECTRIC FUNCTION
this model to crystalline Si, its electronic structure will then
consist of sets of conduction and valence bands, which can The calculations have been carried out for light polarized
be deduced by folding the usual Si bands into a reduceth the[100Q] direction, i.e., perpendicular to the pore align-
Brillouin zone. When a column of Si atoms is removed andment. First, we present the dependence of the imaginary part
dangling bonds are saturated with hydrogen, this supercetif the dielectric functiore,(w) on the sample morphology,
becomes the primitive cell for the material, and this affectswhich was qualitatively discussed at the end of previous sec-
the band gap of the material and the shape of the bands. THien. In order to avoid complications, we have studied only
resulting band structure is shown in Fig. 2 for 8-, 32-, andhighly symmetric pores. In this case the same porosity of
128-atom supercell. In all three cases the porosity is thd2.5% can be achieved, as mentioned above, for all super-
same, 12.5%, which is achieved by removing 1, 4, and 16 Siells under consideration, and thg(w) obtained are shown
atoms, respectively. It should be pointed out that althouglin Fig. 3. They have been calculated as described in Sec. Il
the porosity is the same, the morpholo@jzes and spatial sampling the Brillouin zone by 1 685 159, 13357, and 425
separation of poress different. A remarkable feature seen points for 8-, 32-, and 128-atom supercells, respectively. The
from Fig. 2 in all cases is a decrease of the energy differencdata correspond to the perfect case when no disorder is in-
AE, between the direct and indirect band gaps, with respeatluded, which results in only vertical interband transitions,
to crystalline Si. For instance, for the 8-atom superf€ij.  i.e., k=k’. Making allowances for an optical window does
2(a)] AEg~=130 meV. We will refer to this effect as the not change these plots substantially. The onset of optical
decrease in the indirectnes$ the material. The second fea- absorption corresponds to the value of their band gaps, as
ture, is the strong dependence of the gap on the thickness eéen from comparison of Figs. 3 with 2, where the band
the Si skeleton, i.e., the gap widens as the thickness gestructures for the same three cases is presented. The values
thinner, which we will refer agjuantum quasiconfinement of the direct band gagg are 2.54, 1.88, and 1.38 eV for 8-,
Note, however, that in spite of this widening of the gap, the32-, and 128-atom supercells, respectively. This remarkable
electron states are delocalized in the supercell model. Thesdfect on the value of the gap is due to different quantum
two competing effects define the position of the absorptiorguasiconfinements, i.e., due to an increase in the difference
edge of por-Si. In particular, for the 128-atom supercell atbetween the pores and their diameters, as the supercell in-
small porosities, the band structure is very similar to that ofcreases with a constant porosity. Note, that in the case of the
folded c-Si one, but the optical absorption is expected to start28-atom supercell the absorption is very weak for the pho-
at lower energies. This tail of the absorption spectrum can b&on energy range 1.382.50 eV. This happens because of
thought of as originating from umklapp processes when opthe small oscillator strengths in this region. The matrix ele-
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FIG. 3. Imaginary part of the dielectric functios,(w), versus 10° B =
the photon energy for the same cases as in Figa)2An 8-atom 10" -
supercell(with 1 atom removeq (b) a 32-atom supercellwith 4 10° |k =
atoms removed and(c) a 128-atom supercelwith 16 atoms re- B LA B LA R SN B
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ment arises in second-order perturbation theory, and the tran- 18.2 il
sitions are in fact indirect optical processes in the c-Si ma- [
trix, assisted by the scattering on the pores. 10' .
To analyze the dependencea&f{ w) on the porosity, one 10° | P-3828%
has to perform calculations on big supercells, where the po- 10:; =
rosity can be changed progressively. Figure 4 presents such 10°F . .

dependences obtained for the 128-atom supercell, with some
central Si atoms removed to produce a symmetric pore.
Higher porosities than 32.28% are not shown, since we have
kept the orientation of the pores for all cases as in Fig. 1,

. . FIG. 4. Showing the low-frequency tail of the imaginary part of
0, -
which corresponds to a 19.53% porosity. For very small POthe dielectric functiong,(w), as a function of photon energy for

ros.ltles ',t IS Interesting .to compare our resul_ts with the CIYS+itferent porosities. The calculations were performed using R25
talline Si case, shown in the same figure with the label O%points in the Brillouin zone.

porosity. The remarkable feature seen from Fig. 4 is the ap-
pearance of a low-frequency tail in the functiea(w) for  cylations corresponds to the dephasing lengths |,
porous Si. This tail is connected to a decrease of the indi—10g A . Despite the fact that our theory gives, without any
rectness of the material, which comes from the optical ”a”adjustable parameters, the value of the peak in good agree-
sition assi_sted b_y the scattering on the pores, as o_Iiscussqa,qient with the experimentdashed ling there is a discrep-
above. With an increase of porosity, quantum confinemenjncy at the onset of absorption. The blueshift of the theoret-
comes into play and produces the blueshift of this tail.  ical curve could be due to a slightly higher porosity in the
We have also performed our calculations for a porosity ofca|cylations. Note that the experiments were performed at
76.56% (98 atoms removed from a 128-atom supeicell 7004 porosity. However, we believe that the main difference
which is the highest possible porosity with a square pore fof, the position of the onset is due to different quantum qua-
this supercell. These results, calculated with 1RZ®ints in  sjconfinements. To reproduce the data of Ref. 14 one needs
the reduced Brillouin zone, are compared with the experiyy perform the calculations on a bigger supercell. Note also
mental data of Ref. 14 in Fig. 5. For such high porosities thgnat the experiments were performed for at room tempera-

optical absorption in the perfect case consist of a set of peakgyre: the temperature additionally smoothens the optical re-
(thin-solid line in Fig. 3, which arise from very flat bands. gponse.

Calculating e,(w) for this case, we have taken also into

—_

2

3 4
Energy (eV)

account the_ effect of disorde_r and ha\_/_e introduce_d an optic_al IV. CONCLUSIONS
window to include non-vertical transitions, as discussed in
Sec. Il. The resulting spectrurtthick-solid line becomes The supercell model for por-Si presented above demon-

smoother. The size of the optical window used in these calstrates the interplay between two main features of this mate-
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FIG. 6. The geometry of an undulating wire. The fluctuations of
the radius of the wire are small comparedRpand they are smooth
on the electron wavelength.

of the dipole matrix elements. We thank A. Mehta very
much for her reading of the manuscript. This work has been
partially supported by Project Nos. DGAPA IN101797,
IN103797, and IN104598, CONACyYT 25455E and GOO44E,
CRAY-UNAM SC008697.

2 4 6 8 APPENDIX: UNDULATING WIRE
Energy (eV)

The goal of this appendix is to consider, within the effec-
tive mass approximation, the electron states and dipole ma-

FIG. 5. Comparison of the experimental dielectric function for trix elements for the intersubband transitions in a quantum

70% porous S{dashed lingwith our calculations for the 128-atom . ith fluctuati di dulati ira. Th t
supercell model at 76% porosity. The thin-solid line represents thaVIré wi uctuating radiusundulating wir¢. The geometry

response in the perfect caseertical optical transitions and the ~ Of the wire is shown on Fig. 6. The radius of the wire exhib-

smoothening of the curve by disordeertical and nonvertical tran- 1tS fandom fluctuations as a function of the directialong

sitions is given by the thick-solid lingsee text The experimental the wire, R=R(z) =R,+ R(z) with the averagg sR(z))

data are presented by digitizing the plot of Ref. 14. =0. The fluctuations of the radius are supposed to be Gauss-
ian and uniform along the wire, so that their statistics are

rial: quantum quasiconfinement and the reduction of the gagompletely  defined by the  correlator &(z—z')

for direct optical transitions. The competition between these=(OR(2) 6R(z")). In what follows we will assume that the
two effects defines the position of the absorption edge and/Pical amplitude of fluctuatiou is small,d=®(0)"*<R,,
makes it possible to tune the onset of absorption in a wid@nd denote the correlation length of the random function
energy range. By quantum quasiconfinement we mean théR(2) [i.e., the typical length on whic(z) decays to zerp
substantial enlargement of the gap with the decrease in tHes!c. One can defing.=(2d?) "'/ ®(2)dz.

interpore distance, although electrons and holes are not lo- We shall consider here the optical transitions between the
calized within this model. The reduction of the gap comesstates with zero-angular momentuin,&m=0), which are
from the decrease in indirectness of the material, which caproduced by the-polarized light. In the absence of fluctua-

be thought as due to the appearance of new absorption pr@ons, these states are classified by the wave védiothe z
cesses, when the transitions are assisted by scattering on §gection and the subband number1,2,3 ..., andthey
pores. The model could also take into account a smalhave energieE=e,(R,)+#%2k%2m*. The corresponding

amount of disorder by allowing nonverticRtspace transi- ynperturbed electron wave functions can be written in cylin-
tions. This results in the smoothing of the absorption specyrical coordinates as

trum in the high-porosity case. This simple microscopic
quantum-mechanical tight-binding t_reatment is capable_ of re- %?(Ro :0,2)=L"Y2¢ (Ry,p)expikz). (A1)
producing the shape of the dielectric function of por-Si. The
position of the absorption peak is very sensitive to the conin this expressiong,(Ry,p) is proportional to the Bessel
finement of carriers in the por-Si sample, and can be used tlunction Jg[ «,(Rp) p], wherek,(Rg) = v2m* &,(Ry)/%, and
extract information about the size of Si quantum wires. Thel is a normalization length. For the case of a wire with
supercell model can be further improved to include otheiinfinite walls one has¢,(Rg) =c¢,,/Rq, with the numbers,,
saturators of the pore surfa¢e.g., oxygeh surface relax- standing for the zeros of the Bessel functiom;
ation and amorphization. These studies are currently in=2.405, c,~5.520, etc.
progress. To investigate the effect of undulation on electron wave
functions and the dipole matrix elements one has to go be-
ACKNOWLEDGMENTS yond simple perturbation theory. This could be done for high
velocities of electron whekl >1, i.e., when the fluctuation
We benefited from the discussion with R. Del Sole, C.of the radius of the wire are smooth on the electron wave-
Delerue, B. Koiller, and M. Lannoo. We acknowledge C.length (cf. with the last problem in 845 of Ref. 26In this
Noguez for providing us with numerical tight-binding results “adiabatic” case, the wave functions for the undulating wire
for crystalline Si, which allowed us to verify our evaluation ¢, (p,z) can be found by neglecting the intersubband
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mixing, i.e., ¥np.2)=F(2) s Y[R(2);p,z]. Substituting omtAs® 2 _¢2
this function into the Schidinger equation one can neglect, Q= . m_ =t - n (AB)
for kl;>1, the second derivative df(z), which is much KRy kRg
smaller than the term with the first derivatiggoportional to
k). Then we have and Asfﬂ,:sn,(Ro)—sn(Ro). Performing this averaging

(B2 kL F _ one finds thats(k—k’), present inM,,,»(k,k") without dis-

(R Im™)kT'(2) + den(2)f(2) =0, (A2) order, should be replaced by
im* (z ©)
bndp2)=exd o [ sez102 UQR@)0.2), gz .. g
" hk ™ f 5 %exp —Qn | (l2=0)®(Hd¢|.
(A3) 2m 0 .
where d¢(z) is the fluctuation of the subband energy, (AD)
O0R(z) It is seen from Eq(A7) that the shape of the weighting

58n(2):8n[R(Z)]_8n(R0)“_an(Ro)R—o- (A4) " function depends on the interrelation between the reciprocal
correlation lengtH_* and the characteristic wave vecter

The wave functiongdA3) can be used to calculate the :d2|CQ;‘n,_ For x| .<1 the integral in the exponent in Eq.

dipole matrix elemenM . (k,k") for_the optical transition (A7) should be calculated for larg|, which leads to a
(n,k)—(n’,k"). If we account for disorder the “nonverti- | grentzian with widthx. In the opposite caseq>1, the
cal” transitions ' #k) are allowed; howevelk’ —k|<[k|  main contribution comes frofz|<l., and the line is Gauss-

under the assumptions made. To find the shape of the, it the dispersionQ? , . In the intermediate case, the

weighting function for the nonvertical transitions one has to nn’ |
averagd M ... (k.k')|2, which is proportional to result depends on a particular form of correladof?) and

should be found from EqA7) numerically.
' z The broadening of the transition line considered in this
f ddee'("k')(ZZ')ex;{ —iQz, | SR(DdZ|, Appendix can be referred as quasiclassical. The above deri-
z vation does not take into account the effects of quantum
(AS) localization. These effects were considered for undulating Si
over the random functio@R(¢{). In Eq. (A5) we denoted wires in Refs. 27-29.
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