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Supercell approach to the optical properties of porous silicon
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We calculate the optical constants of porous silicon~por-Si! from the electronic band structure obtained by
means of ansp3s* tight-binding Hamiltonian and a supercell model, in which the pores are columns dug in
crystalline Si. The position of the absorption edge of the material is defined by two competing effects:~i!
transitions assisted by the scattering of carriers on the lattice of pores, which effectively decrease the ‘‘indi-
rectness’’ of por-Si and result in a redshift of the absorption edge, and~ii ! quantum confinement, which
increases the band gap. The interplay between these effects is illustrated by calculating the imaginary part of
the dielectric function for 8-, 32-, and 128-atom supercells with different porosities. We also show how the
supercell model can be extended to take into account weak disorder, which produces nonvertical optical
transitions ink space and smoothens the absorption spectra. Our results, obtained without any adjustable
parameters, are compared with experimental data.@S0163-1829~99!05023-7#
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I. INTRODUCTION

One of the dominant trends in current research in mat
als science and solid-state physics is the study of mate
and devices at the nanometer scale. Porous silicon~por-Si!,
in particular, represents a very interesting nanostructu
solid, rather than a simple collection of quantum dots
wires. This material has been extensively studied during
last eight years since the discovery of its efficient visib
luminescence.1 However, the effects of the pore morpholog
on the optical properties are not well understood.

Extensive experimental studies~for a recent comprehen
sive review see Ref. 2! have shown that the observed optic
properties depend not only on the porosity but also on
way the por-Si sample is prepared. The preparation pro
dure modifies the morphology of por-Si, i.e., sizes, shap
and interconnection of silicon quantum wires, which for
por-Si. Therefore, it is important to have a model, beyond
effective mass approximation, which provides a better
scription of the energy-level structure of por-Si, and is a
to incorporate the interconnectivity of the system. Fir
principles methods3,4 are very successful in the calculation
the electronic structure of small Si nanocrystallites. The
fore, they give a good understanding of luminescence
recombination in por-Si, because it is now generally
cepted that localized electron states are responsible for t
phenomena.5 However, cluster methods are not suitable
the analysis of extended states in the interconnected stru
of por-Si, which could be very important for certain optic
responses, such as absorption. This problem can be
dressed within the framework of the supercell tight-bindi
model.6 Semiempirical tight-binding calculations,7–9 which
use phenomenological parameters to include many-body
fects not fully considered in a first-principles Hamiltonia
PRB 590163-1829/99/59~23!/15381~7!/$15.00
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are simple enough to be applied to large supercells w
complex morphologies. It is known that thesp3s* model
overestimates the effective masses in the conduction b
and, correspondingly, underestimates the opening of
band gap due to quantum confinement.10 However, including
d orbitals11 or next-nearest-neighbor hopping12 into this
scheme not only leads to a substantial increase in compu
time, but also does not necessarily improve the agreem
with experimental data.13

In this paper we apply the semiempirical superc
approach6 to calculate the interband optical transitions
por-Si. In this model, the pores are produced by remov
columns of atoms within a supercell of crystalline Si~c-Si!.
Since the supercells are periodically repeated in the sp
the resulting band structure can be described using the
duced Brillouin zone corresponding to the supercell, and
valence- and conduction-band states are characterized b
wave vectork belonging to this Brillouin zone. This zone i
smaller in size than the c-Si one, and the band structure
c-Si and por-Si in the supercell model are substantially d
ferent. A peculiar feature of the band structure within th
model for por-Si is the decrease in the difference between
direct and indirect gaps, both in energies and in their se
ration in thek space, which could be referred to as a d
crease in the indirectness of the material. This tends to m
the absorption edge to lower frequencies. On the other h
the presence of pores produces partial quantum confinem
of the carriers, which in turn leads to an increase of the b
gap. This last effect depends substantially on the thicknes
the silicon skeleton left between the pores, i.e., the spa
separation of the pores, and on their morphology. In parti
lar, when the porosity is kept fixed, the value of the band g
increases with a decrease of the pore size and separation
show in this paper that the onset of the absorption and
15 381 ©1999 The American Physical Society
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15 382 PRB 59M. CRUZ et al.
frequency dependence of the absorption coefficient are
fined by the interplay between these two competing effe
This is illustrated by the calculation of the imaginary part
the por-Si dielectric function«2(v) in different supercells
for a wide range of porosities. The results are compared
with available experimental data14 for «2(v).

Clearly, the supercell model does not contain any dis
der, which is present in real por-Si samples, and in this i
alized model for por-Si only vertical ink-space~momentum
conserving! transitions are optically allowed. However, th
pores in real samples are neither exactly parallel nor perio
columns, and moreover, there is an undulation of the sili
wires.15 The existence of disorder is believed to be of k
importance for the luminescence efficiency of por-Si, b
cause it leads to the localization of electron-hole pairs, p
venting their migration to nonradiative recombinatio
centers.16 The disorder affects the delocalized states as w
and the wave functions of carriers are not perfect Bloch fu
tions. While the localization cannot easily be describ
within the supercell model, it is possible to incorporate so
effects of disorder on the extended states, which are m
relevant for the calculation of the absorption spectru
Smooth and small disorder produces the dephasing of
electron wave function. When the typical lengthl on which
the phase of the electron wave function becomes comple
randomized due to the scattering~the dephasing length! is
much greater than the wavelength of a carrier,l @2p/k, one
can allow for the disorder by replacing thed function, which
reflects momentum conservation in the transition-matrix e
ment, by a weighting function with typical widthl 21 in k
space. This results in non-vertical interband transitions, g
ing a significant enlargement of the optically activek zone.
The typical interval around eachk-vector ~‘‘optical win-
dow’’ !, where non-vertical transitions contribute, is about
inverse of the dephasing length. We present a discussio
this optical window and possible weighting functions. T
optical window results mainly in overall smoothing of th
absorption spectra. The dephasing of extended states
random medium, responsible for the existence of an opt
window, is a general effect. In particular, such dephasing
important for quantum phase transitions, like t
superconductor-insulator transition produced by disorder17

The paper is organized as follows. In Sec. II below
describe the supercell model and give the details of
evaluation of optical matrix elements with a comparative d
cussion of different approaches existing in the literatu
Also, we present an extension of the supercell model to
clude small disorder. Section III contains the results of
calculations of the imaginary part of the dielectric functio
Some of the results are compared with experimental d
Section IV is devoted to the conclusions. Finally, the Appe
dix considers the optical transitions in one undulating w
within the effective mass approximation to illustrate the e
istence of an optical window ink space.

II. THE SUPERCELL MODEL AND INTERBAND
OPTICAL TRANSITIONS

In the supercellsp3s* tight-binding model, empty col-
umns are produced by removing columns of Si atoms wit
the supercell along the@001# direction (ẑ axis!. An 8-atom
e-
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supercell is a cube of sidea055.431 Å ; a 32-atom super
cell is built by joining four such cubes in theX2Y plane,
leading to a tetragonal structure with parametersax5ay
[at52a0 and az[al5a0. For a 128-atom supercell, th
parameters areat54a0 andal5a0; an example of such su
percell is shown in Fig. 1. Since por-Si exhibits a very lar
surface mainly hydrogen passivated, we saturate the p
surface with hydrogen atoms. In previous work6 we have
calculated the electronic band structure in a perfectly p
odic porous structure, observing an enlargement and a
dency towards a direct energy band gap. To obtain opt
constants from this model, it is necessary to evaluate also
dipole matrix elements~or oscillator strength!, and within the
tight-binding method there exist different approaches
these calculations.18–21 We begin this section presenting th
details of the approach we have used.

The optical properties of a material can be calcula
from the oscillator strengths22

f vk,ck852m
u^c,k8ue•vuv,k&u2

Ec~k8!2Ev~k!
, ~1!

where uv,k& and uc,k8& are valence- and conduction-ban
eigenstates@with energiesEv(k) andEc(k8), respectively#, v
is the electron velocity operator, ande is the polarization of
light. In the tight-binding scheme the Bloch functions in E
~1! are linear combinations of atomic orbitalsuRj m), e.g.,

uv,k&5
1

AN
(
Rj m

eik•(R1uj )Aj m
v ~k!uRj m), ~2!

whereR are the Bravais vectors giving the positions of s
percells,j enumerates atoms within the supercell,m identi-
fies the orbital of the atom,uj is the position of a given atom
in supercell~so thatR1uj is its actual position in the space!,

FIG. 1. Showing the 128-atom supercell with 25 Si atoms
moved (19.53% porosity!. The surface of the pore is saturated wi
hydrogen atoms, and por-Si is modeled by repeating this sor
supercell periodically.
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andN is the number of supercells. In what follows, we w
also use one combined indexa[$ j ,m%, to avoid making
some expressions too cumbersome.

The matrix elements of the electron velocity in Eq.~1!
can be expressed, applying the definitionv5( i /\)@H,r #, via
the matrix elements of the electron coordinater . In the spirit
of the tight-binding model, the basic assumption is then
neglect the interatomic matrix elements ofr , since the over-
lapping of orbitals belonging to different atoms is suppos
to be small. Namely,

~R8a8ur uRa![~R8 j 8m8ur uRj m!

5$~R1uj !dmm81dm8m%dRR8d j j 8 , ~3!

where the diagonal term is simply the position of the ato
anddm8m is the intra-atomic dipole matrix element betwe
different orbitals (mÞm8). To transform the matrix elemen
of velocity, we use the definition of the tight-binding Ham
tonian matrix ink space23

Ha8a~k!5(
R

e2 ik•(R81ua8)~R8a8uHuRa!eik•(R1ua),

~4!

whose eigenfunctions are the expansion coefficientsAa
c(v)(k)

for the Bloch functions, as in Eq.~2!. Using Eqs.~4! and~3!,
we obtain

^c,k8ue•vuv,k&5F~k8,k!
1

N (
R

ei (k2k8)•R, ~5!

F~k8,k!5Fd~k8,k!1F l~k8,k!, ~6!

where

Fd~k8,k!5(
aa8

ei (k2k8)•ua8Aa8
c* ~k8!Fe•

dHa8a~k!

\dk GAa
v ~k!,

~7!

and

F l~k8,k!5 iv (
j mm8

ei (k2k8)•ujAj m8
c* ~k8!~e•dm8m!Aj m

v ~k!.

~8!

In Eq. ~8! v stands for the transition frequency,v
5@Ec(k8)2Ev(k)#/\.

FunctionsFd(k,k8) andF l(k,k8) @Eq. ~6!# originate, re-
spectively from the first and the second term within the cu
brackets of Eq.~3!, and they describe physically differen
contributions to the velocity matrix element~5!. Fd(k,k8)
exists as long as the HamiltonianH has nonzero off-diagona
matrix elements between neighboring atoms, i.e., due
‘‘hopping’’ of the electron from one atom to another, whic
produces the dispersion of the energy bands. This is why
refer toFd(k,k8) as the dispersion term. This contribution
specific to solids and can be expressed entirely through
Hamiltonian matrix, as is done in Eq.~7!. In the perfect case
when the sum overR in Eq. ~5! results ink5k8, it is just the
off-diagonal element of thek-space gradient of the tight
binding Hamiltonian matrix, which resembles the usual de
nition of velocity in free space. This way of calculating th
oscillator strengths for the tight-binding scheme was s
o
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gested in Refs. 20 and 21 using different arguments.
second contributionF l(k,k8) @Eq. ~8!# can be called the lo-
cal term. This term cannot be expressed using the Ha
tonian matrix alone, since one needs additional informat
about ther -space behavior of the atomic orbitalsuRj m) to
calculate the dipole matrix elementsdm8m in Eqs.~3! and~8!.
It is clear also if one considers the limiting case of no ov
lapping orbitals, when the energy bands are completely
so that all derivatives ofHa8a(k) go to zero. In this case
however, thedm8m are finite andF l(k,k8) describes the op-
tical response of a collection of individual, independent
oms.

The dispersion and local terms, Eqs.~7! and ~8!, can be
compared by estimating the value ofF l(k,k8) asvr 0, where
r 0 is about the atomic radius. For most semiconductors
main contribution comes from the dispersion termF l(k,k8);
for narrow-gap semiconductors, as InSb and Hg12xCdxTe,
one has the strong inequalityFd(k,k8)@F l(k,k8). This im-
plies that the polarizability of free atoms is much smal
than that of corresponding semiconductor.24 The dispersion
term only@in ther -representation, i.e., as the first term in E
~3!#, was taken into account in Ref. 19 when analyzing
optical properties of Ga12xAl xAs microclusters. It is not
clear, however, whether this approximation is sufficient
the supercell por-Si model, especially for high porositi
First, this model exhibits substantial flattening of the ene
bands, and second, it is believed that the relevance of
local term is increased when surface effects are considere25

We allowed for both terms in our calculations and used
parameters of Ref. 18 fordmn , obtained by fitting to the
experimental data for«2(v) in crystalline Si. Forei x̂, the
values of the nonzero matrix elements are (e•dspx

)

50.27 Å and (e•ds* px
)51.08 Å . It turns out that

F l(k,k8) remains small with respect toFd(k,k8). Neverthe-
less,F l(k,k8) is important because the interference betwe
local and dispersion terms makes a 25% contribution to
total absorption.

Using Eqs. ~1! and ~5! one can express the oscillato
strength as

f vk,ck85
2m

\v
uF~k,k8!u2

1

N (
R

ei (k2k8)•R. ~9!

By means off vk,ck8 we calculate the imaginary part of th
dielectric functione2(v) as22

e2~v!5
2p2\e2

mvV (
c,k8

(
v,k

f vk,ck8d@Ec~k8!2Ev~k!2\v#,

~10!

whereV[Na3 is the normalization volume.
When the sum overR in Eq. ~9! is expanded over al

space, the oscillator strengths are nonzero only fork5k8, so
that only ‘‘vertical’’ transitions in thek space of the reduced
Brillouin zone are allowed. In reality, however, there is su
stantial disorder in the sizes and distribution of pores, a
also there exist fluctuations in the diameter of the colum
which could be thought of as undulating rather than strai
wires.15 The simplest way to break the perfect periodic
and introduce disorder in the model under considerat
could be to assume that the sum overR be restricted to a
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15 384 PRB 59M. CRUZ et al.
finite volume with a typical lengthl. This value ofl can be
regarded as the typical dephasing length for the elec
wave function. In this case, instead ofd(k2k8) in Eq. ~9!
we have

(
R

eiDk•R5
sin~ 1

2 l tDkx!sin~ 1
2 l tDky!sin~ 1

2 l lDkz!

sin~ 1
2 atDkx!sin~ 1

2 atDky!sin~ 1
2 alDkz!

,

~11!

whereat andal are the supercell constants, andl t and l l are
the transverse and longitudinal dephasing lengths, res
tively. In this approximation not only vertical, but also no
vertical transitions within a windowDki; l i

21 around eachk
vector are allowed. These transitions are weighted wit
function given by Eq.~11!. The lengthsl i should obviously
be much greater than the supercell constant,l i@ai , other-
wise the use ofk space for classifying the states would
not valid. The existence of an optical window is a cons
quence of the disorder in the system; we illustrate this st
ment in the Appendix, where we consider the dipole ma
element for one undulating quantum wire within the effe
tive mass approximation. As shown in the Appendix, t
shape of the weighting function depends on the type of
order.

Before proceeding to the results of our calculations,
would like to make some qualitative remarks about the o
cal properties of the supercell model. As mentioned alrea
the por-Si structure is simulated in this model by a perio
repetition the space of a large Si supercell~which could con-
tain up to 128-Si atoms!, and the wave vectorsk andk8 in
Eqs.~1!,~10! belong to a reduced Brillouin zone. If we app
this model to crystalline Si, its electronic structure will the
consist of sets of conduction and valence bands, which
be deduced by folding the usual Si bands into a redu
Brillouin zone. When a column of Si atoms is removed a
dangling bonds are saturated with hydrogen, this super
becomes the primitive cell for the material, and this affe
the band gap of the material and the shape of the bands.
resulting band structure is shown in Fig. 2 for 8-, 32-, a
128-atom supercell. In all three cases the porosity is
same, 12.5%, which is achieved by removing 1, 4, and 16
atoms, respectively. It should be pointed out that althou
the porosity is the same, the morphology~sizes and spatia
separation of pores! is different. A remarkable feature see
from Fig. 2 in all cases is a decrease of the energy differe
DEg between the direct and indirect band gaps, with resp
to crystalline Si. For instance, for the 8-atom supercell@Fig.
2~a!# DEg'130 meV. We will refer to this effect as th
decrease in the indirectnessof the material. The second fea
ture, is the strong dependence of the gap on the thicknes
the Si skeleton, i.e., the gap widens as the thickness
thinner, which we will refer asquantum quasiconfinemen.
Note, however, that in spite of this widening of the gap, t
electron states are delocalized in the supercell model. Th
two competing effects define the position of the absorpt
edge of por-Si. In particular, for the 128-atom supercell
small porosities, the band structure is very similar to that
folded c-Si one, but the optical absorption is expected to s
at lower energies. This tail of the absorption spectrum can
thought of as originating from umklapp processes when
n
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tical transitions in crystalline Si are accompanied by Bra
scattering on the superlattice of the introduced pores.

III. CALCULATIONS OF THE DIELECTRIC FUNCTION

The calculations have been carried out for light polariz
in the @100# direction, i.e., perpendicular to the pore alig
ment. First, we present the dependence of the imaginary
of the dielectric function«2(v) on the sample morphology
which was qualitatively discussed at the end of previous s
tion. In order to avoid complications, we have studied on
highly symmetric pores. In this case the same porosity
12.5% can be achieved, as mentioned above, for all su
cells under consideration, and the«2(v) obtained are shown
in Fig. 3. They have been calculated as described in Se
sampling the Brillouin zone by 1 685 159, 13 357, and 425k
points for 8-, 32-, and 128-atom supercells, respectively. T
data correspond to the perfect case when no disorder is
cluded, which results in only vertical interband transition
i.e., k5k8. Making allowances for an optical window doe
not change these plots substantially. The onset of opt
absorption corresponds to the value of their band gaps
seen from comparison of Figs. 3 with 2, where the ba
structures for the same three cases is presented. The v
of the direct band gapEg are 2.54, 1.88, and 1.38 eV for 8
32-, and 128-atom supercells, respectively. This remarka
effect on the value of the gap is due to different quant
quasiconfinements, i.e., due to an increase in the differe
between the pores and their diameters, as the superce
creases with a constant porosity. Note, that in the case o
128-atom supercell the absorption is very weak for the p
ton energy range 1.3822.50 eV. This happens because
the small oscillator strengths in this region. The matrix e

FIG. 2. Showing the band structure for por-Si of poros
12.5%, using~a! an 8-atom supercell~with 1 atom removed!, ~b! a
32-atom supercell~with 4 atoms removed!, and ~c! a 128-atom
supercell~with 16 atoms removed!.
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ment arises in second-order perturbation theory, and the t
sitions are in fact indirect optical processes in the c-Si m
trix, assisted by the scattering on the pores.

To analyze the dependence of«2(v) on the porosity, one
has to perform calculations on big supercells, where the
rosity can be changed progressively. Figure 4 presents
dependences obtained for the 128-atom supercell, with s
central Si atoms removed to produce a symmetric po
Higher porosities than 32.28% are not shown, since we h
kept the orientation of the pores for all cases as in Fig
which corresponds to a 19.53% porosity. For very small
rosities it is interesting to compare our results with the cr
talline Si case, shown in the same figure with the label 0
porosity. The remarkable feature seen from Fig. 4 is the
pearance of a low-frequency tail in the function«2(v) for
porous Si. This tail is connected to a decrease of the in
rectness of the material, which comes from the optical tr
sition assisted by the scattering on the pores, as discu
above. With an increase of porosity, quantum confinem
comes into play and produces the blueshift of this tail.

We have also performed our calculations for a porosity
76.56% ~98 atoms removed from a 128-atom superce!,
which is the highest possible porosity with a square pore
this supercell. These results, calculated with 1225k points in
the reduced Brillouin zone, are compared with the exp
mental data of Ref. 14 in Fig. 5. For such high porosities
optical absorption in the perfect case consist of a set of pe
~thin-solid line in Fig. 5!, which arise from very flat bands
Calculating «2(v) for this case, we have taken also in
account the effect of disorder and have introduced an op
window to include non-vertical transitions, as discussed
Sec. II. The resulting spectrum~thick-solid line! becomes
smoother. The size of the optical window used in these

FIG. 3. Imaginary part of the dielectric function,«2(v), versus
the photon energy for the same cases as in Fig. 2.~a! An 8-atom
supercell~with 1 atom removed!, ~b! a 32-atom supercell~with 4
atoms removed!, and ~c! a 128-atom supercell~with 16 atoms re-
moved!.
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culations corresponds to the dephasing lengthsl l5 l t
5108 Å . Despite the fact that our theory gives, without a
adjustable parameters, the value of the peak in good ag
ment with the experiment~dashed line!, there is a discrep-
ancy at the onset of absorption. The blueshift of the theo
ical curve could be due to a slightly higher porosity in t
calculations. Note that the experiments were performed
70% porosity. However, we believe that the main differen
in the position of the onset is due to different quantum q
siconfinements. To reproduce the data of Ref. 14 one ne
to perform the calculations on a bigger supercell. Note a
that the experiments were performed for at room tempe
ture; the temperature additionally smoothens the optical
sponse.

IV. CONCLUSIONS

The supercell model for por-Si presented above dem
strates the interplay between two main features of this m

FIG. 4. Showing the low-frequency tail of the imaginary part
the dielectric function,«2(v), as a function of photon energy fo
different porosities. The calculations were performed using 22k
points in the Brillouin zone.
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15 386 PRB 59M. CRUZ et al.
rial: quantum quasiconfinement and the reduction of the
for direct optical transitions. The competition between the
two effects defines the position of the absorption edge
makes it possible to tune the onset of absorption in a w
energy range. By quantum quasiconfinement we mean
substantial enlargement of the gap with the decrease in
interpore distance, although electrons and holes are no
calized within this model. The reduction of the gap com
from the decrease in indirectness of the material, which
be thought as due to the appearance of new absorption
cesses, when the transitions are assisted by scattering o
pores. The model could also take into account a sm
amount of disorder by allowing nonverticalk-space transi-
tions. This results in the smoothing of the absorption sp
trum in the high-porosity case. This simple microscop
quantum-mechanical tight-binding treatment is capable of
producing the shape of the dielectric function of por-Si. T
position of the absorption peak is very sensitive to the c
finement of carriers in the por-Si sample, and can be use
extract information about the size of Si quantum wires. T
supercell model can be further improved to include ot
saturators of the pore surface~e.g., oxygen!, surface relax-
ation and amorphization. These studies are currently
progress.
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APPENDIX: UNDULATING WIRE

The goal of this appendix is to consider, within the effe
tive mass approximation, the electron states and dipole
trix elements for the intersubband transitions in a quant
wire with fluctuating radius~undulating wire!. The geometry
of the wire is shown on Fig. 6. The radius of the wire exh
its random fluctuations as a function of the directionz along
the wire, R[R(z)5R01dR(z) with the averagê dR(z)&
50. The fluctuations of the radius are supposed to be Ga
ian and uniform along the wire, so that their statistics a
completely defined by the correlator F(z2z8)
5^dR(z)dR(z8)&. In what follows we will assume that the
typical amplitude of fluctuationd is small,d[F(0)1/2!R0,
and denote the correlation length of the random funct
dR(z) @i.e., the typical length on whichF(z) decays to zero#
as l c . One can definel c5(2d2)21*F(z)dz.

We shall consider here the optical transitions between
states with zero-angular momentum (Lz5m50), which are
produced by theẑ-polarized light. In the absence of fluctua
tions, these states are classified by the wave vectork in the ẑ
direction and the subband numbern51,2,3, . . . , andthey
have energiesE5«n(R0)1\2k2/2m* . The corresponding
unperturbed electron wave functions can be written in cy
drical coordinates as

cnk
(0)~R0 ;r,z!5L21/2fn~R0 ,r!exp~ ikz!. ~A1!

In this expression,fn(R0 ,r) is proportional to the Besse
functionJ0@kn(R0)r#, wherekn(R0)5A2m* «n(R0)/\, and
L is a normalization length. For the case of a wire w
infinite walls one haskn(R0)5cn /R0, with the numberscn
standing for the zeros of the Bessel function:c1
'2.405, c2'5.520, etc.

To investigate the effect of undulation on electron wa
functions and the dipole matrix elements one has to go
yond simple perturbation theory. This could be done for h
velocities of electron whenklc@1, i.e., when the fluctuation
of the radius of the wire are smooth on the electron wa
length ~cf. with the last problem in §45 of Ref. 26!. In this
‘‘adiabatic’’ case, the wave functions for the undulating wi
cnk(r,z) can be found by neglecting the intersubba

e

FIG. 6. The geometry of an undulating wire. The fluctuations
the radius of the wire are small compared toR0 and they are smooth
on the electron wavelength.
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mixing, i.e., cnk(r,z)5 f (z)cnk
(0)@R(z);r,z#. Substituting

this function into the Schro¨dinger equation one can neglec
for klc@1, the second derivative off (z), which is much
smaller than the term with the first derivative~proportional to
k). Then we have

2 i ~\2/m* !k f8~z!1d«n~z! f ~z!50, ~A2!

cnk~r,z!5expF2
im*

\2k
Ez

d«~z8!dz8Gcnk
(0)@R~z!;r,z#,

~A3!

whered«(z) is the fluctuation of the subband energy,

d«n~z!5«n@R~z!#2«n~R0!'22«n~R0!
dR~z!

R0
. ~A4!

The wave functions~A3! can be used to calculate th
dipole matrix elementMnn8(k,k8) for the optical transition
(n,k)→(n8,k8). If we account for disorder the ‘‘nonverti
cal’’ transitions (k8Þk) are allowed; howeveruk82ku!uku
under the assumptions made. To find the shape of
weighting function for the nonvertical transitions one has
averageuMnn8(k,k8)u2, which is proportional to

E dzdz8ei (k2k8)(z2z8)expF2 iQnn8
2 E

z8

z

dR~z!dzG ,
~A5!

over the random functiondR(z). In Eq. ~A5! we denoted
M.

ys

v.

.

e
o

Qnn8
2

5
2m* D«nn8

(0)

\2kR0

5
cn8

2
2cn

2

kR0
3

, ~A6!

and D«nn8
(0)

5«n8(R0)2«n(R0). Performing this averaging
one finds thatd(k2k8), present inMnn8(k,k8) without dis-
order, should be replaced by

E dz

2p
ei (k2k8)z expF2Qnn8

4 E
0

uzu
~ uzu2z!F~z!dzG .

~A7!

It is seen from Eq.~A7! that the shape of the weightin
function depends on the interrelation between the recipro
correlation lengthl c

21 and the characteristic wave vector¸
5d2l cQnn8

4 . For ¸ l c!1 the integral in the exponent in Eq
~A7! should be calculated for largeuzu, which leads to a
Lorentzian with width¸. In the opposite case,̧l c@1, the
main contribution comes fromuzu! l c , and the line is Gauss
ian with the dispersiondQnn8

2 . In the intermediate case, th
result depends on a particular form of correlatorF(z) and
should be found from Eq.~A7! numerically.

The broadening of the transition line considered in t
Appendix can be referred as quasiclassical. The above d
vation does not take into account the effects of quant
localization. These effects were considered for undulating
wires in Refs. 27–29.
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