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Universal structure of the edge states of the fractional quantum Hall states
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We present an effective theory for the bulk fractional quantum Hall states on the Jain sequences on closed
surfaces and show that it has a universal form whose structure does not change from fraction to fraction. The
structure of this effective theory follows from the condition of global consistency of the flux attachment
transformation on closed surfaces. We derive the theory of the edge states on a disk that follows naturally from
this globally consistent theory on a torus. We find that, for a fully polarized two-dimensional electron gas, the
edge states for all the Jain filling fractionsn5p/(2np11) have only one propagating edge field that carries
both energy and charge, and two nonpropagating edge fields of topological origin that are responsible for the
statistics of the excitations. Explicit results are derived for the electron and quasiparticle operators and for their
propagators at the edge. We show that these operators create states with the correct charge and statistics. It is
found that the electron tunneling density of states for all the Jain states scales with frequency asuvu(12n)/n.
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I. INTRODUCTION

The fractional quantum Hall~FQH! states have been stud
ied extensively and many of their properties are quite w
understood. Much of this understanding came from Lau
lin’s microscopic theory,1 and its generalizations,2–4 as well
as by Chern-Simons field theory approaches.5,6 The result of
this theoretical effort was a classification of all possible a
lian FQH states in the form of effective low-energy theor
that capture their universal features.7–10 Much of the present
understanding of the universal properties of the Abel
FQH states is encoded in the effective Lagrangian of W
and Zee,8 which is given by

Leff5(
I ,I 8

1

4p
KII 8emnlaIm]naI 8l2(

I
l I j m

v aI
m

2(
I

1

2p
emnlAm]nt IaIl, ~1.1!

where, for the Jain states, i.e., for states withn5p/(2np
11), the matrixK and the charge vectort take the values

K51p3p12nC, tT5~1, . . . ,1!, ~1.2!

whereC is a p3p matrix with all its elements equal to one
In Eq. ~1.1! j m

v is the vortex current,l I is the vector of
vortex ~quasiparticle! charges andt I is the electromagnetic
charge vector. A key topological property of the Abelian Q
fluids is the topological degeneracy of the Hilbert space~not
just the ground state! which is equal toudetKug, whereg is
the genus~i.e., the number of handles! of the surface~mani-
fold! on which the fluid moves.11 Wen9 has emphasized th
concept of topological order of the fluid and characterize
by the degeneracy of the Hilbert space.

This general classification of the Abelian FQH states
very powerful. In addition to giving a compact and univers
description of all Abelian FQH states, it also classifies
PRB 590163-1829/99/59~23!/15323~9!/$15.00
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possible behaviors of their associated edge states.9,12,13 The
central point of this classification is that for agiveneffective
theory of the bulk incompressible state there is anatural
construction of the edge in terms of the conformal fie
theory of chiral bosons.12 A fundamental feature of this con
struction is the existence of a one-to-one correspondence
tween the quasiparticle states of the bulk and the prim
fields that build the spectrum of the edge states.

Wen’s construction further assumes that the behavio
the electron gas near the edge is essentially simple, w
may or may not be realized if edge reconstruction actua
takes place.14 Whether or not this happens depends on ma
nonuniversal microscopic issues, such as edge potentials
teractions, and impurities, which complicate matters a
which may be quite relevant for a precise understanding
the edge tunneling experiments away from the middle of
bulk Hall plateaus.15 Thus, in realistic situations, the detaile
microscopic physics near the edge may actually mask
robust physics of the bulk. However, once the details of e
reconstruction are sorted out, it is expected that the phy
of the edge should be universal even though its connec
with the physics of the bulk is no longer so simple.

Microscopically, the bulk states can be constructed
implementing the idea of flux-attachment, by coupling p
ticle currents to a suitable set of Chern-Simons gau
fields.5,6 These ideas, which are at the root of the constr
tion of fractional~or braid! statistics,16,17 play a central role
in the field-theoretic descriptions of the fractional quantu
Hall effect for both single-layer systems,5,6,18–21

bilayers,22–24and for spin-singlet or partially polarized FQH
states.24,25 Since the effective action of any incompressib
state of a system of charged particles in two dimensions
the presence of a strong-magnetic field, by general hydro
namic arguments,26,27must be of the Chern-Simons form, th
effective action that is actually derived from the field the
retic descriptions is a Chern-Simons gauge theory and it
the K-matrix classification.
15 323 ©1999 The American Physical Society
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However, a number of puzzles implicit in this pictu
have not been fully resolved. In particular, theK-matrix clas-
sification assumes that the number of physically disti
stable quasiparticles is equal to the rank of the matrix. T
feature is quite puzzling since the only known conservat
law in this system is just charge conservation, and it is
clear what the dynamical origin of the additional conser
tion laws may be. Conceptually, the multicomponent str
ture of the K-matrix classification reflects the underlyin
hierarchical construction of the FQH states. However,
though the different hierarchies are useful pictures that o
nize the FQH states, there is no physical reason to regard
condensates used in these pictures to be literally phys
entities.

These problems are also connected with two import
features of theK-matrix classification. One is the fact that fo
a given filling fraction there are many possible physica
distinct theories, characterized by different charges and
tistics of the quasiparticles. It has been argued by Wen
these states have topological orders that tell these diffe
states apart. For example, then52/5 single layer, fully po-
larized state is given by a 232 K matrix and it seems to be
closely related to then52/5 fully polarized QH state in bi-
layers. From a hydrodynamic point of view, in the absen
of interlayer tunneling, it is obvious that the bilayer syste
should have two conserved currents and hence a 232 K
matrix. However, the physical meaning of these two se
rately conserved hydrodynamic currentsin single-layer sys-
temsis unclear since there is no known conservation law
insure their stability.

A closely related problem is the associated composite
ture of the edge states with a number of branches equal to
rank of theK matrix. In practice, these structures have th
origin in the multiple condensates of the hierarchical co
struction of the FQH states. In contrast, in the fermi
Chern-Simons theory description of the two-dimensio
electron gas~2DEG! on a disk, which should be equivalen
to the K-matrix picture, there is only one gauge field a
only one quasiparticle whereas theK-matrix classification
typically will have several gauge fields and the associa
quasiparticles.

It is natural to ask what is the minimal universal structu
required to describe the Abelian FQH states in the bulk
similar issue also arises in the description of the edge sta
which require a composite structure~even in the absence o
edge reconstruction! with a quite complex behavior as
function of the filling factor. In particular, the contribution o
the edge states to the specific heat of the 2DEG~in fact, the
total contribution! looks like a number-theoretic function
which diverges at the compressible fractions. However,
picture holds only if the currents that define the structure
theK matrix for the composite edges are actually conserv

In addition, the problem of the consistency of the stand
mean-field theory constructions of the bulk states for a s
tem on a closed surface, such as a torus, has not been
resolved. Although superficially this may seem a techni
issue, it is an important problem since the degeneracy of
Hilbert space on a closed surface is a universal feature
these topological fluids, and it is closely related to t
puzzles mentioned above. The usual flux-attachm
transformation5,6,21 is regarded as a process in which a p
ticle is physically andlocally glued to a certain number o
t
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~statistical! flux quanta. For an electron gas on anopensim-
ply connected disk with fixed boundary conditions, there
no problem with this procedure. However, if we were
carry out this procedure on a closed surface, such as a t
or a sphere, this approach is not consistent as it is usu
described. Similar difficulties arise if the disk is replaced
an annulus.

The purpose of this paper is to construct a theory of
FQH fluids for a single layer, fully polarized 2DEG, whic
satisfies the following criteria:~1! it must contain the mini-
mal possible structure consistent with the existence of o
one conservation law~charge conservation! and ~2! it must
be consistent on a closed surface~such as a torus!. In order to
do that, we reformulate our approach of our previous wo6

on the FQH Jain states on a disk, to satisfy these criteria
do so, it is necessary to modify the flux-attachement pro
dure so as to make it globally consistent. The key issue is
invariance~or lack of! of the Chern-Simons action unde
large gauge transformations for a theory defined on a clo
manifold with a number of handlesg. ~In practice we will
only be interested on describing the behavior of the sys
on a torus, and so we will useg51.! It has been shown by a
number of authors28–30 that invariance under large gaug
transformations of the path integral~not the action! requires
that the coupling constant of any Chern-Simons theory~both
Abelian and non-Abelian! mustbe quantized. However, th
standard Chern-Simons constructions of the flux-attachm
transformation violate this principle. Here, we make use
the results of Ref. 31 to derive an effective theory that
globally consistent. The resulting effective theory has
K-matrix form but with a different and much simpler stru
ture than the usual one. We find that this structure requ
only a fixed ~and small! number of gauge fields and the
number, i.e., the rank of theK matrix, is independent of the
filling fraction. As a result, we find that for each Jain sta
there is only one quasiparticle. Furthermore, the effect
theory that we derive here for a system on a closed surf
has a related and unique minimal universal edge structur
an open surface, in the abscence of edge reconstruction.
edge structure is particularly simple.

As this paper was being prepared we became aware
very recent work by Lee and Wen35 where they argued tha
the effective theory of the edge states for the Jain fracti
contains just two independent chiral bosons, one of wh
does not propagate. Our final result in essence agrees
the picture advocated by Lee and Wen. However, the un
lying philosophy is quite different since in our work the no
propagating fields have a purely topological origin.

This paper is organized as follows. In Sec. II, we intr
duce a general framework for flux attachment that is con
tent on closed manifolds such as a torus. Here, we show
the effective theory of the FQH states forn5p/(2np61),
has a simple and universal structure. In Sec. III, we der
the theory of the edge states that follows from this univer
structure. In Sec. IV, we derive the form of the electron a
quasiparticle operators at the edge and compute their pr
gators. Section V is devoted to the conclusions.

II. FLUX ATTACHMENT ON CLOSED SURFACES

In Ref. 31 it was shown that there is a simple and dir
way to reformulate the Chern-Simons theory of the~single
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layer, fully polarized! FQH state in order to satisfy the re
quirement of global consistency on a closed surface. Fo
fermion representation of the FQH system~i.e., composite
fermions! it was shown that the exact partition function c
be written as a path integral of a theory in which the partic
whose worldlines are represented by the currentsj m , interact
with two gauge fieldsam and bm . These interactions ar
encoded in the following effective action:

Seff@a,b, j #5
1

2p
amemnl]nbl2am j m2

2n

4p
emnlbm]nbl.

~2.1!

Therefore, the amplitudes can be written in terms of a p
integral over an Abelian Chern-Simons gauge field with
correctly quantized coupling constant equal to 2n/(4p).
Hence, there exists an exact rewriting of the theory involv
two gauge fieldsam and bm . These two gauge fields aris
quite naturally: the fieldbm arises from the fact that the pa
ticle currents~worldlines! are conserved and the fieldam is
the Lagrange multiplier that imposes the hydrodynamic c
straint between the current and the curl ofbm .

The usual form of the flux-attachment transformation
found by integrating out the gauge fieldbm . For vanishing
boundary conditions at infinity, this leads to an effective a
tion for the fieldam of the conventional form6

Seff@a#5
1

4p2nE d3xemnlam]nal. ~2.2!

However, this form of the effective action is not valid fo
manifolds with nontrivial topology. Nevertheless, Eq.~2.1! is
correct in all cases as it is invariant under both local a
large gauge transformations.

As usual,6 the mean-field theory in the composite fermio
language proceeds by first spreading out the field and c
structing an effective integer Hall effect of the partial
screened magnetic field. The result is a description of
states in the generalized Jain hierarchies with filling fractio
in the seriesn6(n,p)5p/(2np61), wherep,nPZ and 6
stands for an electron and holelike FQH state, respective

The effective action in the composite fermion picture
found by integrating out the local particle-hole fluctuatio
of the fermions about the uniform mean-field state. At lo
distances and low energies the effective Lagrangian o
again involves a 232 K matrix and it has the usual Wen
Zee form

Leff5
1

4p
KIJemnlam

I ]nal
J ~2.3!

with

KIJ5S 6p 1

1 22nD . ~2.4!

We now notice that this effective theory is globally we
defined since the Chern-Simons coupling constants are
rectly quantized. Indeed, if we integrate out the gauge fi
bm5am

2 , we find the same effective action foram of our
previous work.6 Since the absolute value of the determina
a
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is udetKu5u2np61u, we find that the generalized Jain stat
are u2np61u-fold degenerate on the torus, which is the co
rect result.

In what follows, we will consider the effective Lagrang
ian of Eq.~2.4! expanded to include the the quantum dyna
ics of the quasiparticles. The effective Lagrangian now re

Leff5
p

4p
emnlam]nal1

1

2p
emnlam]nbl2

2n

4p
emnlbm]nbl

1
1

4p
emnlem]nel1

1

2p
emnlbm]nAl2~am1em! j qp

m .

~2.5!

The currentj qp
m in the last term of Eq.~2.5! represents the

effects of quasiparticles. However, in the fermionic pictu
the bare quasiparticles are compositefermionswhose statis-
tics is modified by the Chern-Simons gauge fields. Thus,
statistics of all excitations that we will compute is defin
relative tofermions. A simple way to keep track of the un
derlying statistics is to introduce, as we did in Eq.~2.5!, an
additional Chern-Simons gauge fieldem , which couples only
to the quasiparticle currentj qp

m . From now on, and in order to
simplify the notation, we shall callp56p. This effective
Lagrangian, includes the coupling to a weak external ga
field Am .

We can write the effective Lagrangian in a more comp
form if we defineam

1 5bm , am
2 5am , am

3 5em , the charge
vector t I5(1,0,0) and the flux vectorl I5(0,1,21), as

L5
1

4p
KIJemnlaI

m]naJ
l1

1

2p
t IemnlaI

m]nAl1l IaI
m j qp

m ,

~2.6!

where the coupling-constant matrix is

KIJ5S 22n 1 0

1 p 0

0 0 1
D ~2.7!

whose determinant isudetKu52np11. Hence, we get the
correct degeneracy on closed surfaces.

Following Wen9 we can compute the filling fraction
which is given by

n5utTK21tu5
p

2np11
. ~2.8!

The quantum numbers of the quasiparticles are

Qqp52etTK21l 5
2e

2np11
, ~2.9!

uqp

p
5 l TK21l 5

2n

2np11
11 ~2.10!

for the charge and the statistics, respectively. For the spe
case of the Laughlin states,p561, the gauge fieldam

2 can
be integrated out and the effective action is now identica
the dual action found by Wen.9
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Therefore, the theory defined by Eq.~2.6! gives the cor-
rect quantum numbers for the quasiparticle as well as
correct Hall conductance. This bosonic representation g
an alternative effective theory of the Jain states and it d
not involve a hierarchy of condensates, as in Wen’s const
tion. This picture also suggests that the effective theory
the edge states for the FQH states in the Jain sequence
not necessarily require a composite structure of the e
states.

III. EDGE THEORY FOR THE JAIN STATES

In this section we use the effective theory for all the sta
in the Jain sequence, derived in the previous section, to
tract the effective theory for the edge states. The effec
Lagrangian of Eq.~2.6! is globally well defined~on closed
surfaces!, yields the correct ground-state degeneracy on
torus as well as excitations with the correct fractional cha
and statistics. However, unlike the standard hierarchical c
struction of the effective theory of the Jain states,8 for a
generic state in the Jain sequence, the effective Lagran
of Eq. ~2.6! contains the same number of gauge fields, for
filling fractions on the Jain sequences, and it can be redu
to just a single gauge field for the special case of the Lau
lin states. In a sense, the Lagrangian of Eq.~2.6! is themini-
mal effective theory. This effective Lagrangian has the st
dard form introduced by Wen and Zee8 and, following the
general arguments of Wen,9,12 it is straightforward to extrac
a theory for the edge states, which we do in this sect
Clearly, since the effective theory of the bulk in general co
tains just three gauge fields, the number of edges does
grow from one state in the hierarchy to the next. In particu
this implies that the specific heat of the system does not g
without limit as one goes up in the hierarchy. Consequen
the changes in the thermodynamic properties of the sys
that occur as the system becomes compressible is not d
a proliferation of edges but to a physical collapse of the g
in the spectrum and the resulting failure to separate the e
from the bulk.

It is quite well known from the work of Wen,9 in turn
based on the work of Witten,28 that a Chern-Simons theor
on a diskV is equivalent to a theory of chiral bosons who
Hilbert space has support at the boundary]V of the disk.
Here we will only need the salient features of the derivat
and we will omit the details, which can be found in Ref.
The key idea is that, in the gaugeaJ

050, the Chern-Simons
theory reduces to a set of commutation relations among
spacial components of the gauge fields, and to the const
~i.e., Gauss’s law!

J I
052KIJe i j ]

iaJ
j , ~3.1!

where the currentJ I
i is defined by

J I
m[t Ie

mnl]nAl12pl I j qp
m . ~3.2!

The solution of Gauss’s law is

ai
I5] if

I ~3.3!

where f I are three multivalued scalar fields, i.e., singu
gauge transformations. If the quasiparticles and the exte
fluxes are quasistatic bulk perturbations of the condensat
e
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quasiparticle numberNqp and flux F52pNf , the scalar
fields f I at the boundary]V must satisfy the conditions

Df I52p~K21! IJF Nf

Nqp

2Nqp

G
J

, ~3.4!

whereDf I[r]Vdxi] if I is the change of the fieldf I once
around the boundary]V. In components we get

Df15
2p

2np11
~Nqp2pNf!,

~3.5!

Df25
2p

2np11
~Nf12nNqp!, Df3522pNqp .

In particular, if there is just one quasiparticle in the bu
Nqp51 and no extra flux,Nf50, we getDf152p/(2np
11), Df252p2n/(2np11), and Df3522p. Con-
versely, for Nf51 and Nqp50, we get insteadDf15
22pn, Df252p/(2np11) andDf350. Likewise, if we
add an electron to the bulk,Nqp52np11 but no fluxNf
50, we getDf152p, Df252p2n andDf3522p(2np
11). These conditions will play an important role below.

Once the constraint Eq.~3.1! is solved, it is immediate to
show that the result is a theory of chiral bosons at the bou
ary ]V, whose action is

S5
1

4p
KIJE dx0 R

]V
dxi]

if I]
0fJ. ~3.6!

However, as emphasized by Wen,9 as they stand thes
bosons do not propagate. The reason is that the Ch
Simons gauge theory is actually a topological field theo
and in addition to being gauge invariant, it is independen
the metric of the surface where the electrons reside. In p
ticular, this means that the Hamiltonian of the Chern-Simo
theory is zero, which is just the statement that this is
effective theory for the degrees of freedom below the gap
the incompressible fluid. There are no local degrees of fr
dom left in the bulk of the system, and the physical degr
of freedom are present only at the boundary, which also c
ries energy.

There are many ways to represent this physics in the
fective theory. For example, Wen9 chooses the gauge cond
tion a01va150, wherev is chosen to be the velocity o
noninteracting electrons at the edge, i.e.,v5cE/B, with c
the speed of light andE the electric field of the confining
potential at the edge. In the context of the construction t
we are pursuing here, only the gauge fieldam

1 couples to the
electromagnetic field and thus it is the only one that w
represent propagating degrees of freedom, the charge
tuations at the edge.

Another option, which we will use here, is to keep th
gauge conditiona050, which does not break topologica
invariance, but to add boundary terms to the effective act
to represent the effect of the propagating modes at the e
By power counting the boundary term with the smallest sc
ing dimension, one can add to the effective action the fo
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Sboundary52E dx0 R
]V

dxi

g̃

2
@ai

1~x!#2

52E dx0 R
]V

dxi

g̃

2
@] if

1~x!#2. ~3.7!

This is a marginal operator. Hereg̃ is a coupling constan
whose physical meaning we discuss below. Notice that
term only affects the fieldam

1 . Terms of this form arise mi-
croscopically as follows. Within the framework of the ferm
onic Chern-Simons theory,6 in addition to the bulk states
there are edge states. A realistic description of these s
requires an understanding of the problem of edge recons
tion. At the level of a Hartree-Fock approximation for th
fermions in the Chern-Simons picture a theoretical desc
tion was given in Refs. 32 and 33. Although it is not clear
such descriptions are reliable for systems as quantum
chanical as the 2DEG in the lowest Landau level, it is cl
that an effective edge must exist even if many of the mo
predicted by the mean-field theory were to be an artifac
the approximation. In any event there should be at least
edge mode that will carry the correct Hall current at the ed
At the level of the mean-field theory these states are fer
onic, as they are in the bulk before the Gaussian fluctuat
are integrated out.6 These edge fermionic states will coup
to theboundarycomponent of the bulk gauge fieldam

1 . We
can now proceed to integrate out the fermions, as we
before. If the fermions where nonchiral, the result of in
grating out the fermions is equivalent to convention
bosonization. Their contribution to the effective action is c
culated from the determinant of the Dirac operator coup
to gauge fields. This is a very standard result34 and the ef-
fective action is

Sedge52
p

8pE dx0 R
]V

dx1~am
1 !2, ~3.8!

which holds in the continuum limit, i.e., infinite bandwidth
and for an infinitesimally narrow edge. Since the edge the
is actually chiral, we need to keep only the right movi
piece of Eq.~3.8!, andSedgebecomes

Sedge52
p

4pE dx0 R
]V

dx1~aR
1 !2, ~3.9!

whereaR
1 is

aR
15

1

Av
a0

11Ava1
1[Ava1

1 ~3.10!

with v5eE/B the speed of the edge excitations, and we h
used the gauge conditiona0

150 at the boundary. Hence, w
find

Sedge52
pv
4pE dx0 R

]V
dx1~]1f1!2, ~3.11!

which has the form of Eq.~3.7!, with g̃5pv/(2p).
The electron-electron interaction term becomes
is

tes
c-

-
f
e-
r
s
f

ne
e.
i-
ns

id
-
l
-
d

ry

e

Sint5E
V

d3xE
V

d3x8
1

2
@r~x!2 r̄ #V~x2x8!@r~x8!2 r̄ #

5E
V

d3xE
V

d3x8
1

8p2
e i j ]

ia1
j ~x!V~x2x8!ekl]

ka1
l ~x8!

[E dx0 R
]V

dxidxi8
t I tJ

8p2
] if I~x!V~x2x8!] ifJ~x8!,

~3.12!

where we have only retained the boundary contribution si
the bulk excitations have a finite~and for present purpose
large! energy gap. Notice that sincet I5(1,0,0) this term of
the action only affects the modef1. Likewise, the interac-
tion with an external potential with support at the bounda
becomes

Sext5E d3x@r~x!2 r̄ #A0~x!

5E dx0 R
]V

dxi

t I

2p
] if I~x!A0~x! ~3.13!

and it involves onlyf1.
Thus, as expected, the effective action is in fact a the

of edge modes, in agreement with Wen’s general argume
The effective action involves just three chiral bosonsf I
~with I 51,2,3) and takes the form

S5
1

4pE]V3R
dx0dx1~KIJ]1f I]0fJ1UIJ]1f I]1fJ!,

~3.14!

where UIJ(x2x8)5t I tJ@pv1(1/2p)V(x2x8)#, and its
only effect is to determine the velocity of the edge mod
Notice that, as it is well known, the actual velocity of th
edge modes is the sum of two terms, one of which is de
mined by the interactions. In what follows, we will wor
with an effective edge velocityv, which includes both the
effects of the edge electric field and of the Coulomb inter
tions. Implicitly, and for simplicity, we assume here a sho
range interaction. In reality, a strict 1/r Coulomb interaction
gives a well-known logarithmic correction to the dispersi
of the excitations and hence it is not just equivalent to
redefinition of the velocity. However, this is a wel
understood phenomenon that does not affect the main p
ics of this system and hence, we will work with an effecti
velocity v. Notice that the only mode with a nonvanishin
velocity is f1, which is the only mode that couples to pe
turbations due to an external electromagnetic field. Thus,
identify f1 as thecharge mode. The two remaining modes
do not propagate. Their effect is to fix the statistics of t
states.

Finally, we need to relate these fields to edge charge d
sity. The local bulk charge and current densityJm(x) is given
by

Jm~x!5
dS

dAm
5

1

2p
t Iemnl]naI

l . ~3.15!



cu

b

ca
s

an

s

e
io

t
e

pa
t

be
e
o
th

k,
ly

he
e
an

ons,

-
tor

-

the
ina-
We
u-
f

f
um
.

-

i-

15 328 PRB 59ANA LOPEZ AND EDUARDO FRADKIN
The edge currents and densities are integrals of the bulk
rents and densities across the edge. Letl be the physical
width of the edge, which we will denote byL and it is
perpendicular to the edge.~Here, l'l 0, the magnetic
length.! For an edge along the directionx1, the edge density
is given by

j 0[E
L

dx2J0~x!5
l

2p
]1ā1

22
1

2p
Da1

1 , ~3.16!

whereā1
2 is the average of the gauge potentiala1

2 across the
edge andDa1

1 is the difference of the gauge potentiala1
1

across the edge. We will take the width of the edge to
infinitesimal l→0, and since the potentialaJ

2 is regular at
the edge, the first term in Eq.~3.16! vanishes. With a fixed
number of electrons and at fixed total magnetic field, we
also choose the gauge potentials to vanish outside the
tem. Thus,Da1

152a1
152]1f1 whereaj

1 is measuredinside
the system, at the edge. The edge charge density then
comes

j 05
1

2p
]1f1 , ~3.17!

which is the standard result.9 It is straightforward to check
that if Nqp quasiparticles are added to the bulk at const
magnetic field (Nf50), the edge acquires a charge

Qedge5E dx1 j 0~x1!5
Nqp

2np11
, ~3.18!

which is equal to the extra charge added to the bulk, a
should.

In summary, in this picture there are three edge mod
one propagating mode associated with charge fluctuat
and the other two nonpropagating modes associated with
global topological consistency of flux-attachment. As w
will see in the next section the only effect of these nonpro
gating topological modes is to give the correct statistics
the excitations. SinceudetKu52np11 this effective theory
reproduces the correct topological degeneracy of the Hil
space. Notice that from the point of view of this effectiv
theory there is no particular difference between the electr
like FQH states and the holelike FQH states apart from
value of the filling fraction. In addition, Eq.~3.5! requires
that the chiral bosonsf I satisfy the boundary conditions

Df I5
2p

2np11S 2p 1 0

1 2n 0

0 0 2np11
D

IJ

S Nf

Nqp

2Nqp

D
J

,

~3.19!

whereNqp andNf are the total number of quasiparticles~or
charge! in the bulk and the extra magnetic flux in the bul
both with respect to the middle of the plateau, respective

IV. ELECTRON AND QUASIPARTICLE OPERATORS

We will now seek a new basis of modes in which t
quantum numbers of the excitations are more transpar
We will use this representation to construct the electron
quasiparticle operators at the edge.
r-
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Let us consider a generic operator that creates excitati
which can be written as

C~x!5ei (m1f11m2f21m3f3). ~4.1!

The values that the coefficientsmI take depend on the quan
tum numbers of the particular quasiparticle that the opera
C(x) creates. Recall that for physical statesm252m3. It
can be shown~see, for instance, Ref. 9! the quantum num-
bers of the operatorC(x) are given by the following expres
sions:

Q

e
5(

IJ
mIKIJ

21tJ5
2m1p1m2

2np11
,

~4.2!
u

p
5(

IJ
mIKIJ

21mJ52
Q2

ne2 1
m2

2

p
1m2

2 ,

whereQ is the quasiparticle charge andu is its statistics.
We have already identified the modef1 as the charge

mode and we will denote it asf1[fC . Equation ~4.2!
shows that an operatorC with m25pm1 creates neutral soli-
tons. Although these states are not in general part of
Hilbert space, we can nevertheless construct linear comb
tions of the chiral bosons with these quantum numbers.
will refer to these fields as the ‘‘neutral modes.’’ In partic
lar, it will be useful to rewrite the effective theory in terms o
the following linear combinations of the fields

fC5f1,

fN5
1

Ap
f11Apf2, ~4.3!

fN85f3 ,

where we have introduced the ‘‘neutral’’ modesfN and
fN8 .

The edge effective Lagrangian of Eq.~3.14! in terms of
the charged and neutral modes is diagonal,

L52
1

4pn
~]1fC]0fC2v]1fC]1fC!

1
1

4p
~]1fN]0fN1]1fN]0fN8!. ~4.4!

We see that only the charge modefC propagates. The role o
the two remaining modes is to give the correct quant
numbers to the quasiparticles, in particular their statistics

The new fieldsfC , fN , andfN8 obey the boundary con
ditions

DfC5
2p

2np11
~Nqp2pNf!,

DfN5
2p

Ap
Nqp,

DfN8522pNqp . ~4.5!

In the new basis of Eq.~4.3! the most general quasipart
cle operator of Eq.~4.1! can be written as
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C~x!5ei (aCfC1aNfN1aN8fN8), ~4.6!

where

aC5m12
m2

p
,

aN5
m2

Ap
,

aN852m2. ~4.7!

Hence, the coefficients satisfy

Q

e
52naC, ~4.8!

u

p
52naC

2 1aN
2 1aN8

2 , ~4.9!

whereQ is the quasiparticle charge andu its statistics.
The coefficients for thequasiparticleoperator should be

such that they satisfy Q52e/(2np11) and u/p
52n/(2np11)11. Therefore, we find

aC
qp5

1

p
, aN

qp52
1

Ap
, aN8

qp
51, ~4.10!

which is consistent with settingm150 andm2521.
Likewise, to create anelectron is equivalent to create

2np11 quasiparticles and hence, it is defined by the cho

aC
e 5

1

n
, aN

e 52
Ap

n
, aN8

e
5

p

n
. ~4.11!

It is immediately shown that this operator creates a state
has a charge ofQ52e and statisticspk, wherek5(2np
11)@2n(p11)11# is anodd integer.

Thus, in this new basis, thequasiparticleoperator is

Cqp5ei @~1/p! fC2 ~1/Ap! fN1fN8# ~4.12!

and theelectronoperator has the form

Ce5ei @~1/n!fC2 ~Ap/n!fN1~p/n!fN8#. ~4.13!

It is straightforward to show that if an integer number
electronsDNe is added to the bulk of the system, the ele
tron operator is not affected by the twist in the bounda
conditions Eq.~4.5! since the exponent shifts by 2ps, where
s5@2n(p11)11#(2np11)DNe is an integer.

Finally, we will compute the propagators for the electr
and the quasiparticle operators. We will need the propaga
of the chiral bosonsfC , fN , and fN8 . Since the
Lagrangians forfN and fN8 are identical their propagator
are the same. Furthermore the chiral bosonsfN andfN8 do
not propagate~i.e., their velocity is zero!.

The propagator of the charged modefC , in imaginary
time, is

^fC~x,t !fC~0,0!&52
n

2
lnS 12

z2

e2D 1
n

2
sgn~ t !lnS e1 iz

e2 izD ,

~4.14!
e

at

-
y

rs

wherez5x1 ivt ande is an ultraviolet cutoff. Ase→0 we
find

^fC~x,t !fC~0,0!&52n ln
iz

e
1 in

p

2
sgn~ t !. ~4.15!

Notice that the ~regulated! propagator obeys
^fC(0,0)fC(0,0)&50. The same applies to the propagat
of the neutral modes discussed below.

Likewise, the propagator~in imaginary time! of the neu-
tral modesfN andfN8 , in the same limite→0, becomes

^fN~x,t !fN~0,0!&5^fN8~x,t !fN8~0,0!&52 i
p

2
sgn~ t !.

~4.16!

Using the propagators of Eqs.~4.14! and ~4.16!, we find
that theelectronpropagator is given by

^Ce
†~x,t !Ce~0,0!&

5expF 1

n2
^fC~x,t !fC~0,0!&1

p

n2
^fN~x,t !fN~0,0!&

1
p2

n2
^fN8~x,t !fN8~0,0!&G

[
1

utu1/n
e@ i ~p/2!@1/n2~p1p2!/n2#sgn(t)5

1

utu1/n
e2 i ~ps/2!sgn(t),

~4.17!

where we have analytically continued to real timet and taken
the limit x→0.

Equation~4.17! shows clearly that the electron operator
the Jain states with filling fractionn has scaling dimension
(2n)21. This result implies that the tunneling density
states for electrons at this edge obeys the lawuvu(12n)/n.
Notice that the nonpropagating modes are responsible for
fermionic statistics of the electron.

Equation~4.17! agrees with the work by Lee and Wen,35

who have found independently the same result as this p
was being written. However, in Ref. 35 the neutral mod
have a very different physical origin and they result fro
considering the role of the microscopic structure of the ed
and edge reconstruction. Instead, in the approach that
present in this paper the neutral modes originate from glo
topological consistency requirements for flux attachem
and are a remnant of the topological invariance of the Che
Simons theory. Our result also agrees with the recent wor
Zülucke and MacDonald36 who calculated the electron tun
neling spectral function using a variational approach. Th
authors found that although they could account for the c
rect spectral function, their electron operator did not ob
Fermi statistics, in contrast with the result of Eq.~4.17!.

The construction of the electron operator that we just
rived also has the following interesting interpretation. T
electron operator, as given by Eq.~4.13!, is a product of the
operator exp@(i/n)fC#, which carries the charge, and the o
erators exp@2(i/Ap)fN# and exp(ifN8), which combined fix
the statistics. In fact this is the only role of these latter o
erators since the fieldsFN andfN8 do not propagate. Essen
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tially, the combined operator exp@2(1/Ap)fN1 ifN8# must
be regarded as an effective Klein factor. In particular, it a
means that in a local probe of the edge, such as in elec
tunneling, only the charge mode plays a dynamical role.
will discuss this problem elsewhere.

Finally, a similar calculation yields thequasiparticle
propagator, in imaginary time, which is found to be given
the following expression:

^Cqp~x,t !Cqp~0,0!&

5expF 1

p2
^fC~x,t !fC~0,0!&1

1

p
^fN~x,t !fN~0,0!&

1^fN8~x,t !fN8~0,0!&G
[

1

utun/p2 ei ~p/2!(n/p2 2 1/p 21)sgn(t)5
1

utun/p2 e2 i ~uqp/2!sgn(t)

~4.18!

again in the limitx→0. Equation~4.18! shows that the qua
siparticle operator has scaling dimensionn/(2p2) and the
correct statistics.

V. CONCLUSIONS

In this paper, we have derived an effective Chern-Sim
theory for the Jain states in a finite geometry that is con
tent with global gauge invariance. We showed that t
theory can be cast into aK-matrix form but with a different
and much simpler structure than the usual one. We fo
that this structure requires only a small number of gau
fields and their number, that is the rank of theK matrix, is
fixed. We used this effective theory on a closed surface
find a universal minimal structure of the theory on an op
surface and determine the structure of the edge states, fo
the states in the Jain sequences. We found that, in all ca
there is one and only one propagating mode and hence
one mode that carries electric charge and energy. The ro
the remaining~two! modes is to fix the statistics of the exc
tations. We constructed the electron and quasiparticle op
tors for these states, which turn out to be uniquely de
mined and carry the correct charge and statistics.

We calculated the propagators of the excitations at
edge and, in particular, found that the propagator for
electron~which is a fermion as it should be! behaves as a
function of time like utu21/n for all the Jain states, and
tunneling density of states that, as a function of frequen
behaves likeuvu(12n)/n. In a separate publication we gene
alize these results to other quantum Hall effects.37

These results in essence agree with the very recent w
of Lee and Wen.35 In particular, they also find only one
propagating mode, which carries the charge current in a
tion to a nonpropagating mode that fixes the statistics. H
ever, the physical origin of this latter mode appears to
quite different from the ones we find here. In the work of L
and Wen, the nonpropagating mode is one that survived a
o
on
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much of the edge structure of theK-matrix theory has been
integrated out and this mode does not propagate in the s
that their velocity is much smaller that the velocity of th
charge mode. In contrast, in the structure that we find h
the nonpropagating modes have a topological origin and
is why they do not propagate~or contribute to the specific
heat of the system!. Zülicke and MacDonald36 have also
found recently the same result for the tunneling density
states, although the electron operator they use does not
the correct Fermi statistics. This result was actually ant
pated by Wen12 and by Kane and Fisher,38 who noted that, at
the level of the effective theory of the edge states, ev
though this result would follow if only the charge mode
kept, the statistics of this electron operator is fermionic o
for Laughlin states.

The universal structure of this effective theory has a nu
ber of potentially important implications. Recent expe
ments by Grayson and co-workers,39 on tunneling of elec-
trons into the edges of FQH states have shown that, while
large voltage conductance of these devices does exhibit
FQH effect, the low-voltage scaling exponent fails to sho
any signature of the existence of plateaus in the bulk, as
required by the theory of edge states. In fact, even after
ing into account the nonlocal effects of charge redistribut
due to Coulomb interactions near the edges, as in the wor
Shytov, Levitov, and Halperin,40 the theory still predicts a
nontrivial structure in the dependence of the scaling ex
nent with the magnetic field, which does not agree with
experiment. However, to explain these experiments
roughly equivalent to have a description of the transiti
between plateaus, but now seen from the edge. It is temp
to speculate that the results of this paper may be use
develop a description of the edge tunneling problem with
linear behavior of the tunnel exponent on the filling facto
precisely because the structure of both bulk and edge d
not change dramatically from one Jain state to the next.
such a description to work, it is necessary to assume tha
edge reconstruction has taken place. Or, rather, that the
effects of edge reconstruction are equivalent to the transi
between plateaus. From this point of view, it is reasonable
expect that such a generalization of this theory is likely
give a smooth dependence of the tunneling density of st
with the filling fraction for a continuous range of magnet
fields. Such a description does not exist yet. Finally, it is a
interesting to comment that it may be necessary to reexam
under this light the arguments that led to the phase diag
of Kivelson, Lee, and Zhang,41 since the selection rules fo
the transitions between plateaus are superficially related
an extent, to the number of edge states of nearby platea42

ACKNOWLEDGMENTS

We thank C. Chamon, J. Jain, S. Kivelson, and C. Nay
for stimulating discussions, and particularly Dung Hai L
for an early communication of his work with Xiao
GangWen. This work was begun during a visit of E.F.
Universidad de La Plata, Argentina, and to Instituto Balse
Bariloche, Argentina. E.F. is very grateful to Fidel Schapo
nik for his hospitality in La Plata, and to Andre´s Garcı´a and



a
n
D

he

l-
F

94

PRB 59 15 331UNIVERSAL STRUCTURE OF THE EDGE STATES OF . . .
Manuel Fuentes for their hospitality in Bariloche. E.F. is
participant at the ITP Program on ‘‘Disorder and Interactio
in Quantum Hall and Mesoscopic Systems,’’ and thanks
Gross, Director of Institute for Theoretical Physics of t
. B

th
n

m

-

s
.

University of California Santa Barbara, for his kind hospita
ity. This work was supported in part by NSF Grant No. NS
DMR98-17941 at UIUC, and NSF Grant No. PHY94-071
at ITP-UCSB~EF!, and by CONICET~AL !.
B

.

1R.B. Laughlin, Phys. Rev. Lett.50, 1395~1983!.
2F.D.M. Haldane, Phys. Rev. Lett.51, 605 ~1983!.
3B.I. Halperin, Phys. Rev. Lett.52, 1583~1984!.
4J.K. Jain, Phys. Rev. Lett.63, 199~1989!; Phys. Rev. B40, 8079

~1989!; Adv. Phys.41, 105 ~1992!.
5S.C. Zhang, T.H. Hansson, and S. Kivelson, Phys. Rev. Lett.62,

82 ~1989!.
6A. Lopez and E. Fradkin, Phys. Rev. B44, 5246~1991!.
7B. Blok and X.G. Wen, Phys. Rev. B43, 8337~1991!.
8X.G. Wen and A. Zee, Phys. Rev. B46, 2290~1992!.
9X.G. Wen, Adv. Phys.44, 405 ~1995!.

10A. Capelli, C.A. Trugenberger, and G.R. Zemba, Nucl. Phys
448, 470 ~1995!.

11X.G. Wen and Q. Niu, Phys. Rev. B41, 9377~1990!.
12X.G. Wen, Phys. Rev. B41, 12 838~1990!; Int. J. Mod. Phys. B

6, 1711~1992!.
13M. Stone, Phys. Rev. B42, 8399~1990!.
14L. Brey, Phys. Rev. Lett.65, 903 ~1990!.
15These issues are very important when it comes to explain

tunneling experiments such as A. Chang, L.N. Pfeiffer, a
K.W. West, Phys. Rev. Lett.77, 2538~1996!.

16F. Wilczek and A. Zee, Phys. Rev. Lett.51, 2250~1983!.
17Y.S. Wu and A. Zee, Phys. Lett.147B, 325 ~1984!.
18E. Fradkin, Field Theories of Condensed Matter Syste

~Addison-Wesley, Redwood City, CA 1991!.
19A. Lopez and E. Fradkin, inComposite Fermions in the Frac

tional Quantum Hall Effect, edited by O. Heinonnen~World
Scientific, Singapore, 1998!, pp. 195–253.

20S.C. Zhang, Int. J. Mod. Phys. B6, 25 ~1992!.
e
d

s

21B.I. Halperin, P.A. Lee, and N. Read, Phys. Rev. B47, 7312
~1993!.

22X.G. Wen and A. Zee, Phys. Rev. Lett.69, 1811~1992!.
23Z.F. Ezawa and A. Iwazaki, Phys. Rev. B47, 7295~1993!.
24A. Lopez and E. Fradkin, Phys. Rev. B51, 4347~1995!.
25A.V. Balatsky and E. Fradkin, Phys. Rev. B43, 10 622~1992!.
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27J. Fröhlich and T. Kerler, Nucl. Phys. B354, 369 ~1991!.
28E. Witten, Commun. Math. Phys.121, 351 ~1989!.
29Y. Hosotani, Phys. Rev. Lett.62, 2785~1989!.
30D. Weselowski, Y. Hosotani, and C.L. Ho, Int. J. Mod. Phys. A9,

969 ~1994!.
31E. Fradkin, C. Nayak, A. Tsvelik, and F. Wilczek, Nucl. Phys.

516†FS‡, 704 ~1998!.
32D.B Chklovskii, Phys. Rev. B51, 9895~1995!.
33S. Conti and G. Vignale, Physica A1, 101 ~1997!; S. Conti and

G. Vignale, cond-mat/9801318~unpublished!.
34See, for instance, C.M. Naon, Phys. Rev. D31, 2035~1985!.
35D.H. Lee and X.G. Wen, cond-mat/9809160~unpublished!.
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