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Universal structure of the edge states of the fractional quantum Hall states
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We present an effective theory for the bulk fractional quantum Hall states on the Jain sequences on closed
surfaces and show that it has a universal form whose structure does not change from fraction to fraction. The
structure of this effective theory follows from the condition of global consistency of the flux attachment
transformation on closed surfaces. We derive the theory of the edge states on a disk that follows naturally from
this globally consistent theory on a torus. We find that, for a fully polarized two-dimensional electron gas, the
edge states for all the Jain filling fractioms=p/(2np+ 1) have only one propagating edge field that carries
both energy and charge, and two nonpropagating edge fields of topological origin that are responsible for the
statistics of the excitations. Explicit results are derived for the electron and quasiparticle operators and for their
propagators at the edge. We show that these operators create states with the correct charge and statistics. It is
found that the electron tunneling density of states for all the Jain states scales with frequéaty 3.
[S0163-182699)02124-4

. INTRODUCTION possible behaviors of their associated edge stdtes The

The fractional quantum HalFQH) states have been stud- central point of this _cla55|f|cat|o_n is that forga/engffectlve
Itheory of the bulk incompressible state there ismaural

ied extensively and many of their properties are quite well . . )
understood. Much of this understanding came from LaughponStrUCt'on. of the edge in terms of the conformal field
lin's microscopic theory,and its generalizatior’s? as well theory of chiral boson¥ A fundamental feature of this con-

as by Chern-Simons field theory approach&ghe result of struction is the existence of a one-to-one correspondence be-
this theoretical effort was a classification of all possible abe:;W?den ;he bqqllejsura]artlcle states fth the db“|k and the primary
lian FQH states in the form of effective low-energy theories |eWst,at uild the sp?ctrLrJ]m of the e gehstat;]es.b havior of
that capture their universal features® Much of the present h ‘T”S construction l;]rt e(; assumes t "?‘t”t € be laV'OL.Oh
understanding of the universal properties of the Abeliari € ©'€Ctron gas near the edge Is essentially simple, whic

FQH states is encoded in the effective Lagrangian of Wennay or may not be realized if edge reconstruction actually
and Zee which is given by takes placé* Whether or not this happens depends on many

nonuniversal microscopic issues, such as edge potentials, in-
1 teractions, and impurities, which complicate matters and
L‘eﬁ=2 4—K,,/ewkamo’!vam—2 /,j;af‘ which may be quite relevant for a precise understanding of
LT ! the edge tunneling experiments away from the middle of the
1 bulk Hall plateaus® Thus, in realistic situations, the detailed
—2 2—ew)\Aﬂayt,a,x, (1.2 microscopic physics near the edge may actually_ mask the
e robust physics of the bulk. However, once the details of edge
reconstruction are sorted out, it is expected that the physics
of the edge should be universal even though its connection
with the physics of the bulk is no longer so simple.
K=1,yp+2nC, tT=(1,...,D, (1.2) Microscopically, the bulk states can be constructed by
implementing the idea of flux-attachment, by coupling par-
whereC is apXx p matrix with all its elements equal to one. ticle currents to a suitable set of Chern-Simons gauge
In Eq. (1.1 j}, is the vortex current/ is the vector of fields>® These ideas, which are at the root of the construc-
vortex (quasiparticle charges and, is the electromagnetic tion of fractional(or braid statistics:®” play a central role
charge vector. A key topological property of the Abelian QHin the field-theoretic descriptions of the fractional quantum
fluids is the topological degeneracy of the Hilbert spaust  Hall effect for both single-layer system§;'8-21
just the ground stajewhich is equal tddetK |9, wheregis  bilayers?>~2*and for spin-singlet or partially polarized FQH
the genugi.e., the number of handlesf the surfacdmani-  state€*?* Since the effective action of any incompressible
fold) on which the fluid move&' Wer? has emphasized the state of a system of charged particles in two dimensions in
concept of topological order of the fluid and characterized ithe presence of a strong-magnetic field, by general hydrody-
by the degeneracy of the Hilbert space. namic argument&?’ must be of the Chern-Simons form, the
This general classification of the Abelian FQH states iseffective action that is actually derived from the field theo-
very powerful. In addition to giving a compact and universalretic descriptions is a Chern-Simons gauge theory and it fits
description of all Abelian FQH states, it also classifies thethe K-matrix classification.

where, for the Jain states, i.e., for states with p/(2np
+1), the matrixK and the charge vectdrtake the values
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However, a number of puzzles implicit in this picture (statistical flux quanta. For an electron gas on @gpensim-
have not been fully resolved. In particular, tematrix clas-  ply connected disk with fixed boundary conditions, there is
sification assumes that the number of physically distinciho problem with this procedure. However, if we were to
stable quasiparticles is equal to the rank of the matrix. Thigarry out this procedure on a closed surface, such as a torus
feature is quite puzzling since the only known conservatioror a sphere, this approach is not consistent as it is usually
law in this system is just charge conservation, and it is ungescribed. Similar difficulties arise if the disk is replaced by
clear what the dynamical origin of the additional conserva-yn annulus.
tion laws may be. Conceptually, the multicomponent struc- e purpose of this paper is to construct a theory of the

ture of the K-matrix classification reflects the underlying FQH fluids for a single layer, fully polarized 2DEG, which
hierarchical construction of the FQH states. However, al'satisfies the following criteria(l) it must contain the mini-

though the different hierarchies are useful pictures that Or9%nal possible structure consistent with the existence of only

nize the FQH states, there is no physical reason to regard the : . .
condensates used in these pictures to be literally physic he conservation laycharge conservatigrand (2) it must
e consistent on a closed surfdsach as a torysin order to

entities. . 0
These problems are also connected with two importanfio that, we refprmulate our approach of our previous 'ork
features of th&-matrix classification. One is the fact that for " the FQH Jain states on a cﬁsk, to satisfy these criteria. To

do so, it is necessary to modify the flux-attachement proce-

a given filling fraction there are many possible physically ) ) . .
distinct theories, characterized by different charges and stéj-ure s0as to make it globally consistent. The key issue is the
variance(or lack of) of the Chern-Simons action under

tistics of the quasiparticles. It has been argued by Wen th £ ¢ ) ¢ h defined losed
these states have topological orders that tell these differe rge gauge transformations for a theory defined on a close
manifold with a number of handleg (In practice we will

states apart. For example, tlre=2/5 single layer, fully po- ) o :

larized state is given by 22 K matrix and it seems to be only be interested on dt_ascrlblng the behavior of the system

closely related to the=2/5 fully polarized QH state in bi- on at;torus],t an(:hso?gvgtsaovml ltjs’f?:l'.) It has bgen ;shown by a

layers. From a hydrodynamic point of view, in the absencé,?um fer 0 t_au of th ?h !n;/arlanc;ethun etr' arge gauge

of interlayer tunneling, it is obvious that the bilayer system ransiormations of th€ path in egraiot the ac ioh requires

should have two conserved currents and hencex&@ XK that the coupling constant of any Chern-Simons thébogh
Abelian and non-Abelianmustbe quantized. However, the

matrix. However, the physical meaning of these two sepa . !
rately conserved hydrodynamic curreinissingle-layer sys- standard Chern-Simons constructions of the flux-attachment
transformation violate this principle. Here, we make use of

Tﬁg:frles tﬁ:ﬂi?;;'lﬂ;? there is no known conservation law tOthe results of'Ref. 31 to derivg an effect'ive theory that is
A closely related problem is the associated composite pichOba"Y consistent. The TeS“'t'”g effective t_heory has a

ture of the edge states with a number of branches equal to t smatrix form but with a d|ffer_ent and m_uch simpler struc-

rank of theK matrix. In practice, these structures have their ure than the usual one. We find that this structure requires

origin in the multiple condensates of the hierarchical con—OnIy a fixed (and small number of gauge fields and their

struction of the FQH states. In contrast, in the fermionnumber’ i.e., the rank of thié matrix, is independent of the

Chern-Simons theory description of the two-dimensionalffilling fraction. As a result, we find that for each Jain state

electron ga$2DEG) on a disk, which should be equivalent :Eere |?ho[1ly oge _quz:]smarftlcle. Fu:thermore, lthe deffecftlve
to the K-matrix picture, there is only one gauge field and eory that we derive here for a Systém on a closed surface,

only one quasiparticle whereas thematrix classification has a related and unique minimal universal edge structure on

typically will have several gauge fields and the associated"! 0PN surfacg, In thg abscenpe of edge reconstruction. This
quasiparticles. edge structure is particularly simple.

It is natural to ask what is the minimal universal structure As this paper was being pre%fld we became aware of a
required to describe the Abelian FQH states in the bulk. very recent work by Lee and Wehwhere they argyed thé_lt
similar issue also arises in the description of the edge state € effect!ve theory of the edge states for the Jain fractlc_ms
which require a composite structufeven in the absence of contains just two |ndepenfqen|t Ch'r?l .bosons, one of Wh'c.hh
edge reconstructionwith a quite complex behavior as a dhoes_not prodpagate. Our fina r%sut In essence a%rees(;/vn
function of the filling factor. In particular, the contribution of the picture advocated by Lee and Wen. However, the under-

the edge states to the specific heat of the 200EGact, the lying philpsophy is quite different since in_our wp(k the non-
total contribution looks like a number-theoretic function, propagating fields have a purely topological origin.

which diverges at the compressible fractions. However, thi This paper is organized as follows. In Sec. Il, we intro-

7 |f K for flux attachment that i i
picture holds only if the currents that define the structure O]duce a general framework for flux attachment that 1S consis-

the K matrix for the composite edges are actually conserved€nt on closed manifolds such as a torus. Here, we show that

In addition, the problem of the consistency of the standar
mean-field theory constructions of the bulk states for a sys-
tem on a closed surface, such as a torus, has not been fUI;i?Q
resolved. Although superficially this may seem a technica
issue, it is an important problem since the degeneracy of th
Hilbert space on a closed surface is a universal feature d
these topological fluids, and it is closely related to the
puzzles mentioned above. The wusual flux-attachment
transformatio®®?'is regarded as a process in which a par- In Ref. 31 it was shown that there is a simple and direct
ticle is physically andocally glued to a certain number of way to reformulate the Chern-Simons theory of tsengle

he effective theory of the FQH states for=p/(2np*+1),

as a simple and universal structure. In Sec. Ill, we derive
e theory of the edge states that follows from this universal
ructure. In Sec. IV, we derive the form of the electron and
guasiparticle operators at the edge and compute their propa-
ators. Section V is devoted to the conclusions.

Il. FLUX ATTACHMENT ON CLOSED SURFACES
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layer, fully polarized FQH state in order to satisfy the re- is |detk|=|2np=+ 1|, we find that the generalized Jain states
quirement of global consistency on a closed surface. For @are|2np=+ 1|-fold degenerate on the torus, which is the cor-
fermion representation of the FQH systdine., composite rect result.

fermiong it was shown that the exact partition function can  |n what follows, we will consider the effective Lagrang-
be written as a path integral of a theory in which the particlesan of Eq.(2.4) expanded to include the the quantum dynam-
whose worldlines are represented by the currgptsinteract cs of the quasiparticles. The effective Lagrangian now reads
with two gauge fieldsa, andb,. These interactions are

encoded in the following effective action: 2n
ﬁeﬁ=E6MMaﬂﬂva>\+ Zfﬂyxa”avb)\_ EE/-LV}‘bMaVb)\
) 1 ) 2n ,
Sera,b,j]= 5ake,\d"D" —a = 7, b D" + Dot e b.aA—(a, et
(21) 47T6;LV)\e,u, »Ex 27T6,uv)\ A ZE0N (a,u, e,u,)Jqp-
Therefore, the amplitudes can be written in terms of a path (2.9

integral over an Abelian Chern-Simons gauge field with
correctly quantized coupling constant equal ta/@mr).
Hence, there exists an exact rewriting of the theory involvin
two gauge fieldsa, andb,. These two gauge fields arise
quite naturally: the field,, arises from the fact that the par-
ticle currents(worldlines are conserved and the fiet, is
the Lagrange multiplier that imposes the hydrodynamic con
straint between the current and the curlbof.

4The currentj¢, in the last term of Eq(2.5 represents the
effects of quasiparticles. However, in the fermionic picture
%he bare guasiparticles are compogaamionswhose statis-
tics is modified by the Chern-Simons gauge fields. Thus, the
statistics of all excitations that we will compute is defined
relative tofermions A simple way to keep track of the un-
derlying statistics is to introduce, as we did in E.5), an

Th 't t the f ttach e ‘ tion i additional Chern-Simons gauge fiedgd, which couples only
€ usual form of the tux-attachment transtormation 1S, y,q quasiparticle curreit,,. From now on, and in order to

found by integrating out the gauge fieli, . For vanishing simplify the notation, we shall calb= = p. This effective

boundary conditions at infinity, this leads to an effective ac-, L ;
tion for the fielda,, of the conventional forfh Lagrangian, includes the coupling to a weak external gauge

field A, .
We can write the effective Lagrangian in a more compact
S v form if we defineal=b,, a’=a,, al=e,, the ch
Sefal= d3xe,, \akd"ar, (2.2 orm if we definea,=b,, a,=a,, a,=e,, the charge
4m2n vectort,=(1,0,0) and the flux vector,=(0,1—1), as
However, this form of the effective action is not valid for
. . e X 1 1 )
manifolds with nontrivial topology. Nevertheless, Eg.1) is L=-—K, e, pald"a)+ ——t e, ald"AM+ /a4
. .. . A 328 J 20 1 €uvn 14 Jqp»
correct in all cases as it is invariant under both local and
large gauge transformations. (2.6
As usual the mean-field theory in the composite fermion where the coupling-constant matrix is
language proceeds by first spreading out the field and con-
structing an effective integer Hall effect of the partially -2n 1 O
screened magnetic field. The result is a description of the 1 0
states in the generalized Jain hierarchies with filling fractions Kig= P 2.7
in the seriesv-.(n,p)=p/(2np=1), wherep,neZ and + 0 01

stands for an electron and holelike FQH state, respectively.

The effective action in the composite fermion picture iswhose determinant ifdetkK|=2np+1. Hence, we get the
found by integrating out the local particle-hole fluctuationscorrect degeneracy on closed surfaces.
of the fermions about the uniform mean-field state. At long  Following Wer? we can compute the filling fraction
distances and low energies the effective Lagrangian oncghich is given by
again involves a X2 K matrix and it has the usual Wen-

Zee form p
= Tk-1 =
v=[t"K™ 1 TR 2.9
ﬁeﬁ:EK”f’maﬁvai (23 The quantum numbers of the quasiparticles are
with I P
Qup=—el'K =50, 2.9
K”—(ip ; ) (2.4)
11 -2n) ' Oap _\pe—1y__ 2N
- =|'K |_2np+1+1 (2.10

We now notice that this effective theory is globally well

defined since the Chern-Simons coupling constants are cofer the charge and the statistics, respectively. For the special
rectly quantized. Indeed, if we integrate out the gauge fielctase of the Laughlin statep= +1, the gauge fieldai can
bﬂzai, we find the same effective action far, of our  be integrated out and the effective action is now identical to
previous worl€ Since the absolute value of the determinantthe dual action found by Weh.
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Therefore, the theory defined by E@.6) gives the cor- quasiparticle numbeN,, and flux ®=2=#N,, the scalar
rect quantum numbers for the quasiparticle as well as théelds ¢' at the boundaryQ must satisfy the conditions
correct Hall conductance. This bosonic representation gives
an alternative effective theory of the Jain states and it does N,
not involve a hierarchy of condensates, as in Wen'’s construc-

tion. This picture also suggests that the effective theory of Ad=2m(K ")yl Ngp | , (3.9
the edge states for the FQH states in the Jain sequence does —Ngp 3

not necessarily require a composite structure of the edge

states. whereA ¢,=§¢,ndx;9; ¢, is the change of the field, once

around the boundary(). In components we get
Ill. EDGE THEORY FOR THE JAIN STATES

In this section we use the effective theory for all the states A¢1=2—7T(qu— PNy,
in the Jain sequence, derived in the previous section, to ex- 2np+1
tract the effective theory for the edge states. The effective (3.5
Lagrangian of Eq(2.6) is globally well defined(on closed 2@

surfaceg, yields the correct ground-state degeneracy on the Ad’fzn p+1(N¢+2anp)' Adz=—2mNgp.

torus as well as excitations with the correct fractional charge

and statistics. However, unlike the standard hierarchical conln particular, if there is just one quasiparticle in the bulk
struction of the effective theory of the Jain stdtefar a Ngp=1 and no extra fluxN,=0, we getA¢,=27/(2np
generic state in the Jain sequence, the effective Lagrangianl), A¢,=272n/(2np+1), and A¢y;=—-2xw. Con-

of Eq. (2.6) contains the same number of gauge fields, for aliversely, for N,=1 and Ny,=0, we get insteadA ¢;=
filling fractions on the Jain sequences, and it can be reduced 27v, A¢,=27/(2np+1) andA ¢;=0. Likewise, if we

to just a single gauge field for the special case of the Laughadd an electron to the bullN,,=2np+1 but no fluxN,

lin states. In a sense, the Lagrangian of &36) is themini- =0, we getA¢,=2m, Ap,=272n andA ¢p3=—2m(2np
mal effective theory. This effective Lagrangian has the stan-+1). These conditions will play an important role below.
dard form introduced by Wen and Zeand, following the Once the constraint Eq3.1) is solved, it is immediate to

general arguments of Weért?it is straightforward to extract show that the result is a theory of chiral bosons at the bound-
a theory for the edge states, which we do in this sectionary 4(), whose action is

Clearly, since the effective theory of the bulk in general con-

tains just three gauge fields, the number of edges does not 1 _

grow from one state in the hierarchy to the next. In particular S= 4—K.Jf dxg 3[7 dxd' ¢, °,. (3.6)

this implies that the specific heat of the system does not grow 7 a0

without limit as one goes up in the_ hlerarchy. ConsequentlyHowever, as emphasized by Weras they stand these
the changes in the thermodynamic properties of the system ;
sons do not propagate. The reason is that the Chern-

that occur as the system becomes compressible is not due Imons gauge theory is actually a topological field theory
a proliferation of edges but to a physical collapse of the 9384 in addition to being gauge invariant, it is independent of

in the spectrum and the resulting failure to separate the edg[%e metric of the surface where the electrons reside. In par-
from the bulk. :

It is quite well known from the work of Wef.in turn ticular, this means that the Hamiltonian of the Chern-Simons

based on the work of Witte??, that a Chern-Simons theory theory is zero, which is just the statement that this is an
. . . . effective theory for the degrees of freedom below the gap of
on a disk(} is equivalent to a theory of chiral bosons whose

: ; the incompressible fluid. There are no local degrees of free-
Here we il iy noed he <aliont features of the dervatorCOM I n he bk of the system, and the physical degrees
) Yy . . . of freedom are present only at the boundary, which also car-
and we will omit the details, which can be found in Ref. 9. ries energ
The key idea is that, in the gaugt§=0, the Chern-Simons y.

. . There are many ways to represent this physics in the ef-
theory reduces to a set of commutation relations among the, . /e theory. For example, W&chooses the gauge condi-

spacial components of the gauge fields, and to the constrairﬂ[Jn ag+va; =0, wherev is chosen to be the velocity of
(i.e., Gauss's law noninteracting electrons at the edge, iwes cE/B, with ¢
3.1) the speed of light andE the electric field of the confining

0_ _ ig]
=—K,;¢id'ay, . .
Ji €A potential at the edge. In the context of the construction that

where the current/| is defined by we are pursuing here, only the gauge fiafgcouples to the
N _ electromagnetic field and thus it is the only one that will
Ti=te"a,A+2m/\j§, . (3.2 represent propagating degrees of freedom, the charge fluc-

tuations at the edge.
Another option, which we will use here, is to keep the
al=g¢ 3.3 gauge conditionag=0, which does not break topological
b invariance, but to add boundary terms to the effective action
where ¢' are three multivalued scalar fields, i.e., singularto represent the effect of the propagating modes at the edge.
gauge transformations. If the quasiparticles and the extern&y power counting the boundary term with the smallest scal-
fluxes are quasistatic bulk perturbations of the condensate, @fig dimension, one can add to the effective action the form

The solution of Gauss'’s law is
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~ 1 - _
Sboundary=—f dxojg dxig[ail(x)]2 SmFJ dgxf d*'5[p(x) =~ pIV(x=x")[p(X") = p]
o 2 Q Q

- 1 N
:—f dxo fﬁmdxig[a@l(x)]z. (3.7 =fﬂd3><fﬂd3><’@euﬂ'a‘l(X)V(x—x’)em&ka'l(X’)

This is a marginal operator. He is a coupling constant f 3@ bt s ,
whose physical meaning we discuss below. Notice that this dxo ﬁgdx'dxi 8772 PV (X=X) 9 by(X"),
term only affects the fiel&} . Terms of this form arise mi-

croscopically as follows. Within the framework of the fermi- 312

onic Chern-Simons theofyjn addition to the bulk states where we have only retained the boundary contribution since

there_ are edge states. .A realistic description of these stat@Sa hulk excitations have a finitand for present purposes
requires an understanding of the problem of edge reconstru«férge) energy gap. Notice that sinde=(1,0,0) this term of

tion. At the level of a Hartree-Fock approximation for the the action only affects the modg,. Likewise, the interac-

f_erm|ons In the_ Chern-Simons picture a the(_)r_etlcal desc”.pfion with an external potential with support at the boundary
tion was given in Refs. 32 and 33. Although it is not clear if becomes

such descriptions are reliable for systems as quantum me-

chanical as the 2DEG in the lowest Landau level, it is clear

that an effective edge must exist even if many of the modes Sext:f d3x[ p(X) — pJAo(X)

predicted by the mean-field theory were to be an artifact of

the approximation. In any event there should be at least one t,

edge mode that will carry the correct Hall current at the edge. :J' dxg é dx; 5— i1 (X)Ag(X) (3.13
At the level of the mean-field theory these states are fermi- 2w

onic, as they are in the bulk before the Gaussian fluctuations . .

are integrated ot These edge fermionic states will couple 2nd it involves onlye,.

o theboundarycomponent of e bl auge fie, W, TS 98 epected. e efecue scton i 1 act s ecry
can now proceed to integrate out the fermions, as we di 9 ' 9 ) 9 '

before. If the fermions where nonchiral, the result of inte- he effective action involves just three chiral bosasis

grating out the fermions is equivalent to conventional(w'th 1=1.2,3) and takes the form

bosonization. Their contribution to the effective action is cal- 1

culated from the determinant of the Dirac operator coupled g_ _f AdxadX: (K 191 dnch 1+ U191 i d

to gauge fields. This is a very standard re$uiind the ef- 47 ) soxr 0 1KidsidodytUadsdidrda),
fective action is (3.19

p - where U ;(x—x")=tt;[pv+(1/27)V(x—x')], and its
Sedge™ ~ gf dxo iﬂdxl(aﬂ) : (3.8)  only effect is to determine the velocity of the edge modes.
Notice that, as it is well known, the actual velocity of the
which holds in the continuum limit, i.e., infinite bandwidth, €dge modes is the sum of two terms, one of which is deter-
and for an infinitesimally narrow edge. Since the edge theorynined by the interactions. In what follows, we will work

is actually chiral, we need to keep only the right movingWith an effective edge velocity, which includes both the
piece of Eq.(3.8), andS,qy.becomes effects of the edge electric field and of the Coulomb interac-

tions. Implicitly, and for simplicity, we assume here a short-
p range interaction. In reality, a strictrlCoulomb interaction
Sedge™ — 4—f dxg § dxl(a%{)z, (3.9 gives a well-known logarithmic correction to the dispersion
™ g of the excitations and hence it is not just equivalent to a
redefinition of the velocity. However, this is a well-
understood phenomenon that does not affect the main phys-
ics of this system and hence, we will work with an effective
alzia1+ Joal=vat (3.10 velocity v. Notice that the only mode with a nonvanishing
R ° 1 ! ' velocity is ¢4, which is the only mode that couples to per-
turbations due to an external electromagnetic field. Thus, we
with v =eE/B the speed of the edge excitations, and we havédentify ¢, as thecharge modeThe two remaining modes
used the gauge conditia=0 at the boundary. Hence, we do not propagate. Their effect is to fix the statistics of the
find states.
Finally, we need to relate these fields to edge charge den-

pv sity. The local bulk charge and current densifyx) is given
Sedge: - EJ dXg %ﬁgdxl(ﬁlqﬁl)z, (3.1) by

whereap, is

which has the form of Eq3.7), with g=pv/(27). _ ¢ 1 bk
The electron-electron interaction term becomes Ju(X) oA, 27rt'6’”"ﬁ a- (.19
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The edge currents and densities are integrals of the bulk cur- Let us consider a generic operator that creates excitations,
rents and densities across the edge. Ldte the physical which can be written as

width of the edge, which we will denote b and it is
perpendicular to the edggHere, A~/,, the magnetic

length) For an edge along the direction, the edge density The values that the coefficients; take depend on the quan-

W(x) =g (M1t Madot Mdy) (4.

is given by tum numbers of the particular quasiparticle that the operator
N 1 V¥ (x) creates. Recall that for physical stai@s=—mj;. It
jozf dX,Jo(X) =5— 82— =—Aal, (3.1  can be showrisee, for instance, Ref)%he quantum num-
A 2 2 bers of the operato¥ (x) are given by the following expres-

. . sions:
Wheregi is the average of the gauge potenaélacross the

edge andAaj is the difference of the gauge potentia} Q 1 m;p+m,

across the edge. We will take the width of the edge to be e — mK ;1= 2np+1
infinitesimal A — 0, and since the potentiaﬁ is regular at 4.2
the edge, the first term in E¢3.16) vanishes. With a fixed P Q? m§ '
number of electrons and at fixed total magnetic field, we can —=> mK;;'my=— 5+ —+m3,

also choose the gauge potentials to vanish outside the sys- o ve P

tem. ThusAa;= —aj=—d;¢; wherea; is measureihside  whereQ is the quasiparticle charge aris its statistics.
the system, at the edge. The edge charge density then be-We have already identified the mod, as the charge
comes mode and we will denote it ag,=¢c. Equation (4.2
shows that an operatdr with m,=pm, creates neutral soli-
J'o=i<91¢1, (3.17) tons. Although these states are not in general part of _the
2w Hilbert space, we can nevertheless construct linear combina-
tions of the chiral bosons with these quantum numbers. We
ill refer to these fields as the “neutral modes.” In particu-
ar, it will be useful to rewrite the effective theory in terms of
the following linear combinations of the fields

which is the standard resdltit is straightforward to check
that if Ny, quasiparticles are added to the bulk at constan
magnetic field N,=0), the edge acquires a charge

: N _
Qedge= f dxyjo(Xq)= anq_’p_ 1 (3.18 bc= b1,
which is equal to the extra charge added to the bulk, as it 1
chould g du=sbitpdz 3
In summary, in this picture there are three edge modes,
one propagating mode associated with charge fluctuations On =3,

and the other two nonpropagating modes associated with the , B .
global topological consistency of flux-attachment. As we'Where we have introduced the “neutral” modef and
will see in the next section the only effect of these nonpropa*N’ : . . .
gating topological modes is to give the correct statistics to, 1€ edge effective Lagrangian of E@.14) in terms of
the excitations. Sincédetk|=2np+1 this effective theory (he charged and neutral modes is diagonal,
reproduces the correct topological degeneracy of the Hilbert 1
space. Notice that from the point of view of this effective L=— 4—(a1¢cao¢c—ua1¢cal¢c)
theory there is no particular difference between the electron- mv
like FQH states and the holelike FQH states apart from the 1
value of the filling fraction. In addition, Eq.3.5 requires + E(ﬁlg{)Nﬁong-‘r A1PNIoPN) - (4.9
that the chiral bosong, satisfy the boundary conditions

We see that only the charge modg propagates. The role of
-p 1 0 Ng the two remaining modes is to give the correct quantum

A¢|:2_7T 2n 0 Ngp , numbers to the quasiparticles, in particular their statistics.
2np+1 The new fieldspc, ¢y, andgy, obey the boundary con-
0 0 2p+1/ ;\ —=Ngp/ ditions
(3.19
whereNy, andN, are the total number of quasiparticles A¢C=2—7T(N —pNy),
charge in the bulk and the extra magnetic flux in the bulk, 2np+1° 9P

both with respect to the middle of the plateau, respectively.

21
Adpy=—7=N
IV. ELECTRON AND QUASIPARTICLE OPERATORS N Jp aer
We will now seek a new basis of modes in which the Ay =—2mN 4.5
= qp .

guantum numbers of the excitations are more transparent.
We will use this representation to construct the electron and In the new basis of Eq4.3) the most general quasiparti-
guasiparticle operators at the edge. cle operator of Eq(4.1) can be written as
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W (x) =gl (ectctandntan én) (4.6) wherez=x+ivt ande is an ultraviolet cutoff. Ass—0 we
find
where
m 0,0)= I 1z T 4.1
A ($cx0)bc(0.0)=—vIn_+ivgsgrt). (419
Notice that the (regulated propagator obeys
m, (#c(0,0)¢¢(0,0))=0. The same applies to the propagator
aN_T' of the neutral modes discussed below.
P Likewise, the propagatafin imaginary time of the neu-
J— 47 tral modesgy and ¢y, in the same limite— 0, becomes
Hence, the coefficients satis T
v (AN N(0.0) =y (X,0) by (0,0) = —i ZsqrTt).
%: —vag, (4.8 (4.16
Using the propagators of Eqét.14) and(4.16), we find
P ) that theelectronpropagator is given by
;:_Vaé'i_aﬁ—'—a,\lr; (49)

(WIx,H)¥(0,0)
whereQ is the quasiparticle charge armdits statistics.

The coefficients for theuasiparticleoperator should be _ i 1
such that they satisfyQ=—e/(2np+1) and 6/7 —ex;{ V2<¢C(X't)¢0(0'0)>+ V2<¢N(X’t)¢N(O’O)>

=2n/(2np+1)+1. Therefore, we find

2
p
1 1 + —(nr(X,1) dn:(0,0))
a%P:_1 aﬁpz__, a%F,’:l, (4.10 V2
P VP
o . . . 1 1 .
which is consistent with settingp; =0 andm,=—1. =~ glitm2)[1/v—(p+p*)/v*Isgnt) — — g i(ms/2)sgnt)
Likewise, to create arelectronis equivalent to create |t [t]H
2np+1 quasiparticles and hence, it is defined by the choice 4.17
e 1 e \/_E W _p 411 where we have analytically continued to real titgnd taken
cT, AN o AN T : the limit x—0.

o ) _ Equation(4.17) shows clearly that the electron operator of
It is immediately shown that th|s_operator creates a state thahe jain states with filling fractiom has scaling dimension
has a charge oQ=—e and statisticsrk, wherek=(2np  (2,)=1 This result implies that the tunneling density of
+1)[2n(p+1)+1] is anoddinteger. _ states for electrons at this edge obeys the Jap*™ """,

Thus, in this new basis, thguasiparticleoperator is Notice that the nonpropagating modes are responsible for the
fermionic statistics of the electron.

Equation(4.17) agrees with the work by Lee and W&h,
who have found independently the same result as this paper
B was being written. However, in Ref. 35 the neutral modes

P =g/l éc (pmdn+(plv)én], (4.13  have a very different physical origin and they result from

. . . . considering the role of the microscopic structure of the edge
It is stralghtforward to show that if an integer number of and edge reconstruction. Instead, in the approach that we
electronsAN, IS added to the bulk of the system, the eIec'present in this paper the neutral modes originate from global
tron operator is not affected by the twist in the boundaryy,,ngical consistency requirements for flux attachement
conditions Eq/(4.5 since the exponent shifts byn®, where 54 are a remnant of the topological invariance of the Chern-
s=[2n(p+1)+1](2np+1)AN, is an integer. Simons theory. Our result also agrees with the recent work of

Finally, we will compute the propagators for the electronziycke and MacDonaff who calculated the electron tun-
and the quasiparticle operators. We will need the propagatofge|ing spectral function using a variational approach. These
of the chiral bosonséc, ¢y, and ¢y Since the  5ihors found that although they could account for the cor-
Lagrangians forgy and ¢y are identical their propagators yect gpectral function, their electron operator did not obey
are the same. Furthermore the chiral bosgpsand ¢y, do Fermj statistics, in contrast with the result of Eg.17).

¥ 4= ell(L/P) b= (1D) ot ] 4.12

and theelectronoperator has the form

not propagatéi.e., their velocity is zerp o The construction of the electron operator that we just de-
_ The propagator of the charged moge, in imaginary  rived also has the following interesting interpretation. The
tme, Is electron operator, as given by E@.13), is a product of the
) i operator ex{i/v)¢c], which carries the charge, and the op-
(dc(X,t) $c(0,0) = — gm( 1— Z_Z) n gsgr(t)ln< 6_ !Z) , erators exp-(i/\/p) ¢n] and expigy), which combined fix
€ €—-lz the statistics. In fact this is the only role of these latter op-

(4.19 erators since the fieldby and ¢y do not propagate. Essen-
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tially, the combined operator eﬁeﬂ(l/\/ﬁ) dn+idy ] must much of the edge structure of tiematrix theory has been

be regarded as an effective Klein factor. In particular, it alsontegrated out and this mode does not propagate in the sense

means that in a local probe of the edge, such as in electrdifiat their velocity is much smaller that the velocity of the

tunneling, only the charge mode plays a dynamical role. Weharge mode. In contrast, in the structure that we find here

will discuss this problem elsewhere. the nonpropagating modes have a topological origin and that

Finally, a similar calculation yields theuasiparticle is why they do not propagat@r contribute to the specific

propagator, in imaginary time, which is found to be given byheat of the systeim Zilicke and MacDonal#f have also

the following expression: found recently the same result for the tunneling density of
states, although the electron operator they use does not have
the correct Fermi statistics. This result was actually antici-

(P 4p(X,1) ¥ 4,(0,0)) pated by Welf and by Kane and Fishéfwho noted that, at
the level of the effective theory of the edge states, even
1 1 though this result would follow if only the charge mode is
=€X _2<¢C(X!t)¢C(O!0)>+ _<¢N(Xit)¢N(O’O)> g .. . y . g . .
p p kept, the statistics of this electron operator is fermionic only

for Laughlin states.

The universal structure of this effective theory has a num-
ber of potentially important implications. Recent experi-
ments by Grayson and co-workérfson tunneling of elec-

_ e‘(”’2>(V”32 ~1/p—1)sgnt) _ o (gy2)sn0) trons into the edges of FQH states have §hown that, wh_ilt_e the

|t|vlp2 |t|1//p2 large voltage conductance of these devices does exhibit the
FQH effect, the low-voltage scaling exponent fails to show

(4.18 any signature of the existence of plateaus in the bulk, as it is
required by the theory of edge states. In fact, even after tak-

again in the limitx—0. Equation(4.18 shows that the qua- ing into account .the non]ocal effects of charge rgdistribution
siparticle operator has scaling dimensiof(2p?) and the due to Coulqmb interactions near the edges, as mthg work of
correct statistics. Shyto_v_, Levitov, an_d Halperiff the theory still prec_hcts a
nontrivial structure in the dependence of the scaling expo-
nent with the magnetic field, which does not agree with the
experiment. However, to explain these experiments is
In this paper, we have derived an effective Chern-Simongoughly equivalent to have a description of the transition
theory for the Jain states in a finite geometry that is consisbetween plateaus, but now seen from the edge. It is tempting
tent with global gauge invariance. We showed that thisto speculate that the results of this paper may be used to
theory can be cast into l&-matrix form but with a different develop a description of the edge tunneling problem with a
and much simpler structure than the usual one. We fountinear behavior of the tunnel exponent on the filling factor,
that this structure requires only a small number of gaugeérecisely because the structure of both bulk and edge does
fields and their number, that is the rank of thematrix, is  not change dramatically from one Jain state to the next. For
fixed. We used this effective theory on a closed surface t@uch a description to work, it is necessary to assume that no
find a universal minimal structure of the theory on an opereqge reconstruction has taken place. Or, rather, that the only
surface and determine the structure of the edge states, for @litects of edge reconstruction are equivalent to the transition
the states in the Jain sequences. We found that, in all cas&satween plateaus. From this point of view, it is reasonable to
there is one and only one propagating mode and hence onypect that such a generalization of this theory is likely to
one mode that carries electric charge and energy. The role gfye a smooth dependence of the tunneling density of states
the remainingtwo) modes is to fix the statistics of the exci- yjth the filling fraction for a continuous range of magnetic
tations. We constructed the electron and quasiparticle opergg|gs, Such a description does not exist yet. Finally, it is also
tors for these states, which turn out to be uniquely deterinteresting to comment that it may be necessary to reexamine
mined and carry the correct charge and statistics. under this light the arguments that led to the phase diagram
We calculated the propagators of the excitations at thy kivelson, Lee, and Zhan, since the selection rules for
edge and, in particular, found that the propagator for thene transitions between plateaus are superficially related, to

electron(which is a fermi?n as it should béoehaves as a gz extent, to the number of edge states of nearby plaféaus.
function of time like [t|~*" for all the Jain states, and a

tunneling density of states that, as a function of frequency,
behaves likdw|* =", In a separate publication we gener-
alize these results to other quantum Hall effééts.

These results in essence agree with the very recent work We thank C. Chamon, J. Jain, S. Kivelson, and C. Nayak
of Lee and Werf® In particular, they also find only one for stimulating discussions, and particularly Dung Hai Lee
propagating mode, which carries the charge current in addifor an early communication of his work with Xiao-
tion to a nonpropagating mode that fixes the statistics. HowGangWen. This work was begun during a visit of E.F. to
ever, the physical origin of this latter mode appears to bdJniversidad de La Plata, Argentina, and to Instituto Balseiro,
quite different from the ones we find here. In the work of LeeBariloche, Argentina. E.F. is very grateful to Fidel Schapos-
and Wen, the nonpropagating mode is one that survived aftarik for his hospitality in La Plata, and to AndséGarca and

+{(onr(X,1) Pn:(0,0))

V. CONCLUSIONS

ACKNOWLEDGMENTS



PRB 59 UNIVERSAL STRUCTURE OF THE EDGE STATES OF ... 15331

Manuel Fuentes for their hospitality in Bariloche. E.F. is aUniversity of California Santa Barbara, for his kind hospital-
participant at the ITP Program on “Disorder and Interactionsity. This work was supported in part by NSF Grant No. NSF
in Quantum Hall and Mesoscopic Systems,” and thanks DDMR98-17941 at UIUC, and NSF Grant No. PHY94-07194

Gross, Director of Institute for Theoretical Physics of theat ITP-UCSB(EF), and by CONICET(AL).

1R.B. Laughlin, Phys. Rev. Let60, 1395(1983.

2F.D.M. Haldane, Phys. Rev. Leff1, 605 (1983.

3B.1. Halperin, Phys. Rev. Let62, 1583(1984).

4J.K. Jain, Phys. Rev. Let63, 199(1989; Phys. Rev. B40, 8079
(1989; Adv. Phys.41, 105(1992.

5S.C. Zhang, T.H. Hansson, and S. Kivelson, Phys. Rev. Baft.
82 (1989.

6A. Lopez and E. Fradkin, Phys. Rev.4, 5246(1991J).

"B. Blok and X.G. Wen, Phys. Rev. B3, 8337(199).

8X.G. Wen and A. Zee, Phys. Rev. 85, 2290(1992.

9X.G. Wen, Adv. Phys44, 405(1995.

10A. capelli, C.A. Trugenberger, and G.R. Zemba, Nucl. Phys. By;

448 470(1995.

11%.G. Wen and Q. Niu, Phys. Rev. &1, 9377(1990.

12x G. Wen, Phys. Rev. B1, 12 838(1990; Int. J. Mod. Phys. B
6, 1711(1992.

3M. Stone, Phys. Rev. B2, 8399(1990.

141, Brey, Phys. Rev. Let65, 903(1990.

21B.1. Halperin, P.A. Lee, and N. Read, Phys. Rev4B 7312
(1993.

22X.G. Wen and A. Zee, Phys. Rev. Le@9, 1811(1992.

237 F. Ezawa and A. lwazaki, Phys. Rev.4B, 7295(1993.

24A. Lopez and E. Fradkin, Phys. Rev.®, 4347(1995.

25A.V. Balatsky and E. Fradkin, Phys. Rev.4, 10 622(1992.

263 Frdnlich and A. Zee, Nucl. Phys. B64, 517 (1991).

273. Frdnlich and T. Kerler, Nucl. Phys. B54, 369 (1991).

28E. Witten, Commun. Math. Phyd21, 351 (1989.

29y Hosotani, Phys. Rev. Let62, 2785(1989.

30D, Weselowski, Y. Hosotani, and C.L. Ho, Int. J. Mod. Phys9,A

969 (1994.

E. Fradkin, C. Nayak, A. Tsvelik, and F. Wilczek, Nucl. Phys. B

514FS], 704 (1998.

32D B Chklovskii, Phys. Rev. B51, 9895(1995.

333, Conti and G. Vignale, Physica & 101(1997; S. Conti and
G. Vignale, cond-mat/980131@npublished

34See, for instance, C.M. Naon, Phys. Rev3D) 2035(1985.

35D H. Lee and X.G. Wen, cond-mat/980916Gfhpublishegl

15These issues are very important when it comes to explain th&\ zijicke and A.H. MacDonald, cond-mat/9802018npub-

tunneling experiments such as A. Chang, L.N. Pfeiffer, and

K.W. West, Phys. Rev. LetZ7, 2538(1996.
18F Wilczek and A. Zee, Phys. Rev. Lef1, 2250(1983.
17y.S. Wu and A. Zee, Phys. Lett47B, 325(1984).

8E. Fradkin, Field Theories of Condensed Matter Systems

(Addison-Wesley, Redwood City, CA 1991

%A, Lopez and E. Fradkin, irfComposite Fermions in the Frac-

tional Quantum Hall Effectedited by O. HeinonneriWorld
Scientific, Singapore, 1998pp. 195-253.
20g.C. zhang, Int. J. Mod. Phys. & 25 (1992.

lished.

%7 Ana Lopez and Eduardo Fradkionpuhlishedl

38C. Kane and M. Fisher, Phys. Rev.32, 17 393(1995.

39M. Grayson, D.C. Tsui, L.N. Pfeiffer, K.W. West, and A.M.
Chang, Phys. Rev. Let80, 1062(1998.

40A.V. Shytov, L.S. Levitov, and B.I. Halperin, Phys. Rev. L&,

141 (1998.

415 A. Kivelson, D.H. Lee, and S.C. Zhang, Phys. Revi@3 223

(1992.

42\We are grateful to J. Jain for this suggestion.



