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Mixed-valence states in narrow-gap IV-VI semiconductors with rare-earth ions

V. K. Dugaev and V. I. Litvinov*
Chernovtsy Department of the Institute of Materials Science Problems, 5 Vilde Street, Chernovtsy 274001, Ukraine

A. Łusakowski
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~Received 10 August 1998!

The mechanism of valence-state formation in the IV-VI alloys doped with rare-earth impurities is analyzed
with respect to certain properties of narrow-gap semiconductors. The mean-field approximation in the slave-
boson representation is used to account for the strong electron correlation at the impurity. The energy, width,
and filling factor of the impurity level are calculated as a function of both the band gap and position of the
chemical potential. We also calculate the temperature dependence of the magnetic susceptibility of an impurity.
It is shown that mixing to coupled conduction- and valence-band states makes the properties of rare-earth
dopants sensitive to the band gap and Fermi level in the narrow-gap semiconductor host.
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I. INTRODUCTION

The problem of a mixed valence in metals doped w
rare-earth atoms has been investigated for a long time.
intermediate valence or mixed-valent state has been ri
ously established~see, for example, review articles1–4 and
references therein!. In metals, the behavior of rare-earth im
purities is not, generally, very sensitive to a host mater
but mostly depends on the specific kind of rare-earth im
rity and relative position of the deep impurity level an
Fermi level.5

Recent experiments on rare-earth-doped narrow-
IV-VI semiconductors revealed the variable valence state
Yb for which thef level is located deeply in the valence ba
of the host material.6–8 In Yb-doped Pb12xGexTe crystals, a
switch between Yb21 and Yb31 states was established, whe
the chemical potential moved within the valence band. S
a change of the Yb impurity state is attributed to a change
the filling of the f shell at the Yb ion: from 14 electrons i
the neutral state (Yb21) to 13 electrons in the ionized on
(Yb31!.

The situation in narrow-gap semiconductors differs fro
that of metals in some aspects. First, the coupling betw
conduction and valence bands, which causes the nonpar
licity of the energy spectrum, gets a mixing between thf
level and the valence band influenced by conduction-b
states. The admixture of the conduction-band states m
the mixed-valence behavior of the dopant dependent on
energy gap. Second, the Fermi-level position depends on
rier density; thus, the basic magnetic properties of rare-ea
doped narrow-gap materials have to be sensitive to gro
conditions and annealing when native defects and impur
other than rare-earth ones strongly influence the carrier c
centration. All this implies that the mixed-valence behav
of the narrow-gap semiconductors has to be considere
more detail with respect to peculiarities of the energy sp
trum and the sensitivity of the material to external con
tions.

Impressive progress in the theory of mixed states has b
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achieved in the framework of the slave-boson field the
and the 1/N expansion.9–12 Use of a slave-boson techniqu
enables one to account for the strong Coulomb correlatio
the impurity center, whereas the 1/N expansion essentially
simplifies all the calculations, reducing them to a kind
mean-field approximation, with small fluctuations around
mean-field solution.

In this paper we consider the theory of the mixed-valen
state in degenerated IV-VI narrow-gap semiconductors. A
tool, we use the slave-boson technique and 1/N expansion,
approaches which have been successful in the case of me

We are going to apply these approaches to the IV
narrow-gap semiconductors, such as PbTe or Pb12xSnxTe
alloys, and to take into account peculiarities of the wa
functions and energy spectrum of these compounds.13 In
IV-VI semiconductors, in each of four valleys there are tw
close bands separated by a small energy gap. Only s
volumes of thek space in each valley are allowed for ele
trons and holes, namely, in vicinities ofL points of the Bril-
louin zone. The electron density of states is small with
each valley due to the small effective masses of carriers
means that the total probability of electron transitions b
tween a localized and band states should be rather sma

The basis wave functions near band edges in IV-VI co
pounds allow the interband coupling which causes nonp
bolicity of the energy spectrum. The amplitude of the ele
tron wave function at a cation site is much larger than tha
the hole wave function. This makes thes-d interaction of
localized electrons with the conduction band larger than t
with the valence band; thus, the mixing of the localized el
trons with valence band is mostly indirect due to virtu
conduction-band states. In IV-VI semiconductors the ra
earth impurity substitutes the metal~cation! site in IV-VI
binary compounds, which results in a strong mixing betwe
conduction-band states and deep localized levels even in
generated crystals such asp-PbGeTe~Yb!.

Strictly speaking, thes-d coupling constants depend o
the specific type of energy valley. If we direct the quantiz
tion axis along a distinguished vector of a certain valley, th
15 190 ©1999 The American Physical Society
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PRB 59 15 191MIXED-VALENCE STATES IN NARROW-GAP IV-VI . . .
the overlap integrals will be different for this valley and f
other equivalent tilted valleys~the wave function of carriers
at the band edge have spherical symmetry, whereas th
calized impurity has orbital momentl 53!. For the sake of
simplicity, we are going to neglect this anisotropy and co
sider the coupling constants as parameters independe
valley number. The possible justification is that the contrib
tion from three equivalent tilted valleys is larger than th
from one certain valley. We neglect also the anisotropy
the energy spectrum in order to avoid the necessity of co
dinating the anisotropy axis of each valley with the quan
zation axis. Actually, the final result is always reached a
summation over all valleys, which results in a corrected
teraction parameter that is just the mean geometrical valu
transverse and longitudinals-d interaction constants.

It should be noted that the variable valence in the IV-
semiconductors doped with third-group impurities In and
was discussed earlier by several authors, mostly with reg
to the persistent photoconductivity14,15 and super-
conductivity.16

II. MODEL

The model takes into account two-band electrons w
interband coupling and spin-orbit interaction in each ene
valley. The interaction of band electrons with localized on
is taken in the form of Anderson hybridization, with inclu
sion of a slave-boson fieldbam , where the indicesa andm
indicate the valley and magnetic quantum numbers (m5 l ,l
21,...,2 l , and l 53 for Yb!, respectively.

The Hamiltonian of the model has the form

H5(
ka

cka
† êkcka1(

m
cm

† e0cm

1(
kam

@cka
† V̂kcmbam1cm

† bam
† V̂kcka#, ~1!

where e0 is bare the energy level of anf electron at the
impurity atom. The matrix in space of bands and spins of
Dirac model for the electron energy spectrum in IV-VI cry
tals êk is given as13

êk5S D

v k̂•s

vk•s
2D D , ~2!

where 2D is the energy gap andv is the interband coupling
parameter. The energy spectrum in conduction~c! and va-
lence (v) bands isv1,256Ek56(D21v2k2)1/2. In accor-
dance with Eq.~1!, the transitions of an electron from a ban
to a localizedf state ~and vice versa! is accompanied by
processes of emission and absorption of a bosonbam .

Here the basis functions for free electrons of each val
localizedf electrons, and slave bosons are taken as spino
space of bands (c,v) and spin states:

cka
† 5~ckac↑

† ,ckac↓
† ,ckav↑

† ,ckav↓
† !,

cm
† 5~cm↑

† ,cm↓
† !, bam

† 5~bamc
† ,bamv

† !. ~3!

V̂k is the diagonal matrix in the space of bands:
lo-

-
of

-
t
f
r-
-
r
-
of

I
l
ds

h
y
s

e

y,
in

V̂k5w~k!* S V1

0
0
V2

D ,

whereV1 andV2 are hybridization coupling constants to th
conduction and valence bands. The hybridization@last term
in Eq. ~1!# generatess-d scattering from the localized impu
rity ~Fig. 1!:

H int5J (
kk8aab

ckaa
† cmb

† cmack8ab , ~4!

as follows from the second-order perturbation overV̂k . Here
a andb are the spin indices.

The condition that the localized center can contain
more than one hole can be expressed by an additional e
tion

(
ami

bami
† bami1(

m
c̃m

† c̃m51, ~5!

where c̃† and c̃ are the creation and annihilation operato
for holes at thef state. Equation~5! means that we conside
a nearly filledf shell that corresponds well to the case of Y
impurities. With this constraint, the free energy of the syst
is given as

F5E
0

b

dtH(
ka

cka
† S ]

]t
1 êkDcka1(

m
c̃m

† S ]

]t
2e01l D c̃m

1(
am

bam
† S ]

]t
1l Dbam1(

kam
~cka

† V̂k
†cmbam

1cm
† bam

† V̂kcka!2lJ , ~6!

whereb51/T andt is the thermodynamic time.17 The par-
tition function of the system,

Z5E Dcka
† DckaDcm

† DcmDbam
† DbamDl e2F, ~7!

includes the integration over thel~t! field, entering the free
energy as a Lagrange factor.

If we integrate outb† and b fields, we come to a four-
particle interaction of the form of Eq.~4! with J;(V1

2

1V2
2)/(l2e0). It should be noted that using ab field with a

magnetic momentum projectionm and valley indexa allows
us to model the hybridization interaction and implies that
scattering of a free carrier from impurity~4! conserves the
total magnetic momentum and intervalley scattering is
sent.

FIG. 1. Band-impurity coupling via a slave-bosonb field ~solid
line, free electrons: dots, localized electron: dashed lines,b field!.
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III. CONDENSATION OF SLAVE BOSONS

The thermodynamical Green functions are defined as17

Gka~t,t8!52^Ttcka~t!cka
† ~t8!&,

Gf~t,t8!52^Ttcj~t!cj
†~t8!&,

Dami~t,t8!52^Ttbami~t!bami
† ~t8!&, ~8!

whereGka , Gf , andDami are Green functions of free carr
ers, localized electrons, andb bosons, respectively. The ba
Green functions after Fourier transformation to the ima
nary frequencies are given as

Gk
0~ i e!5

i e1m1tzD1txvs•k

~ i e1m!22Ek
2 ,

Gf
0~ i e!5

1

i e2eR1m
, Dami

0 ~ iv!5
1

iv2l
, ~9!

where tx and tz are the Pauli matrices,eR[e02l is the
renormalized impurity level, andm is the chemical potential
Here the discrete frequencies arei e5(2n11)pT for fermi-
ons andiv52npT for b bosons.

Consider now the diagrams for the impurity Green fun
tion Gf( i e). Diagrams with closed loops~Fig. 2! are propor-
tional to Na ~number of valleys!. We assumeNa@1; this
allows us to take into account only loop diagrams and c
responds to the 1/N expansion.12 The self-energy operato
for the impurity Green function is~Fig. 3!

S f~ i e!52NaT(
nki

ViGki,k j
0 ~ i en!VjD ji ~ i en2 i e!, ~10!

whereG andD are written asi and j elements of the corre
sponding matrix Green functions.

The integration over momentum of the matrixGk
0 in Eq.

~10! gives zero for nondiagonal terms; thus, we get

S f~ i e!52NaT(
nki

Vi
2Gki

0 ~ i en!Di~ i en2 i e!. ~11!

The onset of the intermediate valence in this appro
corresponds to condensation of the bosonb field. The density
of condensates,w i5^bi

†bi&, determines the shift and widt
of the impurity level in the mixed-valence state. In the co
densed state the boson Green functionDi( i e);d( i e). So we

FIG. 2. Loop diagram containing the large factorNa .

FIG. 3. Dyson’s equation for the impurity Green function.
-

-

r-

h

-

can replaceGki
0 ( i en2 i e) by Gki

0 ( i e) in Eq. ~11!, and use the
relation w i[2D(t,t1d)52T(n exp(ivnd)Di(ivn). Equa-
tion ~11! can be written as

S f~ i e!52 iNa(
i

w iG i~ i e!, ~12!

where

G i~ i e!5 i(
k

Vi
2Gki

0 ~ i e!. ~13!

The boson Green functionDi( iv) will be found from
Dyson’s equation~Fig. 4! Di

215(Di
0)212P i , where

P i~ iv!5T Sp(
nk

Vi
2Gki

0 ~ i en!Gf~ i en2 iv! ~14!

is the polarization operator and the trace goes in the s
space. Using Eqs.~12!–~14!, we find the condition for con-
densation of thei-boson fieldbi (l1P i50) in the form

22iT(
n

G i~ i en!

i en2eR1m1 iNa( jw jG j~ i en!
1l50. ~15!

Equation~15! contains differentG i ; thus, we have differ-
ent conditions for condensation ofbi fields. This means tha
condensation is possible for bothi 51,2 boson fields sepa
rately. Such asymmetry in the space of bands is attribute
the difference in coupling constantsV1 and V2 . Assuming
that only one of thebi fields~with certaini! is condensed, we
can simplify Eq.~15! to

22iT(
n

G i~ i en!

i en2eR1m1 iNaw iG i~ i en!
1l50. ~16!

The same result could be obtained as a result of
saddle-point equationdF/dbi(t)50, with the use of Eq.~6!,
assumingbi5const.

The constraint~5! follows from the analogous saddle
point approximation with respect to thel field, dF/dl(t)
50, which gives Eq.~5! in the form

2NmT(
n

1

i en1eR2m2 iNaw iG i~ i en!
1NaNmw i51,

~17!

with the hole Green function of the localized state in the fi
term andNm5(2l 11) for the number of orbital states. Th
set of equations~16! and~17! determinesw i andl and, con-
sequently, the impurity-level position and width in th
mixed-valence state.

It should be noted that the renormalization of the fr
carrier Green functionGki can be neglected, provided tha

FIG. 4. Dyson’s equation for theb-boson Green function.
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PRB 59 15 193MIXED-VALENCE STATES IN NARROW-GAP IV-VI . . .
we consider only one impurity. In the case of a finite imp
rity concentration, the correction is proportional to the imp
rity concentration, which we assume to be small.

As a next step, we calculateG i(z), which enters these
equations. For complex frequenciesz and for m50, using
Eqs.~9! and ~13!, we obtain

G1,2~z!5 i E d3k

~2p!3 w0
2~k!V1,2

2 z6D

z22D22v2k2 . ~18!

Let us denotez5z11 iz2 and takew0(k)5w05const. After
integrating along a contour in the upper half-plane of co
plex k, we have

G1,2~z!5sgn~z1z2!
w0

2V1,2
2

4pv3 ~z16D!2

3@~z1
22z2

22D2!214z1
2z2

2#1/4

3H sinw, z1
22z2

22D2,0,

cosw, z1
22z2

22D2.0,
~19!

where

w5
1

2
tan21U z1z2

z1
22z2

22D2U.
For z2→0 it simplifies to~here we restore the chemical p
tential m!

G1,2~z!5sgn@~z11m!z2#
w0

2V1,2
2

4pv3 ~z11m6D!

3@~z11m!22D2#1/2, uz11mu.D, ~20!

andG1,2(z)50, if uz11mu,D.
The dependence ofG1,2 on energy is presented in Fig.

for the choice of parametersV151, V250.2, and w0
51.2310211eV cm3/2, at different values of the energy ga
D50.02, 0.06, 0.10 eV. It clearly demonstrates the asym
try in c andv bands, resulting in condensation of only thebc
field.

IV. ENERGY OF THE IMPURITY LEVEL

The shift of the impurity energy level renormalized b
hybridization is Rel. We are going to find the singular pa
of energy shift that is strongly dependent on the elect
spectrum of the host semiconductor. In order to do that,
need to solve Eqs.~16! and~17!. A solution of Eq.~17! can
be found easily for T→0 @or, more exactly, for T
!Naw iG(eR2m)#. The first term in Eq.~17! is the hole
filling factor at thef center. AtT50 it can be written as

pf52NmE
2`

0

r̃ f~E!dE, ~21!

where the spectral density is the imaginary part of the
tarded Green function for holes,G̃f

R(E):

r̃ f~E!52
1

p
Im G̃f

R~E!. ~22!

We find
-
-

-

e-

n
e

-

pf52NmH 1

p
tan21S Naw iG i0

m2eR
D for eR,m,

12
1

p
tan21S Naw iG i0

eR2m D for eR.m,

~23!

where we denotedG i0[G i(eR2m).
The assumed constraint~5! and the single-loop approxi

mation make our consideration valid forNm@1 andpf<2;
so we get

pf.
2NaNmw iG i0

p~m2eR!
, ~24!

where we are restricted by the inequalitiesNaw iG i0!m
2eR andm.eR . In this region the renormalized leveleR is
always located below the Fermi energy, and its wid
Naw iG i0 is much smaller than the distance between this le
andm.

Using Eqs.~17! and ~24!, we get

NaNmw i S 2G i0

m2eR
11D51. ~25!

Thus, forG i0!m2eR ~no holes at thef center!, we find

w i51/~NaNm! ~26!

and, form2eR!G i0 ~the hole number is close to 1!,

FIG. 5. Imaginary parts of the electron self-energy for the co
duction (G1) and valence (G2) bands for different values of the
energy gap.
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w i5
1

NaNm

m2eR

2G i0
. ~27!

At finite temperatures, the modification of Eq.~21! is ob-
vious:

pf52NmE f ~E!r̃ f~E!dE, ~28!

where f (E)5@exp(E/T)11#21. For Naw iG i0!T, we find

pf52Nm@12 f ~eR2m!#. ~29!

This means that only the possibility of (m2eR)@T is al-
lowed, sinceNm@1. It gives us

pf52Nm expS 2
m2eR

T D
and

w i5
1

NaNm
F122Nm expS 2

m2eR

T D G . ~30!

In a similar way we find the solution of Eq.~16!. Writing
it down in the form

l52iT(
n

G i~ i en!Gf~ i en!,

using the spectral representation forGf , and changing the
summation over frequency to the contour integrationG
around the Im(z) axis in the complexz plane, we have

l52
1

p E
G
dz f~z!G i~z!E

2`

`

dE
r f~E!

z2E
. ~31!

Using Eq.~18!, we obtain

l52
i

p E
G
dz f~z!E

2`

` r f~E!dE

z2E

3E d3k

~2p!3 w0
2V1,2

2 z1m6D

~z1m2Ek!~z1m1Ek!
. ~32!

In the integral overz, we can use the poles atz52m
6Ek , and in the integral overk, we transfer to the integra
tion overEk :

d3k

~2p!3→n~Ek!dEk ,

with the density of states

n~E!5
1

2p2v3 EAE22D2.

Then we have

l52
2

p S E
2`

2D

1E
D

` D dE
f ~E2m!G i~E2m!

E2eR1 iNaw iG i~E2m!
,

~33!

whereG i(E) is taken withE→E1 id.
We assume that the chemical potentialm is located in the
valence band, i.e.,m,2D ~andT!D!. Then Eq.~33! sim-
plifies to

l52
2

p E
2L

2D

dE
f ~E2m!G i~E2m!

E2eR1 iNaw iG i~E2m!
, ~34!

where we have introduced a cutoffL.mv2; m stands for the
contribution to the effective mass from remote bands.13 It
means that the energyL restricts the range of applicability o
Dirac’s model for the energy spectrum at large momenta

At T50 we obtain, from Eq.~34!,

l52
2

p E
2L

m

dE
G i~E2m!

E2eR1 iNaw iG i~E2m!
. ~35!

This integral contains a regular part fromueRu,uEu,L and
singular logarithmic contribution from the region near t
Fermi energy,m2eR,uEu,ueRu. The result for singular par
follows:

l5
2

p
G i0 lnS Ec

m2eR
D , ~36!

where

Ec5ueRuexpS L2

ueR6DuAeR
22D2D .

This result is formally obtained forT50. Since we consider
the rangeT!m2eR , the finite temperatures within thi
range do not change Eq.~36! as follows from calculations.

The results of numerical calculations ofl andw1 as func-
tions ofm are shown in Figs. 6 and 7. Different energy ga
D in Figs. 6 and 7 may correspond to different compositio

FIG. 6. Dependence of the impurity-level shift upon the chem
cal potential position for different values of the energy gap.
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in IV-VI ternary alloys. As follows from figures, the lowe
the gap is, the wider the region ofm is where intermediate
valence takes place~valence changes sincew1 changes from
0 to a maximum value!. It is attributed to the indirect cou
pling of the impurity state with valence-band ones, via t
intermediate conduction-band states. The impurity ene
level follows m when it moves inside the valence band~Fig.
6!, and the width of the level depends strongly onm in the
mixed-valence region~Fig. 7!. It is this many-particle level
that is responsible for the properties of the rare-earth-do
narrow-gap semiconductor.

V. MAGNETIC SUSCEPTIBILITY

The magnetic moment of an impurity in magnetic fieldH
oriented along thez axis can be calculated from

Mz5g* mBE r~E!@ f ~E2m2g* mBH !

2 f ~E2m1g* mBH !#dE, ~37!

where the effectiveg factor of our modelg* is determined
by

g* 25Sp(
m

~m21sz
2!52~2l 11!S l ~ l 11!

3
11D ~38!

and the impurity density of states

r f~E!5
1

p

Naw iG i0

~E2eR!21~Naw iG i0!2 .

FIG. 7. Mean number ofb bosons at the impurity level as
function of chemical potential positionm for different energy gaps
e
y

d

The static magnetic susceptibility, related to a sing
impurity center~for many noninteracting centers, it shou
be multiplied by their number!, is

x5
]Mz

]H
522g* 2mB

2E r f~E! f 8~E2m!dE. ~39!

It gives, forT!Naw iG i0 ,

x52g* 2mB
2r f~m! ~40!

and, forNaw iG i0!T,

x522g* 2mB
2 ] f ~eR2m!

]e

52g* 2mB
2 1

4T cosh2@~eR2m!/2T#
. ~41!

If eR,m and (m2eR)/T@1, it simplifies to

x5
2g* 2mB

2

T
expS 2

m2eR

T D . ~42!

Thus we find a different temperature behavior of the s
ceptibility for different temperature regions@Eqs.~40!–~42!#.

VI. DISCUSSION

We have calculated the density of states of the ma
particle resonance leveleR near the Fermi energy, with a
width Naw iG i0 . The position of this level and its width de
pend on the chemical potentialm. The behavior of the reso
nance levels in IV-VI narrow-gap semiconductors differs
some aspects from that for simple metals with rare-earth
purities. First, the chemical potential in a semiconductor c
be changed by doping with shallow impurities. No such
fect is possible in metals. Second, the width of the resona
level is much less than the corresponding value in met
due to the small density of states at the Fermi level
narrow-gap semiconductors. Actually, the width is not det
mined exactly by the electron density of states at the Fe
level ~as it is in metals!, but is described by Eq.~20!, which
is related to the more complicated energy band structure
IV-VI narrow-gap semiconductors.

We have restricted ourselves by considering only me
field approximation theory. In our approach the fluctuatio
of b fields around the mean-field value is not so stron
suppressed, as for the large-spin theory. The formal rea
for that is the absence of a large numerical factor in Eq.~14!
for the polarization operator: the large number of valle
Na , only helps us to select the perturbation-theory diagra
containing theNa factor. Thus the role of fluctuations re
mains a subject for further study.
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