PHYSICAL REVIEW B VOLUME 59, NUMBER 23 15 JUNE 1999-I

Mixed-valence states in narrow-gap 1V-VI semiconductors with rare-earth ions
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The mechanism of valence-state formation in the IV-VI alloys doped with rare-earth impurities is analyzed
with respect to certain properties of narrow-gap semiconductors. The mean-field approximation in the slave-
boson representation is used to account for the strong electron correlation at the impurity. The energy, width,
and filling factor of the impurity level are calculated as a function of both the band gap and position of the
chemical potential. We also calculate the temperature dependence of the magnetic susceptibility of an impurity.
It is shown that mixing to coupled conduction- and valence-band states makes the properties of rare-earth
dopants sensitive to the band gap and Fermi level in the narrow-gap semiconductor host.
[S0163-182699)08723-9

[. INTRODUCTION achieved in the framework of the slave-boson field theory
and the 1N expansior’.=12 Use of a slave-boson technique
The problem of a mixed valence in metals doped withenables one to account for the strong Coulomb correlation at
rare-earth atoms has been investigated for a long time. Thiae impurity center, whereas theNLkexpansion essentially
intermediate valence or mixed-valent state has been rigosimplifies all the calculations, reducing them to a kind of
ously establishedsee, for example, review article4 and  mean-field approximation, with small fluctuations around a
references thereinln metals, the behavior of rare-earth im- mean-field solution.
purities is not, generally, very sensitive to a host material, In this paper we consider the theory of the mixed-valence
but mostly depends on the specific kind of rare-earth impustate in degenerated IV-VI narrow-gap semiconductors. As a
rity and relative position of the deep impurity level and tool, we use the slave-boson technique and &kpansion,
Fermi level® approaches which have been successful in the case of metals.
Recent experiments on rare-earth-doped narrow-gap We are going to apply these approaches to the IV-VI
IV-VI semiconductors revealed the variable valence state oharrow-gap semiconductors, such as PbTe of PBnTe
Yb for which thef level is located deeply in the valence band alloys, and to take into account peculiarities of the wave
of the host materidi-8 In Yb-doped Ph_,Ge,Te crystals, a functions and energy spectrum of these compodids.
switch between Yb" and YB'" states was established, when IV-VI semiconductors, in each of four valleys there are two
the chemical potential moved within the valence band. Suclelose bands separated by a small energy gap. Only small
a change of the Yb impurity state is attributed to a change o¥olumes of thek space in each valley are allowed for elec-
the filling of thef shell at the Yb ion: from 14 electrons in trons and holes, namely, in vicinities bfpoints of the Bril-
the neutral state (Y) to 13 electrons in the ionized one louin zone. The electron density of states is small within
(YB®H). each valley due to the small effective masses of carriers. It
The situation in narrow-gap semiconductors differs frommeans that the total probability of electron transitions be-
that of metals in some aspects. First, the coupling betweetween a localized and band states should be rather small.
conduction and valence bands, which causes the nonparabo- The basis wave functions near band edges in IV-VI com-
licity of the energy spectrum, gets a mixing between the pounds allow the interband coupling which causes nonpara-
level and the valence band influenced by conduction-bantiolicity of the energy spectrum. The amplitude of the elec-
states. The admixture of the conduction-band states makégon wave function at a cation site is much larger than that of
the mixed-valence behavior of the dopant dependent on thidae hole wave function. This makes tised interaction of
energy gap. Second, the Fermi-level position depends on calecalized electrons with the conduction band larger than that
rier density; thus, the basic magnetic properties of rare-earttwith the valence band; thus, the mixing of the localized elec-
doped narrow-gap materials have to be sensitive to growttrons with valence band is mostly indirect due to virtual
conditions and annealing when native defects and impuritiesonduction-band states. In IV-VI semiconductors the rare-
other than rare-earth ones strongly influence the carrier corearth impurity substitutes the metétation site in 1V-VI
centration. All this implies that the mixed-valence behaviorbinary compounds, which results in a strong mixing between
of the narrow-gap semiconductors has to be considered i@onduction-band states and deep localized levels even in de-
more detail with respect to peculiarities of the energy specgenerated crystals such psPbGeT¢Yb).
trum and the sensitivity of the material to external condi- Strictly speaking, thes-d coupling constants depend on
tions. the specific type of energy valley. If we direct the quantiza-
Impressive progress in the theory of mixed states has bedion axis along a distinguished vector of a certain valley, then

0163-1829/99/5@3)/1519Q7)/$15.00 PRB 59 15190 ©1999 The American Physical Society



PRB 59 MIXED-VALENCE STATES IN NARROW-GAP IV-M . .. 15191

the overlap integrals will be different for this valley and for aa ap
other equivalent tilted valley@he wave function of carriers \ /

at the band edge have spherical symmetry, whereas the lo- [ i
calized impurity has orbital moment= 3). For the sake of ‘,.." am "\

ma mf

simplicity, we are going to neglect this anisotropy and con-

sider the coupling constants as parameters independent of

valley number. The possible justification is that the contribu- FIG. 1. Band-impurity coupling via a slave-bosbriield (solid

tion from three equivalent tilted valleys is larger than thatline, free electrons: dots, localized electron: dashed lind&|d).

from one certain valley. We neglect also the anisotropy of

the energy spectrum in order to avoid the necessity of coor- . V, O

dinating the anisotropy axis of each valley with the quanti- Vi=w(k)* 0 Vv )

zation axis. Actually, the final result is always reached after 2

summation over all valleys, which results in a corrected in\whereV, andV, are hybridization coupling constants to the

teraction parameter that is just the mean geometrical value @onduction and valence bands. The hybridizafiast term

transverse and longitudinatd interaction constants. in Eq. (1)] generates-d scattering from the localized impu-
It should be noted that the variable valence in the IV-Vlyity (Fig. 1):

semiconductors doped with third-group impurities In and TI

was discussed earlier by several authors, mostly with regards

to the persistent photoconductivify’® and super- Hin=3 2 DhaaCrnsCmatlias (4)

conductivity1® kk'aap

as follows from the second-order perturbation o\?@r Here
Il. MODEL « and 8 are the spin indices.

The model takes into account two-band electrons with The condition that the localized center can contain not
interband coupling and spin-orbit interaction in each energy"oré than one hole can be expressed by an additional equa-
valley. The interaction of band electrons with localized onedon
is taken in the form of Anderson hybridization, with inclu-

sion of a slave-boson field,,,, where the indices andm t _ =t= _
indicate the valley and magnetic quantum numbens=(,| azmi bamibam'+% EmCm=1, ©®
—1,...~ 1, andl=3 for Yb), respectively.
The Hamiltonian of the model has the form where@! and€ are the creation and annihilation operators
for holes at thd state. Equatiort5) means that we consider
. N a nearly filledf shell that corresponds well to the case of Yb
H= kE Yhaeitiat > CheoCm impurities. With this constraint, the free energy of the system
2 " is given as
+ 2 [wlavkcmbam'l' CrJrnb;ka‘pka]v (1) B + J + J
kam F:f dT[z lﬂka (9_+%k (ﬂka“r‘E Em(__EOJF)\ Em
0 ka T m ar
where €, is bare the energy level of ahelectron at the
impurity atom. The matrix in space of bands and spins of the i[9 et
Dirac model for the electron energy spectrum in IV-VI crys- + % Bam E.‘H‘ bam+ gm (#aVkCmbPam
tals & is given a&®
A vk-o +C;b;mvk¢ka)_)\} ’ (6)
Ek_(vlz-o —A>' @

where 8=1/T and r is the thermodynamic tim¥. The par-
where 2 is the energy gap and is the interband coupling tition function of the system,
parameter. The energy spectrum in conducfionand va-

lence @) bands isw; ;= * Ex ==+ (A%+0%k?)Y2 In accor-

dance with Eq(1), the transitions of an electron from a band Z= f D it,D oDl DCrDb}  DbyDN e F,  (7)
to a localizedf state (and vice verspis accompanied by

processes of emission and absorption of a bdsgn includes the integration over the7) field, entering the free

Here the basis functions for free electrons of each valleyenergy as a Lagrange factor.
localizedf electrons, and slave bosons are taken as spinors in If we integrate outb” and b fields, we come to a four-

space of bandsc(v) and spin states: particle interaction of the form of Eq(4) with J~ (V2
+V§)/()\— €o). It should be noted that usingtefield with a
Pa= (et » Whkac) » Wkawt » Viaw)): magnetic momentum projectian and valley indexa allows
us to model the hybridization interaction and implies that the
ch=(chi.ch), bla=(0lc.blm) (3)  scattering of a free carrier from impurity) conserves the

. total magnetic momentum and intervalley scattering is ab-
V| is the diagonal matrix in the space of bands: sent.
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FIG. 2. Loop diagram containing the large factdy.

FIG. 4. Dyson’s equation for the-boson Green function.
Ill. CONDENSATION OF SLAVE BOSONS
The thermodynamical Green functions are defindd as ~ can replac&y;(ie,—ie€) by Gy(ie) in Eq. (11), and use the
relation ¢;=—D(7,7+ 8)= -T2, exp(w,0)D;(iw,). Equa-
T - -
Gra(7,7") = = (T thal 7) i 7)), tion (11) can be written as

Gi(r,7)=—(Tci(c](7)), Si(ie)=—iN2 el'i(ie), (12

Dami( 7 7',):_<Trbami(7)b;mi(71)>a (8)
where

whereG,,, G;, andD,,; are Green functions of free carri-

ers, localized electrons, atbosons, respectively. The bare . . 2.0,

Green functions after Fourier transformation to the imagi- Fi('e):'z ViGiilie). (13
nary frequencies are given as

i The boson Green functio®;(iw) will be found from
ietu+rA+novo-k

/i Dyson’s equatior(Fig. 4 D; *=(D?) ~*-1II;, where
Gk(|€) (|6—|—M)2—EE y i i 1
o . 1 1L(iw):TSp2k VIGR(i€)Gilie,—iw) (19
GO e Pamll =gy @ ”

is the polarization operator and the trace goes in the spin
where 7, and 7, are the Pauli matricessg=¢,—\ is the  space. Using Eqg12)—(14), we find the condition for con-
renormalized impurity level, and is the chemical potential. densation of thé-boson fieldb; (A +II;=0) in the form
Here the discrete frequencies aee=(2n+1)#T for fermi-

ons and w=2n=T for b bosons. . [i(ien)

Consider now the diagrams for the impurity Green func- _Z'T; ien—ertu+iN,Z 0T €,)
tion G¢(i €). Diagrams with closed loop&ig. 2) are propor-
tional to N, (number of valleys We assumeN,>1; this Equation(15) contains different’; ; thus, we have differ-
allows us to take into account only loop diagrams and corent conditions for condensation bf fields. This means that
responds to the IV expansior?.2 The self-energy operator condensation is possible for botk=1,2 boson fields sepa-
for the impurity Green function igFig. 3 rately. Such asymmetry in the space of bands is attributed to

the difference in coupling constants, andV,. Assuming
S (ie)=— NaTE ViG(k)i «(i€)V,Dji(ien—ie), (10 that o_nIy one of théd; fields (with certaini) is condensed, we
nKi ’ can simplify Eq.(15) to

+A=0. (15

whereG andD are written as andj elements of the corre- Ti(ie,)

sponding matrix Green functions. —2iTY, - — ey TA=0. (19
The integration over momentum of the mat{ in Eq. n len— et ptiNagili(ien)

(10) gives zero for nondiagonal terms; thus, we get

The same result could be obtained as a result of the
saddle-point equatiodF/ sb;(7) =0, with the use of Eq(6),
Se(ie)=—NaT>, V2Gl(ie))Di(ie;—i€). (11)  assuming;=const.

nki The constraint(5) follows from the analogous saddle-
IIi)Oim approximation with respect to thefield, 6F/S\(7)

The onset of the intermediate valence in this approac L 0, which gives Eq(5) in the form

corresponds to condensation of the bobdield. The density
of condensatesp;=(b/b;), determines the shift and width 1

of the impurity level in the mixed-valence state. In the con- 2N, T, Te ¥ en—n—INLo T (i )+NaNm<Pi=1,
densed state the boson Green funciipfi €) ~ 5(i€). So we n lEnTERTH a®ilill€n 17
- =_i€n-ie with the hole Green function of the localized state in the first
,;;*" TRy term andN,,= (21 + 1) for the number of orbital states. The
STTTE:, SRR, R - Wnun set of equation$l6) and(17) determinesp; andA and, con-
ie \) sequently, the impurity-level position and width in the

mixed-valence state.
It should be noted that the renormalization of the free
FIG. 3. Dyson’s equation for the impurity Green function. carrier Green functiorG; can be neglected, provided that

i€a
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we consider only one impurity. In the case of a finite impu- — A=0.02 eV
rity concentration, the correction is proportional to the impu- . 0.06 eV
rity concentration, which we assume to be small. 0'10 eV

As a next step, we calculatl;(z), which enters these
equations. For complex frequenciesand for u=0, using 0.010 -

Egs.(9) and(13), we obtain
I142)=i f KV sy (18) '
2)=i| —=w 5.
1, (2,”_)3 0 l,ZZZ_AZ_UZkZ 0.008 |
Let us denoteg=2z,+iz, and takewy(k) =wg=const. After
integrating along a contour in the upper half-plane of com-
plex k, we have
ngiz , 0.006
I A2)=sgnzi2;) 75 (2124) 3
X[(Z2— 25— A%)?+ 47225 o
_ A 0.004
sing, z{—2z5—A%<0,
19
cosep, z3—z5—A?>0, 19
where
0.002
1t 4 Z,2,
=tan | 5>————|.
72 Zi—25—A?
For z,—0 it simplifies to(here we restore the chemical po- 0.000 . .
tential w) 03 . -0. 0.0
woVi, z &)
= - < +
T1d2)=sg(z,+ 1)2.] 4rv° (Zytp=h) FIG. 5. Imaginary parts of the electron self-energy for the con-

duction (I";) and valence I(;) bands for different values of the
X[(z1+ ) =A% |zt ul>A, (200 energy gap.

andl'y 2) =0, if |z;+ u|<A.
The dependence df, , on energy is presented in Fig. 5 1,

—tan —Na@irio) for er<um
for the choice of parameter¥;=1, V,=0.2, and wy T M €ER R
=1.2x10 MeVcnt? at different values of the energy gap Pr=2Np 1 NooT (23
A=0.02, 0.06, 0.10 eV. It clearly demonstrates the asymme- 1——tan? M) for eg>u,
try in c andv bands, resulting in condensation of only the 77 €RT M
field.

where we denotedl;o=TI";(eg— 1).
The assumed constraif®) and the single-loop approxi-

IV. ENERGY OF THE IMPURITY LEVEL mation make our consideration valid fdi,>1 andp;<2;
The shift of the impurity energy level renormalized by so we get
hybridization is Re.. We are going to find the singular part NN, o T,
of energy shift that is strongly dependent on the electron pr= —— 10 (24)
spectrum of the host semiconductor. In order to do that, we 7~ €r)
need to solve Eqe16) and(17). A solution of Eq.(17) can  \yhere we are restricted by the inequalitide;lig<
be found easily forT—0 [or, more exactly, forT — _ . andu>eg. In this region the renormalized leve, is
<Na¢il'(eg—w)]. The first term in Eq.(17) is the hole  gjways located below the Fermi energy, and its width
filling factor at thef center. AtT=0 it can be written as Na¢il ;o is much smaller than the distance between this level
0 and u.
prZiji ¢(E)dE, (22) Using Eqgs.(17) and(24), we get
where the spectral density is the imaginary part of the re- NaNm‘Pi( 2Tio +1) =1. (25)
M €ER

tarded Green function for hole&R(E):
Thus, forl'jp<u— eg (no holes at thé centej, we find

1 .
Pr(E)=——1Im GR(E). (22) @i =1/(N_Ny) (26)

We find and, foru— eg<I';g (the hole number is close t9,1
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_ 1 M ER
“im NaNm 21_‘iO .

(27)

At finite temperatures, the modification of EQ.1) is ob-
vious:

pf:2NmJ f(E)pe(E)dE, (28)
wheref(E)=[expE/T)+1] L. For N ¢;I";o<T, we find
Pr=2Np[1—f(er—u)]. (29)

This means that only the possibility oful-eg)>T is al-
lowed, sinceN > 1. It gives us

M~ €R
pf=2Nmex;< - )

and

(30

M~ €R
T .

o= NN, 1—2Nmexp< -

In a similar way we find the solution of E¢L6). Writing
it down in the form

A=2iT>, I'i(ie,)Gsliey),
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FIG. 6. Dependence of the impurity-level shift upon the chemi-
cal potential position for different values of the energy gap.

-0.16 -0.15

We assume that the chemical potenjiails located in the
valence band, i.eg<—A (andT<A). Then Eq.(33) sim-

using the spectral representation 8¢, and changing the plifies to

summation over frequency to the contour integratibn
around the Ing) axis in the complex plane, we have

A—_if dz f(z)l“-(z)fw aePE) 31)
B mTJr ! — z—E°’
Using Eq.(18), we obtain
i = p(E)dE
)\——;J'Fdz f(Z)JLw?
d3k zZ+uxA
2\ /2
*| e Vi e ey @

In the integral overz, we can use the poles at=—u

2 (-A f(E—w)TI(E—
)\:__j dg EZRITH(E=p) |
mJ-a  E—ertiNagili(E—pn)

(34)

where we have introduced a cutdff=mu?; m stands for the

contribution to the effective mass from remote battlk.

means that the energy restricts the range of applicability of

Dirac’s model for the energy spectrum at large momenta.
At T=0 we obtain, from Eq(34),

2 I''(E—-
)\z__J’” dE .|( ) .
mJ-a  E—ertiNagili(E—pw)

(39

This integral contains a regular part frdeg| <|E|<A and
singular logarithmic contribution from the region near the

+E, and in the integral ovek, we transfer to the integra- Fermj energyu — eg<|E|<|eg|. The result for singular part

tion overE,:

3
W—”/(Ek)dEka

with the density of states

1
V(E):TZUSEVE — A~

Then we have
—A 0
J o+
— % A

wherel’;(E) is taken withE—E+i 6.

f(E=w)'i(E—p)
E—ertiNagil'i(E—p)’
(33

2
A=—— dE
a

follows:

(36)

2 c
)\:—Fioln y
a M~ €ER

where

E.=|erlex —)
¢ |ert Al /e —AZ

This result is formally obtained foF =0. Since we consider
the rangeT<u—er, the finite temperatures within this
range do not change E36) as follows from calculations.
The results of numerical calculations»find ¢, as func-
tions of u are shown in Figs. 6 and 7. Different energy gaps
A in Figs. 6 and 7 may correspond to different compositions
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0.040 - The static magnetic susceptibility, related to a single-
impurity center(for many noninteracting centers, it should
0.035 - be multiplied by their numberis
O')MZ *x2, 2 ’
0.030 | X= 25 =—-29"“ug | ps(E)f'(E-pn)dE. (39
0.025 |- It gives, forT<N,¢;lio,
X=29*2ugpi(p) (40)
T and, forN,¢;T'io<T,
0.015
df(er— )
— *x2 2
X= =297 g
0.010 |-
=29*2ug . (41)
0.005 |- HBAT cosR[ (eg— w)/2T]"
o.oo_%.16 . _0_'15 . -o.l14 . _0"13 . _0f12 . _O.'“ : If eg<p and (u—eg)/T>1, it simplifies to
e 2 *2 2 —€
u (eV) = gTMBEXF{_MTR). 42)

FIG. 7. Mean number ob bosons at the impurity level as a

function of chemical potential position for different energy gaps. Thus we find a different temperature behavior of the sus-

ceptibility for different temperature regiofgqgs.(40)—(42)].
in IV-VI ternary alloys. As follows from figures, the lower

the gap is, the wider the region ¢f is yvhere intermediate V1. DISCUSSION
valence takes pladwalence changes singg changes from _
0 to a maximum value It is attributed to the indirect cou- We have calculated the density of states of the many-

pling of the impurity state with valence-band ones, via theparticle resonance levalgz near the Fermi energy, with a
intermediate conduction-band states. The impurity energyidth N,¢;I';o. The position of this level and its width de-
level follows x when it moves inside the valence bafidlg.  pend on the chemical potential The behavior of the reso-
6), and the width of the level depends strongly @rin the  nance levels in IV-VI narrow-gap semiconductors differs in
mixed-valence regiofiFig. 7). It is this many-particle level some aspects from that for simple metals with rare-earth im-
that is responsible for the properties of the rare-earth-dopegurities. First, the chemical potential in a semiconductor can
narrow-gap semiconductor. be changed by doping with shallow impurities. No such ef-
fect is possible in metals. Second, the width of the resonance
level is much less than the corresponding value in metals,
due to the small density of states at the Fermi level for
The magnetic moment of an impurity in magnetic field harrow-gap semiconductors. Actually, the width is not deter-

oriented along the axis can be calculated from mined exactly by the electron density of states at the Fermi

level (as it is in metaly but is described by Eq20), which

is related to the more complicated energy band structure of

IV-VI narrow-gap semiconductors.

V. MAGNETIC SUSCEPTIBILITY

M,=g* MB] p(E)[f(E—u—g* ugH) - We have_ res;ricted ourselves by considering only mean-
field approximation theory. In our approach the fluctuations
—f(E— p+g* ugH)]dE (37) of b fields around the mean-field value is not so strongly

suppressed, as for the large-spin theory. The formal reason
where the effectivey factor of our modelg* is determined for that is the_ ab_sence of a large numerical factor in &4
by for the polarization operator: the Iarge_number of yalleys,
N,, only helps us to select the perturbation-theory diagrams
containing theN, factor. Thus the role of fluctuations re-
(38) mains a subject for further study.

I(1+1)
3

g*2=8p% (m?+02)=2(21+1) +1
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