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Theoretical prediction of the peak structure in the EELS spectrum of palladium
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The electron-energy-loss spectrum~EELS! of palladium is calculated using an all-electron method within the
time-dependent density-functional framework. The band-structure is calculated with the spline augmented
plane-wave method that generates a very large number of unoccupied Kohn-Sham levels, which are shown to
be necessary for the evaluation of the density response. The exchange-correlation interaction correction is
included in the local and static approximation and a mixed basis representation is used for the calculation of the
inverse dielectric function. Combining these techniques, it can be shown that the theoretical EELS of palladium
is in much better agreement with the experiment than previous all-electron investigations suggested. Especially
the peak structure at 0.6 Ry compares now fairly well with experimental results.@S0163-1829~99!03923-5#
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I. INTRODUCTION

The dynamic properties of crystal electrons are descri
essentially by the dielectric function~DEF!, since it connects
the external fields applied to a system with the respons
the system itself. It is well known that the knowledge of t
dielectric function is sufficient to calculate the ground-st
energy of the many-electron system1 as well as the quasipar
ticle corrections to the one-particle energies,2,3 e.g., within
the so-calledGWapproximation. Additionally, the quantitie
derived from the DEF, e.g., the dynamical structure facto
the electron-energy-loss spectrum~EELS! addressed in this
work, are essential for the comparison between experim
and theory.4,5 However, for two reasons beyond the nume
cal effort described below, the calculation of the DEF
crystals is a rather demanding task, when compared wi
ground-state calculation or with the calculation of optic
properties in homogeneous systems or in atoms: First,
periodic structure causes so-called crystal local-field effe
i.e., an external perturbation of momentaq causes micro-
scopic fields of momentumq1G, whereG is an arbitrary
reciprocal-lattice vector.6–8 As an immediate consequenc
the calculation of the inverse DEF, which describes
EELS spectrum, requires, e.g., the inversion of a matrix
infinite dimension, indexed with reciprocal-lattice vectorsG
and G8. In the present calculation, however, we will use
different technique to obtain the inverse DEF, which is d
cussed in detail below. Second, many-body corrections
crystals have a more complicated form than they have
homogeneous systems. In the latter case, they can simp
discussed in terms of the dynamical generalization of H
bard’s many-body local-field correction factorGhom(q,v),9

to be distinguished from the above-mentioned crystal loc
field effects. Therefore, for a rather long time, many calc
lations of the DEF in crystals were done within the picture
independent Bloch electrons, and often even neglecting c
tal local-field corrections. Most calculations used either e
pirical potentials or, without further justification, the effe
tive Kohn-Sham~KS! potential of ground-state calculation
performed within density-functional theory~DFT!. While the
first choice is without any theoretical foundation, the seco
PRB 590163-1829/99/59~23!/15085~8!/$15.00
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choice suffers from the deficiency that it is not possible
interpret the energies of the KS orbitals as one-particle e
tations. In this context, the time-dependent local-density
proximation ~TDLDA !, developed by several authors,10–13

explains only how to use the KS orbitals in the static lim
The calculation of the frequency- and wave-vecto
dependent DEF matrix, even at this simple level, requires
amount of numerical work, larger by roughly one order
magnitude than for a corresponding ground-state calculat
This corresponds to the large amount of information which
contained in the DEF. Technically, the increase of numer
effort arises due to the fact that, first, not only the occupi
but all bands are needed. Indeed, as we will show bel
quite a large number of bands is necessary to obtain w
converged results, at least much more than obtained by m
linear band-structure calculations. Second, the calculatio
the corresponding matrix elements is quite involved in
all-electron framework. Third, there is a large number
possible transitions, which are to be included in thek inte-
gration. Calculation techniques for the DEF in an all-electr
framework has been the subject of theoretical studies for
decades now, e.g., in the framework of the Greens-func
method,14,15 of the linearized muffin-tin orbital method,16–18

and of the linear combination of Gaussian orbitals schem19

to mention only a few of them. In this paper we show th
by applying theoretical and numerical concepts, we can ov
come shortcomings of older calculation techniques. In de
we apply the time-dependent density-functional theory
the calculation of the density-density response at an
electron level, using than 500 conduction bands to carry
the perturbation expansion and an interesting technique
the inversion of the DEF. Thereby we are able to reduce
discrepancies between experiment and theory significan
which show up in previous all-electron investigations
transition metals. We have chosen the EELS spectrum o
as a typical example here, since the EELS peak struc
around 0.6 Ry was described rather poorly by previous
electron calculations. Similar deviations between experim
an theory can be found in the EELS spectra of V, Nb, C
Mo, and Ru. In all these cases previous theoretical EE
calculations predict sharp plasmon peaks, which either c
15 085 ©1999 The American Physical Society
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15 086 PRB 59GREGOR-MARTIN FEHRENBACH
respond to rather broad humps in the experimental data
which are even absent. More details can be found in Ref
and the references therein. In this work of Mazinet al., the
optical properties of Pd are analyzed on a self-consistent
all-electron level. Earlier investigations of the optical pro
erties of Pd~Refs. 21–26! use empirical one-particle poten
tials and deal at most with the imaginary part of the DEF
a small frequency range and did not calculate the EE
While Ray, Chowdhuri, and Chatterjee21 and Christensen22

include matrix elements, the other authors23–26 analyze the
optical properties on the level of the combined density
states only.

The remainder of the paper is organized as follows: S
II describes the theoretical and numerical concepts used
Sec. III we discuss the results for the EELS of palladiu
and we draw conclusions in Sec. IV.

Complementary to this paper we will present results
the electron-test-charge DEF elsewhere.27

II. GENERAL THEORY AND NUMERICAL TECHNIQUES

A. The electron-electron DEF in time-dependent
density-functional theory

For roughly a decade, the development of the TDD
~Refs. 28–30! has been providing a rigorous foundation f
calculations of time-dependent quantities in a DFT fram
work by establishing a set of effective self-consistent, tim
dependent one-particle KS equations. This theory genera
the TDLDA for the dynamic and, at least in principle, no
local case. In particular, by working out first-order perturb
tion theory within TDDFT, the electron-electron dielectr
function e reads30

e= ~q,v!51=2@V= C~q!1F= XC~q,v!#•X= KS~q,v!. ~1!

By its definition, this DEF describes the response of the
fective one-particle KS potential felt by the electrons und
the influence of an external electronic perturbation. Henc
is the proper dielectric function to discuss EELS spectra
addition, the DEF~1! describes the screening of the electro
electron interaction used in quasiparticle calculations, e.g
the GW level.31 All doubly underlined quantities in Eq.~1!
correspond to two-point functions which are integral kern
in coordinate space. For the sake of simplicity, we have u
Fourier coefficients so far, e.g.,

e= ~q,v!5F @e~r ,r 8,v!#

5
1

VE
R6

e2 i (q1G)•re~r ,r 8,v!ei (q1G8)•r8d3rd3r 8

~2!

to write down Eq.~1!, which are understood to be matrice
of infinite rank indexed with reciprocal-lattice vectors in th
usual Toeplitz sense.V is the volume of the unit cell. In the
numerical calculations discussed below, however, we are
ing to use a different representation for the two-point fun
tions. In Eq.~1! VC is the Coulomb interaction andX KS is
the density-density response function of the tim
independent KS ground state of the system
or
0
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1

V (
n,n8

E d3k
f nk2 f n8k1q

Enk2En8k1q1v

3Pn,n8~q1G,k!Pn,n8
* ~q1G8,k!, ~3!

which is an analytic function ofv in the upper half of the
complex v plane. TheEnk denote the eigenvalues of th
static KS equations, thef nk are the corresponding occupatio
numbers, andPn,n8(q1G,k) are the matrix elements of th
density operator

Pn,n8~q1G,k!5^nkur~q1G!un8k1q&

→
q1G→0 q

2
•

^nkupun8k&

Enk2En8k

; EnkÞEn8k , ~4!

which, as shown in the second line, can be reduced to ma
elements of the dipole operator in the long-wave limit. F
nally, FXC denotes the exchange-correlation interaction c
rection to the Coulomb potential, which is the Fourier tran
form of the second functional derivative of the exchang
correlation energy of the system

F= XC~q,v!5F S d2EXC

dr~r ,t !dr~r 8,t8!
D . ~5!

The appearance of this quantity is an important feature of
TDDFT and represents the dynamic and nonlocal gene
zation of the static derivativedVXC/dr of the local exchange
and correlation potential, which has been derived earlie
the TDLDA. For further details of the TDDFT formalism w
refer to Refs. 29 and 30. When comparing Eqs.~1! and ~3!
with the corresponding expressions of a system of nonin
acting Bloch electrons, one discovers, first of all, that it
now well justified to use the energies and eigenstates of
KS ground state to set up Eq.~3!. The deficit connected with
the interpretation of the KS energies as excitation energie
removed by the exchange-correlation correction which is
be added to the Coulomb interaction. Second,X KS describes
the density-density response on the level of the effective
system rather than the actual density response of the in
acting many-electron system. The knowledge of the latte
not important for the the calculation of the EELS, which
already described by the response of effective KS poten
However, the response of the many-electron system en
the so-called electron test-charge DEF, which describes
response to external photons. Since we present results fo
electron test-charge dielectric function elsewhere,27 no fur-
ther discussion of this function is given here.

In the following paragraphs we describe the numeri
and analytical aspects of the calculation of the EELS.
detail, the calculation requires:~i! The self-consistent calcu
lation of the band structure;~ii ! a summation over the entir
spectrum to obtain Eq.~3! in the long-wave limit;~iii ! an
integration over the Brillouin zone;~iv! the approximation of
the exchange-correlation correction to the Coulomb inter
tion; ~v! the inversion of the DEF.
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B. Band calculation and evaluation of the KS response

In contrast to a calculation of ground-state properties,
band calculation for the DEF or EELS requires not only t
calculation of the occupied but also of all unoccupied ban
The calculation of the band structure is carried out with
spline augmented plane-wave~SAPW! method,32,33 devel-
oped by the author. This all-electron, full-potential sche
uses a mixed basis as trial functions, which consists of pl
waves, to guarantee the Bloch boundary conditions, an
localized spline orbitals, to describe the rapid oscillations
the wave function near the atomic sites. The correspond
ansatz for the Bloch states reads in the zeroth unit cell

unk&5 (
uk j u<q

Aj uk j&1(
sL

AsLusL&. ~6!

Here we restrict ourselves to the case of one atom in
basis, theA’s are the variational parameters,^r uk j&5eik j •r

denote plane waves withk j5k1Gj , and ^r usL&
5C( ir ) lYL( r̂ )Bsl (r ) are the spline orbitals. In the latter,C
is a normalization constant,YL a spherical harmonic,L
5( l ,m), and Bsl a B spline as defined in Ref. 32, whic
vanishes including its first derivative at the boundary of no
overlapping spheres centered at the atomic sites and ou
of all of them. Furthermore, the sums overL in the second
term of Eq.~6! run only over those angular momenta whi
are included in the augmentation ands numbers theB
splines. For details of the self-consistent full-potent
SAPW scheme we refer to Ref. 33. In the case of palladiu
a convergence of 0.1 mRy for the valence bands and
low-lying conduction bands can be guaranteed by using
following set of trial functions: About 90 plane wave
corresponding to an energy cutoff of q2

513.92 Ry, 65s, 33 p, 33 d, and 17f functions. It is
necessary to includef functions in a calculation of the DEF
since thep operator in Eq.~4! obeys the selection ruleD l
5 l 61 and generates transition from thed-type valence
bands intof-type conduction bands. The corresponding ra
of the eigenvalue problem is about 560. Nonspherical po
tial contributions are included up tol 58, and 60k points in
the irreducible wedge are used for the integration over
first Brillouin zone. Correlation was treated within LDA
using the Perdew-Zunger34 parametrization of the
Ceperly-Alder35 results. It is essential for the following dis
cussion that all bands, including the 1s core state as well a
high-lying conduction bands, are obtained as solution of o
one linear eigenvalue problem:

~H= 2EnkO= !•AI 50, ~7!

whereH= andO= denote the matrices of the Hamiltonian a
the overlap, respectively, set up with the SAPW basis fu
tions, and the variational parametersAj andAsL are arranged
linearly in the arrayA. Among others, the properties of th
SAPW method which are important in the calculation of
sponse functions are:~i! Because the SAPW scheme
strictly linear, all states are mutually orthogonal exactly, d
spite of how large their energy difference is.~ii ! the SAPW
wave function has continuous first derivative everywhe
~iii ! The basis set of the SAPW ansatz is numerically co
plete as is explained below.
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These properties now allow a proper evaluation of
KS-response function: The strict orthogonality and contin
ous first derivative supports a straightforward application
perturbation theory, used to set up Eq.~1!, and calculation of
the matrix elements ofp, respectively. Moreover, using th
methods described in Appendix A of Ref. 32, all integra
with SAPW basis functions can be done analytically. On t
of that, the basis set of the SAPW scheme allows us to p
form the sum over the unoccupied levels in Eq.~3! properly.
The latter turns out to be the most crucial point in a calcu
tion of the DEF. Although Pd is an elementary metal whi
possesses a relatively simple electronic structure, it is ne
sary to include more than 300 empty bands in the sum in
~3! to obtain results which are converged within 1%. Abo
half of the contribution of the unoccupied levels were due
transitions into the 30 lowest conduction bands, while
other bands were responsible for the remainder of the s
and the convergence was very slow. To explain this surp
ingly slow convergence in detail, we first note that the co
vergence behavior of the right-hand side~r.h.s.! of Eq. ~3!
can be analyzed most easily by a numerical investigation
the generalizedf-sum rule of Thomas, Reiche, and Kuhn;36

mi j
2152d i j 18 (

nÞn8

^nkupiun8k&^n8kupj unk&

Enk2En8k

, ~8!

for the tensor of the inverse effective mass. Since the la
can be also calculated directly within a band calculation, t
sum rule may be used as a test for the convergence of s
over unoccupied bands. Moreover, by inserting Eq.~4! in Eq.
~3! and decomposing the denominators into partial fractio
Eq. ~8! can be shown to be of the same order of converge
with respect to the energy denominator as Eq.~3! is for ar-
bitrary frequencies. In Table I we compare the l.h.s. of E
~8! for the uppermost valence bands at a typicalk point of Pd
with the r.h.s. for differing upper limitsM in the sum over
unoccupied bands. We have chosen three special value
M: First of all, M5120 corresponding to a band energy
14.400 Ry above the Fermi level~which roughly corresponds
to the plane-wave cutoff!, secondlyM5300 corresponding
to a band energy of 126.46 Ry above the Fermi level a
finally all 559 bands generated by the SAPW ansatz at
particulark point. The latter is the largest possible value f
the upper limit of the sum, if the results of a linear ba
calculation are used. In this case it corresponds to an en

TABLE I. Comparison of the l.h.s. and r.h.s. of Eq.~8! for three
different limits M of the sum over unoccupied bands. The resu
are given for the~1,3! component, atk5(2/pi)/a(0.75,0.25,0.25),
and for the six highest valence bands.Nmax5559 is the number of
bands generated by the SAPW ansatz at thisk point. Bands are
labeled beginning with the 1s state.

L.h.s. R.h.s.
n ~exact! M5120 M5300 M5Nmax

19 21.007 21.027 21.007 21.007
20 20.410 20.409 20.410 20.410
21 2.093 2.094 2.115 2.094
22 0.111 0.176 0.112 0.110
23 0.711 0.632 0.705 0.710
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15 088 PRB 59GREGOR-MARTIN FEHRENBACH
of about 63105 Ry above the Fermi energy. One wou
expect that at least 300 bands should be sufficient for
accuracy of about 1%, since the energy denominator for
highest band is larger by at least two orders of magnitu
when compared with the the denominator for the first int
band transitions. However, the data in Table I show a diff
ent behavior: We first observe, by comparing the first and
fifth columns, that the sum rule~8! is fulfilled within the
order of 0.1%, if all bands generated by the SAPW ansatz
included. In addition, these results show, now by compar
columns two to five, that in general more than 300 bands
necessary to achieve convergence of the sum in Eq.~8!, and
hence in Eq.~3!, within 1%. In detail, when we truncate th
sum atM5120, which is rather a large number of bands
many linear schemes in the case of Pd already, errors
tween 10 and 30% are to be expected for some bands~here
band 22!, while this, at a first sight, looks sufficient for othe
bands~here bands 20 and 21!. However, if we increase the
upper limit toM5300 the result becomes worse for band 2
when compared with the exact value, which shows that
former agreement was purely by chance. Moreover, deta
analysis of the contributions shows that the convergenc
Eqs. ~3! and ~8! is caused mainly by the magnitude of th
matrix elements and only to a very small extent due to
creasing energy denominators. This explains why the
estimate we gave above was wrong. We conclude from th
observations that, to obtain an accuracy of better than 1%
is necessary to include all bands generated by the SA
ansatz~6!. To understand the slow convergence in Eqs.~3!
and ~8! from an analytical point of view, we start from th
multipole representation of the wave function near
atomic sites. Because of the Coulomb singularity, in the
cinity of the atomic sites the partial wave with angular m
mentumL takes the form̂ r unk&}r lYL . Applying the mo-
mentum operator gives

^r upjunk&}C1
j l r l 21YL1C2

j r lYl 11,m81C3
j r lYl 21,m9 , ~9!

with constantsCn
j depending on the Cartesian indexj. It is

now important to recognize that the first two terms of Eq.~9!
do not belong to the function space spanned by the enti
of the solutions of the Schro¨dinger equation and are, there
fore, neither supplied by the SAPW ansatz nor by any ot
band-structure scheme. That is the reason why the expan
of ^r upjunk& into ^r unk& in general fails at the atomic sites
However, the large variational freedom of the SAPW ans
which results from the application of localized spline orbita
instead of less flexible solutions of the radial Schro¨dinger
equation, enables a proper approximation not only of^r unk&
but also of^r upunk& in a least mean-square sense. This
plains the small remaining errors of about 1% between
l.h.s. and the r.h.s. of Eq.~8! we find in Table I in the case o
M5559. We were able to obtain even smaller errors by
creasing the number of spline functions in the SAPW ans
which illustrates that the approximation properties of t
SAPW ansatz may be improved systematically. Another r
son for the good numerical fulfillment of Eq.~8! is the strict
orthogonality of all bands generated by the SAPW sche
The proceeding discussion proves that the unoccupied le
of the KS equations can be used to evaluate perturba
expressions like Eqs.~3! or ~8! although there is no physica
n
e
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interpretation connected with the corresponding energie
states. Closing this discussion we remark that the effec
masses obtained in DFT here, either by the l.h.s. or the r
of Eq. ~8!, can in general not be compared with their expe
mental counterparts.

Finally, the integration over the Brillouin zone in Eq.~3!
is done with 60 specialk points in the irreducible wedge
with an improved Gilat-Raubenheimer technique that u
¹kEnk for interpolation of the energies. Details of this tec
nique are described in Ref. 37 where it was shown to
numerically superior to the tetrahedron method. Additio
ally, the k dependence of the denominator of Eq.~3! is
linearized.38 The gradients of the band energiesEnk can be
obtained directly by virtue of the Hellmann-Feynma
theorem.39,40 Applied to the linear SAPW eigenvalue prob
lem ~7! the theorem states that

¹kEnk5AI †
•~¹kH= 2Enk¹kO= !•AI , ~10!

and allows us to calculate¹kEnk directly from the corre-
sponding gradients of the HamiltonianH= and the overlapO=
multiplied with the corresponding eigenvectorsA. Conse-
quently ¹kEnk is obtained within the same accuracy as t
eigenvectors. Furthermore, employing the analytical str
ture of the DEF, we decompose Eq.~3! into its real and
imaginary part, either with the aid of Dirac’s identity or b
adding a small imaginary part to the denominator of Eq.~3!,
and calculate the corresponding real and imaginary par
the KS response function directly. We found the differenc
between Ree calculated directly and calculated by Kramer
Kronig ~KK ! integration two orders of magnitude small
than the sum over the unoccupied levels in the KS respo
function Eq.~3!. Incidentally, it turns out that, compared t
the numerical KK integration extending beyond 500 Ry, t
direct method for the calculation of the real part ofX KS is
the preferable one, since it becomes faster and numeric
more accurate. Finally, following Refs. 13 and 41, we se
rated Eq.~3! into interband and intraband contributions a
neglected the intraband contributions to the imaginary p
which have no influence on the EELS in the frequency ran
we discuss here.

C. Exchange-correlation correction

In contrast to corresponding investigations in atoms,42 the
calculation of the exchange-correlation correctionFXC in
solids still requires rather crude approximations. In practi
explicit functionals can be obtained either from the loc
field correction factorGhom of the homogeneous electron ga
or by combining the second functional derivative of the sta
Exc , with a more or lessad hoctreatment of the frequency
dependence by a Pade-type parametrization. In crystals
first approach leads to

FG,G8
xc

~q,v!'2
q2

4pe2
dG,G8G

hom@n#~q1G,v!, ~11!

whereGhom@n# is the local-field correction factor of the ho
mogeneous electron gas with densityn. Available parametri-
zations of Ghom@n# are described extensively in Ref. 4
More recently,Ghom@n# was calculated in the static case b
Moroni, Ceperley, and Senatore44 using quantum Monte
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Carlo techniques. Equation~11! possesses a fullq and v
dependence, but, unfortunately, it neglects crystal local-fi
effects inFXC completely. Another peculiarity of allFXC’s
based on the local-field correction factor is that they are
general not consistent with the exchange-correlation po
tial used in the underlying ground-state calculation. Thus
change and correlation effects are treated differently in
zeroth and in the first order of the perturbation expansi
Moreover, sinceGhom@n# depends on a single density var
ablen only, it is not clear which density is to be inserted in
Eq. ~11! in inhomogeneous systems. In contrast, the sec
approach, in its simplest form, leads to the well-known res

FG,G8
xc

~q,v!'F S dVXC@n#~r !

dn~r 8!
D

G,G8

, ~12!

which, in the case thatVXC is a local functional ofn, recov-
ers the TDLDA. Hence this approach properly accounts
crystal local-field effects and is consistent with the under
ing ground-state calculation as well. However, it neglects
q and v dependence completely. Also the additional fr
quency dependence, which can be introduced by repla
the r.h.s. of Eq.~12! with a frequency dependent Pade´ ap-
proximation, proposed by Gross and Kohn,29 is correct only
for v50 @where it recovers Eq.~12!# and for v→` and
interpolates in between. Fortunately, frequency depende
of FXC is not very important, since we find, in accord wi
other calculations,45,46 that it is quite small in the range o
optical or EELS experiments. We convinced ourselves
intensive test calculations that no significant effects in
EELS are caused by neglecting the time dependence in
~12!, while the use of the first approach~11! gave slightly
worse results, when compared with the experimental d
However, the most significant changes in the DEF occu
via the KS response function, which reacts sensitively to
approximation on the exchange and correlation poten
used in the underlying ground-state calculation. This find
first suggests that in generalFXC gives a rather small correc
tion to the Coulomb interaction. Second, it emphasizes
requirement that the exchange and correlation correc
should be consistent with the particularVXC used in the
ground-state calculation. This can be achieved most easil
employing Eq.~12! the frequency-dependent generalizati
of which did not change the results visibly. Therefore
transition metals, the TDLDA seems to give a sufficient d
scription of the exchange-correlation correction in compa
son with other available techniques. However, the vari
deficiencies of the approximations~11! and ~12! show that
there is need for more realistic approximation onFXC.

D. Inversion of the DEF

It is well known that the EELS spectrum calculated with
first Born approximation47 sEELS(v) is related to the DEF in
the long-wave limit via

sEELS~v!52Ime0,0
21~0,v!. ~13!

Therefore it is necessary to calculate the inverse function
Eq. ~1!. For any two-point functionZ ~like e, X KS,VC, or
FXC) the inverse is in general defined in coordinate space
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d~r2r 8!5E Z21~r ,r 9!Z~r 9,r 8!d3r 9, ~14!

where, here and for the remainder of this paragraph, the
quency arguments of the two-point functions are omitted
general, Eq.~14! is an integral equation forZ21, and ap-
proximate solutions on it can be obtained most easily wit
a suitably chosen finite-dimensioned representation. In so
state physics the plane-wave representations of two-p
functions

Z~r ,r 8!5
V

~2p!3 (
G,G8

E ei (q1G)rZG,G8~q!e2 i (q1G8)•rd3q

~15!

by its Fourier coefficientsZG,G8(q), as employed above in
Eqs. ~1!–~5!, is mostly used. Within this representation th
matrix of the plane-wave coefficients of the correspond
inverse function is the inverse of the matrixZ= , if Z= is in-
dexed with reciprocal-lattice vectors in the usual Toep
form. To this end, all matrices of plane-wave coefficients
two-point functions in Eqs.~1!–~5! have infinite rank, and
must be truncated at a particular reciprocal-lattice vecto
any practical calculation. To judge the numerical capabi
of a certain representation, we require that Eq.~3! must be
able to describe the polarization of the KS system caused
an external perturbation properly. In an all-electron fram
work, the induced electron charge is not only influenced
the weak external perturbation, but also by the rigid lattice
point charges, and therefore will show oscillating behavi
too. For this reason, the plane-wave representation~15! can-
not be expected to converge very fast. Consequently, a l
number of reciprocal-lattice vectors must be included in
matrices of the Fourier coefficients to obtain well converg
results for the corresponding inverse matrix. The slow c
vergence is caused by redistributions of the localized inn
shell electrons. Since an all-electron calculation should
able to handle delocalized electrons as well as states lo
ized near the atomic sites, an expansion ofe andX KS into a
mixed basis of plane waves and localized functions loo
superior to the pure plane-wave representation~12!. There-
fore we employed the expansion of a two-point functionZ
into an arbitrary~not necessarily orthogonal! basis of Bloch
functions$u j q)%:

Z~r ,r 8!5
V

~2p!3 (
j , j 8

E ^r u j q!Zj , j 8~q!~ j 8qur 8&d3q.

~16!

In the case when the Bloch functionsu j q) are chosen mutu-
ally orthogonal Eq.~16! recovers the well-known biorthogo
nal expansion,48 for which simple formulas for the coeffi
cients Zj , j 8(q) can be obtained. However, in the curre
calculation it was convenient to choose ansatz functi
similar to those of the SAPW ansatz~3!, which have nonva-
nishing overlap. In detail, we use a mixed basis, similar
the basis of the SAPW ansatz~6!. It consists ofNpmx527
plane waves~for which u j q)5uqk&) and of localizedB
splines with s symmetry, @for which u j q)5us(0,0)&#.
Thereby fiveB splines turned out to be sufficient. As a co
sequence of the long-wave limit the numberNmax, which is
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necessary to represente andX KS, can be chosen about on
magnitude smaller than the rankNmax of the eigenvalue
problem of the band calculation. Since the basis function
used to represent the two-point functions are not mutu
orthogonal, the inverse relation to Eq.~16! required to obtain
the expansion coefficients is slightly more complicated a
involves the inverse of the overlap matrices. Additional ru
must be developed for inversion and convolution. Expli
formulas for these operations will be presented by
elsewhere.27 The special choice of the basis functions e
ables us to calculate all matrix elements of the density
erator with SAPW basis functions analytically in a ve
simple manner, and it is still possible to interpret the mat
elements between the plane waves in the usual way. F
the numerical point of view, Eq.~16! proved itself to be
superior to Eq.~15! in the case when the inverse dielectr
matrix of Pd was calculated: While we needed about
plane waves in Eq.~15! to obtain the EELS within an accu
racy of 1% from the corresponding DEFe, the same accu
racy can be obtained with the aid of Eq.~16! using 27 plane
waves and 5B-spline functions forl 50. Thereby the nu-
merical cost for the inversion of Eq.~1! was lowered by
roughly 25% and we also saved computation time sinc
smaller number of matrix elements were needed. Additio
test calculations showed that corrections, which can be
pected when increasingNpw , when including mores-typeB
splines, or when includingB spline functions with higher
angular momentum, are in general below 1%.

In addition, in the long-wave limitq21 singularities show
up in the elementse0,G of the DEF~1! and in the correspond
ing plane-wave elements when using the representation~16!.
The analytical properties ofe and e21 which result from
these singularities were first investigated by Pick a
Martin.49 In case of the RPA, Pick and Martin were able
show that inverse DEFe21 has alsoq21 singularities in their
(0,G) elements and explained how these elements can
handled. It is not too difficult to show, that analogous form
las apply to the DEF in TDDFT when the representation~16!
is used, too. In detail, we find

Z0,G~0,v!}q21,

Z0, j~0,v!}q21 ~ j -spline index!, ~17!

ZG,0~0,v!}q,

Zj ,0~0,v!}q ~ j -spline index!,

whereZ now stands fore or e21 while in all other cases

Zj , j 8~0,v!5finite ~18!

holds. We treated these singularities numerically with
help of the Hermitian dielectric matrix~HDM! method,13,50

which was slightly modified for our purposes to apply to t
case when the representation~16! is used.

III. RESULTS AND DISCUSSION

Figure 1 compares the EELS calculated in the pres
work with experimental data of Daniels and co-workers,51,52

obtained with electron spectroscopy, and with the results
is
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previous all-electron calculation, which was carried out
Mazin et al.20 within random-phase-approximation~RPA!
using a linearized muffin-tin orbital53,54 ~LMTO! scheme to
evaluate the band structure. In the latter calculation 16 ba
are used to model the valence and conduction-band struc
and crystal local-field effects are neglected. While the ove
structure is qualitatively the same in all three curves,
discover that the broad peak, which occurs in the experim
tal data at 0.54 Ry compares quite well with a hump at 0
Ry in the present calculation. On the contrary, the results
Maximov et al. predict a very narrow peak which is twice a
high as the experimental one at 0.61 Ry. Also the featu
which can be observed in the experimental curve betw
1.50 and 2.20 Ry are overestimated by this calculation. O
positely, the present calculation is in rather close agreem
with the experimental data, although it slightly overestima
the EELS between the first and the second peak~1.24 Ry
present calculation, 1.23 Ry experiment! while it underesti-
mates it at the third peak~1.80 Ry present calculation, 1.8
Ry experiment! as well as for higher frequencies. Neverth
less, the positions and structures of the second and the
peak agree fairly well with the experimental data and mu
better than the results of Mazinet al. do. The additional
structure, which can be seen in both theoretical curves
tween 0.2 and 0.5 Ry, which is not present in the experim
tal data, stems from intraband transition aroundL and W.
Since the Fermi surface is quite complicated in this reg
~see Ref. 26 for a plot of the Fermi surface of Pd!, we expect
that these transitions react quite sensitive to further ma
body or relativistic corrections, which have been neglected
both calculations. In addition, the relation between the EE
spectrum and the inverse DEF~13! is restricted to the first
Born approximation, which is exact for scattering of ve
fast electrons only. Therefore, to a minor extent, also intr
sic deviations between the EELS and the inverse DEF ca
responsible for the discrepancies that show up between
periment and theory. Nevertheless, the overall agreemen
tween our calculation and the experimental results is q
good, while our SAPW calculation and the older LMTO in
vestigation roughly differ by a factor of 2 over a large fr
quency range.

To interpret these surprising discrepancies between b
calculations we first note that there is an intimate connec
between the sharp structure which can be seen in the LM
results and truncation of the spectrum after only 16 ban

FIG. 1. EELS of solid palladium. Solid line: present wor
dashed line: LMTO calculation of Maximovet al. ~Ref. 20!; dotted
line: experiment by Daniels and co-workers~Refs. 51 and 52!. The
energies are in Ry.
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This connection can be established by remembering
usualf-sum rule, which states47 that

vp
252

2

pE0

`

v Ime21~0,v!dv, ~19!

with the plasma frequency defined byvp5A4pne2/m,
wheren stands for the number of electrons included in t
calculation of e. Since Eq.~19! can be derived from the
analytical properties ofe21 only, it holds independently
from the approximations made for exchange and correlat
if n is set to the number of occupied bands. In turn, dev
tions from Eq.~19!, which occur in numerical calculation
are due to the discretization of thek integration, the calcu-
lation of the response function, and the inversion proced
Since Ime21(0,v) is negative for all frequencies, any trun
cation of the spectrum of the Hamiltonian by omitting som
valence bands will tend to enhance the peaks in the EE
artificially in order to satisfy Eq.~19!. This finding shows
that even at low frequencies it is necessary to include a la
part of the spectrum of the KS equations in the calculation
the DEF in order to describe the structure of the EELS c
rectly. The high-lying KS levelsun8k& enter the calculation
of Ree either directly or via KK integration from Ime at the
frequenciesEn8k2Enk1v, wherebyn runs over all occupied
bands. As showed above the necessity to include high-ly
KS levels is caused by the analytical properties of the dip
operator in presence of a Coulomb singularity. Therefore
expect similar effects to occur also in other response fu
tions. This is supported by the fact that we find Eq.~19!
fulfilled within roughly 1% in our calculation.

The other important difference between our calculat
and the work of Mazinet al.20 is that crystal local-field ef-
fects have been neglected in the latter investigations. In
present work neglecting crystal local-field corrections wo
have changed the EELS by about 10% in the freque
range shown in Fig. 1 and therefore must be considered t
quite important. However, the error made by neglecting
crystal local-field corrections is small when compared w
the error made by using too few unoccupied bands in
evaluation of the KS response. Hence neglecting the cry
local-field corrections can be considered to be only a mi
reason for the large deviations between the results of Ma
et al.,20 the experimental EELS, and our results, respective

For clarity, we have omitted additional energy-loss d
sets published by Weaver and Benbow55–57 in Fig. 1, since
they do not differ too much from the results obtained
-
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Daniels and co-workers.51,52 In addition, the results of
Weaver and Benbow are obtained either by analyzing
and weighing various experimental data,55,57which were ob-
tained by several authors and various experimental te
niques~e.g., electron as well as photon experiments are e
ployed! or even solely by synchrotron radiation experimen
For details we refer the reader to Ref. 57. As far as pho
experiments are concerned it is questionable whether an
terpretation in terms of electron-electron DEF is adequa
For these reasons, we believe that the data of Daniels
co-workers51,52 we used in Fig. 1 are more suited for a com
parison with the inverse electron-electron DEF than the d
of Weaver and Benbow.

IV. CONCLUSION

The present calculation of the EELS of Pd shows that
differences between an all-electron calculation and the
periment is much smaller than previous theoretical investi
tions suggested. Our analysis of these results shows th
precise calculation of the KS response function is most
portant for this improvement and that it requires including
very large number of unoccupied bands in the perturba
expansion of the KS response function. Unfortunately, t
increases the computational effort significantly, since
computation time increases like the fourth power of the nu
ber of KS levels. There is a faint hope that this effort can
reduced in the future using direct methods to calculate
KS response in an all-electron framework. While such me
ods for a direct calculation of the KS response function
known for the pseudopotential approximation58 as well as for
spherical atoms,12 no such techniques are currently app
cable to all-electron band-structure methods. In this situa
the SAPW method is quite useful, since it is able to gener
a number of unoccupied bands, which is large enough
ensure an accurate calculation of the KS response. Bey
this large correction steaming from the use of a numerica
complete basis set, only minor improvements can
achieved by including crystal local-field effects and by ad
ing the exchange-correlation correction to the Coulomb
teraction.
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39H. Hellmann,Einführung in die Quantenchemie~Franz Deutike,

Leipzig, 1937!.
40R.P. Feynman, Phys. Rev.56, 340 ~1939!.
41J.E. Sipe and E. Ghahramani, Phys. Rev. B48, 11 705~1993!.
42M. Petersilka, U.J. Grossmann, and E.K.U. Gross, Phys. R

Lett. 76, 1212~1996!.
43B. Dabrowski, Phys. Rev. B34, 4989~1986!.
44S. Moroni, D.M. Ceperly, and G. Senatore, Phys. Rev. Lett.75,

689 ~1995!.
45M. Ehrnsperger and H. Bross, J. Phys.: Condens. Matter9, 1225

~1997!.
46E.K.U. Gross~private communication!.
47D. Pines,Elementary Excitations in Solids~Benjamin, New York,

1964!.
48P.M. Morse and H. Feshbach,Methods of Theoretical Physic

~McGraw-Hill, New York, 1953!.
49R. Pick, M.H. Cohen, and R.M. Martin, Phys. Rev. B1, 910

~1970!.
50S. Baroni and R. Resta, Phys. Rev. B33, 7017~1986!.
51J. Daniels, Z. Phys.227, 234 ~1969!.
52J. Daniels, C. v. Festenberg, H. Raether, and K. Zeppenfeld

Optical Constants of Solids by Electron Spectroscopy, edited by
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