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The electron-energy-loss spectrdBELS) of palladium is calculated using an all-electron method within the
time-dependent density-functional framework. The band-structure is calculated with the spline augmented
plane-wave method that generates a very large number of unoccupied Kohn-Sham levels, which are shown to
be necessary for the evaluation of the density response. The exchange-correlation interaction correction is
included in the local and static approximation and a mixed basis representation is used for the calculation of the
inverse dielectric function. Combining these techniques, it can be shown that the theoretical EELS of palladium
is in much better agreement with the experiment than previous all-electron investigations suggested. Especially
the peak structure at 0.6 Ry compares now fairly well with experimental repB2463-18209)03923-5

[. INTRODUCTION choice suffers from the deficiency that it is not possible to
interpret the energies of the KS orbitals as one-particle exci-
The dynamic properties of crystal electrons are describethtions. In this context, the time-dependent local-density ap-
essentially by the dielectric functidiEF), since it connects proximation (TDLDA), developed by several authdfs*®
the external fields applied to a system with the response axplains only how to use the KS orbitals in the static limit.
the system itself. It is well known that the knowledge of theThe calculation of the frequency- and wave-vector-
dielectric function is sufficient to calculate the ground-statedependent DEF matrix, even at this simple level, requires an
energy of the many-electron systeas well as the quasipar- amount of numerical work, larger by roughly one order of
ticle corrections to the one-particle energi€se.g., within  magnitude than for a corresponding ground-state calculation.
the so-calledsW approximation. Additionally, the quantities This corresponds to the large amount of information which is
derived from the DEF, e.g., the dynamical structure factor orcontained in the DEF. Technically, the increase of numerical
the electron-energy-loss spectr{EBELS) addressed in this effort arises due to the fact that, first, not only the occupied,
work, are essential for the comparison between experimeriut all bands are needed. Indeed, as we will show below,
and theory*® However, for two reasons beyond the numeri- quite a large number of bands is necessary to obtain well
cal effort described below, the calculation of the DEF inconverged results, at least much more than obtained by many
crystals is a rather demanding task, when compared with Bnear band-structure calculations. Second, the calculation of
ground-state calculation or with the calculation of opticalthe corresponding matrix elements is quite involved in an
properties in homogeneous systems or in atoms: First, thall-electron framework. Third, there is a large number of
periodic structure causes so-called crystal local-field effectgpossible transitions, which are to be included in khante-
i.e., an external perturbation of momerdacauses micro- gration. Calculation techniques for the DEF in an all-electron
scopic fields of momentumy+G, whereG is an arbitrary  framework has been the subject of theoretical studies for two
reciprocal-lattice vectdt:® As an immediate consequence, decades now, e.g., in the framework of the Greens-function
the calculation of the inverse DEF, which describes themethod!*!® of the linearized muffin-tin orbital methdd;*8
EELS spectrum, requires, e.g., the inversion of a matrix ofand of the linear combination of Gaussian orbitals sch&me,
infinite dimension, indexed with reciprocal-lattice vect@s to mention only a few of them. In this paper we show that,
and G'. In the present calculation, however, we will use aby applying theoretical and numerical concepts, we can over-
different technique to obtain the inverse DEF, which is dis-come shortcomings of older calculation techniques. In detail,
cussed in detail below. Second, many-body corrections inve apply the time-dependent density-functional theory for
crystals have a more complicated form than they have irthe calculation of the density-density response at an all-
homogeneous systems. In the latter case, they can simply ledectron level, using than 500 conduction bands to carry out
discussed in terms of the dynamical generalization of Hubthe perturbation expansion and an interesting technique for
bard’s many-body local-field correction fact&"°™(q,w),°  the inversion of the DEF. Thereby we are able to reduce the
to be distinguished from the above-mentioned crystal localdiscrepancies between experiment and theory significantly,
field effects. Therefore, for a rather long time, many calcu-which show up in previous all-electron investigations on
lations of the DEF in crystals were done within the picture oftransition metals. We have chosen the EELS spectrum of Pd
independent Bloch electrons, and often even neglecting cryss a typical example here, since the EELS peak structure
tal local-field corrections. Most calculations used either em-around 0.6 Ry was described rather poorly by previous all-
pirical potentials or, without further justification, the effec- electron calculations. Similar deviations between experiment
tive Kohn-Sham(KS) potential of ground-state calculations an theory can be found in the EELS spectra of V, Nb, Cr,
performed within density-functional theofpFT). While the Mo, and Ru. In all these cases previous theoretical EELS
first choice is without any theoretical foundation, the secondtalculations predict sharp plasmon peaks, which either cor-
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respond to rather broad humps in the experimental data, or 1 foe—fris
which are even absent. More details can be found in Ref. 20 X == f d¥k— 9
and the references therein. In this work of Maeinal, the U Enk—Enrksgt o
optical properties of Pd are analyzed on a self-consistent and
all-electron level. Earlier investigations of the optical prop-
erties of Pd(Refs. 21-2§ use empirical one-particle poten-
tials and deal at most with the imaginary part of the DEF inwhich is an analytic function ob in the upper half of the
a small frequency range and did not calculate the EELScomplex o plane. TheE,, denote the eigenvalues of the
While Ray, Chowdhuri, and Chatterféeand Christenséf  static KS equations, thi, are the corresponding occupation
include matrix elements, the other autHdré® analyze the numbers, and, ,.(q+G,k) are the matrix elements of the
optical properties on the level of the combined density ofdensity operator
states only.

The remainder of the paper is organized as follows: Se _ ,
Il describes the theoretical and numerical concepts used,?ﬁ"'”'(quG'k) (nklp(a+G)n"k+a)
Sec. lll we discuss the results for the EELS of palladium,

Xpn,n’(q+G,k)P:,nr(Q"'G/,k), (3)

and we draw conclusions in Sec. IV. a+G-0 g (nk|p/n’k)
Complementary to this paper we will present results for - e e Enc#Enriks 4
the electron-test-charge DEF elsewh€re. Enk—Enrk

which, as shown in the second line, can be reduced to matrix

elements of the dipole operator in the long-wave limit. Fi-

A. The electron-electron DEF in time-dependent nally, FXC denotes the exchange-correlation interaction cor-
density-functional theory rection to the Coulomb potential, which is the Fourier trans-

For roughly a decade, the development of the TDDFTform of the second functional derivative of the exchange-

(Refs. 28—3D has been providing a rigorous foundation for correlation energy of the system

calculations of time-dependent quantities in a DFT frame-

work by establishing a set of effective self-consistent, time-

dependent one-particle KS equations. This theory generalizes Exc(q,w) =f<

the TDLDA for the dynamic and, at least in principle, non-

local case. In particular, by working out first-order perturba-

tion theory within TDDFT, the electron-electron dielectric The appearance of this quantity is an important feature of the

function e reads® TDDFT and represents the dynamic and nonlocal generali-

zation of the static derivativeVV*/dp of the local exchange

€(q,0)=1—[VS(q)+ FX(q,0)]- ¥*(q, ). (1) and correlation potential, which has been derived earlier in
= = T = B the TDLDA. For further details of the TDDFT formalism we

srefer to Refs. 29 and 30. When comparing Eds.and (3)

I. GENERAL THEORY AND NUMERICAL TECHNIQUES

2
8%Eyc ) | -

op(r,t)p(r',t")

By its definition, this DEF describes the response of the ef-* _ _ :
fective one-particle KS potential felt by the electrons underVith the corresponding expressions of a system of noninter-
the influence of an external electronic perturbation. Hence ificting Bloch electrons, one discovers, first of all, that it is

is the proper dielectric function to discuss EELS spectra. Iffi0W Well justified to use the energies and eigenstates of the
addition, the DER1) describes the screening of the electron-KS ground state to set up E(). The deficit connected with

electron interaction used in quasiparticle calculations, e.g., 4f€ intérpretation of the KS energies as excitation energies is
the GW level! All doubly underlined quantities in Ed1) removed by the exchange-correlation correction which is to

. B S .
correspond to two-point functions which are integral kerneld?€ added to the Coulomb interaction. Secohil? describes

in coordinate space. For the sake of simplicity, we have usel'® density-density response on the level of the effective KS
Fourier coefficients so far, e.g., system rather than the actual density response of the inter-

acting many-electron system. The knowledge of the latter is
not important for the the calculation of the EELS, which is

€(q,0)=Fe(r,r',0)] already described by the response of effective KS potential.
1 . . o However, the response of the many-electron system enters
=5f Ge"(‘“G)'rE(r,r’,w)e'(q+G ) d3rd3r’ the so-called electron test-charge DEF, which describes the

R

response to external photons. Since we present results for the
(2)  electron test-charge dielectric function elsewtérap fur-

ther discussion of this function is given here.
to write down Eq.(1), which are understood to be matrices In the following paragraphs we describe the numerical
of infinite rank indexed with reciprocal-lattice vectors in the and analytical aspects of the calculation of the EELS. In
usual Toeplitz sensé) is the volume of the unit cell. In the detail, the calculation require§;) The self-consistent calcu-
numerical calculations discussed below, however, we are gdation of the band structurdii) a summation over the entire
ing to use a different representation for the two-point func-spectrum to obtain Eq.3) in the long-wave limit;(iii) an
tions. In Eq.(1) VC is the Coulomb interaction an&®Sis integration over the Brillouin zongjv) the approximation of
the density-density response function of the time-the exchange-correlation correction to the Coulomb interac-
independent KS ground state of the system tion; (v) the inversion of the DEF.
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B. Band calculation and evaluation of the KS response TABLE I. Comparison of the l.h.s. and r.h.s. of E§) for three

In contrast to a calculation of ground-state properties, th&'erent limits M of the sum over unoccupied bands. The results
lculation for the DEF or EELS requires not onl theare given for thg1,3) component, ak=(2/pi)/a(0.75,0.25,0.25),
band calcula . q . y and for the six highest valence bandl,,,=559 is the number of
calculation of the occupied but also of all unoccupied bandsbands generated by the SAPW ansat;X at khisoint. Bands are
The calculation of the band structure is carried out with theyqjaq beginning with theslstate. '

spline augmented plane-wa8APW) method®?33 devel-

oped by the author. This all-electron, full-potential scheme Lh.s. R.h.s.

uses a mixed basis as trial functions, which con_s_ists of plane |, (exac) M =120 M =300 M =N,

waves, to guarantee the Bloch boundary conditions, and of

localized spline orbitals, to describe the rapid oscillations of 19 —1.007 —1.027 —1.007 —1.007

the wave function near the atomic sites. The corresponding 20 —-0.410 —0.409 —0.410 —-0.410

ansatz for the Bloch states reads in the zeroth unit cell 21 2.093 2.094 2.115 2.094
22 0.111 0.176 0.112 0.110
23 0.711 0.632 0.705 0.710

|nk>=‘k2qu|kj>+§ AgllsL). (6)
il=<

Here we restrict ourselves to the case of one atom in the These properties now allow a proper evaluation of the
basis, theA’s are the variational parameterg|k;)=e'i""  KS-response function: The strict orthogonality and continu-
denote plane waves withk;=k+G;, and (r[sL) ous first derivative supports a straightforward application of
=C(ir)'Y,(7)Bs/(r) are the spline orbitals. In the lattag, ~Perturbation theory, used to set up Eg), and calculation of

is a normalization constanty, a spherical harmonicL ~ the matrix elements op, respectively. Moreover, using the
=(1,m), and B, a B spline as defined in Ref. 32, which methods described in Appendix A of Ref. 32, all integrals
vanishes including its first derivative at the boundary of nonWith SAPW basis functions can be done analytically. On top
overlapping spheres centered at the atomic sites and outsi@é that, the basis set of the SAPW scheme allows us to per-
of all of them. Furthermore, the sums oweiin the second form the sum over the unoccupied levels in E3). properly.
term of Eq.(6) run only over those angular momenta which The latter turns out to be the most crucial point in a calcula-
are included in the augmentation asdnumbers theB  tion of the DEF. Althoug_h Pd is an ele_mentary me_ta_l which
splines. For details of the self-consistent full-potentialPOSsesses a relatively simple electronic structure, it is neces-
SAPW scheme we refer to Ref. 33. In the case of palladium$a'y t0 include more than 300 empty bands in the sum in Eq.
a convergence of 0.1 mRy for the valence bands and th ) to obtain results which are converged within 1%. About

low-lying conduction bands can be guaranteed by using th8alf of the contribution of the unoccupied levels were due to
following set of trial functions: About 90 plane waves, transitions into the 30 lowest conduction bands, while all

corresponding to an  energy  cutoff  of g other bands were responsible for the remainder of the sum,
—13.92 Ry, 65s, 33 p, 33 d, and 17f functions. It is gnd the convergence was very_slow. To explain this surpris-
necessary to includefunctions in a calculation of the DEF, ingly slow convergence in detail, we first note that the con-
since thep operator in Eq(4) obeys the selection rulal ~ vergence behavior of the right-hand sitteh.s) of Eq. (3)
=1+1 and generates transition from thbtype valence Ca" be ana!yzed most easily by a numerlcal investigation of
bands intof-type conduction bands. The corresponding rankh€ generalized-sum rule of Thomas, Reiche, and Kutfh;

of the eigenvalue problem is about 560. Nonspherical poten- (nk]pn’ k)(n’ K| py|nk)

tial contributions are included up te=8, and 60k points in m:t=25.+8 >, i B , (8)

the irreducible wedge are used for the integration over the ' R Enc—Enrk

first Brillouin zone. Correlation was treated within LDA . . .
using the Perdew-Zung¥r parametrization of the for the tensor of the inverse effective mass. Since the latter

Ceperly-Alde? results. It is essential for the following dis- €&N be also calculated directly within a band calculation, this
cussion that all bands, including the tore state as well as SUM rule may be used as a test for the convergence of sums

high-lying conduction bands, are obtained as solution of only?Ver unoccupied bands. Moreover, by inserting @gin Eq.
one linear eigenvalue problem: (3) and decomposing the denominators into partial fractions,

Eq. (8) can be shown to be of the same order of convergence
(H—E,0)-A=0, 7 with respect to the energy denominator as 8j.is for ar-
- =7 bitrary frequencies. In Table | we compare the I.h.s. of Eq.
whereH and O denote the matrices of the Hamiltonian and (8) for the uppermost valence bands at a typicabint of Pd
the overlap, respectively, set up with the SAPW basis funcwith the r.h.s. for differing upper limitd1 in the sum over
tions, and the variational parametérsandAg, are arranged unoccupied bands. We have chosen three special values of
linearly in the arrayA. Among others, the properties of the M: First of all, M=120 corresponding to a band energy of
SAPW method which are important in the calculation of re-14.400 Ry above the Fermi lev@lhich roughly corresponds
sponse functions are(i) Because the SAPW scheme is to the plane-wave cutoff secondlyM =300 corresponding
strictly linear, all states are mutually orthogonal exactly, deto a band energy of 126.46 Ry above the Fermi level and
spite of how large their energy difference {8) the SAPW finally all 559 bands generated by the SAPW ansatz at this
wave function has continuous first derivative everywhereparticulark point. The latter is the largest possible value for
(iii) The basis set of the SAPW ansatz is numerically comthe upper limit of the sum, if the results of a linear band
plete as is explained below. calculation are used. In this case it corresponds to an energy
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of about 6<10° Ry above the Fermi energy. One would interpretation connected with the corresponding energies or
expect that at least 300 bands should be sufficient for aftates. Closing this discussion we remark that the effective
accuracy of about 1%, since the energy denominator for the1asses obtained in DFT here, either by the |.h.s. or the r.h.s.
highest band is larger by at least two orders of magnitude9f EQ. (8), can in general not be compared with their experi-
when compared with the the denominator for the first inter-mental counterparts.

band transitions. However, the data in Table | show a differ- Finally, the integration over the Brillouin zone in E®)

ent behavior: We first observe, by comparing the first and thé done with 60 speciak points in the irreducible wedge
fifth columns, that the sum rulé8) is fulfilled within the ~ with an improved Gilat-Raubenheimer technique that uses
order of 0.1%, if all bands generated by the SAPW ansatz ar¥kEn for interpolation of the energies. Details of this tech-
included. In addition, these results show, now by comparindiique are described in Ref. 37 where it was shown to be
columns two to five, that in general more than 300 bands argumerically superior to the tetrahedron method. Addition-
necessary to achieve convergence of the sum in@gand  ally, the k dependence of the denominator of EHQ) is
hence in Eq(3), within 1%. In detail, when we truncate the linearized® The gradients of the band energigg, can be
sum atM = 120, which is rather a large number of bands forobtained directly by virtue of the Hellmann-Feynman
many linear schemes in the case of Pd already, errors b&eorent*° Applied to the linear SAPW eigenvalue prob-
tween 10 and 30% are to be expected for some bémete  lem (7) the theorem states that

band 22, while this, at a first sight, looks sulfficient for other ;

bands(here bands 20 and 21However, if we increase the VkEn=A"-(ViH-EnVO)-A, (10)
upper limit toM =300 the result becomes worse for band 21,534 allows us to calculat¥ (E,, directly from the corre-

when compared with the exact value, which shows that the,onding gradients of the Hamiltonihand the overla
former agreement was purely by chance. Moreover, detalleqmmp"ed with the corresponding eigenvectohs Conse-

analysis of the contributions shows that the convergence i enty v, E,, is obtained within the same accuracy as the
Egs. (3) and (8) is caused mainly by the magnitude of the gjyanyectors. Furthermore, employing the analytical struc-

matrix elements and only to a very small extent due to iNure of the DEF, we decompose E€®) into its real and
aginary part, either with the aid of Dirac’s identity or by

creasing energy denominators. This explains why the firs
estimate we gave above was wrong. We conclude from thesé?dding a small imaginary part to the denominator of &,

observations that, to obtain an accuracy of better than 1%’\&nd calculate the corresponding real and imaginary part of
is necessary to include all bands generated by the SAPW (5 response function directly. We found the differences
ansatz(6). To understgnd the. Slow convergence in B between Re calculated directly and calculated by Kramers-
and(8) from an analyt_lcal point of view, we start from the Kronig (KK) integration two orders of magnitude smaller
muItlpoIe_ representation of the wave .functpn near th. han the sum over the unoccupied levels in the KS response
atomic sites. Because of the Coulomb singularity, in the vi-

e S . X unction Eq.(3). Incidentally, it turns out that, compared to
cinity of the atomic sites the partial wave with angular MO-the numerical KK integration extending beyond 500 Ry, the
mentumL takes the form(r|nk)er'Y, . Applying the mo-

. direct method for the calculation of the real part&fS is
mentum operator gives the preferable one, since it becomes faster and numerically
[ P . more accuraf[e. F_inally, following Refs. 13 and _41, we sepa-
(rlpInk)ecCLIr =Y+ ChrY g m + CAY 1 _1mr, (9 rated Eq.(3) into interband and intraband contributions and

neglected the intraband contributions to the imaginary part,

with constantsC;, depending on the Cartesian indxtis  which have no influence on the EELS in the frequency range
now important to recognize that the first two terms of B). e discuss here.

do not belong to the function space spanned by the entirety
of the solutions of the Schdinger equation and are, there-
fore, neither supplied by the SAPW ansatz nor by any other
band-structure scheme. That is the reason why the expansion In contrast to corresponding investigations in gtdﬁ'ﬁb,e

of (r|p|nk) into (r|nk) in general fails at the atomic sites. calculation of the exchange-correlation correctiBfi® in
However, the large variational freedom of the SAPW ansatzsolids still requires rather crude approximations. In practice,
which results from the application of localized spline orbitalsexplicit functionals can be obtained either from the local-
instead of less flexible solutions of the radial Satinger field correction factoG"°™ of the homogeneous electron gas
equation, enables a proper approximation not onlyrfiik) or by combining the second functional derivative of the static
but also of(r|p|nk) in a least mean-square sense. This ex-Exc, With a more or lessad hoctreatment of the frequency
plains the small remaining errors of about 1% between théleépendence by a Pade-type parametrization. In crystals, the
l.h.s. and the r.h.s. of E@8) we find in Table I in the case of first approach leads to
M =559. We were able to obtain even smaller errors by in-

creasing the number of spline functions in the SAPW ansatz, xc _
which illustrates that the approximation properties of the Foo (Gw)~- Ame?
SAPW ansatz may be improved systematically. Another rea-

son for the good numerical fulfilment of E(B) is the strict ~ whereG"°" n] is the local-field correction factor of the ho-
orthogonality of all bands generated by the SAPW schememogeneous electron gas with densityAvailable parametri-
The proceeding discussion proves that the unoccupied leveimtions of G"°"n] are described extensively in Ref. 43.
of the KS equations can be used to evaluate perturbatioMore recently,G"°" n] was calculated in the static case by
expressions like Eq$3) or (8) although there is no physical Moroni, Ceperley, and Senatéfeusing quantum Monte

C. Exchange-correlation correction

2

86,6:G""Nl(q+G,w), (11)
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Carlo techniques. Equatiofll) possesses a fulj and w
dependence, but, unfortunately, it neglects crystal local-field
effects inF*© completely. Another peculiarity of aF*'s
based on the local-field correction factor is that they are invhere, here and for the remainder of this paragraph, the fre-
general not consistent with the exchange-correlation poterfiluency arguments of the two-point functions are omitted. In
tial used in the underlying ground-state calculation. Thus exgeneral, Eq(14) is an integral equation foZ ~*, and ap-
change and correlation effects are treated differently in th@roximate solutions on it can be obtained most easily within
zeroth and in the first order of the perturba’[ion expansion_a suitably chosen finite-dimensioned representation. In solid-
Moreover, sinceG"°" n] depends on a single density vari- state physics the plane-wave representations of two-point
ablen only, it is not clear which density is to be inserted into functions

Eg. (11) in inhomogeneous systems. In contrast, the second
approach, in its simplest form, leads to the well-known result

5(r—r’)=f Z Yr,r"zZ(r",r)d3r", (14)

QO ) ) '
Z(r,r’)=(2 )3 2 Je'(q+G)rZG,Gr(q)e_'(q+G)"d3q
m G,G’
Fe (g w>~f(—5vxc[”]“)> (12 (19
G,G’ ’ , 3
on(r’) /g by its Fourier coefficientZg /(q), as employed above in
Egs. (1)—(5), is mostly used. Within this representation the

. - XC . .
which, in the case that IS a local functional oh, recov- matrix of the plane-wave coefficients of the corresponding
ers the TDLDA. Hence this approach properly accounts for

: _ _ . inverse function is the inverse of the mati#x if Z is in-
crystal local-field effects and is consistent with the underly- & 1T Z

) . . dexed with reciprocal-lattice vectors in the usual Toeplitz
ing ground-state calculation as well. However, it neglects theform. To this end, all matrices of plane-wave coefficients of

g and o dependence completely. Also the additional fre-y, nsint functions in Eqs(1)—(5) have infinite rank, and
quency dependence, which can be introduced by replacing, st pe truncated at a particular reciprocal-lattice vector in
the r_.h.s._ of Eq(12) with a frequency dep(_endent Padp- any practical calculation. To judge the numerical capability
proximation, proppsed by Gross and Kofiris correct only of a certain representation, we require that Bj.must be

for @=0 [where it recovers Eq(12)] and forw—c and  ape g describe the polarization of the KS system caused by
mter)eglgtes in bet\{veen. Fortunately, frequepcy dependgn% external perturbation properly. In an all-electron frame-
of F™* is not very important, since we find, in accord with \y4r¢ the induced electron charge is not only influenced by
other calculation&;*® that it is quite small in the range of o \weak external perturbation, but also by the rigid lattice of
_optlca! or EELS experiments. We c_on\_n_nced 0Uf5€|V_es b¥oint charges, and therefore will show oscillating behavior,
intensive test calculations thfit no S|gn|f|cant effects in th 00. For this reason, the plane-wave representai&hcan-
EELS are caused by negleptmg the time dependence N Eflot be expected to converge very fast. Consequently, a large
(12), while the use of the first approadfil) gave slightly  mper of reciprocal-lattice vectors must be included in the
worse results, when compared with the experimental datgyirices of the Fourier coefficients to obtain well converged

However, the most significant changes in the DEF occuredg it for the corresponding inverse matrix. The slow con-
via the KS response function, which reacts sensitively t0 the e ence is caused by redistributions of the localized inner-

approximation on fche exchange and corr(_elation .po_ten.ti hell electrons. Since an all-electron calculation should be
used in the underlying ground-state calculation. This finding, e to handle delocalized electrons as well as states local-
first suggests that in general'® gives a rather small correc- o4 near the atomic sites. an expansiore aind X¥S into a

tion to the Coulomb interaction. Second, it emphasizes the,iyeq pasis of plane waves and localized functions looks
requirement that the exchange and correlation correctmguperior to the pure plane-wave representafii®). There-
should be consistent with the particul®® used in the fore we employed the expansion of a two-point function

ground-state calculation. This can be achieved most easily by:q an arbitrary(not necessarily orthogonabasis of Bloch
employing Eq.(12) the frequency-dependent generalizationfunctions{|jq)}:

of which did not change the results visibly. Therefore in

transition metals, the TDLDA seems to give a sufficient de- )

scription of the exchange-correlation correction in compari- 7y r’)= > f (rliwz; i (a)j "qlr’Ydlq.
son with other available techniques. However, the various (2m)3 7 '

deficiencies of the approximatior{$1) and (12) show that (16)

there is need for more realistic approximation foft". In the case when the Bloch functiofjs]) are chosen mutu-

' ally orthogonal Eq(16) recovers the well-known biorthogo-
D. Inversion of the DEF nal expansioff® for which simple formulas for the coeffi-

It is well known that the EELS spectrum calculated within cients Z; j:(q) can be obtained. However, in the current
first Born approximatiof/ ogg o w) is related to the DEF in  calculation it was convenient to choose ansatz functions

the long-wave limit via similar to those of the SAPW ansaf2), which have nonva-
nishing overlap. In detail, we use a mixed basis, similar to
oepLd )= _|m66’3(0,w)_ (13)  the basis of the SAPW ansat@). It consists of\jy,=27

plane waves(for which |jq)=|q)) and of localizedB
Therefore it is necessary to calculate the inverse function oplines with s symmetry, [for which |jqg)=]s(0,0))].
Eq. (1). For any two-point functiorZ (like e, X%SVC¢, or  Thereby fiveB splines turned out to be sufficient. As a con-
FXC) the inverse is in general defined in coordinate space bgequence of the long-wave limit the numbe,,,, which is



15090 GREGOR-MARTIN FEHRENBACH PRB 59

necessary to represeatand XS, can be chosen about one \ Pd

magnitude smaller than the rar¥,., of the eigenvalue
problem of the band calculation. Since the basis function is
used to represent the two-point functions are not mutually
orthogonal, the inverse relation to E46) required to obtain 11
the expansion coefficients is slightly more complicated and

involves the inverse of the overlap matrices. Additional rules

must be developed for inversion and convolution. Explicit
formulas for these operations will be presented by us
elsewheré’ The special choice of the basis functions en- 00 B 1 ' 5 @

ables us to calculate all matrix elements of the density op-

erator with SAPW basis functions analytically in a very FIG. 1. EELS of solid palladium. Solid line: present work;
simple manner, and it is still possible to interpret the matrixdashed line: LMTO calculation of Maximost al. (Ref. 20; dotted
elements between the plane waves in the usual way. Frotime: experiment by Daniels and co-workéRefs. 51 and 52 The
the numerical point of view, Eq(16) proved itself to be energies are in Ry.

superior to Eq(15) in the case when the inverse dielectric

matrix of Pd was calculated: While we needed about 6%revious all-electron calculation, which was carried out by
plane waves in Eq(15) to obtain the EELS within an accu- Mazin et al?® within random-phase-approximatiotRPA)
racy of 1% from the corresponding DEF the same accu- using a linearized muffin-tin orbitd®* (LMTO) scheme to
racy can be obtained with the aid of E46) using 27 plane evaluate the band structure. In the latter calculation 16 bands
waves and 3B-spline functions for/=0. Thereby the nu- are used to model the valence and conduction-band structure
merical cost for the inversion of Eq1l) was lowered by and crystal local-field effects are neglected. While the overall
roughly 25% and we also saved computation time since &tructure is qualitatively the same in all three curves, we
smaller number of matrix elements were needed. Additionadliscover that the broad peak, which occurs in the experimen-
test calculations showed that corrections, which can be exal data at 0.54 Ry compares quite well with a hump at 0.60
pected when increasingy,,,, when including mores-typeB Ry in the present calculation. On the contrary, the results of
splines, or when including spline functions with higher Maximov et al. predict a very narrow peak which is twice as
angular momentum, are in general below 1%. high as the experimental one at 0.61 Ry. Also the features
In addition, in the long-wave limi¢~* singularities show which can be observed in the experimental curve between
up in the elements, ¢ of the DEF(1) and in the correspond- 1.50 and 2.20 Ry are overestimated by this calculation. Op-
ing plane-wave elements when using the representéti®n  positely, the present calculation is in rather close agreement
The analytical properties of and e which result from  with the experimental data, although it slightly overestimates
these singularities were first investigated by Pick andhe EELS between the first and the second pgaR4 Ry
Martin.® In case of the RPA, Pick and Martin were able to present calculation, 1.23 Ry experimenthile it underesti-
show that inverse DEE ™! has alsay ™! singularities in their  mates it at the third peakl.80 Ry present calculation, 1.83
(0,G) elements and explained how these elements can bRy experimentas well as for higher frequencies. Neverthe-
handled. It is not too difficult to show, that analogous formu-less, the positions and structures of the second and the third
las apply to the DEF in TDDFT when the representatibp)  peak agree fairly well with the experimental data and much

—Im &7

)
i
h
H
i
i
it
i
i
i
HE
'
:
:

is used, too. In detail, we find better than the results of Maziet al. do. The additional
structure, which can be seen in both theoretical curves be-
Zo,6(0,0)*q 71, tween 0.2 and 0.5 Ry, which is not present in the experimen-

tal data, stems from intraband transition arounénd W.

Zoj(0,0)q~"  (j-spline indey, (17)  Since the Fermi surface is quite complicated in this region

(see Ref. 26 for a plot of the Fermi surface of)Rde expect
Zg,0(0,w)eq, that these transitions react quite sensitive to further many-
body or relativistic corrections, which have been neglected in
Z; o(0,0)>q (j-spline indey, both calculations. In addition, the relation between the EELS

spectrum and the inverse DEE3) is restricted to the first
Born approximation, which is exact for scattering of very
- fast electrons only. Therefore, to a minor extent, also intrin-
Zjjr(0,0) =finite (18) sic deviations bet\>/lveen the EELS and the inverse DEF can be
holds. We treated these singularities numerically with thgesponsible for the discrepancies that show up between ex-
help of the Hermitian dielectric matri¢HDM) method!>>®  periment and theory. Nevertheless, the overall agreement be-
which was slightly modified for our purposes to apply to thetween our calculation and the experimental results is quite

whereZ now stands fore or e~ * while in all other cases

case when the representatidr6) is used. good, while our SAPW calculation and the older LMTO in-
vestigation roughly differ by a factor of 2 over a large fre-
Ill. RESULTS AND DISCUSSION quency range.

To interpret these surprising discrepancies between both

Figure 1 compares the EELS calculated in the presentalculations we first note that there is an intimate connection
work with experimental data of Daniels and co-worker>  between the sharp structure which can be seen in the LMTO
obtained with electron spectroscopy, and with the results of aesults and truncation of the spectrum after only 16 bands.
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This connection can be established by remembering thBaniels and co-workers:%? In addition, the results of
usualf-sum rule, which staté5that Weaver and Benbow are obtained either by analyzing and
and weighing various experimental dat&, which were ob-
tained by several authors and various experimental tech-
niques(e.g., electron as well as photon experiments are em-
_ ] ployed or even solely by synchrotron radiation experiments.
with the plasma frequency defined hy,=y4mne’/m,  For details we refer the reader to Ref. 57. As far as photon
wheren stands for the number of electrons included in theexperiments are Concerned |t iS questionab|e Whether an in_
calculation ofe. Since Eq.(19) can be derived from the terpretation in terms of electron-electron DEF is adequate.
analytical properties ofe~* only, it holds independently For these reasons, we believe that the data of Daniels and
from the approximations made for exchange and correlationgo-workers**?we used in Fig. 1 are more suited for a com-

if nis set to the number of occupied bands. In turn, deviaparison with the inverse electron-electron DEF than the data
tions from Eq.(19), which occur in numerical calculations of Weaver and Benbow.

are due to the discretization of theintegration, the calcu-
lation of the response function, and the inversion procedure. [V. CONCLUSION
Since Ime~1(0,0) is negative for all frequencies, any trun-
cation of the spectrum of the Hamiltonian by omitting some
valence bands will tend to enhance the peaks in the EEL
artificially in order to satisfy Eq(19). This finding shows

2 2 (= -1
wp=——| wlme (Ow)do, (19
mJo

The present calculation of the EELS of Pd shows that the
ifferences between an all-electron calculation and the ex-
periment is much smaller than previous theoretical investiga-

that even at low frequencies it is necessary to include a Iarg‘éOns suggested. Our analysis of these results shows that a

part of the spectrum of the KS equations in the calculation oprecise calcu_lat_lon of the KS response func'Flon IS most im-
the DEF in order to describe the structure of the EELS corPortant for this improvement and that it requires including a

rectly. The high-lying KS level$n’k) enter the calculation very Iar_ge number of unoccupied ba.nds in the perturbatiqn
of Ree either directly or via KK integration from leat the expansion of the KS response functhn. _L'Jnfortuna'gely, this
frequenciesE,,,, — E,, + », wherebyn runs over all occupied increases the computational effort significantly, since the
bands. As sl’r;oI:Nedn;bov,e the necessity to include high-lyin omputation time increases like the fourth power of the num-

; ; : ; f KS levels. There is a faint hope that this effort can be
KS levels is caused by the analytical properties of the dipol eror Ko i .
operator in presence of a Coulomb singularity. Therefore w educed in the future using direct methods to calculate the

expect similar effects to occur also in other response func- S response in an all-electron framework. While such meth-

tions. This is supported by the fact that we find E#9) ods for a direct calculation of the KS response function are

fulfilled within roughly 1% in our calculation, known for the pseudopotential approximatidas well as for
The other important difference between our calculationSpherlcal atom§’ no such techniques are curren_tly _appl_l-

and the work of Maziret al2 is that crystal local-field ef- cable to all-electron band-structure methods. In this situation

fects have been neglected in the latter investigations. In thg‘e SAPW method is q_uite useful, sinpe it. is able to generate
present work neglecting crystal local-field corrections would® humber of unoccupied ba}nds, which is large enough to
have changed the EELS by about 10% in the frequenc nsure an accurate calculf_mon of the KS response. B_eyond
range shown in Fig. 1 and therefore must be considered to g's large correction steaming f_rom t_he use of a numerically
quite important. However, the error made by neglecting thecomplete basis set, only minor improvements can be

crystal local-field corrections is small when compared WithfaChieV(ad by including crystal local-field effects and by add-

the error made by using too few unoccupied bands in thjng th_e exchange-correlation correction to the Coulomb in-
evaluation of the KS response. Hence neglecting the cryst praction.
local-field corrections can be considered to be only a minor
reason for the large deviations between the results of Mazin
et al,?’ the experimental EELS, and our results, respectively. The author thanks Professor H. Bross for stimulating dis-
For clarity, we have omitted additional energy-loss datacussion and the continuous support of his work. He also
sets published by Weaver and BenBBow' in Fig. 1, since acknowledges discussions with M. Ehrnsperger and R. Bader
they do not differ too much from the results obtained byas well as with Professor E. K. U. Gross.
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