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Thermodynamics of CeNiSn at low temperatures and in weak magnetic fields
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Detailed experimental and theoretical studies of the low-temperature specific heat, magnetic susceptibility,
thermal expansion, and magnetostriction of the orthorhombic compound CeNiSn are presented. All anomalies
observed in the thermodynamic and magnetic properties of CeNiSn are explained in a framework of a model
of a metallic Kondo lattice with well developed spin-fermion-type excitations. The pseudogap behavior of
these excitations appears due to interplay between spinons and soft crystal-field states. The thermodynamic
relations for the spin liquid are derived. Together with the explanation of inelastic neutron scattering spectra
given earlier within the same approach these studies of the low-temperature thermodynamics and magnetic
response give a consistent description of the nature of anomalies in the low-temperature thermodynamics of
perfect and imperfect CeNiSn crystals.@S0163-1829~99!06819-8#
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I. INTRODUCTION

The orthorhombic compounds CeNiSn and CeRhSb
known as Kondo lattice systems with peculiar thermod
namic and magnetic properties. Unusual features are
served at low temperaturesT,T* in the specific heat, the
thermal expansion coefficient, the magnetic susceptibi
the magnetostriction, and the NMR relaxation rate~see Refs.
1 and 2 for a review of early data!. The characteristic tem
peratureT* is ;10 K for both systems. It should be emph
sized that this temperature is much less than the Kondo t
peratureTK estimated by standard methods, e.g., extrac
from the logarithmic high-temperature dependence of
electrical resistivity. In the early measurements the electr
resistivity showed an upturn at low temperatures in the te
perature regionT,T* . This upturn was interpreted as th
indication of a nonmetallic ground state of these syste
and the energy gap in the heavy electron spectrum
claimed to be responsible for the peculiar behavior
CeNiSn and CeRhSb. These materials together with the
bic Ce- and U-based compounds, Ce3Sb4Pt3 and U3Bi4Pt3,
were classified as ‘‘Kondo insulators.’’3

Later on it turned out that significant differences ex
between the real-gap cubic semiconductors and the or
rhombic CeNiSn family~see Ref. 4 for a review!. Most strik-
ing was the observation that the CeNiSn single crystals
good quality show metallic character of the resistivity5 at
very low temperatures, and such behavior seems to be
compatible with the idea of a gap or pseudogap in the e
tron spectrum. Comparing the metallic behavior of elect
transport with the anomalous low-temperature thermo
namics, one could suspect that the electronic spectrum
PRB 590163-1829/99/59~23!/15070~15!/$15.00
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the pseudogap used in early phenomenological theo
hardly can be responsible for all low-T peculiarities observed
in the physical properties of CeNiSn and CeRhSb. It
meaningful, e.g., that the unusual temperature dependen
the NMR relaxation rate 1/T1;T3 which was explained by
theV-shape form of the density of electron states around
chemical potential at the bottom of the pseudogap1 is ob-
served exactly in the same temperature interval where
conventional Fermi-liquid-typeT2 law is seen for the elec
trical resistivity.5 At T,1 K the relaxation rate obeys th
linear-T Korringa law characteristic for fermions with con
stant density of states.6 One more striking feature of the low
energy excitations in CeNiSn is the extremely complica
(Q,v)-dependent structure of the inelastic magnetic scat
ing spectra that was observed in the same temperature re
T,T* .7,8 In gross features these unusual spectra also ca
interpreted in terms of a pseudogap in the spin-excitat
spectrum,9 although this phenomenology seems to be
simplistic to explain numerous details of the highly anis
tropic neutron scattering cross section.

The theoretical approaches to the problem either imp
ment the idea of a Kondo insulator with all its shortcoming
or try to offer alternative mechanisms which are based o
metallic type of electron spectra and seek the explanatio
low-temperature thermodynamics and magnetic respons
the unusual properties of the magnetic excitations. In the
case the starting point of the theory is the mean-field sla
boson approximation to the Anderson lattice.10,11 The latest
version of mean-field hybridization theory9 refers to the ac-
tual symmetry off-electron states in the orthorhombic cry
tal. Since this procedure implies strong coupling of spin a
charge degrees of freedom, the gap~or pseudogap! in the
15 070 ©1999 The American Physical Society
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excitation spectrum necessarily means a semiconducto
semimetallic type of electrical resistivity which, apparent
contradicts the experimental data mentioned above.

An alternative approach was offered in Ref. 12. In th
theory new characteristic features with an energy scale
T!TK appear in the spectrum of the spin excitations due
the interplay between the nonlocal spin-fermion excitatio
characterized by the energy scale ofTK and the single-site
crystal-field ~CF! excitations with the energyDCF,TK .
Within this model the semiquantitative description of t
low-energy specific heat and the thermal expansion co
cient was given in Ref. 13. The CF levels are not seen
rectly either in CeNiSn or in CeRhSb,1 and this result indi-
cates that these local excitations are ‘‘dissolved’’ in t
continuum of low-energy excitations of the Kondo lattic
However, the indirect estimate of the magnitude of crys
field created by the Ni ions on the Ce site14 confirmed the
validity of the inequalityDCF,TK .

Basing on the available experimental data related to
structure of magnetic excitations in CeNiSn, the quantitat
theory of interplay between heavy fermions and CF exc
tions in CeNiSn was offered in Ref. 15. The theory involv
the idea of spinon excitations in a spin liquid of resonat
valence bond~RVB! type. These spinons are well define
fermions at low temperature, and their dispersion is de
mined by the Ruderman-Kittel-Kasuya-Yosida~RKKY ! ex-
change in the Brillouin zone.16 As a result of the interplay
between these excitations and soft CF states, the spectru
spin fermions in the low-symmetry lattice of CeNiSn tran
forms in such a way that a deep minimum appears in the
density of states~DOS! in the vicinity of the spinon Ferm
level. Since the spin excitations are decoupled from
charged Fermi-liquid excitations in the conduction band,
gap in the spin DOS does not imply a corresponding gap
the electron DOS, and the system possesses metallic con
tivity whereas the spin excitations are responsible for
thermal properties. It was shown in Ref. 15 that the inela
transitions between the spinon states in the Brillouin zone
responsible for the complicated picture of inelastic magn
neutron scattering. The successful attempt at the quantita
description of the magnetic scattering functionS(Q,\v)
gives us strong arguments in favor of the existence of s
liquid correlations in CeNiSn and related materials. Mo
over, the fitting of the theoretical spectra to the experimen
S(Q,\v) provided us with the values of the model para
eters. With these data at hand we are able to give a qu
tative description of the temperature dependence of var
thermodynamical functions on the assumption12,13 that the
spin-liquid-type excitations give the main contribution to t
low-T thermodynamics. Thus, a unified description of t
low-temperature and low-energy properties of the ort
rhombic CeNiSn family becomes possible.

The main purpose of the present paper is to give a
tailed experimental and theoretical picture of the lo
temperature specific heat, magnetic susceptibility, ther
expansion, and magnetostriction coefficients in the CeN
family. This description should be consistent with the pictu
of magnetic excitations, as given by the inelastic neut
scattering experiments. Some of the experimental data
CeNiSn and CeRhSb were published in Refs. 13 and 17.
first attempts at describing the inelastic magnetic spec
or
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low-temperature specific heat, and thermal expansion
these systems by using the same model15,18demonstrated the
validity of the spin-liquid description.

II. EXPERIMENT

The magnetostriction of single-crystalline CeNiSn w
measured in magnetic fields up to 8 T at selected tempera
tures of 0.5, 1.4, and 4.3 K. The magnetostriction is defin
by l5@L(B)2L(0)#/L(0), whereL(0) is the length of the
specimen along a certain crystallographic direction in z
magnetic field. The magnetic field was always applied alo
the orthorhombica axis, while l was measured along th
field direction (la) and perpendicular to the field directio
along theb (lb) and thec axis (lc). The volume magneto-
striction is defined bylv5la1lb1lc for a fixed field di-
rection. The field was applied along thea axis because this is
the easy axis for magnetization: the low-temperature sus
tibility xa is about a factor 2 larger thanxb and xc , and,
moreover,xa exhibits a pronounced maximum at 12 K.

The experiments were carried out on a Czochralski gro
single-crystalline sample. The sample was shaped by me
of spark erosion into a cube with edges along the princi
axes of the orthorhombic unit cell (a3b3c'232
32 mm3). The magnetostriction was measured using a s
sitive parallel-plate capacitance cell machined of oxygen f
high-conductivity copper. The magnetostriction cell w
fixed to the cold plate of a3He insert, which is operated with
an adsorption pump. The3He insert could be placed in
superconducting solenoid withBmax58 T. The magneto-
striction was measured by recording the capacitance, w
slowly sweeping the field. Temperatures were stabilized
regulating on a field-insensitive RuO2 chip resistor which
served as a thermometer.

The experimental results are shown in Fig. 1, while t
coefficients of magnetostrictionl i85L21dL/dB, obtained by
differentiating the data of Fig. 1 with respect to the field, a
shown in Fig. 2. At the highest temperature,T54.3 K,
l i ( i 5a,b,c) is a monotonous function of the field. Th
crystal expands in thea-b plane and shrinks along thec axis
when Bia. The magnetostriction is anomalous in the sen
that the curvesl i8(B) deviate from the standard linear be
havior for paramagnetic systems. At lower temperatures
anomalous behavior becomes stronger anddLi /dB change
their signs with increasing field. For instance, atT50.5 K,
the a-b plane shrinks till;4.5 T and thec axis expands till
;7 T. The anomalous behavior is also seen in the volu
magnetostriction as a negative contribution at low tempe
tures, although it is not very pronounced.

The magnetostriction data are in good agreement w
previous thermal expansion measurements in zero and
plied magnetic fields (Bia) of 4 and 8 T, taken on the sam
single-crystalline specimen.13 Strong anisotropy is observe
in the linear expansion@a i5L21(dLi /dT)#: the dependence
ac(T) is anomalous with respect toaa,b(T). In magnetic
field a sign reversal takes place at low temperaturesT
,3 K at 8 T!: ac(T) becomes negative, whileaa and ab
become positive. Thea i(T) curves show several anomalie
but the coefficient of volume expansion,av5aa1ab1ac ,
is monotonous. Our magnetostriction data are also in ex
lent agreement with the data reported in Ref. 19 in the te
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15 072 PRB 59KIKOIN, KISELEV, MISHCHENKO, AND de VISSER
perature range 0.1–4.2 K and field range up to 20 T.
It is known that the reversible volume magnetostriction

thermodynamically equivalent to the strain dependence
the magnetic susceptibilityx(B,T) ~Ref. 20!,

lV8 ~B,T!5kTBS ]x~B,T!

] ln V D
T,B

~1!

@the magnetic susceptibility is defined asx(B,T)
5M (B,T)/B, whereM (B,T) is the magnetization#. There-
fore, one can extract from the experimental result the fi
and temperature dependence of the magnetic suscepti
volume derivative @]x(B,T)/] ln V#B,T . Introducing the
doubly differential magnetostriction coefficient

lV9 ~B,T!5B21~dlV /dB!V,T ~2!

one can express the logarithmic volume derivative of
magnetic susceptibility as

S ]x~B,T

] ln V D
V,T

5
lV9 ~B,T!

kT
. ~3!

It is seen from Fig. 3 that the temperature and field dep
dence of the volume derivative of the magnetic susceptib

FIG. 1. Magnetostrictionl of single-crystalline CeNiSn for a
field directed along thea axis ~bold lines! and elongation~or con-
traction! along thea, b, andc axis ~thin solid, dotted, and dashe
lines, respectively! at temperatures of 0.5 K~a!, 1.4 K ~b!, and 4.3
K ~c!.
of

d
ity

e

n-
y

deviate from the normal temperature and field-independ
behavior at low temperatures and in low magnetic fields.

III. HAMILTONIAN
AND THE ENERGY OF THE SPIN LIQUID

The orthorhombic compounds CeNiSn and CeRhSb
usually classified as Kondo lattices with moderately hea
fermion ~HF! properties. The basic Hamiltonian which d
scribes the Ce-based HF systems is the Anderson la
Hamiltonian for the Ce31( f 1) ion hybridized with the con-
duction electrons. In the Kondo lattice limit when the v
lence of the Ce ion is close to integer, one deals with w
localized f electrons for which the inequalityVkFL

i !eF

2EG is believed to be valid~hereVkL
i is the hybridization

matrix element between thef electron localized on a sitei in
a stateuL&5uGn& with the energyEG of the f electron in a
crystal field and the partial component of the Bloch wa
ukL&, n is the row of the irreducible representationG of the
crystal point group,eF is the Fermi energy of conductio
electrons!. This hybridization integral is taken in the Cornu
Coqblin ~CC! approximation22 which represents the Bloch
functions by their partial wavesckL

† , and takes into accoun
only the diagonal inL hybridization matrix elementsVkL

i

5^kLuVu iL&. Then the hybridization effects are reduced
exchange like interaction between the localizedf electrons
and the conduction electrons with an effective coupling c
stant

FIG. 2. Coefficient of magnetostrictionl8 of single-crystalline
CeNiSn for a field directed along thea axis. All notations are the
same as in Fig. 1.
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Ji
LL8~k,k8!5VkL

i* Vk8L8
i /~ek2EG!.

As was shown in Refs. 12 and 15, the non-CC hybridi

tion V̄kL
iL85^ iLuV8ukL8& is of crucial importance for the in

terplay between the one-site crystal-field excitations and
nonlocal spin-liquid excitations~hereV8 is the component of
the crystal field which has a symmetry lower than that dia
nalizing the f electron energy termsEG . Respectively, the
non-CC effective exchange constant is introduced as

J̃i
LL8~k,k8!5V̄kL

iL8* Vk8L8
i /~ek2EG!.

In the case of completely suppressed charge fluctuat
in the f channel thes f exchange can be taken into account
the second order approximation, and one comes to the e
tive RKKY-like Hamiltonian, where thef-electrons are rep
resented only by their spin degrees of freedom described
the spin-fermion operatorsf iL . When the CF excitations ar
involved, this Hamiltonian acquires the following form~de-
tailed derivation ofHs can be found in Refs. 15 and 23!:

Hs5H f1Hh1HRKKY
(c) 1HRKKY

(nc) . ~4!

FIG. 3. Field and temperature dependence of the logarith
volume derivative of magnetic susceptibility evaluated from Eq.~3!
~the isothermal compressibility iskT51.8310211 m2/N according
to Ref. 21!: ~a! field dependence forT50.5 K ~squares!, T
51.4 K ~diamonds!, andT54.3 K ~triangles!; ~b! temperature de-
pendence for different magnetic fields.
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e
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Here

H f5(
i,L

EGu iL&^ iLu ~5!

describes the Ce(f 1) ions on the lattice sites.

Hh5(
i F (

LL8
Bi

LLdLL8 f iL
† f iL1B̃i

LL8 f iL
† f iL8~12dLL8!G

~6!

corresponds to effective covalent contribution to the one-
CF splitting due to virtuals f transitions. Here

Bi
LL52(

k

V̄kL
i* VkL

i

ek2EG
, B̃i

LL852(
k

V̄kL
iL8* VkL

i

ek2EG
.

The effective exchange interaction mediated by conduc
electrons is given by the last two terms in the Hamiltoni
~4!,

HRKKY
(c) 5(

ii8

iÞ i8

(
LL8
Iii8

LL8 f iL
† f iL8 f i8L8

† f i8L , ~7!

and the non-CC interaction is represented by the last t
HRKKY

(nc) which is responsible for the interplay between the H
and CF excitations in our model,

HRKKY
(nc) 5(

ii8
(

LL8L9

LÞL9

@ Īii8
LL8L9L8 f iL

† f iL8 f i8L8
† f i8L91H.c#.

~8!

This is the lowest inV̄k terms among the non-CC indirec
exchange interactions which admix the excited CF sta
uL&5uEn8& to the ground state doubletuL&5uGn&.

The uniform spin-liquid state in the Heisenberg-lik
Hamiltonians with antiferromagnetic exchange constan
described by the free energy expression

F5b21E
0

b21

E~b8!db82b21S` , ~9!

whereb215kBT, S` is the magnetic entropy atT→`, and
E is the average value of the Hamiltonian expressed via
two-spinon correlator. In the case of the isotropic Heisenb
Hamiltonian this average energy is given by

E5(
i i 8

Ii i 8
2

^uD i i 8u
2&, ~10!

where

D i i 85(
a

f ia
† f i 8a, ~11!

and a stands for the ‘‘flavor’’ ~e.g., spin projection in the
case of pure spin states!. After Fourier transformation the
average energy of the uniform spin liquid acquires the fo

E5
I
2 (

pq
(
aa8

wp2q^DpDq&. ~12!

ic
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Herewk5(n exp(2ik–Rn) is the structure factor for the ex
change interaction.

Usually, in three-dimensional~3D! Heisenberg lattices the
spin-liquid state has higher energy than the antiferromagn
~AFM! state,24 and the standard mean-field approach pred
magnetic order at low temperatures. However, the mec
nism stabilizing the spin-liquid state in Kondo lattices w
proposed in Refs. 16 and 25. It was shown within the me
field approximation that the AFM phase can be suppres
by Kondo-type screening, providedI;kBTK , and that the
spin-liquid state which is not that sensitive to Kondo scatt
ing can be realized instead. Recently it was pointed out26 that
the influence of low-lying relaxation modes in the spin sy
tem can transform the phase transition to the spin-liquid s
into a crossover. The low-lying excitation mode~in particu-
lar, the soft CF excitations! can play a similar role in stabi
lization of the spin-liquid state,27 and the thermodynamics i
this case should be described by the equation generali
Eq. ~12! for the case of CF excitations admixed to the grou
Kramers state of the rare-earth ion. The dynamical corr
tion function^DpDq&v determines the frequency dependen
of inelastic magnetic neutron scattering,15 so the possibility
opens for a unified description of the low-temperature th
modynamics and the low-energy spin excitations.

To realize this possibility we first should derive the e
pression for the free energy of the Kondo lattice described
the HamiltonianHs, Eq. ~4!. This means that we should fin
the energyE or, eventually, diagonalize the matrix

M5Hs21•E ~13!

in terms of the variablesD.
Having in mind the low symmetry of the CeNiSn lattic

we consider the general case of the elementary celll which
contains several sublatticesj51, . . . ,L possessing the sam
point symmetry group as the Ce31 ion with the total mag-
netic momentJ55/2. When diagonalizinĝHs& given by Eq.
~4! in terms of spin-fermion variables, we introduce a sing
anomalous correlatorDG5^ f l8j8G

† f ljG&, which corresponds
to the ground state doubletL5G. In the course of the di-
agonalization procedure it turns out that this parameter
termines the dispersion of both the lower and the hig
branches of the excitation spectrum which arise due to in
play between CF and HF excitations~see Appendix A!.

We introduce the Fourier transformation

f ljL
† 5N21/2(

kn
eik–lQn

L~j,k! f kn
† ~14!

to the basis$kn% which diagonalizes the translationally in
variant matrix M @Eq. ~13!# and the average
^ f l8j8L

† f ljL& @n51, . . . ,(2J11)L#. The eigenvectorsQn
L

are orthonormal,

(
n

Qn
L~j,k!@Qn

L8~j8,k!#* 5dLL8djj8 ,

(
Lj

Qn
L~j,k!@Qn8

L
~j,k!#* 5dnn8 . ~15!
tic
ts
a-

n-
d

-

-
te
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d
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e
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y

e-
r
r-

As a result, the average energy becomes the functiona
the ‘‘occupation numbers’’

^ f kn
† f k8n8&5nkndkk8dnn8 , ~16!

and the final equation for energy per Ce ionE(T,$nk%) has
the form

E~T,$nk%!5
DCF

(0)

NL (
kn

nknFkn~$nk%! ~17!

~see Appendix B!. HereDCF
(0) is the energy of the lowest CF

excitation which is introduced for the sake of convenien
~to make all matrices dimensionless!, and$nkn% is the set of
average occupation numbersnkn which obeys the mean-field
global constraint condition

N21(
kn

nkn51. ~18!

The occupation numbers

nkn5F11expH DCF
(0)Fkn2m

kBT J G21

~19!

are defined in terms of form factorsFkn ,

Fkn5(
jj8

(
LL8

Qn
L~j,k!Zjj8

LL8~k!@Qn
L8~j8,k!#* ~20!

(m is the chemical potential!. Then the matrixZ represented
by its matrix elements

Zjj8
LL8~k!5FLL8djj81

1

2 (
u

eik–uDjj8
LL8~u! ~21!

should be diagonalized to find the eigenvectorsQn
L(j,k).

Hereu5 l2 l8. The matrixFLL8 has the form

FLL85dLL8S EL1BLL1(
l8j8

8

I jj8
L

~ l2 l8!DCF
(0)D Y DCF

(0)

1BLL8/DCF
(0) . ~22!

@ I jj8
L ( l2 l8) is the dimensionless exchange integral, see A

pendix A.# Finally, the variablesDjj8
LL8(u) describing the

RVB state@cf. Eq. ~11!# are to be obtained self-consistent
from the system of equations~A6!.

Thus, to calculate the thermodynamic coefficients
CeNiSn we use the following procedure.

~i! We find the eigenstates«kn of the matrixFkn which
depend on the parameters of the HamiltonianHs.

~ii ! These eigenstates are used to calculate the imagi
part of the correlation functionK(Q,v)5^JQJ2Q&v which
determines the dynamic magnetic response of the system

ImK ab~Q,v!5(
nn8

(
k

nkn~12nk2Q,n!^knuĴa
1uk1Q,n8&

3^k1Q,n8uĴbukn&d~\v1Ekn2Ek1Q,n8!

~23!

and, therefore, the scattering function of magnetic neut
scattering.15
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~iii ! The average energyE is determined by the Fourie
component of this correlation function taken at zero mome

KQ
(0)5E dkdvK ab~k,Q,v! ~24!

@see Eq.~12! and Appendix B#. Being diagonalized in terms
of the eigenstatesukn&, this energy is given by Eq.~17!.

~iv! Then, using experimental results of neutron scatter
and thermodynamic measurements we fit the model par
eters to describe the neutron scattering function in abso
units and the heat capacity. Since the heat capacity, un
the neutron scattering spectra, is sample dependent we
tained two set of parameters. The first set describes the
for high-quality samples and the second one correspond
the sample used in dilatometric measurements.

The uniform static susceptibilityx(T) characterizes the
thermodynamic response to an external magnetic field an
volume dependence@the magnetostriction is determined b
the limiting value ofK(0,0)#. We calculate it from the rela
tion x(T)5M /B whereB is the magnetic field, andM is the
magnetization of the spin liquid. Only the Zeeman mec
nism of this magnetization is taken into account in the c
of weak fields (mBB less than the characteristic couplin
parameters which determine the spin-fermion spectrum!.

IV. THERMODYNAMIC RELATIONS

We suppose that the low-temperature thermodynamic
CeNiSn is determined mainly by the spin-fermion exci
tions. Since the spin liquid is an unconventional Fermi l
uid, and since our treatment of the spin-liquid state inhe
some of the shortcomings of the mean-field approximati
we start the discussion of the thermodynamic relations wi
more detailed analysis of spin entropy. It is well known28

that one should take special precautions to eliminate the
physical states when introducing the fermionic represe
tion for the spin operators~e.g., the states doubly occupie
by fermions with opposite spin projections which are abs
in original spin representation should be excluded!. Without
such exclusion the wrong temperature behavior of entr
S(T) will result in incorrect description of the specific he
and other coefficients which are connected with the spec
heat by strict thermodynamical relations.

To verify the applicability of our approach we compar
the number of states in our model with that in the us
Fermi liquid. The model situations considered in Appendix
demonstrate nonuniversality of theS(T) law and its crucial
dependence on the parameters of the Hamiltonian, and
particular, on the character of admixing the magnetic
excitations to the lowest Kramers doublet in the course
forming the spin-fermion branch of the excitation spectru
The diagonalization procedure described above gives
equation for the average energy which is sensitive both to
degeneracies of the bare states of the HamiltonianH f which
are lifted by the spin-liquid correlations, and to the tempe
ture compared with the degeneracies lifted already inH f ~CF
level splitting!. According to the calculations for the thir
model of Appendix B which is close enough to the real si
ation in CeNiSn~see below! the average energy of the sp
liquid ~17! in the Kondo lattice with several sublattices a
t,
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several Kramers doublets involved can be presented in
form

E~T!5
DCF

(0)

NL

1

2
k~T!(

kn
nkn«kn~$nk%!, ~25!

where DCF
0 5EE2EG , and the factor1

2 k(T) reflects the
above-mentioned fundamental difference between the s
fermion state and the conventional Fermi liquid.

This factor is essentially nonuniversal: it depends both
the degeneracy of the low-energy branches of the excita
spectrum and on the lattice geometry. We simplify our co
sideration by adopting a single value of this parameter fo
given geometry of the lattice and given set of model Ham
tonian parameters. As is shown in Appendix B, the m
quantity which predetermines the effective value ofk at low
temperatures,kbT!DCF

(0) , is the degeneracy lifted by spin
liquid correlations. According to the results of description
the neutron scattering spectra in CeNiSn,15 the ‘‘hidden’’
degeneracy of the spectrum equals 4 because~i! all Ce ions
are in equivalent crystallographic positions,~ii ! the mixing
interactions comparable in magnitude withDCF

(0) connect only
Ce ions belonging to the sameb-c planes~see Fig. 4! al-
though the CeNiSn lattice formally has four sublattices, a
~iii ! only one excited stateuE6&5u63/2& interplays with the
ground stateuG6&5au61/2&6bu75/2& which is respon-
sible for the formation of the spin-fermion branch of th
spectrum. As a result we come to the situation with tw
Kramers doublets and two sublattices which is treated in
tail in the last example of Appendix B. Therefore we ado
the value ofk51/4 atkbT!DCF

(0) .
At high temperatures the admixing of higher states~the

magnetic CF excitons and the branches split due to in
sublattice exchange! becomes essential. As a result, the es
mations of the coefficients in Eq.~B10! together with the
normalization condition~15! give the value ofk'1/2 for
these temperatures. Eventually, at high enough tempera
exceeding all energy splittings in our Kondo lattice the n
mal behaviorS(T) is restored, but the apparent29 entropy

FIG. 4. Orthorhombic CeNiSn lattice, the structure of ab-c
plane. Two Ce sublattices are denoted by black and gray circ
respectively. The orthorhombic distortionO ~solid arrows! trans-
forms the simple hexagonal lattice into a two-sublattice orthorho
bic one. The in-sublattice interactionT1 is denoted by a solid double
arrow. The intersublattice interactionT2 andG2 is denoted by the
dashed double arrow.
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deficit at low and intermediate temperatures is an intrin
property of the model. This deficit is an observable eff
and its existence was noticed in many measurements~see
below!.

The spinon contribution to the heat capacitycV(T) per
mole of Ce ion for fixed volumeV was calculated using th
standard expression

cV~T!5NA@]E~T!/]T#V , ~26!

whereE(T) is the spinon energy per magnetic ion~25! and
NA is the Avogadro number. The molar spinon entropy
fixed volumeSm and the free energy of the moleFm(T) are
found from the equations

Sm~T!5E
0

TcV~t!

t
dt ~27!

and

Fm~T!5NAE~T!2TSm~T!. ~28!

It is known that, in general, such thermodynamic char
teristics as the magnetic susceptibility, the volume expans
coefficient, and the volume magnetostriction can be e
mated from the dependence of free energyFm(T,V,B) on
the volumeV and magnetic fieldB. We find these depen
dences within a framework of the model of spinon spectr
which was successfully used in Ref. 18 for the description
the inelastic neutron scattering spectrum.

V. MODEL OF SPINON SPECTRUM

CeNiSn crystallizes in the orthorhombic lattice which b
longs to the noncentrosymmetric space groupPn21a.30 The
point symmetry of the crystal field on Ce ions can be trea
as nearly trigonal (D3d) with the rotation axis parallel to the
a axis of the crystal, and the monoclinic distortion (Cs) can
be considered as a small correction to the trigonal cry
field.14 Therefore, to describe the bare CF statesL we use
the irreducible representation of the trigonal point gro
D3d . It is shown by indirect experiments14 and confirmed by
the quantitative agreement of the calculated and experim
tal inelastic neutron scattering spectra15 that the ground state
level and the first excited level form a pair of Kramers do
blets

uG6&5au61/2&6bu75/2&, ~29!

uE6&5u63/2& ~30!

separated by the energy intervalDCF,40 K which is much
less than the energy of the second excited CF level of
DCF

(2) . The recently reported excitations, centered around
meV,31 apparently should be ascribed to this second
state.

To calculate the average energyE(T) one should solve the
system of Eqs.~20!–~22! and~A6! under the constraint~18!.
We are interested in the low-T thermodynamics of CeNiSn
(T,20 K). These temperatures are essentially less than
bandwidth of the RVB band (W'150 K, see Ref. 15!, so we
can treat approximately the anomalous averagesDGG as
temperature-independent correlators.32,33
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It was shown in Ref. 15 that the interactions which for
the dispersion of the spin-fermion excitations are confin
mainly within theb-c plane of the CeNiSn lattice. The struc
ture of this plane is determined by the orthorhombic 2D
ementary cells which contain two Ce ions in the sitesi5 lj
wherej51,2 is the sublattice index~see Fig. 4!. This net-
work is defined by the Bravais vectorsB5(b,0) and C
5(0,c) and the basis vectord5(0,2b/2,c/22O). HereO is
the orthorhombic distortion which transforms the one-i
hexagonal lattice into the two-ion orthorhombic one.

To describe the 2D spinon spectrum at low temperat
T→0 one has to introduce the coupling constants which

scribe the matrixZjj8
LL8(k), Eq.~21!. We confine ourselves to

the simplest nearest neighbors~NN! approximation and in-
troduce the parametersTii8 which describe the in-sublattice

T15DCF
(0)D11

GG~NN!/25DCF
(0)D22

GG~NN!/2, ~31!

and intersublattice,

T25DCF
(0)D12

GG~NN!/25DCF
(0)D21

GG~NN!/2, ~32!

coupling. These constants are responsible for the forma
of the spinon spectrum which arises due to RVB correlatio
within the ground state CF levelsL5G of Ce ions.15 Simi-
larly, the interplay of spinons with the lowest excited C
statesL5E is defined by the intrasite nondiagonal matr
element given by Eq.~22!,

G15FGE5FEG, ~33!

and the intersite mixing coefficient

G25DCF
(0)Djj8

GE
~NN!/25DCF

(0)Djj8
EG

~NN!/2, jÞj8. ~34!

The conditionjÞj8 for intermixing of ground and excited
doublets arises due to the orthorhombic distortion which
sults in the two-sublattice structure of the plane~Fig. 4!.

To introduce the renormalized CF splittingD̃CF one has to
consider the diagonal terms of Eq.~22!. This contribution

D̃CF5DCF
(0)~FEE2FGG! ~35!

renormalizes the bare value of CF splittingDCF
(0)5EE2EG

Then two terms determine the renormalization of CF sp
ting DCF

0 ,

D̃CF5DCF
(0)1d11d2 . ~36!

The first correction

d15B EE2BGG ~37!

is defined by intrasite processes, and the second one is d
intersite interaction

d25(
l8j8

8
$I jj8

E ~ l2 l8!2I jj8
G ~ l2 l8!%. ~38!

Details of the procedure which diagonalizes the mat

Zjj8
LL8(k) and gives the eigenvectorsQn

L(j,k) and eigenval-
uesFkn are described in Ref. 15.
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VI. SAMPLE DEPENDENCE
OF THERMODYNAMIC PROPERTIES

It is known that the thermodynamic properties of CeNi
depend on the specimen quality.34 At the same time the main
features of inelastic magnetic scattering spectra are the s
~i.e., 2.5-meV and 4-meV inelastic excitations! for different
specimens.7,8,35 Therefore, the theory which considers th
thermodynamics should explain both the sample-depen
thermodynamic properties and the sample-independent
tron scattering function.

Improving the quality of the samples means getting rid
inclusions of other phases (Ce2O3,CeNi2Sn2 ,Ce2Ni3Sn2).5

This means that the more imperfect samples are less
chiometric. The vacancies and interstitials influence both
charge and spin components of elementary excitations. F
the impurity scattering results in appearance of rand
phase shiftsd(r ) in RKKY interaction integrals,36

I~x,x8!;~kFr !23cos@2kFr 1d~r !# ~39!

(r 5ux2x8u). Being averaged over impurity configuration
the RKKY interaction acquires exponentially decayi
asymptoticsĪ (RCe-Ce);exp(2RCe-Ce/l) for r .l wherel is
the electron mean free path.37 If l exceeds the lattice con
stant ~and this is the most realistic situation!, the average
value of Ī is irrelevant to the spinon dispersion. Thelocal
fluctuations of exchange interaction withd(r ) large enough
to change the sign ofI( l2l8) from positive to negative are o
major importance in this case. The sign change mean
break of RVB between the sitesl and l8. Another source of
such a break is the vacancies in Ce sublattices. Of cou
these defects should result in the appearance of local
ments which influence the low-T magnetic susceptibility and
resistivity. However, we are interested here in the cohe
part of the spinon spectrum which is dominant in spec
heat and the neutron scattering spectra. The influenc
magnetic defects on the coherent part of the spectrum ca
described in a virtual crystal approximation where the av
aged over the defect configurations parametersT̄1 andT̄2 are
used in the calculations of the spinon dispersion law. Th
averaged parameters should be smaller for less pe
samples with larger number of broken RVBs. Moreover,
averaging procedure should ‘‘level’’ the difference betwe
the in-sublattice and the intersublattice coupling consta
This is why we assume that the reduction ofT2 is greater
than that ofT1.

Second, the increase of the defect concentration resul
the increase of the intersite mixing parameterG1 due to low-
ering of the lattice symmetry. The change of the inters
mixing parameterG2 is influenced both by increase of defec
induced mixing and by reduction of intersite exchang
Therefore, the influence of imperfections on this paramete
not knowna priori. Since it is supposed15 that uI jj8

G ( l2 l8)u
@uI jj8

E ( l2 l8)u, the renormalization of CF splittingD̃CF

2DCF
(0) is defined mainly by the exchange interactionI jj8

G ( l
2 l8). One of the conditions of spin-liquid RVB state form
tion is the positive antiferromagnetic sign of these inter
tions. Therefore, the renormalized value ofD̃CF is lower for
better samples.
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The last effect which has to be considered is the chang
the coefficients of the wave functions~29!. This change is
connected with the renormalization of the wave functions
a low-symmetry system when the exchange interact
changes.38

Two sets of parameters which take into account these
dencies for the high-quality specimen5 and the specimen
which was used in linear expansion and magnetostric
measurements13,17are presented in Table I. The fragments
DOS for both sets of parameters are shown in Fig. 5. T
heat capacities for perfect and imperfect specimens are
sented in Fig. 6. To illustrate the relative insensibility
neutron spectra to the sample quality we calculated the s
tering function~in absolute units! for momentum transfers
where 2.5 meV@Fig. 7~a!# and 4 meV@Fig. 7~b!# are ob-
served. It is seen that the neutron scattering spectra for
specimens coincide in gross features. The experimental
solute values8 of the scattering cross sections are also rep
duced.

In the following analysis we use the set of paramet
presented in the second column of Table I which corresp
to the heat capacity of the less perfect specimen use
dilatometric measurements.13,17

VII. MAGNETIC SUSCEPTIBILITY

The standard definition

xm~T!52
1

B S ]Fm~T!

]B D
T,N

~40!

TABLE I. Parameters which define the spinon spectrum in
samples of higher and lower quality.

Parameters High quality Noltenet al.
~Ref. 17!

T1 16.15 K 14.40 K
T2 24.65 K 12.40 K
G1 1.83 K 3.00 K
G2 26.60 K 25.41 K

D̃CF
22.0 K 8.0 K

a 0.53 0.62

FIG. 5. Fragments of the density of states~DOS! of spinon
spectra for a high-quality sample~bold line! and a imperfect sample
~thin line!. The position of the spinon Fermi level is indicated b
the vertical dashed line.
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was used in the calculation of spinon contribution to mo
magnetic susceptibilityxm . Since the magnetic response
CeNiSn is maximal for fieldBa applied along thea
direction,1 we consider only this easy axis component ofxm
and limit ourselves by the Zeeman mechanism of polar
tion of spin liquid described by the Hamiltonian

ĤZ5gJmBĴaBa . ~41!

HeregJ56/7 is the Lande´ factor for the Ce31 configuration,
mB is the Bohr magneton, andĴa is the a projection of the
total angular momentum operator. It is known1 that the Som-
merfeld coefficientgsp[C(T)/T is practically constant a
lowest temperaturesT,1 K. Therefore we use the Ferm
liquid relations for the spinon subsystem atT→0. For ex-
ample, the Wilson ratio for a spinon liquid can be derived
close analogy with the electron Fermi-liquid expression. T

FIG. 6. Temperature dependence of the heat capacity.
dashed line represents the spin-fermion contributiongsp, for an
imperfect sample, and the solid line gives the Sommerfeld coe
cient with an additional contribution from the conduction electro
gcond58 mJ/mol K2. The spinon part calculated for a high-quali
sample is presented in the inset. Experimental points for a pe
sample are taken from Ref. 5~triangles! and those for an imperfec
sample are taken from Ref. 17~squares!.

FIG. 7. Scattering functions of inelastic magnetic neutron sc
tering in absolute units calculated for high-quality~bold line! and
less perfect samples~thin line!.
r

-

e

spinon wave function in the bandn with a wave vectork can
be represented as a linear combination

unk&5 (
l51

6

Ll~n,k!U2l27

2 L , ~42!

whereLl(n,k) are coefficients which obey the orthonorma
ity relations. Therefore, applying the Zeeman operator~41!
to this state we calculate the factorGsp,

Gsp5S (
l51

6

uLl~n,k!u2
2l27

2 D 2

, ~43!

which appears in the Wilson ratio instead of the electrong
factor:

xm~T→0!5
3

p2

mB
2

kB
2

Gspgsp. ~44!

Neglecting in the simplest approximation admixture
the stateuE6&5u63/2& to the spinons which form the RVB
band, we find that the lowest spinon state generated by
level ~29! gives

Gsp5gJ
2~5b2/22a2/2!2. ~45!

Then, using the parameters from the last row of Table I,
find the value of 1.3431023 emu/mol for the spinon mag
netic susceptibility atT→0. This calculated value is signifi
cantly lower than the measured one. Therefore, one sh
conclude that the magnetic susceptibility is not determin
only by the spin-fermion contribution.

To check this assumption we calculated the tempera
dependence of magnetic susceptibility up toT520 K by di-
rect use of Eq.~40!. It is seen~Fig. 8! that good agreemen
with experiment can be obtained if one considers the to
magnetic susceptibility as a sum of spinon Zeeman p
xsp(T) and background contribution xb56.35
31023 emu/mol which is constant atT,20 K. This calcu-
lation perfectly reproduces the position of maximum and
shape of the curve atT,20 K. Sincexsp(T) in this tempera-
ture interval is determined by the low-energy sharp featu
of the spinon spectrum one can conclude that the Zee
splitting of the structured part of the spinon spectrum is
sponsible for the observed behavior ofx(T). The possible

e

-
s

ct

t-

FIG. 8. Calculated magnetic susceptibility~line! compared with
experimental data for specimen no. 4 from Ref. 5.
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source ofxb is the Van Vleck contributionxVV to the sus-
ceptibility from the second CF excitation with the ener
DCF

(2) and the wave function

uE86&52bu61/2&6au75/2&. ~46!

Neglecting in our estimates the mixing of the low-lying C
doubletsuG6& and uE6&, we have

xVV'
N

V
~gJmB!2S 36

a2b2

DCF
(2) D . ~47!

The energy of the second CF level was evaluated from in
rect data asDCF

(2);14 meV.14 However, these authors used
their estimates only the electrostatic crystal field and did
take into account covalent and exchange corrections,
cussed in Sec. III and in Ref. 15, so we can use this valu
the lower estimate. On the other hand, recent inelastic n
tron scattering data presented in Ref. 31 show up the w
structure centered around 40 meV which is treated by th
authors as the excitation of the second CF level. In our p
ture this wide structure is due to the transitions between
occupied states of the spin-fermion band~see Fig. 5! and the
level DCF

(2) . Using the value ofDCF
(2)540 meV in Eq.~47!, we

find xVV'531023 emu/mol, which is in reasonable agre
ment with the above estimation ofxb .

It should be noted that the spinon response perfectly
produces the intensities of the 2.5-meV and 4-meV peak
the inelastic magnetic scattering spectra of neutrons inabso-
lute units. Both peaks are connected with the low-ener
structured part of the spinon spectrum. This observa
gives one more evidence in favor of the assumption that
constant contribution to static magnetic susceptibility is c
nected with larger energy scales and, in particular, with
Van Vleck term.

VIII. TEMPERATURE AND FIELD DEPENDENCE
OF LATTICE DISTORTION

A. Thermal expansion

The conventional phenomenological analysis of the th
mal expansion of Kondo lattices is based on the assump
that the characteristic temperatureTK scales all thermody-
namic quantities at lowT, so the main contribution to the
volume dependence of these quantities may be characte
by a Grüneisen parametergTK

5] ln TK /] ln V. We have
seen that the interplay between heavy fermions and cry
field excitations introduces an additional characteristic
ergy scaleD̃CF and a corresponding coupling constant,
this interplay rules out the possibility of being content with
single scaling parameter. Moreover, the energyT* is, appar-
ently, not related directly toTK in the CeNiSn family. Thus
we start this section with the derivation of Gru¨neisen param-
eters which characterize the spin liquid in Kondo lattic
with soft CF excitations, still confining ourselves toT
<DCF!TK . The volume thermal expansion coefficient

aV5S ] ln V

]T D
P

~48!
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(P is pressure! can be expressed in terms of the isotherm
compressibilitykT5(] ln V/]P)T and the isothermal deriva
tive of the total entropyS V

tot with respect to the volumeV,39

aV5kTS ]S V
tot

]V D
T

. ~49!

Since the Cornut-Coqblin transformation decouples spin
charge degrees of freedom, the total entropy can be
pressed as a sumS V

tot5S V
sp1S V

el of the spinonS V
sp and the

conduction electronS V
el contribution. The entropyS V

el

5VgelT of conduction electrons is proportional to the Som
merfeld coefficientgel at low T, which results in a linear-T
law for the thermal expansion

aV
el

T
5kTgelS 11

] ln gel

] ln V D ~50!

~see, e.g., Ref. 39!.
Due to the inequalityD̃CF!TK the spinon component o

aV
sp/T can be decomposed into temperature-dependent

constant terms. It is convenient to express the spin entr
and its derivative~49! in molar units,

aV
sp5kTS ]Sm

]V D
T

. ~51!

The isothermal compressibility and entropy per mo
„kT@mJ/mol# and Sm@mJ/(molK)#… enter this equation.
Since the spinon entropy is a function of model consta
Pi5D̃CF,T1 ,T2 ,G1 ,G2, one can express its volume deriv
tive in terms of the corresponding Gru¨neisen parameters.

g i
V5

] lnPi

] ln V
. ~52!

Strictly speaking, the volume dependence ofD̃CF has to be
expressed in terms of magnetoelastic Hamilton
constants.40 Hovever, in the case of significant contributio
of exchange interaction the standard magnetoelastic Ha
tonian has to be revised.38 Therefore, we prefer to describ
the magnetoelastic coupling in terms of Gru¨neisen param-
eters, which reflect the main features of magnetoelastic
teraction.

As a result, the spinon contribution to the volume therm
expansion coefficient acquires the form

aV
sp

T
5kT

Sm

T (
i

g i
VS ] lnSm

] lnPi
D

T

. ~53!

The peculiar features ofaV
sp/T are determined by those term

which demonstrate appreciable temperature dependenc
the logarithmic derivatives] lnSm /] lnPi . The logarithmic
derivatives ] lnSm /] ln T1,2, which can be expressed i
terms of conventional Gru¨neisen parameter gTK

5] ln TK /] ln V, are temperature independent in the cons
ered temperature rangeT!TK . Therefore, these terms ca
be incorporated into a constantWV together with the
temperature-independent contribution of conduction el
trons
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WV5kTgelS 11
] ln gel

] ln V D1kT

Sm

T
gTK

V S ] lnSm

] ln TK
D

T

. ~54!

Finally we come to the following expression for the volum
thermal expansion coefficient:

aV

T
5WV1

kT

T H gD̃CFS ]Sm

] ln D̃CF
D

T

1gG1S ]Sm

] ln G1
D

T

1gG2S ]Sm

] ln G2
D

T
J . ~55!

Although one cannot distinguish between electron a
spinon contributions to the constant termWV , careful analy-
sis of temperature-dependent contributions provides imp
tant infomation about the volume dependence of spinon
coupling. It is obvious that the on-site mixing strengthG1 is
the parameter which is less influenced by volume cha
than the crystal-field splittingD̃CF and the intersite mixing
parameterG2. Therefore, one can assume thatgG1

;0 and
then analyze the thermal expansion in terms oftwo Grün-
eisen parameters, i.e.,gD̃CF

andgG2
. This means that even in

the temperature rangeT<D̃CF there are two mechanisms o
the volume dependence of the spinon spectrum. There
one can expect that any attempt to describe the volu
dependent properties of CeNiSn by means of a single G¨n-
eisen parameter will result in the temperature dependenc
the latter.19

Our two-parameter procedure gives good agreement
experimental data17 for the set of parametersgD̃CF

5290 and

gG2
5260 ~see Fig. 9!. It should be noted that the signs o

both Grüneisen parameters are reasonable, i.e., expansio
the lattice leads to softening ofDCF and to decrease of inter
site mixing parameterG2.

To analyze the anisotropy of thermal expansion one ha
introduce the axis-dependent Gru¨neisen parameters

g
D̃CF

xj 5
] ln D̃CF

] ln xj
, xj5a,b,c ~56!

and

gG 2

xj 5
] ln G1

] ln xj
, xj5a,b,c ~57!

with the obvious property

g i
V5 (

xj

a,b,c

g i
xj , i 5D̃CF,G1 . ~58!

A comparison of the calculated linear expansion coe
cients with experimental data13 is presented in Fig. 10. Sinc
the intersite mixing parameterG2 can be attributed to the
deviation of Ce sublattice symmetry from the hexagonal o
one can expect that the magnitude of intersite mixing sho
be proportional to orthorhombic distortion of the Ce subl
tice ~see, e.g., Fig. 1 in Ref. 15!. Therefore, since the lattic
expansion along thec axis is most sensitive to the ortho
rhombic distortion, the inequalityugG 2

c u@ugG 2

a,bu should be
d

r-
F

e

re,
e-
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th

of

to

-
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valid. Indeed, the best fit is obtained forgG 2

c 5260 and

gG 2

b 5gG 2

a 50. The same reasoning leads to a conclus

about opposite signs of the influence of expansion in thea-b
plane and along thec axis on the CF parameters. Indeed, t
values of fitted Gru¨neisen parameters aregD̃CF

a
5260, gD̃CF

b

5284, andgD̃CF

c
554.

B. Magnetostriction

Two-parameter Gru¨neisen analysis of thermal expansio
can be used as the basis for quantitative explanation of
magnetostriction which in our model is the quantity chara
terizing the sensitivity of spinon-CF interplay parameters

FIG. 9. Calculated linear coefficient of volume expansion~line!
compared with experimental data Ref. 17~triangles!. Inset: tem-
perature dependence of logarithmic derivatives of entropy.

FIG. 10. Calculated coefficients of linear expansion~lines! com-
pared with experimental data~Ref. 13! ~points! alonga ~solid line,
squares!, b ~dashed line, triangles!, and c axis ~dotted line, dia-
monds!.
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the volume change. Reversible volume magnetostriction
thermodynamically equivalent to the strain dependence
the magnetic susceptibilityx(B,T) ~Ref. 20!,

lV8 ~B,T!5kTHx~B,T!S ] ln x~B,T!

] ln V D
T

. ~59!

Like the thermal expansion,lV8 in low magnetic fields can be
decomposed into the sum of electroniclV,el8 and spinon con-
tributionslV,sp8 ,

lV85lV,el8 1lV,sp8 . ~60!

The contribution of conducton electrons is temperature in
pendent and linear in magnetic field forkBT!«F and nBH
!«F .

lV,el8 5kTWV
elB, ~61!

where

WV
el5S ]xP

] ln VD
T

~62!

~herexp is the Pauli paramagnetic susceptibility!. Therefore,
to reveal peculiar features of the differential magnetostrict
it is convenient to compare experimental and theoretical
sults for the doubly differential magnetostriction coefficie

lV95
lV8

B
, ~63!

which does not depend on temperature and field in the c
ventional Fermi liquid. This quantity is proportional to th
volume derivative of the magnetic susceptibility~provided
the field and the temperature dependence of the isothe
compressibility are neglected!.

The Grüneisen analysis of the magnetostriction is simi
to that of the linear expansion. One should take into acco
only Grüneisen parameters for which the logarithmic deriv
tive of the magnetic susceptibility demonstrates sharp t
perature and field dependence whereas the structureless
tribution due to the standard Gru¨neisen parametergTK

can be
taken into account by the renormalization of the norm
Fermi-liquid contribution constantWV

el→W̃V . However, in
addition to the parametersgG2

andgD̃CF
one should take into

accout the volume dependence of the coefficienta in the
wave functionuG6&, Eq. ~29!,

ga5
] ln a

] ln V
. ~64!

Then the final expression for the logarithmic derivative
the magnetic susceptibility acquires the form

]x

] ln V
5W̃V1H gD̃CFS ]xm

] ln D̃CF
D

T

1gG2S ]xm

] ln G D 1gaS ]xm

] ln aD J , ~65!

2 T T
is
of

-

n
-

n-

al

r
nt
-
-

on-

l

f

whereW̃V incorporates all contributions, which are temper
ture independent atT,20 K,

W̃V5WV
el1gTKS ]xm

] ln TK
D1WVV . ~66!

The logarithmic derivatives of the magnetic susceptibility a
presented in Fig. 11. The fit of the temperature depende
of the volume magnetostriction withgD̃CF

and gg found

above,W̃V52159031023 emu/mol, andga5230 gives a
reasonable agreement with experimental data at low m
netic fields~Fig. 12!. It turns out that the last term of Eq.~65!
dominates in the temperature dependence of magnetos
tion because the contribution of the first two terms give
value which is significantly smaller than the experimen
data.

FIG. 11. Components of volume derivative of magnetic susc
tibility calculated from Eq.~65!.

FIG. 12. Logarithmic derivative of magnetic susceptibilty ca
culated from Eq.~65! ~solid line! and extracted from experimen
~Ref. 21! ~circles!.



re

3
th
th
io
in
-
he
g
la
e
th

e
ee
t o

m
e

n
-
nt

liq

v
t

n
e
on
o
a

-

o
ib

w
on
p

e

s

elf-

es

f to
r-

rs

e-

15 082 PRB 59KIKOIN, KISELEV, MISHCHENKO, AND de VISSER
IX. CONCLUSION

The theory of spin-liquid origin of the low-temperatu
anomalies in thermodynamical and magnetic properties
CeNiSn and related compounds offered in Refs. 12 and 1
based on the assumption that the pseudogap features of
properties should be ascribed to spin excitations rather
to a nonmetallic electron spectrum. Later on, this suspic
was confirmed by metalliclike behavior of the resistivity
samples of good enough quality.5 Nevertheless, the spin
liquid theory met the challenge of explaining not only t
low-temperature thermodynamics but also the fascinatin
complicated picture of inelastic neutron spectra. The exp
nation of the mechanism of neutron scattering offered in R
15 provided us with a set of parameters which determine
spinon spectrum. Thus we came to the quantitative pictur
a spin liquid which arises as a result of the interplay betw
spinons and one-site crystal-field excitations. As a resul
this interplay, the first of the CF levels,DCF

(1) , is ‘‘dissolved’’
in the continuum of spin-fermion excitations, and its re
nants can be traced in the low-energy 2-meV and 4-m
peaks of the inelastic neutron scattering spectra.15 The sec-
ond peak,DCF

(2) , apparently, still exists and gives contributio
both to the neutron scattering spectra31 and to the paramag
netic susceptibility. In the present paper the experime
data on volume-dependent thermodynamical properties
CeNiSn are collected and the quantitative theory of spin
uid is used for interpretation of these data.

To summarize the results of the realization of the abo
program, one should conclude that the hypothesis that
nonlocal spinon pairs determine the free energy of CeNiS
accordance with Eq.~9! is confirmed by detailed quantitativ
consideration. These pairs form both the low-energy c
tinuum of spin excitations which determine the spectrum
inelastic neutron scattering, and the low-temperature beh
ior of thermodynamic quantities~specific heat, thermal ex
pansion, spin susceptibility, and magnetostriction!. We con-
fined ourselves by considering the Zeeman polarization
spinon excitations. This mechanism successfully descr
the temperature dependencesx(T) andl8(T) at low enough
T where the spinon excitations are still well defined. Ho
ever, the properties of CeNiSn can change radically in str
enough magnetic field, and this change is beyond the ap
cability of our theory.
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APPENDIX A

To calculate the thermal energy, one should find the th
modynamic average of the sum of HamiltoniansHh ,
H (c)

RKKY , andH (nc)
RKKY ,

E~T!5Eh~T!1Ec~T!1Enc~T!, ~A1!

where

Eh~T!5
DCF

(0)

NL (
lj

(
LL8

FLL8^ f ljL
† f ljL8&, ~A2!
of
is
ese
an
n

ly
-
f.
e

of
n
f

-
V

al
of
-

e
he
in

-
f
v-

f
es

-
g
li-

r-

Ec~T!5
DCF

(0)

NL (
ll8jj8

8
(
L

I jj8
L

~ l2 l8!^ f ljL
† f l8j8L&^ f l8j8L

† f ljL&,

~A3!

Enc~T!5
DCF

(0)

NL (
ll8jj8

8
(
LL8

~12dLL8!^ f ljL
† f l8j8L8&

3$ Ĩ jj8
LL8~ l2 l8!^ f l8j8L8

† f ljL8&

1@ Ĩ j8j
L8L

~ l82 l!#* ^ f l8j8L
† f ljL&%. ~A4!

HereN is the number of unit cells, primes in the lattice sum
mean that the diagonal terms are omitted,

I jj8
L

~ l2 l8!5Ilj,l8j8
LL /DCF

(0) , I jj8
LL8~ l2 l8!5Īlj,l8j8

LL8L8L8/DCF
(0) ,
~A5!

and the matrixFLL8 is defined by Eq.~22!. The quantities

Djj8
LL8(u) are described by the system of equations

Djj8
LL8~u!52N21(

kn
nkne2 ik–u

„dLL8I jj8
L

~u!Qn
L~j8,k!

3@Qn
L~j,k!#* 1~12dLL8!

3$ Ĩ jj8
LL8~u!Qn

L8~j8,k!@Qn
L8~j,k!#*

1@ Ĩ j8j
L8L

~2u!#* Qn
L~j8,k!@Qn

L~j,k!#* %…,

~A6!

and this system together with Eqs.~20! and ~21! forms the
closed set of equations which should be solved s
consistently.

Although in the general case of low-symmetry lattic

with anisotropic exchange constantsI jj8
L (u) and Ĩ jj8

LL8(u),
one should introduce several variablesDjj8(u), for the lat-
tices with high enough symmetry one can confine onesel
a single parameterDGG which characterizes the intersite co
relations within the lowest crystal-field level.

For example, in Bravais lattices withP nearest neighbors
in equivalent positions the following set of paramete
should be introduced:

DLL85
1

z (
u

NN

DLL8~u!. ~A7!

However, if only the lowest crystal-field statesuG6& are
responsible for the ‘‘anomalous’’ intersite correlations d
scribed by the parameterDGG,

DGG5I G
2

Nz (
kn

wknknuQn
G~k!u2, ~A8!

there is no need for independent nondiagonal variablesDGL.
All of them can be expressed viaDGG by means of the fac-
tors qL5 Ĩ LG/I LG,1,

DLG5qLDGG. ~A9!
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Thus, we assume that the symmetry of the CeNiSn lattic
high enough to restrict ourselves to a single parameterDGG

which characterizes the intersite correlations within the lo
est Kramers doublet.

APPENDIX B

First, we demonstrate that the diagonalized form~17! con-
tains the correct number of states, namely, 2N levels for the
simple case of a one-sublattice crystal with spins 1/2 in e
site described by the Hamiltonian

Hs5
I

2 (
ii8

iÞ i8

(
nn8

f in
† f in8 f i8n8

† f i8n ~B1!

(n56 are the spin projections!. In this case the averag
energy of the spin-liquid stateEc is given by the equation

Ec5
I

2 (
ij

^bijbji &5
I

2z (
pq

(
nn8

w~p2q!npnnqn8 . ~B2!

Herez is the coordination number for the NN sphere. Usi
the mean-field definition of the parameterD5^D ij & and the
spinon energy«p ,

Dwp5(
q

wp2q tanh
«q

2T
, «p5ID«p , ~B3!

and the property of(qwq50, Eq. ~B2! is reduced to

E5I(
p

«pnp . ~B4!

This means that our problem is thermodynamically equi
lent to the problem of spinless fermions, so the limiting va
of the entropy for this system has the correct value ofS`

5N ln 2. On the other hand, the naive mean-field treatm
of the Hamiltonian~B1! results in the effective Hamiltonian

HMF5I(
pn

«pnnpn2
I

2
NzuDu2, ~B5!

which gives a wrong value ofS`5N ln 4.
The nature of this discrepancy is well known. In the sp

fermion representation for the spin 1/2,Si5 f in
† ŝ f in8 ~where

ŝ is the Pauli matrix!, the local constraint(n f in
† f in51 for-

bids simultaneous creation of both up and down spin fer
ons. Since this local constraint is changed for the global c
straintN21(knf kn

† f kn51, one should find a procedure whic
prevents simultaneous creation of ‘‘particle’’ and ‘‘hole’’ i
the spinon spectrum when calculating the thermodyna
functions to reproduce the correct temperature behavio
entropy.

The situation with the next model example of the Brav
lattice with two CF Kramers doubletsuGn&,uEn& and two
intersite exchange coupling constantsI GG and I GE is more
complicated. The system of Eqs.~A6! now describes two
parameters,DGG(u) given by Eq.~16! and

DGE~u!5I GE
2

Nz (
kn

wknknuQn
G~k!u25qDGG

@see Eq.~A9!#. Then the matrixZ, Eq. ~21!, has the form
is

-

h

-
e

t

-

i-
n-

ic
of

s

1

2 S DGGwk qDGGwk 0 0

qDGGwk 1 0 0

0 0 DGGwk qDGGwk

0 0 qDGGwk 1

D ~B6!

with normalization condition~15!.
This case can be treated in the same way as the prev

one, provided the intermixing of ground and excited state
not too strong, i.e., when

q2

u12 1
2 DGGwku

!1. ~B7!

Then the contributionE§ of the half-filled lowest spin-
fermion band to the energyE is

E§5
DCF

(0)

2
N21(

k
(

n56
nkn

§ «kn
§ , ~B8!

where

«k§5
1

2
DGGwkS 12

q2

u12 1
2 DGGwku

D . ~B9!

In this case we also have the compensation of Kramers
generacy. It should be emphasized, however, that the se
branch of the excitations generated by the matrixZ, Eq.
~B6!, is, in fact, the usual magnetic CF exciton band mo
fied by the interaction with the spin-liquid branch, and
contribution to the entropy can be treated in the conventio
manner, at least atkBT!DCF

(0) .
These two examples demonstrate that there is no unive

recipe for calculating the entropy in the systems with stro
interplay between the nonlocal spin-liquid excitations a
the one-site CF excitations. The third instructive exam
demonstrates the importance of accurate treatment of all
generacies which could be lifted by the spin-liquid corre
tions. Here we consider the two-sublattice crystal with t
crystal field resulting in two equivalent Kramers doublets
the Ce ion in each sublattice. Then the exchange interact
in Hc andHnc terms of the Hamiltonian~4! are described by
four parametersI jj8

G andI jj8
GE , wherejj851,2. Then the ma-

trix Z acquires the form

1

2 S D11
GGwk D12

GGwk8 qD11
GGwk q8D12

GGwk8

D12
GGwk8 D11

GGwk q8D12
GGwk8 qD11

GGwk

qD11
GGwk q8D12

GGwk8 2 0

q8D12
GGwk8 qD11

GGwk 0 2

D
~this matrix represents one of two Kramers subspaces in
block-diagonal matrixZ5Z1

^ Z2). We assume that the in
sublattice structure factorwk and the in-sublattice coupling
constantsI 11 are the same for both sublattices. Here the
lationships between nondiagonal and diagonal element
in-sublattice and intersublattice coupling constants are gi
by q5I 11

GE/I 11
G andq85I 12

GE/I 12
G , respectively. In the genera

case the intersublattice structure factorwk8Þwk . Under these
assumptionsD115D22 and D125D21, and two independen
spinon parameters are determined by the equations
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D11
GG5

2

Nz (
kn

wknknI 11
G uQn

G~1,k!u2,

~B10!

D12
GG5

2

Nz (
kn

wk8nknI 12
G Qn

G~2,k!@Qn
G~1,k!#* .

In the case of strong intermixing (I jj8'1 andq,q8'1) all
the coefficientsuQn

G(j,k)u are of the same order, and each
them can be estimated asu'1/2A2. As a result, the contri-
bution of the lowest branches«kn

§ at low temperatureskBT
!DCF

(0) can be approximately represented as
T.

K.
H.
.

S
T.
r,

ka

o-
v.

ke
ns

Z.

e-
.

B

.

H

J.
f

E§'
1

8
DCF

(0)N21(
k

(
n56

nkn
§ «kn

§ ~B11!

because in this case all terms in the matrixZ related to low-
est branches§ contain the factorsDG, as was explicitly dem-
onstrated in the above example@see Eq.~B9!#.

Again we see that the diagonalization procedure~17! re-
sults in a nonuniversal form of the average energy for sp
liquid excitations in comparison with corresponding equ
tions for the conventional Fermi liquids, at least at lo
temperatures.
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