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We introduce a semiempirical method to correct the systematic equilibrium lattice parameters underestima-
tion present in first principles calculations based on the local density approximation. The method consists in
performing calculations under a negative pressure such that the calculated equilibrium volume matches the
experimentally observed one. We find that elastic properties obtained under these conditions are typically in
better agreement with experiment. We also observe that the negative pressure which needs to be applied to
crystalline compound can be reliably interpolated by taking the concentration-weighted average of the pres-
sures determined from pure crystals made of each of the elements present in the compound. In a large class of
materials, the knowledge of one pressure per element is thus sufficient to correct most of the bias in lattice
constants and elastic properties. We finally propose a simple model of the nonlocal contribution to the
exchange-correlations energy that is able to explain the observed linear dependence between the required
negative pressure and concentratid®0163-182609)01324-1

I. INTRODUCTION lations can be combined with experimental input to obtain
accurate equilibrium volumes. We then show, through the
Over the last three decades, first-principles calculationsesults of first-principle calculations, that errors in the equi-
based on the local density approximatidtDA) of density librium volume follow a trend that can be easily corrected
functional theory(DFT) (Refs. 1 and 2 have been exten- with the use of a minimal amount of experimental input. We
sively used to successfully predict numerous materialdinally provide a formal explanation of the success of this
propertiess While the LDA is known to have many limita- Simple approach and discuss the implication of our findings
tions, we will focus here on properties that can, in principle,for the continuing search for better exchange-correlation
be exactly determined by DFT. These include any propertie§inctionals.
that can be derived from the knowledge of the electronic
ground state energy for any given position of the nuclei.
One significant limitation of LDA is its “overbinding” of Il. METHOD
extended solids: Lattice parameters are typically underpre-
dicted, while cohesive energies, phonon frequencies, and
elastic moduli are typically overpredicted. In this paper, our It has been previously obsen/8d'*that, in many com-
main concern will be the biases in the equilibrium lattice pounds, phonon frequencies calculated through first-
constants, the phonon frequencies and the elastic moduli. principles are in closer agreement with experiment when the
The generalized gradient approximati@®GA) (see Ref. lattice parameters are artificially constrained to the experi-
4, and references thergjnwhich augments the LDA mental values. To determine whether this is a general trend,
exchange-correlation energy with a function of the gradientve performed a systematic investigation of the calculated
of the charge density, was introduced to address some of tHaulk modulus in various elements, evaluated at the experi-
weaknesses of the LDA. The GGA has been clearly shown tanental lattice parameter. Since biases in the bulk modulus
improve agreement with experiments for properties of finiteare usually correlated with biases in the phonon frequencies,
systems such as atoms or molectftesiowever, the success investigating the bulk modulus provides a computationally
of the GGA in extended systems has been moresimple way to investigate the bias in elastic properties in a
controversiaf~® despite many successt3GGA frequently  large number of materials.
overcorrects LDA’s overbinding, sometimes yielding worse Figure 1 shows the result of our calculations, which will
agreement with experiment than LDA. Obtaining accuratebe described in detail in a later section. Using the experimen-
cohesive properties of crystalline phases from first-principlesal volume appears to essentially correct the bias in the cal-
calculations thus remains a problematic issue. culated bulk modulus in a large class of materials. For all
This paper describes how LDA’s overbinding can be eastransition and noble metals tested, a substantial improvement
ily corrected for a large class of materials, by using a smalis observed. More importantly, the magnitude of the correc-
amount of experimental input to correct the results of first-tion is correlated with the magnitude of the error—indicating
principles calculations. Our approach focuses on obtaininghat this is clearly not just a random correction in the right
the correct equilibrium volume and relies on the fact that thisdirection. Interestingly, performing the same investigation
correction is sufficient to significantly improve the accuracywith GGA shows that using the experimental volume for
of calculated elastic properties as well. GGA calculations gives worse estimates of the bulk modulus
We first motivate the use of the experimental equilibriumthan LDA at the experimental volum@nd also worse esti-
volume in LDA calculations and describe how LDA calcu- mates than GGA at the GGA equilibrium volumé&or this

A. The importance of volume
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FIG. 1. Calculated versus experimental bulk modulus of se- We do not knowAE,; and seek to approximate it with a
C ; P . tfuncated Taylor series. Since we are interested in the equa-
lected elements. Evaluating the bulk modulus at the experlment%on of state in the neighborhood of the true equilibrium vol-

volume considerably improves agreement with experiméFte . . .
data for W and Ta was provided by the authors of Ref. 7. ume, we expand Ey in the neighborhood of the experimen-
tal volume Qe

reason, we will focus on correcting the LDA equilibrium

volume (instead of the GGA equilibrium volume DA IAE(Qexp)

. . E=E 1 a)+FAE (D) + —————(Q— Q).
Unfortunately, there are exceptions to this trend: for some (feih.3) el L) oQ ( exp)
elements, such as alkali metals, aluminum and silicon, evalu- (1)

ating the bulk modulus through LDA at the experimental ] . .
lattice constant provides no improvement. The elements thathe truncation of the Taylor series after the first order can be

appear to cause problems are those that have a small bulkstified from the fact that LDA seems to give accurate val-
modulus. ues of the bulk modulus when it is evaluated at the experi-

Nevertheless, we can conclude that evaluating elastif’ental volume, as mentioned before. In structures having a
properties with LDA at the experimental volume providesSmall bulk modulus, this assumption is more questionable, as
significantly better agreement with experiment in a largethe second order term is more likely to be non-negligible
class of materials including transition metals as well as othefompared to the second derivativeE>*. This is probably
compounds studied by previous investigafdrs*A method the source of the inaccuracies in the bulk modulus we ob-
of obtaining the correct lattice parameters from LDA calcu-Served in soft elements.
lations with as little experimental input as possible could While the termAE,({¢) may have an influence on

therefore be extremely useful. This is the problem which wecohesive energies, it leaves the equilibrium volume as well
now turn to. as elastic properties unaffected. We will thus focus on the

quantity JAE,(Qex)/d) which has a direct impact on the
equilibrium volume. It can be interpreted as the pressure that
B. Conceptual framework needs to be applied to the LDA solid so that its volume
In this section, we will first introduce a simple one- equals the experimental volume. This pressure, hereafter
parameter correction to the LDA Hamiltonian of the system.called the nonlocal exchange-correlation pressirg)( is
This parameter is element dependent and can be tuned &xpected to be structure-dependent and we now turn to the
obtain the true equilibrium volume. Such an approach avoidgroblem of determining this pressure for a given structure
the conceptual problem associated with artificially fixing theusing the minimum amount of experimental input.
volume without modeling the cause of the volume change. The value ofP,. for each element, in its crystalline form,
We then describe how the knowledge of this parameter fosignificantly changes from one element to the next. Elements
simple systems enables us to extrapolate this parameter ftirat have large charge density inhomogeneities, suchdas 3
systems where it is unknown. We finally present how wemetals, require a large corrective pressure while free-
tested the applicability of our method in a large number ofelectron-like metals, such as alkali metals or aluminum, re-
systems. quire a small pressure. It is often stated that LDA performs
Let us define a structure to be a specific stable or metasoorly in the case of alkali metals, since it significantly un-
stable periodic arrangement of atoms of given types. Such derpredicts their equilibrium volume. But the magnitude of
structure has well defined energy, equilibrium volume, elasthe error introduced by the LDA, in terms of energy per unit
tic moduli and phonon frequencies. The fact that, in generalyolume (as measured bf,.), is actually small. This small
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error in the energy translates into a large volume change only Our calculations are performed with theasp (Refs.
because alkali metals have such a low bulk modulus. 21,22 package which uses ultrastfpseudopotentiaé and
Obviously, using oné,. per element, one can obtain the a plane-wave basis. The equilibrium volume can be sensitive
correct equilibrium volume for all elements. It is now inter- to the quality of the pseudopotentials used. We thus verified
esting to check whether the valueRf; in elements can help that the equilibrium lattice constants we obtain do not differ
predict the value oP,. in compounds. Remarkably, we have significanth?> from previous full-electron calculations in
observed that taking the concentration-weighted average @flements:®*8 The energy cutoff used ranges from 200 to
P,. of each element in the compound provides a simple an@60 eV depending on the elements present in the structure.
effective method to predid®,. in a compound. For ultrasoft pseudopotentials, these cutoffs are largely suf-
Since we are linearly interpolating the nonlocal exchangeficient to obtain pressures with a precision of about 1% for
correlation pressure, this naturally raises the following questransition metals and simple metals. To minimize the effect
tion: Why not linearly interpolate either the volume or the of Pulay stress, calculations are performed at a sequence of
lattice parameter instead? The answer is that compounds thearious volumes ranging from-18 to +12% around the
have the same composition can have slightly different volexperimental volume, at a constant energy cutoff. At each
umes. For example, alloys typically expand by a fraction of avolume, all degrees of freedom are fully relaxed and the
percent upon disordering. These volume relaxations are eniesulting energies are fitted to a polynomial of degree 4. The
ergetically significant and have an important impact on pho+esulting equation of state is then used to obtain the quanti-
non frequenciéS~1"and mixing energies. Usually, LDA cor- ties of interest. The Brillouin zone is sampled using
rectly predicts these relative volume changes and preventinglonkhorst-Pack special points and integrated with the help
them (by fixing the volumé would neglect an effect that of the tetrahedron method with Bloech correctiéh&or all
LDA is actually able to model. Moreover, applying a pres- structures, the total number kfpoints in the Brillouin zone
sure instead of fixing the volume has a firmer conceptuals chosen to be around (15jlivided by the number of atoms
basis: Applying a pressure corresponds to introducing a pein the unit cell. LDA calculations relied on the Ceperley-
turbation to the Hamiltonian which causes a volume changeAlder exchange-correlation functiordlas parametrized by
Fixing the volume imposes a volume change without modelPerdew and ZungéP, while GGA calculations relied on the
ing its cause. Perdew-Wang functiondl.In all calculations, the same
exchange-correlation functional is used for both the pseudo-
C. Calculations potential generation step and the actual calculations. Scalar-
In order to benchmark this approach of linearly interpo_relativi_stic effe_cts are acco_unted for in the pseudopotential.
Nonspin polarized calculations are used for all compounds

lating P,., we computeP,. for a large number of com- hich ; Spi larized
pounds and compare it to the pressure interpolated from th@hich are paramagnetic at room temperature. Spin-polarize

P,. of elements. The valu,, can be determined by artifi- calculations are used for metallic nickel, the only magnetic
Xc . Xc

cially constraining the volume to the experimental value anocompound considered here.
by calculating the pressure acting on the unit cell. For crys-

tals of noncubic symmetry, the cell shape is allowed to relax IIl. RESULTS
(at constant volumeuntil the pressure is isotropic. In all
cases, we allow the internal degrees of freedgm., the We choose binary systems where the number of well

atom positionsto relax. This relaxation step is introduced so characterized phases is sufficiently large to provide a rigor-
that the pressure is calculated in the same conditions as thoses test of the linear dependence R, on concentration.
in which it would be used, that is, without prior knowledge Systems exhibiting intermetallic phases are ideal tests for our
of cell shape and atomic positions. method, as the known structures are well characterized ex-
The experimental volume used must be the one at absgerimentally and have small unit cells, which makes calcu-
lute zero temperature. This is achieved by taking the experikations easily tractable.
mental volume at room temperatufer highe) listed in The nonlocal exchange-correlation pressures for all the
Refs. 18,19 and extrapolating it down to absolute zero usingntermetallic phases tested are shown in Fig. 2. In this figure,
the thermal expansion data found in Ref. 20. For intermetalthe accuracy of the volume determined with the help of an
lics for which the thermal expansion down to absolute zereexchange-correlation pressure relative to the LDA volume
has not been determined experimentally, we use a concentrean be noted by observing that the data points are much
tion weighted average of the values of the pure elements. F@loser to the interpolating line than to the zero axis. It is
compounds that exhibit an allotropic or a magnetic transforremarkable that the linear relationship holds even when the
mation between the temperature at which the volume is meghases do not share a common parent latfide.particular,
sured and absolute zero, we approximate the thermal expathe different crystalline structures of titanium exhibit almost
sion of the high-temperature phase at low temperature by thiéie sameP,.. This is also the case with lithium, whose hcp
thermal expansion of the low-temperature phase and disrénd bcc phases have a nonlocal exchange-correlation pres-
gard the volume change taking place at the phase transitiosure of —1.48 and—1.39 GPa, respectively.
Note that, in most compounds, these corrections are quite The same linear relationship appears to hold for ionic and
small (typically 0.2% change in the lattice constagbm-  covalent solids as well, as shown in Figs. 3 and 4. While the
pared to the LDA errof1% to 2%. Hence, any inaccuracies agreement is less satisfactory in the case of alkali halides,
in these extrapolations have a small impact on our results. Inur method still reduces LDA'’s error on the equilibrium vol-
fact, calculations at the room temperature volume exhibitme by 50%. The case of the ionic compounds is a particu-
essentially the same behavior. larly stringent test of our method because the pure elements
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of calculated formation energies. As an additional test, we
now show that in two cases where LDA is known to predict
he wrong ground state, our correction to the LDA Hamil-
onian is sufficient to obtain the correct ground state.

If our correction to the LDA is indeed a function of vol-
ume and concentration only, the correction to the energy of

used to predict the pressures for the compounds are chemi-
cally very different from these compounds: on one side, they
are metal§Ca, Mg, Na, K, and Qs while on the other side,
they are covalently bound molecules held together by van
der Waals forces (9and C}).

Our method may appear less successful in the case of the
covalent crystal SiC. However, our method predicts the lat-
tice constant of SiC within 0.46%, which is more accurate
than both the LDA lattice constant<(0.85% erroy and the

lattice constant obtained by taking either the mean of the FIG. 4. Nonlocal exchange-correlation pressure as a function of
lattice parameter of C and $B8.2% erroy or the mean of concentration in SiC, a covalent system.
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mation regarding the structure of the nonlocal contribution to
the exchange-correlation energy. Our results indicate that a
large part of the error on the total energy obtained through
LDA takes the form of a linear function of the volume,
where the constant of proportionality is itself linear in con-
centration. Only very specific corrections to the LDA
fcc NM (LDA-P) ! exchange-correlation energy can give rise to such a contri-
bee FM (LDA-P) bution. This section is thus devoted to determining the most
general form of exchange-correlation functional that is com-
patible with our observations. We will motivate such a func-

fcc NM (LDA)
bee FM (LDA)

Exp. Vol. (bce FM)%:

Energy (eV)
N}
~

98 L L L L T tional form based on the results of previous calculations as
9 95 1.0 105 0311 115 12 well as on reasonable physical assumptions.
Unit Cell Volume (A’)

Admittedly, our description of the nonlocal contribution
FIG. 5. Equation of state of iron calculated with the LDA only to the exchange correlation energy is highly.simplified: It is
and with the LDA using an exchange-correlation pres{UBsA-P). not intented to model strong electro_n cprrelatlons effec_ts. We
rather seek to remove LDA’s overbinding problem, which is
two structures which share the same composition should bgresent in all materials, even when electron correlations ef-
of the same form. It follows that the volume-independentfects are relatively weak. Nevertheless, we believe that this
terms in Eq.(1) do not affect the relative stability of the two analysis provides important insight into the continuing
structures. The volume-dependent p&.(), which does search for more accurate exchange-correlation functionals.
affect the relative stability, can be determined as before, This discussion is organized as follows. We first deter-
from the pressure calculated with the LDA at the knownmine which form the correction to the LDA exchange-
experimental volume of one of the structures. The sameorrelation functional must take in order to give rise to an
quantity P,.() is then added to the equation of state of bothenergy contribution that is a linear function of volume only.
structures. We will then examine the implications of constraining the
One of LDA’s most notorious failures is its prediction exchange-correlation pressure to be linear in concentration.
that the ground state of iron is a nonmagnetic fcc structuren particular, we will argue that this behavior is possible only
instead of the observed bcc ferromagnetic structure. A# the correction to the LDA mainly arises from the large
shown in Fig. 5, the problem is readily corrected by adding anonuniformity in the charge density near the atom nuclei.
term of the formP, () determined from the knowledge of This picture naturally provides a physical interpretation to
the experimental lattice parameter of bcc iron. the exchange-correlation pressure in terms of the zero-order
Another example is the LiMn© compound used in coefficient of the functional expansion of the exchange-
lithium ion batteried” whose ground state is known to be an correlation energy, when the point of expansion is taken to
orthorombic antiferromagnetic structure. LDA incorrectly be the atomic charge density.
predicts a so-called layered structure to be the ground state.
Once again, our simple correction, based on the knowledge
of the true cell volume of the orthorombic structure, restores A. Linearity of AE, in volume

the correct ground statesee Fig. 6 We can divide the volume of the solid in two parts:

IV. DISCUSSION “lcore” regions where thg charge density is esse_ntially.iQen—
tical to the charge density of a free atom and “interstitial”
Our observations give us more than a practical way taegions where this approximation ceases to apply. The core
correct LDA’s overbinding. They also provide useful infor- regions are simply considered to be spheres centered on each
nuclei. The interstitial regions include all points outside of
these spheres. While the charge density in the core regions is
= clearly nonuniform, it is essentially frozen. Hence, even if
the LDA is a poor approximation in the core regions, the
i error it introduces is essentially constant and has little influ-
. ence on cohesive properties and in particular, on the equilib-

-1524.20

Layered -

3
T -1524.24
5
3

-1524.28

Orthorombic

152432 rium volume. We therefore seek the source of LDA’s volume
_1524.14 underestimation in the inaccurate description of the
S Layered\ . exchange-correlation energy in the interstitial region. Our
2 1524.18 . approach is to correct the exchange-correlation energy in the
? - Exp. Vol. (Ortho.) = 1 interstitial regions only, leaving the correction to be made in
5-1524.22 yOrthorombic 1 the core regions unspecified. We simply need to assume that
_________________________ I the exchange-correlation potential correction in the core re-
152426 T 33 a1 35 36 37 38 gions is independent of the environment of the core and is a
Unit Cell Volume () relatively smooth continuation of the correction in the inter-

stitial regions, in order not to dramatically affect the wave

FIG. 6. Equation of state of LiMn©calculated with the LDA  functions in the interstitial region.
only and with the LDA using an exchange-correlation pressure In the remainder of this section, we will describe how our
(LDA-P). results lead to the conclusion that most of LDA's bias can be
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corrected by adding to the LDA exchange-correlation energgorrelation pressure is independent of the precise radius cho-
per unit volumee)&CDA(r) in the interstitial region, a term of sen to delimit the core regions.

the form

B. Importance of the core charge density

Ae(r)=Ae, +A r), 2 . .
ol 1) ot Bpep(r) @ Using the observation that most of LDA's error on the

) ) total energy takes the form of a correction that is linear in
where p(r) is the charge density at poimtand Ae,c and  yglume enabled us to considerably restrict the type of cor-
A uxc are corrections to the exchange-correlation energy anghction to the LDA exchange-correction functional we are
potential. We takede,. and Au,. to be uniform over the  ¢5c.sing on. Using the fact that the exchange-correlation

interstitial reglon_for the following reasons. . ._pressure is linear in atomic concentration lets us be more
The observation that our non-self-consistent correctio

fully oredict hesive properties indicates that thepecific about what determines the unknown constaets
successiully predicts co prop and A u,.. We have already indicated that these constants

correction to the exchange-correlation potential is relatively . . . "
uniform over the interstitial region, or at least that the devia-ShOUId be essentially independent of the interstitial charge

tions away from a uniform correction are sufficiently small 9€nSity. Analyzing the linearity oPy; with concentration
to allow a first-order perturbative treatmefie., a non-self- W|_II make it clear that the;e gonstants are essentially deter-
consistent correctionAny large nonuniformities in the cor- Mined by the charge density in tioere regions. ,
rection to the exchange-correlation potential would inevita- Limiting ourselves to the conservative assumption that
bly lead to large corrections to the LDA wave functions, A€xc(r) ata pointr in the interstitial region only depends on
leaving the success of our non-self-consistent approach ufhe charge density in the interstitial regi¢as done in the
explained. GGA, for example, makes it difficult to explain our simple
Prior investigations also support the validity of this non-linear relationship betweeR,. and concentration. First, the
self-consistent approach. The error in the LDA exchangeeharge density in the interstitial region is highly dependent
correlation potential was shown to be surprisingly uniform inon the exact location of neighboring atoms—information the
systems where the exact exchange-correlation potential caspncentration by itself seems unable to convey. Second, even
be obtained at a moderate computational cost: in lighif we assume that atoms sit exactly on the sites of a parent
atomg* and in light atoms dimer¥ In these systems, one lattice common to all phases in the system of inteeesd
can see that a simple shift is sufficient to dramatically im-approximate the charge density in the interstitial regions by
prove the accuracy of the calculated exchange-correlatiooverlapping atomic charge densities, we still face a problem.
potential in the region that would correspond to the intersti-The exchange-correlation functional is a nonlinear function
tial region in extended systems. A non-self-consistent apef the charge density and summing atomic charge densities
proach can also be justified from the fact that GGA, whendoes not translate into summing the exchange-correlation
implemented in a non-self-consistent way by simply usingcontributions coming from each neighboring atom. The only
the GGA exchange-correlation functional with the LDA possibility is thatAe,. can be approximated by a linear func-
charge density as an input, yields results that are very similafonal. But then, we obtain AE,, that is volume indepen-
to a fully self-consistent procedufd®* The magnitude of dent since, as we have indicated before, the total interstitial
GGA'’s corrections over LDA results are comparable to thecharge density is essentially volume independent.
magnitude of the corrections devised in the context of the However, if we consider the possibility that(r) at a
present work and we thus expect the perturbative approach fsoint in the interstitial region depends on the charge density
be appropriate. in a neighborhood large enough to include the core regions
A uniform shift in the exchange-correlation potential is of the neighboring atoms, we will see that a simple explana-
modeled by takingA u,. to be uniform over the interstitial tion for our findings emerges. While the dependencA ef,
region and independent of the interstitial charge densityon the interstitial charge density needs to be assumed linear,
which prohibits the inclusion in Eq2) of higher-order terms  no such restriction needs to be imposed in the case of the
in p. Note that the value ofAu,. has little effect on the dependence on the core charge density. Assuming that our
cohesive properties: to the extent that the charge density ilolume-dependent correction to the LDA exchange-
the core region is truly frozen, the total charge in the intercorrelation energy in the interstitial region does not arise
stitial region is also constant and the integralf,.p(r)  from the small nonuniformities of the interstitial charge den-
over the interstitial regions is volume independent. sity, but rather from the large nonuniformities of the core
On the contrary, the shift in the exchange-correlation encharge densities, avoids most of the difficulties mentioned
ergy per unit volume\ e, directly gives rise to the exchange previously. First, the charge density in the core regions is
correlation pressur®,. and, in fact, is numerically equal to independent of the exact location of neighboring atoms. Sec-
it. The fact that the exchange-correlation pressure for strucend, the problem of the nonlinearity of the exchange-
tures which have the same composition but do not share eorrelation energy is irrelevant since, the core charge density
common parent lattice is nearly identical constrains the coris not obtained by a sum of the contributions of neighboring
rection to the exchange-correlation energy to be uniform iratoms but by the contribution of one atom only. The only
the interstitial region. Since the shape of the interstitial spacessumption needed is that the corrections arising from each
strongly depends on the type of lattice, any nonuniformityneighboring atom are additive, which we will motivate
would make theP,. lattice dependent. A convenient conse- shortly. Previous calculations in systems simple enough to
quence of the uniformity ofAe,. is that the exchange- allow an accurate evaluation of the exchange-correlation en-
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FIG. 7. Schematic shape of the exchange-correlation hglg (
for a reference electron located at poinin the interstitial region.
The exchange-correlation hole exhibits extra peeks where the hole FIG. 8. Idealized shape of the region whose charge density is

overlaps the core charge dendipeaks in the graph gf) of neigh-
boring atoms.

Pxc r

expected to influence the electron pair correlation function between
pointsr andr’.

ergy provide substantial evidence that the core charge deti the electron pair correlation function from which multiple
sity has an important effect on the exchange-correlation enP€aks in the exchange-correlation hole can be inferred.
ergy in the interstitial region.

The spatial extent of the exchange-correlation hole is a C. Linearity of P, in concentration
measure of the size of the neighborhood which is expected to \yhile we have motivated thate,. in the interstitial re-

influence the exchange-correlation energy at a point. AcCugion is mainly determined by the charge density in the cores
rate calculations of the exchange-correlation hole in real sysye stjll have to describe how a linear dependence on con-
tems show that it extends up to distances that are comparad@ntration arises. Let us first define a few quantities. The

to the interatomic (_j!stan5ces.. This has been directly observeglchange-correlation energy per unit volureg(r) at a
in calculations in S|I|qor?,_wh_|le calculations of the electron noint r can be expressed in terms of the electron pair-
pair-correlation function in diamoritf,and metallic lithiumi’  orrelation function
indicate that a similar feature is present in those systéms.
Additionally, the radius of the exchange-correlation hole ob- 1 5
tained through LDA{1/r, )= e:>*, provides an estimate of Bl = EJ g(r,r')dr’, ©)
the spatial extent of the true exchange-correlation hole. For
all the metals investigated in this work, this approximatewhereg(r,r’) is a functional of the charge density that em-
exchange-correlation hole radius is comparable to the digodies all the information regarding the electron pair-
tance separating neighboring atoms. correlation function. More specifically,

Another indication of the influence of the core charge
density on the interstitial exchange-correlation energy is that ,
the exchange-correlation hole exhibits a surprising feature g(r.r')=
when a reference electron is located in the neighborhood of

an isolated atom or a molecule. The exchange-correlatiofvhere h(r,r') is the coupling-constant-averaged electron
hole possesses not only a peak centered on the referenggir correlation of the system, as defined, for example, in
electron but also exhibits additional peaks where theRef. 42.[The explicit functional dependence ef(r) and
exchange-correlation hole overlaps the core of the neighbog(r r’) on the charge densiy has been omitted to simplify
ing atoms, as illustrated in Fig. 7. Whenever the referencene notation.

electron is located in regions of relatively low electronic den-  The difference between the true and the LDA exchange-
sity, the exchange-correlation hole tends to “leak” to the cgrrelation follows a similar structure:

nearest region where the charge density is large. This effect

is especially large for isolated atorfis molecules® and 1

surfaced! This is responsible for the incorrect asymptotic Aey(r)= §J Ag(r,r)d’, 4
behavior of the LDA exchange correlation as the reference

electron is moved to infinit§° LDA predicts an exchange- whereAg(r,r’) is defined as the difference between the true
correlation hole which follows the reference electron as it isvalue of g(r,r') and its approximation obtained with the
moved away, whereas the true exchange-correlation hole abDA. With these definitions in hand, we now introduce a
tually largely remains in the atom, the molecule, or near theplausible restriction to the functional dependence of
surface. This is clearly an indication that regions of largeAg(r,r’) on the charge density which guarantees that the
charge density can in principle have an impact on the exshift in the exchange-correlation energy density in the inter-
change correlation energy up to arbitrarily large distancestitial region is linear in concentration. We consider
Accurate quantum Monte Carlo calculations have shown ag(r,r') to be a functional of the charge density in a rela-
similar effect in extended solids. Calculations in siliédon tively narrow region surrounding the segment joining points
show the presence of these multiple peaks while calculations andr’. The widthw of this region is assumed to be small
on metallic lithiun?” and in diamontf show multiple peaks relative to interatomic distances, as illustrated in Fig. 8.

—p(r)(h[r,r'1=1)p(r"),
[r—r'|
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N ! FIG. 10. Approximating the nonlocal exchange-correlation en-
Q ergy as a sum of independent contributions.

amountép(r). Provided thatsp(r) is not too large, we can
approximate the true dependencedE,. on Sp(r) by an
expansion of the true exchange-correlation function in terms

_ FIG. 9. The exchange-correlation energy at a poinn the o 5 series of homogeneous functional &(r) of degree
interstitial region can be written as a sum of integrals over disjoin 2

sectorsS;, each of which represents the contribution coming from

. ; . . The zero order term of this expansion is simply the value
one particular neighboring atom

of AELC at the “point” of expansion, that is, evaluated at the

Under this assumption, the integration §(r,r') over atomic charge dgnsityi.(r). Thus the ziero—order correqtion
r' in Eq. (3) is a linear operationAe,(r) reduces to a sum O LDA consists in adding the energye,(r) at every point
of integrals over disjoint sectorS, (see Fig. 9 each of I the neighborhood of atom In accordance with our earlier
which representing the contribution coming from one par-2SSumptions we consider the dependence ¢a be weak
ticular neighboring atorix outside of the core. The shift in exchange-correlation energy
in the interstitial region introduced earlier is thus simply the
sum of the atom-specific shift of the neighboring atoms

Ae ()= J' g(r,r"H)d3r’.
i Si ’
— |
If wis not too large compared to interatomic distances, there A= EI Al
will be only a small coupling between the charge density of
neighboring sectors and a term corresponding to segtor The first order term of this functional expansion can be
will mainly depend on the charge density in secBr expressed in terms of the functional derivative of the nonlo-
These approximations allow the difference between theal exchange-correlation energy evaluated at the atomic
LDA exchange-correlation energy per electron and the trugharge density
one Ae,. in the interstitial region to be approximated by a

sum of contributions coming from nearby atoms. The linear- SAE! :J' SAE Sp(r)dr
ity of Ae,(r) in the atomic concentration is thus a conse- xe op pmp:
guence of the well-known fact that only the spherical aver- :

age of the exchange-correlation hole plays a role in i

determining the exchange-correlation energy. EJ’ Apy(r)Sp(r)dr,

which defines an atom-specific correction to the exchange-
) _ _ ) correlation potentialA . (r). As before, assuming a weak
We can now give a simple interpretation to the constantgependence onand summing the contributions of neighbor-

Aey; andA uy introduced earlier. Since the correction to the jng atoms provides the shift in the exchange-correlation po-
LDA exchange correlation in the interstitial region can betential

approximated by a sum dhdependentontributions from

neighboring atoms, we can approximate the correction to the i

exchange-correlation energy at a point in the interstitial re- Aﬂxczzi Aptye:

gion by replacing the exact contributions coming from each

neighboring atom by the contributions of isolated atoms cenln the same spirit as in the beginning of this section, higher
tered at the same locations, as illustrated in Fig. 10. EveRrder terms of the functional expansion are neglected.
though this procedure may seem approximate, including The nonlocal exchange-correlation pressupg.) is thus

nonlocal effects, even in this simplified way, is an improve-more than a fitting parameter in an empirical equation of
ment over not including them at alll. state. Under plausible assumptions, this pressure can be in-

Consider an isolated neutral atdneentered at the origin terpreted as the sum of the zero-order corrections to the LDA
with charge density;(r). This atom has a nonzero non-local €xchange-correlation energy of each atom present in a given
exchange-correlation energy densitg, (r) at every point compound.
in space, which can be integrated over space to give its total
nonlocal exchange-correlation energy V. CONCLUSION

D. Atom-specific correction

_ _ This paper’s first objective is to emphasize that LDA’s
AELCZJ A€l (r)d3r. overestimation of phonon frequencies and elastic moduli is

_ essentially a consequence of its underestimation of the equi-

The quantityAE, . will of course change if the charge den- librium volume. In a large class of materials, calculated elas-
sity in the neighborhood of this atom is perturbed by antic properties are in good agreement with experiment when
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the LDA calculations are performed at the experimental vol- (iii) These contributions take the form of a nearly uni-
ume. form, atom-specific, and charge-density-independent correc-
Given the importance of obtaining the correct equilibriumtion to the exchange-correlation energy density in the inter-
volume, we propose a simple and yet effective way to correctitial region.
LDA'’s bias: apply a negative pressure such that the equilib- These assumptions, which are crucial in obtaining a linear
rium volume agrees with experiment. We have argued thagependence between the nonlocal exchange-correlation pres-
this so-called nonlocal exchange-correlation pressure origisyre and concentration, are guided by the results of previous
nates from the nonlocal contribution to the exchangeinyestigations which have determined the exact exchange-
correlation energy per unit volume in the interstitial region of .o --o|ation energy in simple systems.

the solid. Our results have implications at two different levels.A

This method would be of limited usefulness if one neeOIedﬁimple linear interpolation scheme provides a simple and ac-
a different nonlocal exchange-correlation pressure for eac

compound. Fortunately, we have observed that the nonloCﬁ_‘urate way to correct LDA’s volume underestimation. Fur-

exchange-correlation pressure of a compound can be accirermore: this correction is often sufficient to dramatically
rately determined by taking the concentration-weighted ay/mprove the accuracy of calculated elastic properties as well.

erage of the nonlocal exchange-correlation pressure of elé'-') The fact. that SUCh, a simple schemg performs so well
ments. This linear relationship holds for nearly all the provides strict constraints on the behavior of the nonlocal

metallic, ionic, and covalent systems we have investigategerections to the LDA and provides helpful clues in the
and we are confident of its wide applicability. continuing search for better exchange-correlation function-

We then propose a simple explanation for this surprisingals- Atom—spgcific corrections determi_m_ad from isolated-
linear behavior which relies on the following main assump-atom calculations would appear a promising approach.

tions.
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