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Correcting overbinding in local-density-approximation calculations
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~Received 27 October 1998; revised manuscript received 5 February 1999!

We introduce a semiempirical method to correct the systematic equilibrium lattice parameters underestima-
tion present in first principles calculations based on the local density approximation. The method consists in
performing calculations under a negative pressure such that the calculated equilibrium volume matches the
experimentally observed one. We find that elastic properties obtained under these conditions are typically in
better agreement with experiment. We also observe that the negative pressure which needs to be applied to
crystalline compound can be reliably interpolated by taking the concentration-weighted average of the pres-
sures determined from pure crystals made of each of the elements present in the compound. In a large class of
materials, the knowledge of one pressure per element is thus sufficient to correct most of the bias in lattice
constants and elastic properties. We finally propose a simple model of the nonlocal contribution to the
exchange-correlations energy that is able to explain the observed linear dependence between the required
negative pressure and concentration.@S0163-1829~99!01324-7#
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I. INTRODUCTION

Over the last three decades, first-principles calculati
based on the local density approximation~LDA ! of density
functional theory~DFT! ~Refs. 1 and 2! have been exten
sively used to successfully predict numerous mater
properties.3 While the LDA is known to have many limita
tions, we will focus here on properties that can, in princip
be exactly determined by DFT. These include any proper
that can be derived from the knowledge of the electro
ground state energy for any given position of the nuclei.

One significant limitation of LDA is its ‘‘overbinding’’ of
extended solids: Lattice parameters are typically under
dicted, while cohesive energies, phonon frequencies,
elastic moduli are typically overpredicted. In this paper, o
main concern will be the biases in the equilibrium latti
constants, the phonon frequencies and the elastic modu

The generalized gradient approximation~GGA! ~see Ref.
4, and references therein!, which augments the LDA
exchange-correlation energy with a function of the gradi
of the charge density, was introduced to address some o
weaknesses of the LDA. The GGA has been clearly show
improve agreement with experiments for properties of fin
systems such as atoms or molecules.4,5 However, the succes
of the GGA in extended systems has been m
controversial:6–8 despite many successes,4,9 GGA frequently
overcorrects LDA’s overbinding, sometimes yielding wor
agreement with experiment than LDA. Obtaining accur
cohesive properties of crystalline phases from first-princip
calculations thus remains a problematic issue.

This paper describes how LDA’s overbinding can be e
ily corrected for a large class of materials, by using a sm
amount of experimental input to correct the results of fir
principles calculations. Our approach focuses on obtain
the correct equilibrium volume and relies on the fact that t
correction is sufficient to significantly improve the accura
of calculated elastic properties as well.

We first motivate the use of the experimental equilibriu
volume in LDA calculations and describe how LDA calc
PRB 590163-1829/99/59~23!/14992~10!/$15.00
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lations can be combined with experimental input to obt
accurate equilibrium volumes. We then show, through
results of first-principle calculations, that errors in the eq
librium volume follow a trend that can be easily correct
with the use of a minimal amount of experimental input. W
finally provide a formal explanation of the success of th
simple approach and discuss the implication of our findin
for the continuing search for better exchange-correlat
functionals.

II. METHOD

A. The importance of volume

It has been previously observed10–14 that, in many com-
pounds, phonon frequencies calculated through fi
principles are in closer agreement with experiment when
lattice parameters are artificially constrained to the exp
mental values. To determine whether this is a general tre
we performed a systematic investigation of the calcula
bulk modulus in various elements, evaluated at the exp
mental lattice parameter. Since biases in the bulk modu
are usually correlated with biases in the phonon frequenc
investigating the bulk modulus provides a computationa
simple way to investigate the bias in elastic properties i
large number of materials.

Figure 1 shows the result of our calculations, which w
be described in detail in a later section. Using the experim
tal volume appears to essentially correct the bias in the
culated bulk modulus in a large class of materials. For
transition and noble metals tested, a substantial improvem
is observed. More importantly, the magnitude of the corr
tion is correlated with the magnitude of the error—indicati
that this is clearly not just a random correction in the rig
direction. Interestingly, performing the same investigati
with GGA shows that using the experimental volume f
GGA calculations gives worse estimates of the bulk modu
than LDA at the experimental volume~and also worse esti
mates than GGA at the GGA equilibrium volume!. For this
14 992 ©1999 The American Physical Society
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reason, we will focus on correcting the LDA equilibrium
volume ~instead of the GGA equilibrium volume!.

Unfortunately, there are exceptions to this trend: for so
elements, such as alkali metals, aluminum and silicon, ev
ating the bulk modulus through LDA at the experimen
lattice constant provides no improvement. The elements
appear to cause problems are those that have a small
modulus.

Nevertheless, we can conclude that evaluating ela
properties with LDA at the experimental volume provid
significantly better agreement with experiment in a lar
class of materials including transition metals as well as ot
compounds studied by previous investigators.10–14A method
of obtaining the correct lattice parameters from LDA calc
lations with as little experimental input as possible cou
therefore be extremely useful. This is the problem which
now turn to.

B. Conceptual framework

In this section, we will first introduce a simple one
parameter correction to the LDA Hamiltonian of the syste
This parameter is element dependent and can be tune
obtain the true equilibrium volume. Such an approach avo
the conceptual problem associated with artificially fixing t
volume without modeling the cause of the volume chan
We then describe how the knowledge of this parameter
simple systems enables us to extrapolate this paramete
systems where it is unknown. We finally present how
tested the applicability of our method in a large number
systems.

Let us define a structure to be a specific stable or m
stable periodic arrangement of atoms of given types. Su
structure has well defined energy, equilibrium volume, el
tic moduli and phonon frequencies. The fact that, in gene

FIG. 1. Calculated versus experimental bulk modulus of
lected elements. Evaluating the bulk modulus at the experime
volume considerably improves agreement with experiment.~The
data for W and Ta was provided by the authors of Ref. 7.!
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LDA correctly models elastic properties at the experimen
volume suggests the following approximation for the to
energy of a structure in the neighborhood of its equilibriu
geometry:

E5ELDA~$ci%,aj !1DExc~V!,

whereV is the average atomic volume,ELDA is the energy
obtained using LDA, for given atomic positionsci and lattice
vectorsaj , while DExc is the correction introduced to mode
the effect of the nonlocal contribution to the exchang
correlation energy~which is not accounted for within LDA!.
The approximation introduced is to allowDExc to depend on
the average atomic volume only. This approximation rests
the assumptions that LDA usually predicts reasonably ac
rate unit cellshapes~except for an isotropic scaling factor!
and phonon frequencies, when evaluated at the experime
volume. If DExc were strongly dependent on the cell shap
the LDA cell shape would be significantly biased and ifDExc
were strongly dependent on atomic positions, the LD
would give incorrect estimates of the phonon frequencies

We do not knowDExc and seek to approximate it with
truncated Taylor series. Since we are interested in the e
tion of state in the neighborhood of the true equilibrium vo
ume, we expandDExc in the neighborhood of the experimen
tal volumeVexp:

E5ELDA~$ci%,aj !1DExc~Vexp!1
]DExc~Vexp!

]V
~V2Vexp!.

~1!

The truncation of the Taylor series after the first order can
justified from the fact that LDA seems to give accurate v
ues of the bulk modulus when it is evaluated at the exp
mental volume, as mentioned before. In structures havin
small bulk modulus, this assumption is more questionable
the second order term is more likely to be non-negligib
compared to the second derivative ofELDA. This is probably
the source of the inaccuracies in the bulk modulus we
served in soft elements.

While the termDExc(Vexp) may have an influence on
cohesive energies, it leaves the equilibrium volume as w
as elastic properties unaffected. We will thus focus on
quantity ]DExc(Vexp)/]V which has a direct impact on th
equilibrium volume. It can be interpreted as the pressure
needs to be applied to the LDA solid so that its volum
equals the experimental volume. This pressure, herea
called the nonlocal exchange-correlation pressure (Pxc), is
expected to be structure-dependent and we now turn to
problem of determining this pressure for a given struct
using the minimum amount of experimental input.

The value ofPxc for each element, in its crystalline form
significantly changes from one element to the next. Eleme
that have large charge density inhomogeneities, such asd
metals, require a large corrective pressure while fr
electron-like metals, such as alkali metals or aluminum,
quire a small pressure. It is often stated that LDA perfor
poorly in the case of alkali metals, since it significantly u
derpredicts their equilibrium volume. But the magnitude
the error introduced by the LDA, in terms of energy per u
volume ~as measured byPxc), is actually small. This smal

-
tal
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error in the energy translates into a large volume change
because alkali metals have such a low bulk modulus.

Obviously, using onePxc per element, one can obtain th
correct equilibrium volume for all elements. It is now inte
esting to check whether the value ofPxc in elements can help
predict the value ofPxc in compounds. Remarkably, we hav
observed that taking the concentration-weighted averag
Pxc of each element in the compound provides a simple
effective method to predictPxc in a compound.

Since we are linearly interpolating the nonlocal exchan
correlation pressure, this naturally raises the following qu
tion: Why not linearly interpolate either the volume or th
lattice parameter instead? The answer is that compounds
have the same composition can have slightly different v
umes. For example, alloys typically expand by a fraction o
percent upon disordering. These volume relaxations are
ergetically significant and have an important impact on p
non frequencies15–17and mixing energies. Usually, LDA cor
rectly predicts these relative volume changes and preven
them ~by fixing the volume! would neglect an effect tha
LDA is actually able to model. Moreover, applying a pre
sure instead of fixing the volume has a firmer concept
basis: Applying a pressure corresponds to introducing a
turbation to the Hamiltonian which causes a volume chan
Fixing the volume imposes a volume change without mod
ing its cause.

C. Calculations

In order to benchmark this approach of linearly interp
lating Pxc , we computePxc for a large number of com
pounds and compare it to the pressure interpolated from
Pxc of elements. The valuePxc can be determined by artifi
cially constraining the volume to the experimental value a
by calculating the pressure acting on the unit cell. For cr
tals of noncubic symmetry, the cell shape is allowed to re
~at constant volume! until the pressure is isotropic. In a
cases, we allow the internal degrees of freedom~i.e., the
atom positions! to relax. This relaxation step is introduced
that the pressure is calculated in the same conditions as t
in which it would be used, that is, without prior knowledg
of cell shape and atomic positions.

The experimental volume used must be the one at a
lute zero temperature. This is achieved by taking the exp
mental volume at room temperature~or higher! listed in
Refs. 18,19 and extrapolating it down to absolute zero us
the thermal expansion data found in Ref. 20. For interme
lics for which the thermal expansion down to absolute z
has not been determined experimentally, we use a conce
tion weighted average of the values of the pure elements.
compounds that exhibit an allotropic or a magnetic trans
mation between the temperature at which the volume is m
sured and absolute zero, we approximate the thermal ex
sion of the high-temperature phase at low temperature by
thermal expansion of the low-temperature phase and d
gard the volume change taking place at the phase transi
Note that, in most compounds, these corrections are q
small ~typically 0.2% change in the lattice constant! com-
pared to the LDA error~1% to 2%!. Hence, any inaccuracie
in these extrapolations have a small impact on our results
fact, calculations at the room temperature volume exh
essentially the same behavior.
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Our calculations are performed with theVASP ~Refs.
21,22! package which uses ultrasoft23 pseudopotentials24 and
a plane-wave basis. The equilibrium volume can be sensi
to the quality of the pseudopotentials used. We thus veri
that the equilibrium lattice constants we obtain do not dif
significantly25 from previous full-electron calculations in
elements.7,9,4,8 The energy cutoff used ranges from 200
360 eV depending on the elements present in the struct
For ultrasoft pseudopotentials, these cutoffs are largely
ficient to obtain pressures with a precision of about 1%
transition metals and simple metals. To minimize the eff
of Pulay stress, calculations are performed at a sequenc
various volumes ranging from218 to 112% around the
experimental volume, at a constant energy cutoff. At ea
volume, all degrees of freedom are fully relaxed and
resulting energies are fitted to a polynomial of degree 4. T
resulting equation of state is then used to obtain the qua
ties of interest. The Brillouin zone is sampled usin
Monkhorst-Pack special points and integrated with the h
of the tetrahedron method with Bloech corrections.26 For all
structures, the total number ofk points in the Brillouin zone
is chosen to be around (15)3 divided by the number of atom
in the unit cell. LDA calculations relied on the Ceperle
Alder exchange-correlation functional,27 as parametrized by
Perdew and Zunger,28 while GGA calculations relied on the
Perdew-Wang functional.4 In all calculations, the same
exchange-correlation functional is used for both the pseu
potential generation step and the actual calculations. Sca
relativistic effects are accounted for in the pseudopoten
Nonspin polarized calculations are used for all compou
which are paramagnetic at room temperature. Spin-polar
calculations are used for metallic nickel, the only magne
compound considered here.

III. RESULTS

We choose binary systems where the number of w
characterized phases is sufficiently large to provide a rig
ous test of the linear dependence ofPxc on concentration.
Systems exhibiting intermetallic phases are ideal tests for
method, as the known structures are well characterized
perimentally and have small unit cells, which makes cal
lations easily tractable.

The nonlocal exchange-correlation pressures for all
intermetallic phases tested are shown in Fig. 2. In this figu
the accuracy of the volume determined with the help of
exchange-correlation pressure relative to the LDA volu
can be noted by observing that the data points are m
closer to the interpolating line than to the zero axis. It
remarkable that the linear relationship holds even when
phases do not share a common parent lattice.29 In particular,
the different crystalline structures of titanium exhibit almo
the samePxc . This is also the case with lithium, whose hc
and bcc phases have a nonlocal exchange-correlation p
sure of21.48 and21.39 GPa, respectively.

The same linear relationship appears to hold for ionic a
covalent solids as well, as shown in Figs. 3 and 4. While
agreement is less satisfactory in the case of alkali halid
our method still reduces LDA’s error on the equilibrium vo
ume by 50%. The case of the ionic compounds is a part
larly stringent test of our method because the pure elem
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used to predict the pressures for the compounds are ch
cally very different from these compounds: on one side, th
are metals~Ca, Mg, Na, K, and Cs!, while on the other side
they are covalently bound molecules held together by
der Waals forces (O2 and Cl2).

Our method may appear less successful in the case o
covalent crystal SiC. However, our method predicts the
tice constant of SiC within 0.46%, which is more accura
than both the LDA lattice constant (20.85% error! and the
lattice constant obtained by taking either the mean of
lattice parameter of C and Si~3.2% error! or the mean of

FIG. 2. Nonlocal exchange-correlation pressure as a functio
concentration in metallic systems.
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he
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e

their molar volume~7.4% error!.
Unfortunately, our linear interpolation scheme does fail

some systems. During our benchmarking, we found th
systems where this approach was unsuccessful: In the G
and Li-Co-O systems, the pressure was clearly not linea
concentration, while in the case of pure carbon, the pres
associated with diamond and graphite were radically diff
ent. In all cases, the failure is associated with the presenc
a markedly anisotropic bonding in some of the compoun
which makes the use of an isotropic pressure inappropri
The value of the stress in graphite, when calculated with
LDA at the experimental lattice parameters, best illustra
the nature of the problem. While the stress perpendicula
the graphitic layers~0.09 GPa! differs from the isotropic
component of the stress in the diamond structure~14.4 GPa!,
the stress along the graphitic layers~16.0 GPa! agrees very
well with the value obtained in diamond.

We have up to now only focused on predicting the latt
parameters, but in principle, our correction to the LD
Hamiltonian can just as well be used to improve the accur
of calculated formation energies. As an additional test,
now show that in two cases where LDA is known to pred
the wrong ground state, our correction to the LDA Ham
tonian is sufficient to obtain the correct ground state.

If our correction to the LDA is indeed a function of vo
ume and concentration only, the correction to the energy

of

FIG. 3. Nonlocal exchange-correlation pressure as a functio
concentration in ionic systems. The pressures for oxygen and c
rine are obtained from their solid crystalline structure at low te
perature~23 K for oxygen and 100 K for chlorine!.

FIG. 4. Nonlocal exchange-correlation pressure as a functio
concentration in SiC, a covalent system.
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two structures which share the same composition should
of the same form. It follows that the volume-independe
terms in Eq.~1! do not affect the relative stability of the tw
structures. The volume-dependent part,PxcV, which does
affect the relative stability, can be determined as befo
from the pressure calculated with the LDA at the know
experimental volume of one of the structures. The sa
quantityPxcV is then added to the equation of state of bo
structures.

One of LDA’s most notorious failures is its predictio
that the ground state of iron is a nonmagnetic fcc struct
instead of the observed bcc ferromagnetic structure.
shown in Fig. 5, the problem is readily corrected by addin
term of the formPxcV determined from the knowledge o
the experimental lattice parameter of bcc iron.

Another example is the LiMnO2 compound used in
lithium ion batteries30 whose ground state is known to be a
orthorombic antiferromagnetic structure. LDA incorrect
predicts a so-called layered structure to be the ground s
Once again, our simple correction, based on the knowle
of the true cell volume of the orthorombic structure, resto
the correct ground state~see Fig. 6!.

IV. DISCUSSION

Our observations give us more than a practical way
correct LDA’s overbinding. They also provide useful info

FIG. 5. Equation of state of iron calculated with the LDA on
and with the LDA using an exchange-correlation pressure~LDA-P!.

FIG. 6. Equation of state of LiMnO2 calculated with the LDA
only and with the LDA using an exchange-correlation press
~LDA-P!.
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mation regarding the structure of the nonlocal contribution
the exchange-correlation energy. Our results indicate th
large part of the error on the total energy obtained throu
LDA takes the form of a linear function of the volume
where the constant of proportionality is itself linear in co
centration. Only very specific corrections to the LD
exchange-correlation energy can give rise to such a co
bution. This section is thus devoted to determining the m
general form of exchange-correlation functional that is co
patible with our observations. We will motivate such a fun
tional form based on the results of previous calculations
well as on reasonable physical assumptions.

Admittedly, our description of the nonlocal contributio
to the exchange correlation energy is highly simplified: It
not intented to model strong electron correlations effects.
rather seek to remove LDA’s overbinding problem, which
present in all materials, even when electron correlations
fects are relatively weak. Nevertheless, we believe that
analysis provides important insight into the continui
search for more accurate exchange-correlation functiona

This discussion is organized as follows. We first det
mine which form the correction to the LDA exchang
correlation functional must take in order to give rise to
energy contribution that is a linear function of volume on
We will then examine the implications of constraining th
exchange-correlation pressure to be linear in concentrat
In particular, we will argue that this behavior is possible on
if the correction to the LDA mainly arises from the larg
nonuniformity in the charge density near the atom nuc
This picture naturally provides a physical interpretation
the exchange-correlation pressure in terms of the zero-o
coefficient of the functional expansion of the exchang
correlation energy, when the point of expansion is taken
be the atomic charge density.

A. Linearity of DExc in volume

We can divide the volume of the solid in two part
‘‘core’’ regions where the charge density is essentially ide
tical to the charge density of a free atom and ‘‘interstitia
regions where this approximation ceases to apply. The c
regions are simply considered to be spheres centered on
nuclei. The interstitial regions include all points outside
these spheres. While the charge density in the core regio
clearly nonuniform, it is essentially frozen. Hence, even
the LDA is a poor approximation in the core regions, t
error it introduces is essentially constant and has little in
ence on cohesive properties and in particular, on the equ
rium volume. We therefore seek the source of LDA’s volum
underestimation in the inaccurate description of t
exchange-correlation energy in the interstitial region. O
approach is to correct the exchange-correlation energy in
interstitial regions only, leaving the correction to be made
the core regions unspecified. We simply need to assume
the exchange-correlation potential correction in the core
gions is independent of the environment of the core and
relatively smooth continuation of the correction in the inte
stitial regions, in order not to dramatically affect the wa
functions in the interstitial region.

In the remainder of this section, we will describe how o
results lead to the conclusion that most of LDA’s bias can

e
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corrected by adding to the LDA exchange-correlation ene
per unit volumeexc

LDA(r ) in the interstitial region, a term o
the form

Dexc~r !5Dexc1Dmxcr~r !, ~2!

where r(r ) is the charge density at pointr and Dexc and
Dmxc are corrections to the exchange-correlation energy
potential. We takeDexc and Dmxc to be uniform over the
interstitial region for the following reasons.

The observation that our non-self-consistent correct
successfully predicts cohesive properties indicates that
correction to the exchange-correlation potential is relativ
uniform over the interstitial region, or at least that the dev
tions away from a uniform correction are sufficiently sm
to allow a first-order perturbative treatment~i.e., a non-self-
consistent correction!. Any large nonuniformities in the cor
rection to the exchange-correlation potential would inev
bly lead to large corrections to the LDA wave function
leaving the success of our non-self-consistent approach
explained.

Prior investigations also support the validity of this no
self-consistent approach. The error in the LDA exchan
correlation potential was shown to be surprisingly uniform
systems where the exact exchange-correlation potential
be obtained at a moderate computational cost: in li
atoms31 and in light atoms dimers.32 In these systems, on
can see that a simple shift is sufficient to dramatically i
prove the accuracy of the calculated exchange-correla
potential in the region that would correspond to the inter
tial region in extended systems. A non-self-consistent
proach can also be justified from the fact that GGA, wh
implemented in a non-self-consistent way by simply us
the GGA exchange-correlation functional with the LD
charge density as an input, yields results that are very sim
to a fully self-consistent procedure.33,34 The magnitude of
GGA’s corrections over LDA results are comparable to
magnitude of the corrections devised in the context of
present work and we thus expect the perturbative approac
be appropriate.

A uniform shift in the exchange-correlation potential
modeled by takingDmxc to be uniform over the interstitia
region and independent of the interstitial charge dens
which prohibits the inclusion in Eq.~2! of higher-order terms
in r. Note that the value ofDmxc has little effect on the
cohesive properties: to the extent that the charge densit
the core region is truly frozen, the total charge in the int
stitial region is also constant and the integral ofDmxcr(r )
over the interstitial regions is volume independent.

On the contrary, the shift in the exchange-correlation
ergy per unit volumeDexc directly gives rise to the exchang
correlation pressurePxc and, in fact, is numerically equal t
it. The fact that the exchange-correlation pressure for st
tures which have the same composition but do not sha
common parent lattice is nearly identical constrains the c
rection to the exchange-correlation energy to be uniform
the interstitial region. Since the shape of the interstitial sp
strongly depends on the type of lattice, any nonuniform
would make thePxc lattice dependent. A convenient cons
quence of the uniformity ofDexc is that the exchange
y

d

n
he
y
-
l

-
,
n-

-

an
t

-
n

i-
-

n
g

ar

e
e
to

y,

in
-

-

c-
a

r-
n
e

y

correlation pressure is independent of the precise radius
sen to delimit the core regions.

B. Importance of the core charge density

Using the observation that most of LDA’s error on th
total energy takes the form of a correction that is linear
volume enabled us to considerably restrict the type of c
rection to the LDA exchange-correction functional we a
focusing on. Using the fact that the exchange-correlat
pressure is linear in atomic concentration lets us be m
specific about what determines the unknown constantsDexc

and Dmxc . We have already indicated that these consta
should be essentially independent of the interstitial cha
density. Analyzing the linearity ofPxc with concentration
will make it clear that these constants are essentially de
mined by the charge density in thecore regions.

Limiting ourselves to the conservative assumption t
Dexc(r ) at a pointr in the interstitial region only depends o
the charge density in the interstitial region~as done in the
GGA, for example!, makes it difficult to explain our simple
linear relationship betweenPxc and concentration. First, th
charge density in the interstitial region is highly depend
on the exact location of neighboring atoms—information t
concentration by itself seems unable to convey. Second, e
if we assume that atoms sit exactly on the sites of a pa
lattice common to all phases in the system of interestand
approximate the charge density in the interstitial regions
overlapping atomic charge densities, we still face a proble
The exchange-correlation functional is a nonlinear funct
of the charge density and summing atomic charge dens
does not translate into summing the exchange-correla
contributions coming from each neighboring atom. The o
possibility is thatDexc can be approximated by a linear fun
tional. But then, we obtain aDExc that is volume indepen-
dent since, as we have indicated before, the total interst
charge density is essentially volume independent.

However, if we consider the possibility thatexc(r ) at a
point in the interstitial region depends on the charge den
in a neighborhood large enough to include the core regi
of the neighboring atoms, we will see that a simple expla
tion for our findings emerges. While the dependence ofDexc
on the interstitial charge density needs to be assumed lin
no such restriction needs to be imposed in the case of
dependence on the core charge density. Assuming that
volume-dependent correction to the LDA exchang
correlation energy in the interstitial region does not ar
from the small nonuniformities of the interstitial charge de
sity, but rather from the large nonuniformities of the co
charge densities, avoids most of the difficulties mention
previously. First, the charge density in the core regions
independent of the exact location of neighboring atoms. S
ond, the problem of the nonlinearity of the exchang
correlation energy is irrelevant since, the core charge den
is not obtained by a sum of the contributions of neighbor
atoms but by the contribution of one atom only. The on
assumption needed is that the corrections arising from e
neighboring atom are additive, which we will motiva
shortly. Previous calculations in systems simple enough
allow an accurate evaluation of the exchange-correlation
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ergy provide substantial evidence that the core charge
sity has an important effect on the exchange-correlation
ergy in the interstitial region.

The spatial extent of the exchange-correlation hole i
measure of the size of the neighborhood which is expecte
influence the exchange-correlation energy at a point. Ac
rate calculations of the exchange-correlation hole in real s
tems show that it extends up to distances that are compa
to the interatomic distances. This has been directly obse
in calculations in silicon,35 while calculations of the electron
pair-correlation function in diamond,36 and metallic lithium37

indicate that a similar feature is present in those system38

Additionally, the radius of the exchange-correlation hole o
tained through LDA,̂ 1/r xc&5exc

LDA , provides an estimate o
the spatial extent of the true exchange-correlation hole.
all the metals investigated in this work, this approxima
exchange-correlation hole radius is comparable to the
tance separating neighboring atoms.

Another indication of the influence of the core char
density on the interstitial exchange-correlation energy is
the exchange-correlation hole exhibits a surprising fea
when a reference electron is located in the neighborhoo
an isolated atom or a molecule. The exchange-correla
hole possesses not only a peak centered on the refer
electron but also exhibits additional peaks where
exchange-correlation hole overlaps the core of the neigh
ing atoms, as illustrated in Fig. 7. Whenever the refere
electron is located in regions of relatively low electronic de
sity, the exchange-correlation hole tends to ‘‘leak’’ to t
nearest region where the charge density is large. This e
is especially large for isolated atoms,39 molecules,40 and
surfaces.41 This is responsible for the incorrect asympto
behavior of the LDA exchange correlation as the refere
electron is moved to infinity.40 LDA predicts an exchange
correlation hole which follows the reference electron as i
moved away, whereas the true exchange-correlation hole
tually largely remains in the atom, the molecule, or near
surface. This is clearly an indication that regions of lar
charge density can in principle have an impact on the
change correlation energy up to arbitrarily large distan
Accurate quantum Monte Carlo calculations have show
similar effect in extended solids. Calculations in silicon35

show the presence of these multiple peaks while calculat
on metallic lithium37 and in diamond36 show multiple peaks

FIG. 7. Schematic shape of the exchange-correlation hole (rxc)
for a reference electron located at pointr in the interstitial region.
The exchange-correlation hole exhibits extra peeks where the
overlaps the core charge density~peaks in the graph ofr) of neigh-
boring atoms.
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in the electron pair correlation function from which multip
peaks in the exchange-correlation hole can be inferred.

C. Linearity of Pxc in concentration

While we have motivated thatDexc in the interstitial re-
gion is mainly determined by the charge density in the co
we still have to describe how a linear dependence on c
centration arises. Let us first define a few quantities. T
exchange-correlation energy per unit volumeexc(r ) at a
point r can be expressed in terms of the electron pa
correlation function

exc~r !5
1

2E g~r ,r 8!d3r 8, ~3!

whereg(r ,r 8) is a functional of the charge density that em
bodies all the information regarding the electron pa
correlation function. More specifically,

g~r ,r 8!5
1

ur2r 8u
r~r !~ h̄@r ,r 8#21!r~r 8!,

where h̄(r ,r 8) is the coupling-constant-averaged electr
pair correlation of the system, as defined, for example,
Ref. 42. @The explicit functional dependence ofexc(r ) and
g(r ,r 8) on the charge densityr has been omitted to simplify
the notation#.

The difference between the true and the LDA exchan
correlation follows a similar structure:

Dexc~r !5
1

2E Dg~r ,r 8!d3r 8, ~4!

whereDg(r ,r 8) is defined as the difference between the tr
value of g(r ,r 8) and its approximation obtained with th
LDA. With these definitions in hand, we now introduce
plausible restriction to the functional dependence
Dg(r ,r 8) on the charge density which guarantees that
shift in the exchange-correlation energy density in the int
stitial region is linear in concentration. We consid
Dg(r ,r 8) to be a functional of the charge density in a re
tively narrow region surrounding the segment joining poin
r and r 8. The widthw of this region is assumed to be sma
relative to interatomic distances, as illustrated in Fig. 8.

FIG. 8. Idealized shape of the region whose charge densit
expected to influence the electron pair correlation function betw
points r and r 8.
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Under this assumption, the integration ofDg(r ,r 8) over
r 8 in Eq. ~3! is a linear operation:Dexc(r ) reduces to a sum
of integrals over disjoint sectorsSi ~see Fig. 9!, each of
which representing the contribution coming from one p
ticular neighboring atomi:

Dexc~r !5(
i
E

Si

g~r ,r 8!d3r 8.

If w is not too large compared to interatomic distances, th
will be only a small coupling between the charge density
neighboring sectors and a term corresponding to sectoSi
will mainly depend on the charge density in sectorSi .

These approximations allow the difference between
LDA exchange-correlation energy per electron and the t
one Dexc in the interstitial region to be approximated by
sum of contributions coming from nearby atoms. The line
ity of Dexc(r ) in the atomic concentration is thus a cons
quence of the well-known fact that only the spherical av
age of the exchange-correlation hole plays a role
determining the exchange-correlation energy.

D. Atom-specific correction

We can now give a simple interpretation to the consta
Dexc andDmxc introduced earlier. Since the correction to t
LDA exchange correlation in the interstitial region can
approximated by a sum ofindependentcontributions from
neighboring atoms, we can approximate the correction to
exchange-correlation energy at a point in the interstitial
gion by replacing the exact contributions coming from ea
neighboring atom by the contributions of isolated atoms c
tered at the same locations, as illustrated in Fig. 10. E
though this procedure may seem approximate, includ
nonlocal effects, even in this simplified way, is an improv
ment over not including them at all.

Consider an isolated neutral atomi centered at the origin
with charge densityr i(r ). This atom has a nonzero non-loc
exchange-correlation energy densityDexc

i (r ) at every point
in space, which can be integrated over space to give its t
nonlocal exchange-correlation energy

DExc
i 5E Dexc

i ~r !d3r .

The quantityDExc
i will of course change if the charge den

sity in the neighborhood of this atom is perturbed by

FIG. 9. The exchange-correlation energy at a pointr in the
interstitial region can be written as a sum of integrals over disjo
sectorsSi , each of which represents the contribution coming fro
one particular neighboring atomi.
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amountdr(r ). Provided thatdr(r ) is not too large, we can
approximate the true dependence ofDExc

i on dr(r ) by an
expansion of the true exchange-correlation function in ter
of a series of homogeneous functional ofdr(r ) of degree
0,1,2, . . . .

The zero order term of this expansion is simply the va
of DExc

i at the ‘‘point’’ of expansion, that is, evaluated at th
atomic charge densityr i(r ). Thus the zero-order correctio
to LDA consists in adding the energyDexc

i (r ) at every point
in the neighborhood of atomi. In accordance with our earlie
assumptions we consider the dependence onr to be weak
outside of the core. The shift in exchange-correlation ene
in the interstitial region introduced earlier is thus simply t
sum of the atom-specific shift of the neighboring atoms

Dexc5(
i

Dexc
i .

The first order term of this functional expansion can
expressed in terms of the functional derivative of the non
cal exchange-correlation energy evaluated at the ato
charge density

dDExc
i 5E dDExc

i

dr
U

r5r i

dr~r !dr

[E Dmxc
i ~r !dr~r !dr ,

which defines an atom-specific correction to the exchan
correlation potentialDmxc

i (r ). As before, assuming a wea
dependence onr and summing the contributions of neighbo
ing atoms provides the shift in the exchange-correlation
tential

Dmxc5(
i

Dmxc
i .

In the same spirit as in the beginning of this section, hig
order terms of the functional expansion are neglected.

The nonlocal exchange-correlation pressure (Pxc) is thus
more than a fitting parameter in an empirical equation
state. Under plausible assumptions, this pressure can b
terpreted as the sum of the zero-order corrections to the L
exchange-correlation energy of each atom present in a g
compound.

V. CONCLUSION

This paper’s first objective is to emphasize that LDA
overestimation of phonon frequencies and elastic modu
essentially a consequence of its underestimation of the e
librium volume. In a large class of materials, calculated el
tic properties are in good agreement with experiment wh

t

FIG. 10. Approximating the nonlocal exchange-correlation e
ergy as a sum of independent contributions.
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the LDA calculations are performed at the experimental v
ume.

Given the importance of obtaining the correct equilibriu
volume, we propose a simple and yet effective way to corr
LDA’s bias: apply a negative pressure such that the equ
rium volume agrees with experiment. We have argued
this so-called nonlocal exchange-correlation pressure o
nates from the nonlocal contribution to the exchan
correlation energy per unit volume in the interstitial region
the solid.

This method would be of limited usefulness if one need
a different nonlocal exchange-correlation pressure for e
compound. Fortunately, we have observed that the nonl
exchange-correlation pressure of a compound can be a
rately determined by taking the concentration-weighted
erage of the nonlocal exchange-correlation pressure of
ments. This linear relationship holds for nearly all t
metallic, ionic, and covalent systems we have investiga
and we are confident of its wide applicability.

We then propose a simple explanation for this surpris
linear behavior which relies on the following main assum
tions.

~i! The nonlocal contribution to the exchange-correlat
energy in the interstitial region mainly originates from t
large nonuniformity of the core charge density and not fr
the weak nonuniformities of the interstitial charge density

~ii ! This nonlocal correction can be approximately e
pressed as a sum of independent contributions coming f
nearby atoms.
e
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~iii ! These contributions take the form of a nearly un
form, atom-specific, and charge-density-independent cor
tion to the exchange-correlation energy density in the in
stitial region.

These assumptions, which are crucial in obtaining a lin
dependence between the nonlocal exchange-correlation
sure and concentration, are guided by the results of prev
investigations which have determined the exact exchan
correlation energy in simple systems.

Our results have implications at two different levels.~i! A
simple linear interpolation scheme provides a simple and
curate way to correct LDA’s volume underestimation. Fu
thermore, this correction is often sufficient to dramatica
improve the accuracy of calculated elastic properties as w
~ii ! The fact that such a simple scheme performs so w
provides strict constraints on the behavior of the nonlo
corrections to the LDA and provides helpful clues in t
continuing search for better exchange-correlation functi
als. Atom-specific corrections determined from isolate
atom calculations would appear a promising approach.
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