
PHYSICAL REVIEW B 15 JUNE 1999-IVOLUME 59, NUMBER 23
Statistical properties of a localization-delocalization transition in one dimension
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We study a one-dimensional model of disordered electrons~also relevant for random spin chains!, which
exhibits a delocalization transition at half-filling. Exact probability distribution functions for the Wigner time
and transmission coefficient are calculated. We identify and distinguish those features of probability densities
that are due to rare trapping configurations of the random potential from those which are due to the proximity
to the delocalization transition.@S0163-1829~99!01220-5#
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The Anderson transition in dimensionsD,3 has recently
attracted a renewed interest in relation to such system
random antiferromagnetic spin chains1 and high mobility Si
metal-oxide-semiconductor field-effect transisto
~MOSFET’s!.2 Experiments on both systems could not
accounted for in the standard scaling theory of localizatio3

The simplest disordered model known to exhibit meta
behavior, in spite of being one dimensional, is the rando
hopping model

Hrh5(
n

tn~cn
†cn111H.c.!, ~1!

wheretn.0 are random variables, withn-independent aver
age,^tn&5t, andcn annihilates a spinless fermion at siten.
This one-dimensional~1D! model has a single delocalize
state at the middle of the bande50 and is an interesting an
simple example of delocalization inD,3. Moreover, this
model has many common features with a wide class of r
dom spin chains, such as the spin-1/2 random Heisen
chainH5(nJnSn•Sn11, whereJn.0 are randomly distrib-
uted.@The XX version of the latter model is, in fact, exact
equivalent to Eq.~1!, upon the Jordan-Wigner transform
tion.#

For the random-hopping model, a great deal is kno
about such self-averaging quantities as the total densit
states. More recently, some of the correlation functions h
also been calculated. However, the behavior of probab
distributions in the proximity of the delocalization transitio
is virtually unexplored. It is the purpose of this work to a
dress this issue.

In the continuum limit, Eq.~1! becomes what is known a
the random-mass Dirac model~see, e.g., Refs. 4 and 5!:

H52 i @R†]xR2L†]xL#2 im~x!@R†L2L†R#, ~2!

whereR andL are the chiral components of the electron fie
operator. The derivation of the continuum limit assum
weak disorder such thattn5t1dtn ~the Fermi velocity,vF ,
associated witht is set to 1!. It is the staggered component o
PRB 590163-1829/99/59~23!/14848~4!/$15.00
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the random hopping,dtn→(21)nm(x), which enters into
the continuum theory. In field-theoretic language, this cor
sponds to a random mass.

It was found by Dyson in 1953,~Ref. 6! that the average
electron density of states for a model equivalent to Eq.~1!
diverges at the middle of the band:r(e);1/(eu ln eu3). By the
Thouless relation,7 such a density of states implies a dive
gent localization lengthle;u ln eu. The criticality of the
model at half-filling was established by Gogolin an
Mel’nikov.8 In particular, they found that model~2! has a
finite conductivity in contrast with the Mott law in the stan
dard localized regime. Calculations of Ref. 9 first indicat
that it is not the Thouless lengthle , but rather the length
l e; ln2e, which governs the correlation functions. The ro
of the lengthl e was later clarified by means of the real-spa
renormalization-group method by Fisher.10 The crossover for
the electron Green function between the spatial regionx
! l e ~critical regime! and l e!x ~localized regime! was dis-
cussed in recent publications4,5 by means of the Berezinski
technique and the Efetov supersymmetry method, resp
tively.

It seems natural to undertake the next step and investi
the probability distribution functions for the above system
To this end, we adopt a simple mathematical techniq
based on the recent observation by Shelton and Tsve11

that, ate50, the random-mass Dirac model can be form
lated as a one-particle quantum-mechanical problem. Ind
if we introduce the combinationsx65(R7L)/A2 of the
chiral components of the electron field, then the Dirac eq
tion becomes

@]x7m~x!#x65 i ex7 .

This equation decouples ate50, thus admitting the~unnor-
malized! solutions of the form

x6~x!;e6V(x), V~x!5E
0

x

dym~y!. ~3!
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As is customary in the literature, we assume that the rand
massm(x) is d correlated in the real space and Gaussi
Pm0

@m(x)#; exp$2@m(x)2m0#
2/2g%. Here g characterizes

the disorder strength and the mass has a mean valuem0.
Thus, solution~3! for the wave-functions is nothing but a
exponential of a random walk with a drift termm0x.

Wave function~3! allows us to investigate the distributio
of several physical quantities in a relatively simple mann
We start by considering the so-called relaxation time, wh
was introduced in the context of the scattering theory
Wigner,12 hence also known as the Wigner time. Physica
this is the time spent by a wave packet inside a scatte
region, and it can be formally defined as the moment
derivative of the scattering phase shift. Let the effect of
disorder be confined to the segment@0,L#, which is the scat-
tering region in our problem. For the sake of concretene
we assume that the electrons cannot leave the sample o
left-hand side (x,0), so that they are scattered off the se
ment@0,L# on the right. We thus impose a vanishing boun
ary condition on the left,x2(0)50 @this condition corre-
sponds to suppressing a site in the lattice formulation,
~1!#. The boundary condition on the right is simply the co
tinuity of the Dirac wave function atx5L. In this case, the
calculation of the Wigner time involves the scattering pha
picked up by the incident left-moving wave in the process
scattering from the disordered segment, so that (x.L),

te5du/de, u~e!52 i ln@e22i exR~x!/L~x!#. ~4!

We are mainly interested in the relaxation time at half-fillin
i.e.,t0. In order to find this, we perturb the Dirac equation
e around thee50 solution~3!. Performing this simple cal-
culation we found the following exact expression for t
Wigner time as a functional of the disorder13

t0@V#52E
0

L

dx$e2[V(x)2V(L)]21%. ~5!

In accordance with, Ref. 12 the relaxation time is related
the total chargeQ05*0

Ldx(uR0u21uL0u2), and thereforet0

5Q022L.
As such, expression~5! does not supply much informa

tion. Indeed, the physical content of the problem is revea
by the probability density of the relaxation timeP@t0#
5^d(t02t0@V#)&. We observe that the Laplace transform
this density,P̂@l#5*0

`dt0e2lt0P@t0#, can be represented a
a path integral

P̂@l#;E DV~x!Pm0
@V#e2lt0[V] . ~6!

In the above formula, the integration is taken along all pa
starting atV(x50) and ending atV(x5L)5V0. By con-
struction, see Eq.~3!, the starting point isV(0)50, while the
ending pointV0 is arbitrary, so the path integral in Eq.~6!
involves an additional integration over all possible e
points V0. Fixing the normalizationP̂@0#51, and perform-
ing a convenient shift of the integration variables, we u
mately obtain

P̂@l#5E
2`

`

dV0Kl~V0,0;L !. ~7!
-
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~For the time being we have setm050, so as to be at the
criticality.! HereKl(V1 ,V2 ;x) is the imaginary-time propa
gator for a quantum-mechanical particle characterized by
action

Sl@V#5E
0

L

dxF 1

2g
~]xV!212l~e2V21!G . ~8!

The system described by this action is known as Liouv
quantum mechanics.14,15 The Schro¨dinger equation, corre-
sponding to the action~8!, has the following~normalized!
solution:14

cg~V!5A2g sinhpg/p2Kig~2Al/geV! ~9!

with the energy22l1gg2/2 (Kig is the MacDonald func-
tion!. Constructing the propagator in a standard manner
making use of the complete set~9!, integrating overV0, and
performing the inverse Laplace transform, we obtain the
act Wigner time probability density

P@t0#5
21/2ep2/8gL

pgL1/2Q0
3/2E0

`

dt cosht cosS pt

2gLD
3exp@2cosh2 t/~gQ0!2t2/~2gL!#. ~10!

It is convenient to represent the result in terms of the po
tively definite quantity~total charge! Q05t012L. Accord-
ing to the general theory of Ref. 12, the delay time can
negative~for repulsive potentials! but there is a lower bound
which is 22L in our case.

We note the following interesting limiting cases of th
formula ~10!.

Consider first the probability of long time delays,t0→`
~and thereforeQ0→`). The t integral in Eq.~10! is conver-
gent for allQ0. It is therefore tempting to expand the exp
nential in the integrand in powers of 1/Q0. It is easy to
check, however, that all the coefficients of such an expans
identically vanish. It follows that Eq.~10! has an essentia
singularity att05`. The nature of this singularity can b
determined by first neglecting the 1/Q0 term in the exponen-
tial and then simulating its effect by cutting off thet integra-
tion at large timest0;(1/2)ln(gt0), when the term become
of the order of unity. Then, within the leading logarithm
accuracy, we obtain

P@t0#; exp@2 ln2~gt0!/8gL#. ~11!

This formula is valid when the factor in the exponential
large, i.e., ln2 t0@L. As a simple application to random spi
chains, we consider long-time relaxation of the magneti
tion M (t) inside a finite segment of lengthL. Due to Eq.~11!
we find thatM (t); exp@2ln2(t)/8gL#: a very slow decay.

Since the applicability of Eq.~11! involves the system
sizeL, the probability distribution for large samples ought
be different. Indeed, for a fixedQ0, we obtain

P@t0#uL→`.
1

A2pgLQ0

e21/gQ0. ~12!

The next quantity of interest is the transmission coefficien
e50, which is also proportional to the Landauer condu
tance at half-filling. In order to have a finite transmissi
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coefficientT, let us open our sample on the left-hand side,
that the electrons can now leave it atx50 ~where the bound-
ary condition thus becomes the same as atx5L). Upon
matching the wave functions in the usual way, one fin
T@V#51/cosh2 V(L). Therefore the probability distribution
P@T# can be found in an elementary way without using t
Liouville mechanics. We obtain

P@T#5
A1/2pgL

TA12T
expH 2

1

2gL
@cosh21~1/AT!#2J , ~13!

where 0<T<1. This function @or rather the distribution
function for the related quantityV(L)# has, to our knowl-
edge, been first obtained by Mathur.16 This is an intriguing
distribution function, plotted in Fig. 1. It has the followin
properties.~i! The probability of a small transmission is

P@T#; exp@2 ln2~1/T!/8gL#. ~14!

~ii ! The functionP@T# has a low-transmission peak atT0
;e24gL. ~iii ! There is an integrable divergence close to
perfect transmission (T51),

P@T#.A8/pgL~12T!. ~15!

~iv! The mean transmission coefficient is given by

^T&.A2/pgL. ~16!

This formula is asymptotically exact asL→` ~we also veri-
fied this result by an independent calculation using the
rezinskii technique17!. This result, pointed out by Mathur,16

is surprising. SinceT;s/L, s being the dc conductivity,
the 1/AL behavior of the average transmission coefficie
suggests that the system is even more metallic than what
would expect in a hypothetical case of a weakly disorde
1D metal ~hypothetical because any weak disorder is s
posed to lead to localization!. It is worth noting that the
transmission coefficient is not a good scaling variable in
limit L→`. So, from Eq.~13!, one finds that the variance o
the transmission coefficientd25Š(T2^T&)2

‹;1/AL, imply-
ing that the width of the distribution, normalized to the me
transmissiond/^T&;L1/4, diverges whenL→`. On the

FIG. 1. Distribution of the transmission coefficient withgL
51.25 and average mass zero~solid line! and m0L50.5 ~dashed
line!.
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other hand, the logarithm of the transmission coefficient i
good scaling variable in the above sense, with average

K lnS 1

TD L 5aAgL,

a being a positive numerical coefficient. This conclusion
generic in 1D disordered systems, as was shown in a sem
paper by Andersonet al. in 1980.18 They introduced the
scale conductance, Ttyp5e^ ln T&, instead of the average con
ductance. However, as a result of the criticality of our mo
and unlike the case discussed in Ref. 18, we find thatTtyp

5e2aAgL behaves quite differently from the average tran
mission, and both are different from the peak in the proba
ity distribution T0;e24gL.

There is a difference between our 1/AL result for the Lan-
dauer conductance and the finite conductivity found for
infinite system in Ref. 8. A possible physical explanation
that this difference is due to resonant scattering proces
which enhance the probability of near-perfect transmission
finite samples but are absent in infinite systems~this is char-
acteristic for a critical system; otherwise, theT→1 diver-
gence ofP@T# is exponentially suppressed in the samp
length!. However, this question requires further study.

Both calculations forP@t0# andP@T# can be generalized
to the off-critical case whenm0 is nonzero. The details will
be given in an extended article.17 Here we only quote the
results. Formulas~11! and ~14! are not affected. The powe
law in the denominator of Eq.~12! changes to 1/Q0

11m0 /g .
Both formulas~15! and ~16! acquire a suppressing facto
exponentially small in the parameterm0L.

Note that the probability of long time delays, Eq.~11!, as
well as the probability of a small transmission, Eq.~14!,
follows the so-called log-normal law. To our knowledge, t
log-normal tails of the distribution functions in one
dimensional disordered systems were first obtained in R
18 by means of a scaling argument. Their existence w
rigorously established by Mel’nikov via the Berezisk
technique.19 In 21e dimensions, the log-normal tails wer
found in Ref. 20, which was thought to be a signature of
Anderson transition. The discussion of the log-normal ta
was recently revived by Muzykantskii and Khmelnitskii21

~see also Ref. 22! who gave a simple derivation based on
specific saddle-point approximation in the supersymmetris
model. ~For a recent collection of results on the log-norm
distributions see Ref. 23.!

We have shown that the random-mass Dirac model d
possess log-normal tails at the criticality. Moreover, the
tails are unaffected when one moves away from the critic
ity. This is consistent with the interpretations21,23 that
these tails are due to the so-called ‘‘anomalously localize
electronic states, which occur in rare trapping disorder c
figurations. Indeed our result~11! can be understood in
terms of the ‘‘optimal fluctuation’’ concept, discussed
this context in Ref. 21. The optimal fluctuation in our ca
corresponds to having a constant massm0 within the sample.
This would accumulate chargeQ0} exp(2m0L). The prob-
ability to have such a potential and therefore such a cha
is ; exp(2m0

2L/2g); exp(2ln2Q0/8gL).
So, does it follow that the proximity to the delocalizatio

transition~criticality! plays no role? To clarify this point, we
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first notice that the log-normal tails are only present in
finite system.~These tails do not follow from and are no
directly related to the so-called multi-critical exponents a
pearing in the wave functions’ statistics for the infini
system.5,11! The Wigner time distribution function takes
different form in the limit of a large system, Eq.~12!. This
can be interpreted as a ‘‘limiting’’~‘‘equilibrium’’ ! distribu-
tion in terms of the Fokker-Planck equation approach,13 and
it reveals no trace of the log-normal behavior. It is this d
tribution that bears the signature of the criticality: it ceases
be normalizable form050 thus requiring a long-time cutoff
Similarly, the log-normal tail appears at lowT in the trans-
mission coefficient distribution function, while the criticalit
shows up near the perfect transmission. Indeed, the di
gence ofP@T→1# is always in place~due to resonant scat
tering processes!, but it is exponentially suppressed in th
.

n

a

n

-

-
o

r-

sample length, unless the system is critical. As a result, at
criticality, the mean transmission coefficient is not any mo
exponentially small but is given by the power-law formu
~16!. ~Note, though, that the peak ofP@T# still exists at the
criticality.! It follows that the disorder configurations leadin
to the log-normal tails and to the delocalization phenomen
act independently. They affect different domains of the p
rameter space of the problem and show up in the dist
limits for the probability distribution functions.
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