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Statistical properties of a localization-delocalization transition in one dimension
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We study a one-dimensional model of disordered electfals® relevant for random spin chajnsvhich
exhibits a delocalization transition at half-filing. Exact probability distribution functions for the Wigner time
and transmission coefficient are calculated. We identify and distinguish those features of probability densities
that are due to rare trapping configurations of the random potential from those which are due to the proximity
to the delocalization transitionS0163-182@99)01220-5

The Anderson transition in dimensioBs<3 has recently the random hoppingdt,— (—1)"m(x), which enters into
attracted a renewed interest in relation to such systems ale continuum theory. In field-theoretic language, this corre-
random antiferromagnetic spin chairend high mobility Si sponds to a random mass.
metal-oxide-semiconductor field-effect transistors |t was found by Dyson in 1953Ref. 6 that the average
(MOSFET'S.? Experiments on both systems could not beelectron density of states for a model equivalent to €.
accounted for in the standard scaling theory of '90_a|'zaqt'0r)-diverges at the middle of the banefe) ~ 1/(e|In €°). By the

The simplest disordered model known to exhibit metallicThouless relatiod,such a density of states implies a diver-
behaylor, in spite of being one dimensional, is the randomgem localization lengthk .~|In¢. The criticality of the
hopping model model at half-filling was established by Gogolin and

Mel'nikov.® In particular, they found that modép) has a
H,h:E tn(cﬁcn+1+ H.c), (1) finite conductivity in contrast with the Mott law in the stan-

n dard localized regime. Calculations of Ref. 9 first indicated
wheret,,>0 are random variables, witirindependent aver- that it is not the Thouless length,, but rather the length
age,{t,)=t, andc, annihilates a spinless fermion at site | .~ In%¢, which governs the correlation functions. The role
This one-dimensional1D) model has a single delocalized of the lengthl . was later clarified by means of the real-space
state at the middle of the bard-=0 and is an interesting and renormalization-group method by FisHéiThe crossover for
simple example of delocalization iB<3. Moreover, this the electron Green function between the spatial regions
model has many common features with a wide class of ran<! (critical regimg and|.<x (localized regimg was dis-
dom spin chains, such as the spin-1/2 random Heisenbegjssed in recent publicatio”r'%by means of the Berezinskii
chainH==,J,S,- S, 1, whereJ,,>0 are randomly distrib- technique and the Efetov supersymmetry method, respec-
uted.[The XX version of the latter model is, in fact, exactly tively.
equivalent to Eq(1), upon the Jordan-Wigner transforma- It seems natural to undertake the next step and investigate
tion.] the probability distribution functions for the above systems.

For the random-hopping model, a great deal is knownTo this end, we adopt a simple mathematical technique,
about such self-averaging quantities as the total density d#ased on the recent observation by Shelton and Tsvelik
states. More recently, some of the correlation functions havéhat, ate=0, the random-mass Dirac model can be formu-
also been calculated. However, the behavior of probabilitfated as a one-particle quantum-mechanical problem. Indeed,
distributions in the proximity of the delocalization transition if we introduce the combinationg..=(R¥L)/\2 of the
is virtually unexplored. It is the purpose of this work to ad- chiral components of the electron field, then the Dirac equa-
dress this issue. tion becomes

In the continuum limit, Eq(1) becomes what is known as
the random-mass Dirac modgee, e.g., Refs. 4 and:5 [Fm(X)]x==iexs.

H=—i[RTo,R—LTo,L]-im(x)[RTL—L'R], (20  This equation decouples at=0, thus admitting théunnor-

whereR andL are the chiral components of the electron field malized solutions of the form

operator. The derivation of the continuum limit assumes .
weak disorder such thag=t+ ét, (the Fermi velocityyg, Ya(X)~e*™VW  y(x)= f dym(y). (3)
associated withis set to 1. It is the staggered component of 0
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As is customary in the literature, we assume that the randoni{for the time being we have seiy=0, so as to be at the
massm(x) is & correlated in the real space and Gaussiancriticality.) HereK, (V4,V5;X) is the imaginary-time propa-
Pmo[m(x)]~ exp{—[m(x)—my]?/2g}. Here g characterizes gator for a quantum-mechanical particle characterized by the

the disorder strength and the mass has a mean vajue action

Thus, solution(3) for the wave-functions is nothing but an L

exponential of a random walk with a drift termgx. SA[V]:I dx
Wave function(3) allows us to investigate the distribution 0

of several physical quantities in a relatively simple manner. . system described by this action is known as Liouville

We start by considering the so-called relaxation time, WhiChquantum mechanicé:'s The Schidinger equation, corre-
Y. : :

was introduced in the context of the scattering theory b . : : ;
. . . , ndin h i h he following(normaliz
Wigner!? hence also known as the Wigner time. Physmally,iﬁﬁjtgn% to the actior), has the following(normalized

this is the time spent by a wave packet inside a scattering

reg?on,_ and it can be fprmally defined as the momentum lpy(v):\/msz(z NgeY) 9)
derivative of the scattering phase shift. Let the effect of the

disorder be confined to the segméaiL ], which is the scat-  Wwith the energy—2\+gy%/2 (K;, is the MacDonald func-
tering region in our problem. For the sake of concretenesgion). Constructing the propagator in a standard manner by
we assume that the electrons cannot leave the sample on tfaking use of the complete s&), integrating oveV,, and
left-hand side x<<0), so that they are scattered off the seg-performing the inverse Laplace transform, we obtain the ex-
ment[0,L] on the right. We thus impose a vanishing bound-act Wigner time probability density

ary condition on the lefty_(0)=0 [this condition corre-

1
E(aXV)2+2>\(e2V— 1)|. 8

sponds to suppressing a site in the lattice formulation, Eq. B 2V IRl (o mt

(1)]. The boundary condition on the right is simply the con- Plol= g L1/2Q3/2f0 dtcosht co 2gL

tinuity of the Dirac wave function at=L. In this case, the 0

calculation of the Wigner time involves the scattering phase X ex —cost t/(gQ,) —t?/(2gL)]. (10

picked up by the incident left-moving wave in the process of

scattering from the disordered segment, so that (), It is convenient to represent the result in terms of the posi-

tively definite quantity(total charge Qy= 7o+ 2L. Accord-
r.=dolde, 6(e)=—iln[e"@*R(x)/L(x)]. (4) ing to the general theory of Ref. 12, the delay time can be

o ] o _negative(for repulsive potentiajsbut there is a lower bound,
We are mainly interested in the relaxation time at half-filling, which is — 2L in our case.

€ around thee=0 solution(3). Performing this simple cal-  formula (10).

Wigner time as a functional of the disord@r (and therefore),— ). Thet integral in Eq.(10) is conver-
L gent for allQy. It is therefore tempting to expand the expo-
To[V]sz dx{e2lV-VILI_ 11 (5) nential in the integrand in powers of Q4. It is easy to
0

check, however, that all the coefficients of such an expansion

In accordance with, Ref. 12 the relaxation time is related tgdentically vanish. It follows that Eq(10) has an essential
the total char = [Ldx(|Ry|2+|Lg|?), and thereforer singularity at7o=c. The nature of this singularity can be
—Qy—2L. 9eR0=Jgdx([Rol"+[Lol) % determined by first neglecting theQ4 term in the exponen-
As such, expressiof6) does not supply much informa- t@al and then s_;imulating its effect by cutting off théntegra-
tion. Indeed, the physical content of the problem is revealedion at large t|me$9~(1/2)In(gr_0),_when the t_erm becc_)me_s
by the probability density of the relaxation timg[ r,] of the order of unity. Then, within the leading logarithmic
=(5(79— o[ V])). We observe that the Laplace transform of 2cCuracy, we obtain
this density P[\]= [5droe *"P[ 5], can be represented as Pl 70]~ exd —In3(gr)/8gL]. (11)

a path integral ] ) ) ] o
This formula is valid when the factor in the exponential is

large, i.e., IR 7o>L. As a simple application to random spin
chains, we consider long-time relaxation of the magnetiza-
. . tion M (t) inside a finite segment of length Due to Eq.(11)
In the above formula, the integration is taken along all path$,e find thatm (t)~ exg —In2(t)/8gL]: a very slow decay.
starting atV(x=0) and ending aV(x=L)=V,. By con- Since the applicability of Eq(11) involves the system
struction, see Eq(3), the starting point i%(0)=0, while the  j,0|  the probability distribution for large samples ought to
ending pointVy is arbitrary, so the path integral in E() be different. Indeed, for a fixe@,, we obtain
involves an additional integration over all possible end
points V. Fixing the normalizatioP[0]=1, and perform- Y
ing a convenient shift of the integration variables, we ulti- Pl 7ol L= ﬁe 9Qo 12
mately obtain m9LQo
. The next quantity of interest is the transmission coefficient at
IS[)‘]:f dVoK, (Vo,0:L). (7)  €=0, which is also proportional to the Landauer conduc-
—o tance at half-filling. In order to have a finite transmission

|5[>\]~f DV(X)Pp [V]e 7oV (6)
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10.0 T T T T other hand, the logarithm of the transmission coefficient is a
good scaling variable in the above sense, with average

REJRES

a being a positive numerical coefficient. This conclusion is
generic in 1D disordered systems, as was shown in a seminal
paper by Andersoret al. in 1980 They introduced the
scale conductancel,,=e" ™, instead of the average con-
ductance. However, as a result of the criticality of our model
) ) ) ) and unlike the case discussed in Ref. 18, we find That
0.0 0.2 0.4 0.6 0.8 1.0 =e 0L pehaves quite differently from the average trans-
i mission, and both are different from the peak in the probabil-
ity distribution To~e ™49t

FIG. 1. Distribution of the transmission coefficient WIg’L There is a difference between Our\/ﬂresun for the Lan-
=1.25 and average mass zefsolid ling) and meL =0.5 (dashed  dayer conductance and the finite conductivity found for an
line). infinite system in Ref. 8. A possible physical explanation is

that this difference is due to resonant scattering processes,

coefficientT, let us open our sample on the left-hand side, sqyhich enhance the probability of near-perfect transmission in
that the electrons can now leave ibat 0 (where the bound-  finjte samples but are absent in infinite systethss is char-

ary condition thus becomes the same asxatl). Upon  cteristic for a critical system; otherwise, tie-1 diver-

matching the wave functions in the usugl_ way, one .ﬁndﬁgence of P[T] is exponentially suppressed in the sample
T[V]=1/cosk V(L). Therefore the probability distribution length. However, this question requires further study.

P[T] can be found in an elementary way without using the  Both calculations fofP[ o] andP[T] can be generalized

P[T]

Liouville mechanics. We obtain to the off-critical case whemy is nonzero. The details will

be given in an extended articté.Here we only quote the

_ V1/2mgL _ 1 —1 2 results. Formulagll) and (14) are not affected. The power
P[T]=——=-exp| — =——[cosh }(1/\T) 1?3}, (13 ) ) Lem iy
TV1-T 2gL law in the denominator of Eq12) changes to 1, "° .

Both formulas(15) and (16) acquire a suppressing factor,
exponentially small in the parameter,L.

Note that the probability of long time delays, E4l), as

Il as the probability of a small transmission, E34),
follows the so-called log-normal law. To our knowledge, the
log-normal tails of the distribution functions in one-
dimensional disordered systems were first obtained in Ref.
PLT]~ ex —In*(1/T)/8gL]. (14) 18 by means of a scaling argument. Their existence was

(i) The functionP[T] has a low-transmission peak & rigorously established by Mel'nikov via the Bereziskii

where O0<T=<1. This function[or rather the distribution
function for the related quantity/(L)] has, to our knowl-
edge, been first obtained by MathrThis is an intriguing we
distribution function, plotted in Fig. 1. It has the following
properties(i) The probability of a small transmission is

~e~4L_(jii) There is an integrable divergence close to thetechnique® In 2+ dimensions, the log-normal tails were
perfect transmissionT(= 1) found in Ref. 20, which was thought to be a signature of the
’ Anderson transition. The discussion of the Iog-normaglktails

P[T]=\8lrgL(1-T). 1 was recently revived by Muzy_kantsku gnd_KhmeInlt ii

[T]=V8/mgL( ) (19 (see also Ref. 22who gave a simple derivation based on a

(iv) The mean transmission coefficient is given by specific saddle-point approximation in the supersymmetric
model. (For a recent collection of results on the log-normal

(T)=\/2/mgL. (16) distributions see Ref. 2B.

We have shown that the random-mass Dirac model does
This formula is asymptotically exact &s— (we also veri- possess log-normal tails at the criticality. Moreover, these
fied this result by an independent calculation using the Betails are unaffected when one moves away from the critical-
rezinskii techniqu¥). This result, pointed out by Mathd?, ity. This is consistent with the interpretatiGh€® that
is surprising. Sincd ~o/L, o being the dc conductivity, these tails are due to the so-called “anomalously localized”
the 1A/L behavior of the average transmission coefficientelectronic states, which occur in rare trapping disorder con-
suggests that the system is even more metallic than what origurations. Indeed our resulll) can be understood in
would expect in a hypothetical case of a weakly disorderederms of the “optimal fluctuation” concept, discussed in
1D metal (hypothetical because any weak disorder is supthis context in Ref. 21. The optimal fluctuation in our case
posed to lead to localizatignlt is worth noting that the corresponds to having a constant magswithin the sample.
transmission coefficient is not a good scaling variable in thelThis would accumulate charg®yoc exp(2n,L). The prob-
limit L—. So, from Eq.(13), one finds that the variance of ability to have such a potential and therefore such a charge
the transmission coefficier®®=((T—(T))?)~1/JL, imply-  is ~ exp(—ngL/2g) ~ exp(—In?Qy/8gL).
ing that the width of the distribution, normalized to the mean So, does it follow that the proximity to the delocalization
transmission 6/(T)~LY4 diverges whenL—o. On the transition(criticality) plays no role? To clarify this point, we
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first notice that the log-normal tails are only present in asample length, unless the system is critical. As a result, at the
finite system.(These tails do not follow from and are not criticality, the mean transmission coefficient is not any more
directly related to the so-called multi-critical exponents ap-exponentially small but is given by the power-law formula
pearing in the wave functions’ statistics for the infinite (16). (Note, though, that the peak & T] still exists at the
systen?) The Wigner time distribution function takes a criticality.) It follows that the disorder configurations leading
different form in the limit of a large system, E(L2). This  to the log-normal tails and to the delocalization phenomenon
can be interpreted as a “limiting(*‘equilibrium” ) distribu-  act independently. They affect different domains of the pa-
tion in terms of the Fokker-Planck equation approdcand  rameter space of the problem and show up in the distinct
it reveals no trace of the log-normal behavior. It is this dis-limits for the probability distribution functions.

tribution that bears the signature of the criticality: it ceases to

be normalizable fomy=0 thus requiring a long-time cutoff.

Similarly, the log-normal tail appears at lowin the trans- We are thankful to A.M. Tsvelik, D.E. Khmelnitskii, and
mission coefficient distribution function, while the criticality B.A. Muzykantskii for interesting conversations. M.F. ac-
shows up near the perfect transmission. Indeed, the diveknowledges support by INFM, Project No. HTSC. M.S. was
gence ofP[T—1] is always in placgdue to resonant scat- supported by the Gottlieb Daimler-und Karl Benz-Stiftung
tering processgsbut it is exponentially suppressed in the and by the EPSRC, UK.

IM. Fabrizio and R. Melin, Phys. Rev. Left8, 3382(1997. For  *?E. Wigner, Phys. Re\98, 145 (1955.
an experimental review on spin-Peierls systems, see J. P3A similar expression was found, using a different method, in the

Boucher and L. P. Regnault, J. Phys6, 1936 (1996. For recent paper by A. Comtet and C. Texier, J. Phys30A8017
doping effects in spin ladders, see M. Tanako, Natumndon (1997. '

377, 41 (1995; M. Azuma et a|_, Phys. Rev. B55, R8658 E. D'Hoker and R. JaCkIW, PhyS. Rev. IB, 3517(1983.

(1997). 15We note that, apart from physics literature, such functionals are

also of current interest in mathematical literature, see A. Comtet,
C. Monthus, and M. Yor, J. Appl. ProbaB5, 255(1998.

18H. Mathur, Phys. Rev. B56, 15 794(1997.

17M. Steiner, M. Fabrizio, and A. O. Gogoliunpublished

18p w. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher,
Phys. Rev. B22, 3519(1980.

23. V. Kravchenko, D. Simonian, M. P. Sarachik, W. Mason, and
J. E. Furneaux, Phys. Rev. Left7, 4938(1996.

SE. Abrahams, P. W. Andesron, D. Licciardello, and T. Ra-
makrishnan, Phys. Rev. Le#2, 673 (1979.

4M. Steiner, M. Fabrizio, and A. O. Gogolin, Phys. Rev.58,

SLSEi?éi'?sggﬁd V.. A, Fisher, Phys. RevsB, 12 970(199 19 |, Melnikov, Pis'ma Zh. Eksp. Theor. Fiz.32, 244 (1980
GF. I D oh : R \9.12 1331’ 193é ’ 5 ) [JETP Lett.32, 225(1980)].

JF. 3. Dyson, Phys. Re@2, (1953. 20C. Castellani, C. Di Castro, and L. Peliti, J. Phys18, L1099
SD- J. Thoulgss, J. Phys. & 7_7 (1972. _ (1986; B. L. Altsuler, V. E. Kravtsov, and I. V. Lerner, Pis'ma
A. A. Gogolin and V. I. Mel'nikov, Zh. Kksp. Teor. Fiz73, 706 Zh. Eksp. Theor. Fiz.45, 160 (1987 [JETP Lett. 45, 199

(1977 [Sov. Phys. JETR6, 369 (1977]. See also the review (1987)]. See also J. S. Caux, |I. Kogan, A. Lewis, and A. M.
paper A. A. Gogolin, Phys. Re@6, 1 (1982. Tsvelik, Nucl. Phys. B489, 469 (1997).

°J. P. Bouchaud, A. Comtet, A. George, and P. Le Doussal, Ann2lg, A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. Bl,
Phys.(N.Y.) 201, 285(1990. 5480(1999; Phys. Rep288 259 (1997).

10D, s. Fisher, Phys. Rev. B0, 3799(1994. 22y. 1. Fal'ko and K. B. Efetov, Phys. Rev. B2, 17 413(1995.

1D, G. Shelton and A. M. Tsvelik, Phys. Rev. 3, 14242(1998.  2°A. D. Mirlin, J. Math. Phys.38, 1888(1997).



