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Nikulin in his recent paper@Phys. Rev. B57, 11 178~1998!# reviewed their attempts to solve the phase
problem in x-ray Bragg diffraction. Through three numerical examples, we show that the phase-retrieval
procedure proposed in that paper may lead to contradictory results.@S0163-1829~99!06521-2#
uc
-
tio
-

m

y
th
n
e-

se
l
ic
is

fo
t

ue
o

er

o
ne.
ints

e
er-
tion

o

o
no-
ac-

on-
the
e
two
ing
l real
ore,
e
to

-

The phase problem in light scattering has attracted m
attention in the last few decades.1–4 Phase-retrieval tech
niques based on the use of a logarithmic dispersion rela
have been suggested long before.1–4 These methods are com
plicated by the problem of localization of zeros of the co
plex scattering amplitude.2,4 In a recent paper5 Nikulin re-
viewed their attempts6–9 to solve the phase problem in x-ra
Bragg diffraction. A procedure was proposed to retrieve
complex diffraction amplitude by analyzing x-ray diffractio
intensity profiles collected for two different radiation wav
lengths. Polynomials were employed to fit theminimal-phase
diffraction amplitudesin order to produce the zeros. The
zeros were categorized into physical~true! and mathematica
~virtual! ones. The true zeros in Ref. 5 meant those wh
should be flipped into the upper half-plane. The rule for d
tinguishing the true zeros from the virtual ones was the
lowing: if the zeros produced by the two polynomials used
fit the two minimal-phase amplitudes areat the same loca-
tion, they are true; but if theyhave quite different locations
in the complex plane, they are virtual.5 However, the as-
sumption suggested and used by the author of Ref. 5 is q
tionable. We shall give three numerical examples to sh
this point in the present comment.

We consider first a mathematical model, namely, a v
simple function,

r~z!5exp~2pjz!, if zP~0,d!,

0, otherwise, ~1!

the Fourier transform of which has the form,

R~q!5
exp~2pjd!exp~2p iqd!21

2p~ iq1j!
. ~2!
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If R(q) in Eq. ~2! is analytically continued from real axis t
the entire complex plane, it has zeros in the upper half-pla
In a scattering experiment, the phases at the sampling po
are lost and only the modulusuRu is measurable. Suppos
that we utilize two radiation energies to perform the scatt
ing experiments, each of which corresponds to an absorp
coefficient m i , i 51,2. We follow Ref. 5 to retrieve the
phases from the data given byuRi u, i 51,2, at 1024 sampling
points. The logarithmic dispersion relation results in tw
minimal-phase diffraction amplitudes Ri

min , i 51,2. Two
polynomials of power 500 are then employed to fit the tw
amplitudes, respectively. Figure 1 indicates that the poly
mials can reproduce the minimal-phase amplitudes very
curately. Figure 2 shows the modulus of the analytical c
tinuation near some zeros, which correspond to
absorption coefficientm1. The inset in Fig. 2 is a map of th
zeros in the sampling range which are produced by the
polynomials; the rest of the zeros lie outside of the sampl
range. One can see that the zero pairs which have equa
values have almost the same imaginary value. Theref
these zeros aretrue ones according to Ref. 5 and should b
flipped into the upper half-plane. This is correct according
Eq. ~2!.

FIG. 1. Interpolation of the minimal-phase amplitude~symbols!
with a polynomial~lines!. The parameters for the profile in Eq.~1!
are d5100 Å andj5631025 Å 21. The corresponding absorp
tion coefficient ism15131025 Å 21.
14 781 ©1999 The American Physical Society
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Now we consider the x-ray reflection amplitude of a th
epitaxial layer on a thick substrate. In Refs. 5–7 normaliz
intensities were used instead of the directly measured in
sities. It can be easily shown that the normalized diffract
amplitude for our structure is just the following Fouri
transform:10

R~q!5E
0

d ]u

]z
e2p iHu(z)e22pm i ze2p iqzdz, ~3!

whereH is the reciprocal lattice vector,u(z) is the atomic
plane displacement field,m i is the linear absorption coeffi
cient,d is the thickness of the layer, and]u/]z5Da/a rep-
resents the lattice mismatch which is nonzero within
layer only. The same process as above produces two se
zeros in the lower half-plane. If we letd5100 Å , m154
31025 Å 21, and m25531025 Å 21, the map of zeros is
the same as the inset in Fig. 2 except for a shift
2H(Da/a) along the real axis.Are these zeros true? In
order to be consistent with the first example, they should
true. But it is easy to prove thatR(q) in Eq. ~3! has no zeros
in the upper half-plane. If one flips all the zeros into t
upper half plane, one gets a physically meaningless re
that the absorption coefficient is negative.

Therefore, we have shown that the rule for selecting
true zeros used in Ref. 5 is quite questionable. It leads
contradictory results for the two examples above. Actually
is not necessary to divide the zeros of the polynomials i
true ones and virtual ones. Each zero is equally signific
and should be independent of the numerical implement.
effect of the absorption is just to shift the zeros along
imaginary axis. If two corresponding zeros produced by t
polynomials have quite different locations, higher pow
polynomials should be used to make the fitting more ac
rate. The author of Ref. 5 used polynomials of power as
as 55 to fit the somehow more complicated curves. We h
used a polynomial of power 250 to fit the dots~the minimal-
phase amplitude! in Fig. 1. The resulting locations of th
zeros are quite different from those produced by the poly
mial of power 500. The zeros shown in the inset of Fig
deviate a little bit from the theoretically expected position
The deviation becomes smaller when we fit the dots in Fig
by a polynomial of power 1000 or higher. These results
dicate that the artifact in calculations modifies the position

FIG. 2. Modulus of the analytical continuation of the minima
phase amplitude showing a part of the zeros in the lower half-pla
The structural parameters are the same as in Fig. 1. Inset: Map
part of the zeros. Circles representm15131025 Å 21 and triangles
representm25231025 Å 21.
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the zeros. In principle, Eq.~2!, which is an entire function,3

has an infinite number of zeros; and the number of ze
which can be taken into account is equal to the numbe
sampling points according to the Sec. III of Ref. 5. Howev
the author of Ref. 5 interpolated a polynomial of power 5
with a polynomial of power 55. This is quite similar to fittin
the points on a parabola by a straight line. Another sou
which influences the position of the zeros is noise. The qu
different positions for the corresponding ‘‘virtual’’ zero pair
in Refs. 5–8 may result from both the noise and the l
power polynomials used.

If the positions of the zeros are not correctly calculate
no correct scattering profile can be obtained. Surprisingly
seems that the procedure had been successfully utilize
retrieve the diffraction amplitudes in Refs. 6–8, which we
cited to support the mathematics in Ref. 5. However,
success was achieved with the aid of atrick, namely, a regu-
larization procedure.6,8 If one reads Ref. 8 carefully, on
would find that the regularization procedure is not indep
dent of thea priori knowledge about the sample, whic
makes the statement of being model-independent mean
less. We give an example to elucidate it. Shown in the in
of Fig. 3 is a strain profileDa/a as a function of depth,11

which fluctuates significantly. The curve is similar to that
Fig. 3 of Ref. 8. But the fluctuations were suppressed by
regularization procedure in Ref. 8. The complex diffracti
amplitude corresponding to the strain profile in the inset
four zeros in the upper half-plane, which is the reason for
fluctuations.12 The regularization procedure is effective
equivalent to flipping the four zeros into the lower half-pla
for our example. If one flips these zeros into the lower ha
plane, one obtains a smooth strain profile. But without ana
priori information, who can make sure that there are no fl
tuations in the layer?

We have calculated the absolute diffraction amplitudeuRu
by using Eq.~3! with the integrand being replaced by th
profile in the inset of Fig. 3. The same procedure as ab
results in two sets of zeros which correspond to two differ
wavelengths, respectively. The map of zeros is shown in F
3. One can see that there are four specific zeros in Fig
corresponding to those which should be flipped into the
per half-plane. The different behavior of the four speci

e.
f a

FIG. 3. Map of zeros for the structure in the inset. Inset
complicated strain profile showing significant strain fluctuatio
within the layer. Its corresponding diffraction amplitude has fo
zeros in the upper half-plane with Im(Qj )5431025 Å 21. The rest
of the zeros are in the lower half-plane. The layer is 100 Å th
with a mean lattice mismatchDa/a52.631023.
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zeros suggests that there is an alternative way to de
which zeros should be flipped into the upper half-plane. T
effect of the absorption is to move the zeros by2m i along
the imaginary axis. Therefore, if a zero lies in the upper h
plane, its actual position is nearer to the real axis if the d
fraction was measured by using a wavelength with lar
absorption; and vice versa. Therefore, if two zeros have
same real value, and one of them which corresponds
larger absorption coefficient is nearer to the real axis than
other which corresponds to a smaller absorption coeffici
this pair of zeros locate in the upper half-plane; and v
versa.
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In summary, the phase-retrieval procedure in Ref. 5
questionable and the regularization procedure used to s
port the mathematics of Ref. 5 is problematic. An alternati
rule can be adopted to determine which zeros should
flipped into the upper half-plane. Of course, the difference
absorption coefficient between the two radiation energ
practically used should be large enough to ensure that
shift along the imaginary axis can be resolved by the nume
cal implement.
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Volkswagen Foundation for financial support.
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