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Strong-coupling theory of electronic Raman scattering in high-temperature superconductors
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We have calculated the response function for electronic Raman scattering within the fluctuation-exchange
approximation for the two-dimensional Hubbard model. BelowTc , a large pair-breaking peak and a gap
develop in theB1g spectrum while the effect of superconductivity on theB2g spectrum is much smaller. In
order to investigate the underdoped regime we study the influence of a phenomenologically introduced
pseudogap. In the normal state we find that this pseudogap leads for decreasing temperature to development of
a d-wave gap structure in the density of states which merges continuously into the superconducting spectrum.
A corresponding pair-breaking peak evolves continuously in theB1g Raman spectrum asT decreases in the
normal state and belowTc . We discuss our results in connection with recent tunneling, optical conductivity,
and Raman data on the cuprates.@S0163-1829~99!13721-4#
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I. INTRODUCTION

Electronic Raman scattering is an important tool to inv
tigate the symmetry of the order parameter in the highTc

superconductors. Raman scattering data belowTc on opti-
mally doped Bi2Sr2CaCu2O81d ~Bi2212! for the different
polarization channels ofA1g , B1g , andB2g symmetry have
been analyzed by weak-coupling BCS theory and found to
in agreement withdx22y2 pairing symmetry.1 In the weak-
coupling limit it has been shown that good agreement w

the Ax8x8 andB1g Raman data on YBa2Cu3O7 ~YBCO! can
be obtained if vertex corrections due to the pairing inter
tion and short-range Hubbard-type interactions between
electrons are taken into account.2 The relationship between
the normal-state anomalous Raman spectrum and the op
conductivity of high-Tc superconductors has been discuss
in the context of marginal Fermi liquid~MFL! theory where
it has been noted that a linear frequency variation of
quasiparticle damping is responsible for these phenome3

This is consistent with the results of the nested Fermi liq
~NFL! model which describes the qualitative features of
optical conductivity and Raman response in the normal s
correctly and can be generalized in a simple way to the
perconducting state.4 Strong-coupling calculations with an
isotropic Eliashberg equations have been carried out by
ing a phenomenological anisotropic spin fluctuati
interaction for a nearly antiferromagnetic Fermi liqu
~NAFL! theory.5 These theories are capable of explaini
many features of the observed Raman spectra
La22xSrxCuO4,6 Bi2212,7 and YBCO.8 In the latter work it
is shown that the Raman response is extremely sensitiv
the details of the band structure and the anisotropy of
spin fluctuation interaction. Comparison of the low fr
quencyB1g andB2g response in the normal state could pr
vide an indication of the strength and anisotropy of the
teraction. The pair breaking peak in theB1g response carries
information on quasiparticle scattering.
PRB 590163-1829/99/59~22!/14740~8!/$15.00
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In this paper we present results for electronic Raman s
tering in the layered cuprates which are based on
fluctuation-exchange~FLEX! approximation9 for the spin
and quasiparticle excitations in the two-dimensional~2D!
one-band Hubbard model.10 The FLEX approximation is a
self-consistent and conserving approximation scheme in
sense of Kadanoff and Baym11 and goes well beyond mean
field approximation. Especially the feed-back effect of t
one-particle properties on the spin fluctuation spectrum
taken into account self-consistently and has important con
quences in particular in the superconducting state. For
ample, the quasiparticle damping which varies linearly w
frequency in the normal state in accordance with MFL~Ref.
3! and NFL~Ref. 4! theories, is strongly suppressed at low
frequencies in the superconducting state. These propertie
the quasiparticle damping determine to a large extent
optical conductivity and Raman spectra in the normal a
superconducting states. The FLEX approximation has b
shown to yield a number of unusual phenomena, which a
have been observed in the high-Tc cuprates, as, for example
a dip feature in the photoemission spectra, a resonance in
neutron scattering intensity and a rapid opening of the
below Tc .10,13,14Therefore it is worthwhile to apply this ap
proximation scheme to the electronic Raman scattering
tensity and compare the results with the experiments. Us
this approximation scheme goes beyond previous theorie
electronic Raman scattering,1,2,6–8where either the gap in the
superconducting state or the spin fluctuation interaction
the normal state were taken as phenomenological functi
In the strong-coupling calculations6,8 the same model inter
action is used in the Eliashberg equations for the self-ene
as well as the superconducting gap. We shall see that
neglection of the feed-back effect of the gap on the inter
tion leads to substantially different results for the Ram
response in comparison to those of our self-consistent the

In order to make comparison with experiments in the u
derdoped cuprates it is necessary to take into account
presence of a normal-state pseudogap. It has been sh
14 740 ©1999 The American Physical Society
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PRB 59 14 741STRONG-COUPLING THEORY OF ELECTRONIC RAMAN . . .
previously that such a pseudogap havingd-wave symmetry
is capable of describing a number of different experiment
underdoped cuprates such as the specific heat and Kn
shift,15 nuclear-spin relaxation rate, angle-resolved pho
emission spectroscopy~ARPES!,16 and tunneling density o
states.17 Interpretations of the pseudogap and normal-s
properties are manifold~see, e.g., Ref. 15!, includingd-wave
pairing fluctuations18 and a charge-density-wave~CDW!
state.19 It has been shown that the NMR Knight shift and t
thermodynamic data can be modeled by writing the squar
the total gap function as the sum of the squares of
d-wave superconducting gap~SC! and the normal-state
pseudogapEg(k) with d-wave symmetry.15 Such a relation-
ship holds, for example, at the hot spots of the Fermi surf
where the nesting condition is satisfied for the SC and CD
gaps.19 Since we have no firm prescription for calculatin
this pseudogap from first principles we take here a phen
enological normal stated-wave gap while the additional ga
occurring in the superconducting state is calculated s
consistently. It should be pointed out that the effect of
pseudogap on the quasiparticle self-energy and lifetim
taken into account correctly by including it in the Green
functions and spin fluctuation interaction of the FLEX equ
tions. As we will show below, the pseudogap leads to
strong suppression and a gap at low temperatures of
frequency-dependent scattering rate while the scattering
exhibits a linear frequency variation in the absence o
pseudogap. Furthermore, the effective mass ratio acquir
maximum at about that frequency where the scattering
rises steeply. The in-plane optical conductivity has the fo
of a Drude peak whose maximum increases and whose s
tral weight at higher frequencies is suppressed for increa
pseudogap amplitudeEg . These results are in qualitativ
agreement with the infrared response data on underdo
Bi2212, YBCO, and LSCO compounds.20 We shall see tha
the ~temperature independent! pseudogap leads to the deve
opment of a peak in theB1g Raman spectrum for decreasin
temperature which has similarities with the observedB1g
Raman resonance in the normal state of underdoped Bi2
compounds.21

In Sec. II and in the Appendix A we develop the gene
theory of the Raman response function within the FLEX a
proximation. In Sec. III we present and discuss our resu
Section IV contains the conclusions.

II. GENERAL THEORY OF THE RAMAN RESPONSE
FOR THE 2D HUBBARD MODEL OF d-WAVE

SUPERCONDUCTORS

The main equations of the general theory are given
Appendix A. The basis of the FLEX approximation are t
generalized Eliashberg equations of the 2D Hubbard mo
for the quasiparticle self-energy componentsv@1
2Z(k,v)# and j(k,v) and the d-wave gap function
f(k,v). These equations are presented in Eq.~A4! in Nam-
bu’s 232 matrix formalism in terms of Pauli matricest i
( i 50,1,2,3) for the self-energyS and the Green’s function
G. The spin and charge fluctuation interactionsPs and Pc
are given in terms of the dynamical spin and charge sus
tibilities xs5xs0(12Uxs0)21 and xc5xc0(11Uxc0)21

@see Eq. ~A4!# where the irreducible susceptibilitie
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xs0(q,v) and xc0(q,v) are calculated from the dresse
Green’s functionG given by the Dyson equation in 232
matrix form @see Eq.~A3!#.

It is instructive to start with the gauge invariant theory f
the current-charge correlation functionPmn defined in Eq.
~A1!.23 The corresponding vertex functionGm obtained by
the ladder approximation with interactionst0Pst0 and
t3Pct3 is given in Eq.~A5!. One can show with the help o
the Eliashberg equations@see Eq.~A4!# that Gm satisfies
Ward’s identity @see Eq.~A6!# to comply with the require-
ment of gauge invariance.23 It should be pointed out that th
equation for the vertex functionG0 of the charge susceptibil
ity agrees with the vertex equation for the irreducible cha
susceptibilityxc0 which has been derived previously in th
framework of a self-consistent and conserving approxim
tion @see Eq.~6! in Ref. 12#.

In analogy to the expression for the charge density,P00
5e2xc0 , we obtain the expression for the Raman respo
function xg by replacingg0 andG0 in Eq. ~A1! by the bare
and full Raman verticesg and G @see Eq.~A8!#. Analytic
continuation from imaginary to real frequencies leads to
following expression for the Raman response function:

Im xg~q50,v!5pE
2`

`

dv8@ f ~v8!2 f ~v81v!#

3(
k

G~k,v8,v!@N~k,v81v!N~k,v8!

2A1~k,v81v!A1~k,v8!#g~k!. ~1!

Here, N(k,v)5A0(k,v)1A3(k,v)and A1(k,v) are the
spectral densities of the Green’s functionsG and F.10 The
bare Raman vertices for the different polarization symm
tries B1g , B2g , andA1g are the following2:

gB1g
5t@cos~kx!2cos~ky!#,

gB2g
54tB sin~kx!sin~ky!,

gA1g
5t@cos~kx!1cos~ky!24B cos~kx!cos~ky!#. ~2!

Here, t is the nearest neighbor andt852Bt ~with B
50.45) is the next-nearest neighbor hopping energy in
tight-binding band.2 It should be pointed out that we hav
subtracted from the vertex forAx8x8 symmetry given in Ref.
2 the vertex forB2g symmetry in order to obtain anA1g
component which is fully symmetric with respect to theD4h
point group. In the Appendix A we develop the theory of t
vertex function for the current-current correlation functio
and show with the help of the generalized Eliashberg eq
tions @see Eq.~A4!# that it satisfies Ward’s identity@see Eq.
~A6!#. In analogy we obtain the equations for the Ram
response function@see Eq.~A8!# and for the full Raman Ver-
tex @see Eq.~A9!#. The equation for the full Raman vertexG
is obtained from the equation for the vertex functionG0 of
the irreducible charge susceptibilityxc0 @see Eq.~A5!# by
replacingg0 by the bare Raman vertexg. This yields the
equation for the full vertex functionG in Eq. ~A9!. For the
analytic continuation of this equation from imaginary to re
frequencies we have to introduce the double-spectral re
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14 742 PRB 59T. DAHM, D. MANSKE, AND L. TEWORDT
sentation for the vertex function.12 In this way we obtain
approximately the following integral equation for the vert
function G(k,v8,v) occurring in Eq.~1!:

G~k,v8,v!5g~k!1p2(
q
E

2`

`

dnPs~q,n!@ f ~n2v82v!

1b~n!#@N~k1q,v82n1v!N~k1q,v82n!

2A1~k1q,v82n1v!A1

3~k1q,v82n!#G~k1q,v82n,v!. ~3!

Here, Ps(q,n)5(3/2)U2 Im xs(q,n) is the pairing interac-
tion due to exchange of spin fluctuations~we have left out
the interaction due to charge fluctuations because thi
much smaller!. We now approximate this vertex equation
the following way: first, we consider only the lowest ord
term by inserting on the right hand side the bare ver
g(k1q), secondly, we replaceg(k1q) by g(k1Q) with
Q5(p,p) becausePs(q,n) is strongly peaked atQ and the
equivalent vectors (6p,6p). In this way we obtain ap-
proximately the following vertex corrections for the thre
different symmetries of interest:

GB1g
~k,v8,v!5t@cos~kx!2cos~ky!#@12J~k,v8,v!#,

GB2g
~k,v8,v!54tB sin~kx!sin~ky!@11J~k,v8,v!#,

~4!

GA1g
~k,v8,v!5t@cos~kx!1cos~ky!#@12J~k,v8,v!#

24tB cos~kx!cos~ky!@11J~k,v8,v!#

with

J~k,v8,v!5p2E
2`

`

dn@ f ~n2v82v!1b~n!#(
q

Ps~q,n!

3@N~k1q,v81v2n!N~k1q,v82n!2A1~k

1q,v81v2n!A1~k1q,v82n!#. ~5!

The functionsf andb in Eqs.~3! and ~5! are the Fermi and
Bose functions. Another estimate of the full vertex functi
GB2g

is obtained in Appendix A by showing that it is ap

proximately equal togB2g
G0 whereG0 is the vertex function

of the charge susceptibility. Making use of the Ward ident
for G0 in Eq. ~A7! we find that roughlyGB2g

.gB2g
Z(k,v)

@more exactly, see result in Eq.~A11!#. This means that the
vertex correction forGB2g

corresponding toJ in Eq. ~4! is of

the order@Z(k,v)21#. The latter quantity is about 0.8 fork
along the node of the gap and about 1.3 fork along the
antinode of the gap.14

III. RESULTS FOR THE RAMAN RESPONSE IN d-WAVE
SUPERCONDUCTORS

We have solved the FLEX equations@see Eq.~A4!# for a
2D tight-binding band

e~k!5t@22 cos~kx!22 cos~ky!14B cos~kx!cos~ky!2m#
~6!
is

x

with B50.45 andm521.1. This describes approximate
the Fermi surfaces of Bi2212 and YBCO compounds. F
thermore we take an effective Coulomb repulsionU(q)
which has a maximum valueU53.6 atq5Q and decreases
monotonically with decreasingq to a valueU(0)50.62 at
q50. This functional form approximates the calculated v
tex corrections toxs0 @see Eq.~8! in Ref. 13#. For a chemical
potentialm521.1 we obtain a renormalized band fillingn
50.90 and a superconducting transition atTc50.022t. We
remark that the vertex corrections for the irreducible s
susceptibility xs0(q,v) is similar to that in Eq.~5! apart
from the opposite sign and the dependence onq.12 We have
calculated this vertex correction in Ref. 13. It turns out th
the frequency and temperature dependencies are rather
and that theq dispersion aroundQ can be well approximated
by the phenomenological spin-spin coupling which has b
used to describe the NMR data for YBCO compounds.5 Re-
garding our choice of parameter values we remark t
FLEX calculations have been carried out for a large num
of parameterst852Bt,m,U, and the constants fitting theq
dispersion of the vertex correction for the susceptibility. T
results are qualitatively similar to the present ones apart fr
the fact that Imxs(q,v) as a function ofq exhibits belowTc
one broad peak centered atQ for the next-nearest neighbo
hopping t852Bt (B50.45) while it exhibits four distinct
peaks aroundQ for t850.10,14

First we present our results for the Raman response fu
tion in Eq.~1! in the absence of vertex corrections to the ba
Raman vertices in Eq.~2! @J50 in Eq. ~4!#. One sees from
Figs. 1 and 2 forB1g andB2g symmetry that in the norma
state~solid curves! both spectra start linearly in frequencyv
and become flat at high frequencies. The slope atv50 in-
creases with decreasing temperatureT while the spectrum at
high frequencies decreases with decreasingT. In the B2g
spectrum a low-frequency peak develops for decreasingT.
These results are similar to the normal-state results wh
have been obtained from the theory of nearly antiferrom
netic Fermi liquids in thez51 pseudoscaling and thez52
mean field scaling regimes.7 Experimental data available a
present do not show a peak in the normal-stateB2g response.
It has been pointed out that observation of this structure

FIG. 1. Raman spectra Imxg(q50,v) for B1g polarization in
the normal state atT50.1t and 0.023t ~solid lines with increasing
slopes!, and in the superconducting state (Tc50.022t) at T
50.021t and 0.017t, or T/Tc50.77 ~dashed lines with increasing
peaks!.
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PRB 59 14 743STRONG-COUPLING THEORY OF ELECTRONIC RAMAN . . .
the B2g response and its absence in theB1g response would
lend support to the current models of Fermi topology and
strength and anisotropy of the interaction.8 In Fig. 1 for the
B1g response we recognize that a gap at lowerv and a pair-
breaking peak at a threshold energy ofv50.15t.(3/2)D0
develop asT decreases belowTc ~dashed curves in Fig. 1!.
Here,D0 is the gap amplitude of thedx22y2-wave gap which
can be estimated from the binding energy at the midpoin
the leading edge in the calculated photoemission spect
near the antinode of the gap.14 This gap amplitudeD0 rises
much more rapidly belowTc than the BCSd-wave gap and
reaches at our lowest temperatureT50.017t (T/Tc50.77) a
value of aboutD050.1t. Comparison with weak-coupling
theory shows that the singularity at the pair-break
threshold1 is removed here by strong quasiparticle damp
while according to the weak-coupling theory of Ref. 2 th
singularity is removed by a screening term arising from v
tex corrections due to the pairing interaction. Electro
electron scattering due to short-range Coulomb interac
can describe the observed broadening above the p
breaking peak in theB1g Raman spectrum of YBCO.2 Re-
cently it has been shown14 that the collective mode due to th
fluctuations of the amplitude of thed-wave gap may also
yield a broadening of the calculated pair-breaking peak
Fig. 1. Our results forB1g response in the superconductin
state~see Fig. 1! agree qualitatively with results of non-sel
consistent calculations which include the effect of inelas
scattering.8

The Raman response function forB2g symmetry shown in
Fig. 2 does not exhibit such dramatic effects belowTc as that
for B1g symmetry in Fig. 1. One notices that the spectrum
linear inv for smallv and that the slope atv50 decreases
and the normal state peak broadens and shifts to some
higher frequency asT decreases belowTc ~dashed curves in
Fig. 2!. The spectrum above this peak is somewhat enhan
up to frequencies near the pair-breaking threshold. In c
trast to our results shown in Fig. 2 the non-self-consist
calculation yields a distinct pair-breaking peak belowTc in
the B2g response which occurs much closer to theB1g pair-
breaking peak.8 We do not show the calculated Raman sp
trum for A1g symmetry because it is quite similar to that f
the B1g symmetry. In order to obtain the measuredAx8x8

spectrum we have to add to theA1g spectrum theB2g spec-

FIG. 2. Raman response function for theB2g channel for the
same temperatures as in Fig. 1. In the superconducting state
slope atv50 decreases for decreasingT.
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trum. The resultingAx8x8 response starts linearly inv be-
cause at low frequencies it is dominated by theB2g spectrum
up to a shoulder corresponding to the small peak in theB2g

spectrum. For higher frequencies theAx8x8 spectrum is domi-
nated by theA1g component exhibiting the large pair
breaking peak~see Fig. 3!.

We come now to the discussion of the effect of vert
corrections on the Raman response functions. From Eq.~4!
one sees that the general trend of the vertex correctionJ is to
suppress the response in theB1g channel and to enhance th
response in theB2g channel while we have a mixed effect o
theA1g channel because the component ofgA1g

proportional

to t is suppressed and the component proportional tot8
52Bt is enhanced. Inserting our results for the pairing
teractionPs and the spectral functionsN and A1 into the
expression for the correctionJ in Eq. ~5! we obtain a rather
large value forJ. This means that our lowest order approx
mation of the vertex equation~3! overestimates the verte
correction. In Fig. 3 we show the different effects of th
vertex correctionJ ~multiplied by a small factor! on the three
Raman response functions in the superconducting s
Comparison with Figs. 1 and 2 shows that theB1g response
is strongly suppressed while theB2g response is slightly en
hanced. The pair-breaking peak in theA1g response function
becomes now somewhat smaller than that in theB1g re-
sponse while in the absence of vertex corrections the for
peak is much larger than the latter peak.

Recently, a sharp Raman resonance ofB1g symmetry at
about 75 meV has been observed in underdoped Bi2
compounds at different doping levels.21 The question arises
whether or not this resonance has its origin in the norm
state pseudogap which has been inferred from measurem
of the specific heat and Knight shift,15 angle-resolved photo
emission~ARPES!,16 and tunneling density of states17 in un-
derdoped cuprates. We have shown previously that a p
nomenological d-wave pseudogap Eg(k)5Eg@cos(kx)
2cos(ky)#, together with the normal-state self-energy comp
nents determined by the FLEX approximation is capable
describing qualitatively the Knight shift, nuclear-spin rela
ation rate 1/T1 , ARPES, and tunneling data in the unde
doped cuprates.19 It should be stressed that this is a nontriv
calculation because the pseudogap gives rise to anoma

the
FIG. 3. Raman spectra Imxg(q50,v) including vertex correc-

tions for A1g ~solid line!, B1g ~dotted line!, andB2g ~dashed line!
symmetry atT/Tc50.77.
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14 744 PRB 59T. DAHM, D. MANSKE, AND L. TEWORDT
Green’s functions contributions to the susceptibilities wh
in turn lead to strong effects on the quasiparticle se
energies. BelowTc the square of the total gap becomes eq
to Eg

2(k)1uf(k,v)u2 wheref is calculated self-consistentl
from the Eliashberg gap equation. In Fig. 4 we show o
results for the density of statesN(v) for a pseudogap ampli
tudeEg50.05t which is assumed to be temperature indep
dent. One sees that for decreasingT a typical d-wave gap
develops also in the normal state and that this spect
merges continuously into the superconducting spectrum aT
decreases throughTc50.022t. One can see that belowTc a
dip develops at negativev below the quasiparticle peak an
that the spectrum is quite asymmetric with respect to
Fermi energy atv50. These results are quite similar to th
measured tunneling spectra in underdoped Bi2212~Ref. 17!
apart from the double peak at negativev values occurring in
Fig. 4 which is not seen in the experiments.

These results encourage us to calculate the Raman
sponse functions above and belowTc in the presence of this
d-wave pseudogapEg(k). In Fig. 5~a! we show our results
for theB1g symmetry again for a gap amplitudeEg50.05t as
in Fig. 4. Comparison with the results forEg50 in Fig. 1
shows that the most prominent effect of the pseudogap i
produce a broad peak at about a frequencyv.0.075t
.(3/2)Eg asT approachesTc from above. This frequency is
nearly the same as the frequency difference between the
siparticle peaks in the density of states in Fig. 4. We h
also carried out calculations for larger values of the gap a
plitude Eg corresponding to lower doping levels,15,17 i.e.,
Eg50.075t and 0.1t.19 Then we find analogous result
namely, that for decreasingT in the normal state a pea
evolves in theB1g Raman spectrum at a frequency of abo
(3/2)Eg which corresponds to the frequency difference b
tween the peaks in the density of states. The continuous
lution of theB1g Raman peak for decreasingT as shown in
Fig. 5~b! for Eg50.15t is similar to the observed evolutio
of the peak in slightly underdoped Bi2212.21 We note that
the position of the peak at aboutv.0.25t.62 meV for t
5250 meV is of the order of magnitude of the observ
resonance at 75 meV.21 The increase of the normal-sta

FIG. 4. Density of statesN(v) for d-wave pseudogap with am
plitude Eg50.05t, in the normal state atT50.1t and 0.023t ~solid
lines! and in the superconducting state atT50.021t and 0.018t
(T/Tc)50.78 ~dashed lines!. The valuesN(0) decrease in this se
quence of temperatures.
-
l

r

-

m

e

re-

to

ua-
e
-

t
-
o-

peak for decreasingT is accompanied by a suppression
low-frequency spectral weight as it is seen in the expe
ments@see Fig. 5~b!#.21

The question arises whether the pseudogap can exp
also the normal-state data forB2g Raman spectra of YBCO
and Bi2212 in the underdoped regime where a reduction
spectral weight for decreasing temperature is observed.22 We
find indeed that spectral weight at higher Raman shifts is
while the slope atv50 is increased for decreasing temper
ture T @see Fig. 5~c! for Eg50.15t]. The broad peak arising

FIG. 5. ~a! Raman intensity forB1g polarization withd-wave
pseudogap amplitudeEg50.05t in the normal state atT50.1t and
0.023t ~solid lines with increasing slopes!, and in the superconduct
ing state atT50.021t and 0.018t (T/Tc)50.78 ~dashed lines with
increasing peaks!. ~b! The same forEg50.15t andT50.1, 0.050,
and 0.030t in the normal state~increasing peaks in this sequence!.
~c! B2g Raman response forEg50.15t and the sameT as in ~b!
~increasing peaks in this sequence!.
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PRB 59 14 745STRONG-COUPLING THEORY OF ELECTRONIC RAMAN . . .
below the pair-breaking threshold 2Eg is much less pro-
nounced than the sharp peak occurring in theB1g Raman
spectrum@see Fig. 5~b!#. In the superconducting state th
slope atv50 decreases for decreasingT in agreement with
the experimental data for theB2g channel, however, our pair
breaking maximum~see Fig. 2! is much less pronounce
than the experimental one.22

Finally, we discuss our normal-state results for the opti
in-plane conductivitys1(v) in the presence of ad-wave
pseudogapEg(k). This has the form of a Drude peak whe
for increasingEg the maximum atv50 is increased which
is balanced by a loss of spectral weight at higher frequen
@see Fig. 6~a! for Eg50.15t]. The quasiparticle damping
G(k,v)5v Im Z(k,v) is highly anisotropic and exhibits fo
k along the direction of the antinode of the gap and
decreasingT a gap of the orderEg @see Fig. 6~b! for Eg
50.15t]. At the same time the effective mass ratiom* /m
5ReZ(k,v) is enhanced at aboutv.2Eg above its value at
v50 where ReZ'2 @see inset in Fig. 6~a!#. In the absence
of the pseudogap the scattering rateG varies linearly with
frequencyv as can be seen in Fig. 6~b! for higher tempera-
tures. These results are in qualitative agreement with op
conductivity data and the frequency-dependent scatte
rate and effective mass spectra obtained from the com

FIG. 6. ~a! Optical conductivity s1(v) for amplitude Eg

50.15t of the pseudogap, at temperaturesT50.1, 0.050, and
0.030t; inset: ReZ(ka ,v) for the same temperatures~increasing
peaks atv50 in this sequence!; dashed line forEg50 and T
50.030t. ~b! Quasiparticle damping,vIm Z(ka ,v), at antinode
ka , for amplitudeEg50.15t of the pseudogap, at temperaturesT
50.1, 0.050, and 0.030t ~decreasing values atv50 in this se-
quence of temperatures!.
l

es

r

al
g

ex

optical conductivity on underdoped Bi2212, YBCO, an
LSCO compounds.20 For example, for underdoped Bi221
with Tc567 K the scattering rate 1/t(v) is linear in v at
T.T* .200 K, and forT,T* the low-frequency scattering
rate is suppressed forv,500– 700 cm21 (62– 87 meV!.20

This is in qualitative agreement with our results shown
Fig. 6~b! from which we estimate aT* .0.1t.250 K and a
threshold energy for the steep rise of about 0.3t.75 meV. It
should be stressed that we havecalculated the frequency-
dependent scattering rate and mass enhancement with
help of the FLEX equations while these quantities have b
obtained in Ref. 20 from theoretical expressions involvi
the complex conductivity.

IV. CONCLUSIONS

In summary, we have calculated the electronic Ram
response function within the framework of the FLEX a
proximation for the 2D Hubbard model. The FLEX approx
mation is capable of describing the most important proper
of the high-Tc cuprates, namely, their unusual normal sta
behavior arising from strong electronic correlations, and
unconventional superconducting state which is widely
lieved to havedx22y2 wave pairing. These properties are r
flected in the calculated Raman response functions forA1g or
Ax8x8, B1g , andB2g polarizations. In the normal state thes
spectra start linearly in frequencyv with a slope that in-
creases with decreasing temperatureT, and at high frequen-
cies these spectra become almost constant. The latter p
erty is a consequence of the linear frequency variation of
quasiparticle damping. In the superconducting state one
tains a gap and a pair-breaking peak in theB1g channel be-
cause this polarization probes the region in momentum sp
around the antinode of the gap. The effect of supercond
tivity on the B2g spectrum is much smaller which is no
surprising because theB2g channel probes the region aroun
the node of the gap. Our results for photoemission and
man spectra agree qualitatively with experiments on o
mally doped cuprates.

The exotic behavior of the cuprates in the underdop
regime can be described qualitatively by a phenomenolog
normal-stated-wave gap which enters the expressions of
FLEX approximation in addition to the superconducting g
occurring belowTc .19 Here we show that such a pseudog
leads in the density of states for decreasingT to the devel-
opment of a typicald-wave gap structure which merges co
tinuously into the superconducting spectrum. These res
are in agreement with recent STM data.17 A corresponding
pair-breaking peak develops continuously in theB1g spec-
trum asT decreases in the normal state and belowTc . The
increase of the normal-state peak is accompanied by supp
sion of low-frequency spectral weight for decreasingT.
These results are similar to the recently observed reson
and simultaneous reduction of low-frequency intensity in
B1g spectrum of underdoped Bi2212.21 However, this inter-
pretation is somewhat questionable because the reson
energy of 75 meV is almost independent of doping le
while one needs a pseudogap whose amplitude incre
with decreasing doping level in order to describe the Knig
shift and tunneling measurements.19 This issue should be
clarified experimentally.
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Support for the existence of a pseudogap in the und
doped cuprates is obtained from our results for the opt
conductivity and their agreement with experiment. The pr
ence of a pseudogap leads at lower temperatures to a
crease of the maximum of the Drude peak which is balan
by a loss of spectral weight at higher frequencies@see Fig.
6~a!#. At the same time a gap develops for decreasing te
perature in the quasiparticle damping below a threshold
quency of the order of the pseudogap amplitude@see Fig.
6~b!#. These results are in qualitative agreement with
in-plane optical conductivity data in underdoped cuprate20

This makes us believe that the calculated peaks in the Ra
spectra should be observable in the underdoped cuprate
well.
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APPENDIX: VERTEX FUNCTION AND WARD’S
IDENTITY

First we show that Ward’s identity for the electromagne
kernel holds also for the FLEX approximation. The gene
expression of the current-charge correlation function in
232 Nambu matrix formalism is given by23

Pmn52e2(
k

1

2
Tr@gm~k,k1q!G~k1q!Gn~k1q,k!G~k!#;

(m,n51,2,3,0), ~A1!

with

q[q,inm , k[k,ivn , (
k

5T(
ivn

(
k

.

Here,Gn is the dressed vertex function, andgm is the bare
current-charge vertex

gm~k,k1q!5vm~k1q/2!t0 ~m51,2,3!,

g05t3 . ~A2!

Notice thatP00(q)5e2xc0(q) wherexc0 is the irreducible
charge susceptibility.12 The Dyson equation yields th
dressed 232 matrix Green’s functionG in terms of the bare
Green’s functionG0 and the self-energyS

G21~k!5G0
21~k!2S~k!

5 ivnZ~k!t02@e~k!1j~k!#t32f~k!t1 . ~A3!

In the FLEX approximation for the Hubbard Hamiltonian th
self-energyS is determined by the following generalize
Eliashberg equations10:

S~k!5(
k8

@Ps~k2k8!t0G~k8!t01Pc~k2k8!t3G~k8!t3#,

with
r-
al
-
in-
d

-
e-

e

an
as

.
e
eg

l
e

Ps~q!5~3/2!U2xs~q!, xs5xs0~12Uxs0!21,

Pc~q!5~1/2!U2xc~q!, xc5xc0~11Uxc0!21.
~A4!

The ladder approximation for the vertex functionGm corre-
sponding to the FLEX approximation forS yields the fol-
lowing linear equation:

Gm~k1q,k!5gm~k1q,k!

1(
k8

@t0G~k81q!Gm~k81q,k8!G~k8!

3t0Ps~k2k8!1t3G~k81q!Gm~k81q,k8!

3G~k8!t3Pc~k2k8!#. ~A5!

We note that the equation forG0 is identical to the vertex
equation for the irreducible charge susceptibilityxc0 in Eq.
~6! of Ref. 12.

Gauge invariance of the electromagnetic kernel requ
that Gm satisfies the Ward identity23

(
m

qmGm~k1q,k!5t3G21~k!2G21~k1q!t3 . ~A6!

One can derive Ward’s identity~A6! from Eq. ~A5! by in-
serting Eq.~A6! on the right side in the resulting equatio
and then making use of the Eliashberg equation~A4!. For
q50 it follows from Eq. ~A6! the important relationship
P00(q50,inm)5e2xc0(q50,inm)50. Furthermore, we ob-
tain from Ward’s identity in Eq.~A6! for q50 the following
expression for the vertexG0:

G0~k,v1n,v!5Z~k,v1n!t3

1v@Z~k,v1n!2Z~k,v!#n21t3

2@j~k,v1n!2j~k,v!#n21t0

1@f~k,v1n!1f~k,v!#n21t3t1 .

~A7!

The last term proportional tot3t15 i t2 in Eq. ~A7! diverges
for n→0 and corresponds to the collective gauge mode.23,14

This is renormalized by the Coulomb interaction to the 2
plasmon.

We turn now to the Raman response functionxg for po-
larization symmetryg @see Eq.~2!#. This is derived from
P00(q) in Eq. ~A1! by replacingg0 andG0 by the bare and
full Raman verticesgt3 andGt3:

xg~Q!52(
k

1

2
Tr@G~k1Q,k!t3G~k1Q!g~k!t3G~k!#.

~A8!

The full Raman vertexG satisfies the following integra
equation:



qs
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G~k1Q,k!5g~k!1(
q

@Ps~q!1Pc~q!#

3
1

2
Tr@t3G~k1q1Q!t3G~k1q!#

3G~k1q1Q,k1q!. ~A9!

Relabeling of variables and analytical continuation in E
~A8! and ~A9! from Q[Q,inm to Q50,v, k[k,ivn to
k,v8, andq[q,imm to q,n, leads to Eqs.~1! and ~3!.

We redefine now the vertex functionG by L(k1Q,k)
[G(k1Q,k)/g(k). The resulting equation~A9! for L con-
tains on the right hand side under the integral overq the
factor g(k1q)/g(k). SincePs(q) is strongly peaked atP
,

y

.

.

5(p,p) and since for B2g (B1g) Raman polarization
gB2g

(k1P)5gB2g
(k) @gB1g

(k1P)52gB1g
(k)# @see Eq.

~2!#, we can approximately set

gB2g
~k1q!/gB2g

~k!.11,

gB1g
~k1q!/gB1g

~k!.21. ~A10!

Then the equation for the vertex functionLB2g
agrees with

Eq. ~A5! for the vertexG0 of the charge density. This is
given for q50 by Eq. ~A7!. Ignoring the collective mode
term and lettingn tend to zero we estimate that

GB2g
~k,v8,v!.gB2g

~k!@Z~k,v8!1v8~d/dv8!Z~k,v8!#.
~A11!
.
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