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Strong-coupling theory of electronic Raman scattering in high-temperature superconductors
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We have calculated the response function for electronic Raman scattering within the fluctuation-exchange
approximation for the two-dimensional Hubbard model. Beldy, a large pair-breaking peak and a gap
develop in theB,, spectrum while the effect of superconductivity on Bg, spectrum is much smaller. In
order to investigate the underdoped regime we study the influence of a phenomenologically introduced
pseudogap. In the normal state we find that this pseudogap leads for decreasing temperature to development of
ad-wave gap structure in the density of states which merges continuously into the superconducting spectrum.
A corresponding pair-breaking peak evolves continuously inBjygRaman spectrum &b decreases in the
normal state and beloW,. We discuss our results in connection with recent tunneling, optical conductivity,
and Raman data on the cupratgs0163-182@09)13721-4

[. INTRODUCTION In this paper we present results for electronic Raman scat-
tering in the layered cuprates which are based on the
Electronic Raman scattering is an important tool to invesfluctuation-exchangdFLEX) approximationd for the spin
tigate the symmetry of the order parameter in the high- and quasiparticle excitations in the two-dimensiof2D)
superconductors. Raman scattering data belouon opti-  one-band Hubbard mod#.The FLEX approximation is a
mally doped BjSr,CaCyOg. s (Bi2212) for the different  self-consistent and conserving approximation scheme in the
polarization channels ok;4, B;4, andB,; symmetry have sense of Kadanoff and Bayrand goes well beyond mean-
been analyzed by weak-coupling BCS theory and found to b#ield approximation. Especially the feed-back effect of the
in agreement withd,2_2 pairing symmetry. In the weak- one-pz_slrtlcle properties on t_he spin fluctuat!on spectrum is
coupling limit it has been shown that good agreement wititaken into account self-consistently and has important conse-

X%’ qguences in particular in the superconducting state. For ex-
the A . and'Blg Raman dat{:\ on YB&U,0; (YB.C.O) can ample, the quasiparticle damping which varies linearly with
be obtained if vertex corrections due to the pairing interacs

. . . frequency in the normal state in accordance with MRef.
tion and short-range Hubbard-type interactions between thg and NFL (Ref. 4 theories, is strongly suppressed at lower
electrons are taken into accodrithe relationship between

. frequencies in the superconducting state. These properties of
the normal-state anomalous Raman spectrum and the opticgle ' guasiparticle damping determine to a large extent the
conductivity of highT. superconductors has been dlscusseq)ptica| conductivity and Raman spectra in the normal and
in the context of marginal Fermi liquitMFL) theory where  gyperconducting states. The FLEX approximation has been
it has been noted that a linear frequency variation of theshown to yield a number of unusual phenomena, which also
quasiparticle damping is responsible for these phenomenahave been observed in the high-cuprates, as, for example,
This is consistent with the results of the nested Fermi liquida dip feature in the photoemission spectra, a resonance in the
(NFL) model which describes the qualitative features of theneutron scattering intensity and a rapid opening of the gap
optical conductivity and Raman response in the normal statbelow T, .1%1314Therefore it is worthwhile to apply this ap-
correctly and can be generalized in a simple way to the suproximation scheme to the electronic Raman scattering in-
perconducting statt Strong-coupling calculations with an- tensity and compare the results with the experiments. Using
isotropic Eliashberg equations have been carried out by ushis approximation scheme goes beyond previous theories of
ing a phenomenological anisotropic spin fluctuationelectronic Raman scatterifid;® where either the gap in the
interaction for a nearly antiferromagnetic Fermi liquid superconducting state or the spin fluctuation interaction in
(NAFL) theory® These theories are capable of explainingthe normal state were taken as phenomenological functions.
many features of the observed Raman spectra ifin the strong-coupling calculatioh®the same model inter-
La,_,SrCuQ,,® Bi2212; and YBCO? In the latter work it action is used in the Eliashberg equations for the self-energy
is shown that the Raman response is extremely sensitive s well as the superconducting gap. We shall see that the
the details of the band structure and the anisotropy of th@eglection of the feed-back effect of the gap on the interac-
spin fluctuation interaction. Comparison of the low fre-tion leads to substantially different results for the Raman
quencyB,, andB,4 response in the normal state could pro-response in comparison to those of our self-consistent theory.
vide an indication of the strength and anisotropy of the in- In order to make comparison with experiments in the un-
teraction. The pair breaking peak in tBe, response carries derdoped cuprates it is necessary to take into account the
information on quasiparticle scattering. presence of a normal-state pseudogap. It has been shown
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previously that such a pseudogap havihgvave symmetry  y (q,») and x.(q,0) are calculated from the dressed
is capable of describing a number of different experiments inGreen’s functionG given by the Dyson equation in>22
underdoped cuprates such as the specific heat and Knighatrix form[see Eq(A3)].

shift,'* nuclear-spin relaxation rate, angle-resolved photo- |t s instructive to start with the gauge invariant theory for
emission spectroscofARPES,*® and tunneling density of the current-charge correlation functidh,, defined in Eg.
states:’ Interpretations of the pseudogap and normal-stat¢a1).2® The corresponding vertex functidn, obtained by
properties are manifoltsee, e.g., Ref. 25includingd-wave  the ladder approximation with interactions,Ps7, and
pairing fluctuation¥® and a charge-density-wav€CDW)  7.p_r, is given in Eq.(A5). One can show with the help of
State].'g It has been shown that the NMR Knlght shift and thEthe E|iashberg equationbee Eq(A4)] that I'  satisfies
thermodynamic data can be modeled by writing the square ofyarg’s identity[see EqQ.(A6)] to comply with tﬁe require-
the total gap function as the sum of the squares of thenent of gauge invariancé.It should be pointed out that the
d-wave superconducting gapSC) and the normal-state equation for the vertex functiofi, of the charge susceptibil-
pseudogafEy(k) with d-wave symmetry” Such a relation- ity agrees with the vertex equation for the irreducible charge
ship holds, for example, at the hot spots of the Fermi surfacgysceptibility y., which has been derived previously in the
where the neSting condition is satisfied for the SC and CDWramework of a self-consistent and Conserving approxima_
gaps*® Since we have no firm prescription for calculating tion [see Eq(6) in Ref. 12.

this pseudogap from first principles we take here a phenom- |n analogy to the expression for the charge dendiy,
enOIOgical normal statd-wave gap while the additional gap :eZXC(), we obtain the expression for the Raman response
occurring in the superconducting state is calculated selffynction X by replacingy, andT'q in Eq. (A1) by the bare
consistently. It should bg poi.nted out that the effept (_)f th?and full Raman verticey and I [see Eq.(A8)]. Analytic
pseudogap on the quasiparticle self-energy and lifetime igontinuation from imaginary to real frequencies leads to the

taken into account correctly by including it in the Green’s fo|lowing expression for the Raman response function:
functions and spin fluctuation interaction of the FLEX equa-

tions. As we will show below, the pseudogap leads to a o

strong suppression and a gap at low temperatures of thdM Xy(q:()’“’)zwﬁmd“”[f(w')_f("’u””)]
frequency-dependent scattering rate while the scattering rate )

exhibits a linear frequency variation in the absence of a

pseudogap. Furthermore, the effective mass ratio acquires a sz: I'(k,0",0)[N(k,0'+ 0)N(Kk,®")
maximum at about that frequency where the scattering rate
rises steeply. The in-plane optical conductivity has the form —Ai(k,o'+w)A(k,o")]v(K). (1)

of a Drude peak whose maximum increases and whose spec-

tral weight at higher frequencies is suppressed for increasing/€"e; N(k=“’)_:_A0(k!“’)+A3(kvf”)and Aq(k, ) are the
pseudogap amplitud&,. These results are in qualitative Spectral densities of the Green’s functio@sand F.™ The
agreement with the infrared response data on underdop&f‘re Raman vertices for the d|ﬁerent polarization symme-
Bi2212, YBCO, and LSCO compound®We shall see that tri€SBig, Bag, andAyg are the following:

the (temperature independemiseudogap leads to the devel-

opment of a peak in thB,;; Raman spectrum for decreasing yBlg=t[cost)—cos(ky)],
temperature which has similarities with the obsenig . .
Raman resonance in the normal state of underdoped Bi2212 Ve,, = 4B sin(k,)sin(ky),
compoundg?!

In Sec. Il and in the Appendix A we develop the general yAlgzt[cos(kX)+cog(ky)—4B cogk,)cogk,)]. (2
theory of the Raman response function within the FLEX ap-
proximation. In Sec. Ill we present and discuss our resultsHere, t is the nearest neighbor and=—-Bt (with B
Section IV contains the conclusions. =0.45) is the next-nearest neighbor hopping energy in the
tight-binding band. It should be pointed out that we have

subtracted from the vertex fax<'*’ symmetry given in Ref.
2 the vertex forB,, symmetry in order to obtain aA4
component which is fully symmetric with respect to they,
point group. In the Appendix A we develop the theory of the
The main equations of the general theory are given irvertex function for the current-current correlation function
Appendix A. The basis of the FLEX approximation are theand show with the help of the generalized Eliashberg equa-
generalized Eliashberg equations of the 2D Hubbard moddions[see Eq(A4)] that it satisfies Ward’s identitjsee Eq.
for the quasiparticle self-energy components|1 (A6)]. In analogy we obtain the equations for the Raman
—Z(k,w)] and ¢£(k,0) and the d-wave gap function response functiofsee Eq(A8)] and for the full Raman Ver-
¢(k,w). These equations are presented in @dt) in Nam-  tex[see Eq(A9)]. The equation for the full Raman vertéx
bu's 2X2 matrix formalism in terms of Pauli matrices  is obtained from the equation for the vertex functibp of
(i=0,1,2,3) for the self-energy¥ and the Green’s function the irreducible charge susceptibilify,, [see Eq.(A5)] by
G. The spin and charge fluctuation interactidhs and P replacing y, by the bare Raman vertex. This yields the
are given in terms of the dynamical spin and charge suscegquation for the full vertex functio’ in Eq. (A9). For the
tibilities xs=xso(1—Uxs) 1 and xc=xco(1+Uxe) !t  analytic continuation of this equation from imaginary to real
[see Eq. (A4)] where the irreducible susceptibilities frequencies we have to introduce the double-spectral repre-

II. GENERAL THEORY OF THE RAMAN RESPONSE
FOR THE 2D HUBBARD MODEL OF d-WAVE
SUPERCONDUCTORS
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sentation for the vertex functidf.In this way we obtain
approximately the following integral equation for the vertex
functionT'(k,®",®) occurring in Eq.(1):

I'k,o',w)= 'y(k)+7722 Jm dvP(q,v)[f(v—0'—w)
q — o0

+b(v)][N(k+0g,0' — v+ w)N(k+0g,0" — )
_Al(k+ q,w’— v+ (l))Al
X(k+q,0'—v)[I'(k+q,0" —v,w). 3

Here, P4(q,v)=(3/2)U?Im x<(q,») is the pairing interac-
tion due to exchange of spin fluctuatiofse have left out
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the interaction due to charge fluctuations because this is FiG, 1. Raman spectra Ip,(q=0,0) for By, polarization in

much smaller. We now approximate this vertex equation in
the following way: first, we consider only the lowest order

the normal state af=0.1t and 0.028 (solid lines with increasing
slopes, and in the superconducting statd .£0.022) at T

term by inserting on the right hand side the bare vertex=0.021 and 0.01%, or T/T.=0.77 (dashed lines with increasing

v(k+q), secondly, we replace(k+q) by y(k+Q) with
Q= (m,7) becauseé’4(q,v) is strongly peaked &) and the
equivalent vectors £ ,* 7). In this way we obtain ap-
proximately the following vertex corrections for the three
different symmetries of interest:

I'g (k0" ,0)=t[cogk,) —cogky)][1-I(k,0",®)],
T, (k0" 0)=4tBsin(kJsin(k,)[1+I(k,0",o)],
@)
[a (K o' 0)=t[cogky) +cogky)[1-I(k 0" 0)]
— 4tB cogk,)cogk,)[1+I(k,0", )]
with

J(k,w',w)=wzr dy[f(rv—ow' —w)+b(¥)]D P«(q,v)
—® q

X[N(k+q,0"+0o—v)N(k+q,0"—v)—Aq(k
)

The functionsf andb in Egs.(3) and(5) are the Fermi and
Bose functions. Another estimate of the full vertex function
FBzg is obtained in Appendix A by showing that it is ap-
proximately equal tOszgFo wherelj is the vertex function

+q,0'+o—v)Ai(k+q,0' —v)].

peaks.

with B=0.45 andu=—1.1. This describes approximately
the Fermi surfaces of Bi2212 and YBCO compounds. Fur-
thermore we take an effective Coulomb repulsioriq)
which has a maximum valud =3.6 atq=Q and decreases
monotonically with decreasing to a valueU(0)=0.62 at
g=0. This functional form approximates the calculated ver-
tex corrections toyso [see Eq(8) in Ref. 13. For a chemical
potential u=—1.1 we obtain a renormalized band fillimg
=0.90 and a superconducting transitionTat=0.022. We
remark that the vertex corrections for the irreducible spin
susceptibility xso(g,w) is similar to that in Eq.(5) apart
from the opposite sign and the dependencedi We have
calculated this vertex correction in Ref. 13. It turns out that
the frequency and temperature dependencies are rather weak
and that theg dispersion aroun@ can be well approximated
by the phenomenological spin-spin coupling which has been
used to describe the NMR data for YBCO compounée-
garding our choice of parameter values we remark that
FLEX calculations have been carried out for a large number
of parameter$’ = —Bt,u,U, and the constants fitting trep
dispersion of the vertex correction for the susceptibility. The
results are qualitatively similar to the present ones apart from
the fact that Imy(q,w) as a function ofj exhibits belowT

one broad peak centered @tfor the next-nearest neighbor
hoppingt’ = —Bt (B=0.45) while it exhibits four distinct

of the charge susceptibility. Making use of the Ward identitypeaks aroun® for t’' = 01014

for I'y in Eq. (A7) we find that rougthFBzgzszgZ(k,w)
[more exactly, see result in E¢A11)]. This means that the
vertex correction foﬂ“B29 corresponding td in Eq. (4) is of

the ordef Z(k,w) —1]. The latter quantity is about 0.8 fér
along the node of the gap and about 1.3 kormlong the
antinode of the gap*

Ill. RESULTS FOR THE RAMAN RESPONSE IN d-WAVE
SUPERCONDUCTORS

We have solved the FLEX equatiofsee Eq(A4)] for a
2D tight-binding band

e(k) =t[ —2 cogk,) — 2 cogky) + 4B cogk,)cog ky) — u]
(6)

First we present our results for the Raman response func-
tion in Eq.(1) in the absence of vertex corrections to the bare
Raman vertices in Eq2) [J=0 in Eqg.(4)]. One sees from
Figs. 1 and 2 foB,4 andB,, symmetry that in the normal
state(solid curveg both spectra start linearly in frequenay
and become flat at high frequencies. The slope&t0 in-
creases with decreasing temperatlirehile the spectrum at
high frequencies decreases with decreasingin the B,
spectrum a low-frequency peak develops for decrea$ing
These results are similar to the normal-state results which
have been obtained from the theory of nearly antiferromag-
netic Fermi liquids in the=1 pseudoscaling and the=2
mean field scaling regimésExperimental data available at
present do not show a peak in the normal-sBatgresponse.

It has been pointed out that observation of this structure in
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FIG. 2. Raman response function for tBg, channel for the FIG. 3. Raman spectra Imp,(q=0,0) including vertex correc-
same temperatures as in Fig. 1. In the superconducting state thiens for A4 (solid ling), B,4 (dotted ling, and B,y (dashed ling
slope atw=0 decreases for decreasimg symmetry atT/T.=0.77.

the B,4 response and its absence in Bg, response would oy ) )

lend support to the current models of Fermi topology and thd"um. The resultingA™ ™ response starts linearly ia be-
strength and anisotropy of the interactfom Fig. 1 for the —cause atlow frequencies it is dominated by Bg spectrum
B, response we recognize that a gap at loweand a pair- up to a shoulder corresponding to tr}er small peak inBhg
breaking peak at a threshold energy wf0.153=(3/2)A,  spectrum. For higher frequencies th&* spectrum is domi-
develop asT decreases beloW, (dashed curves in Fig)1 nated by theA;; component exhibiting the large pair-
Here,Aq is the gap amplitude of thet_>-wave gap which ~ breaking peaKsee Fig. 3

can be estimated from the binding energy at the midpoint of We come now to the discussion of the effect of vertex
the leading edge in the calculated photoemission spectrugorrections on the Raman response functions. From(4g.
near the antinode of the gapThis gap amplitude\, rises  one sees that the general trend of the vertex corredtisrio
much more rapidly below . than the BCSd-wave gap and suppress the response in g, channel and to enhance the
reaches at our lowest temperatdire 0.01% (T/T,=0.77) a  response in th&,, channel while we have a mixed effect on
value of aboutA,=0.1t. Comparison with weak-coupling theA;q4 channel because the componentygz,u;g proportional
theory shows that the singularity at the pair-breakingto t is suppressed and the component proportionat’to
threshold is removed here by strong quasiparticle damping= — Bt is enhanced. Inserting our results for the pairing in-
while according to the weak-coupling theory of Ref. 2 thisteraction P and the spectral function and A, into the
singularity is removed by a screening term arising from ver-expression for the correctiahin Eq. (5) we obtain a rather
tex corrections due to the pairing interaction. Electron-jarge value ford. This means that our lowest order approxi-
electron scattering due to short-range Coulomb interactiomation of the vertex equatiof8) overestimates the vertex
can describe the observed broadening above the paigorrection. In Fig. 3 we show the different effects of the
breaking peak in th®;, Raman spectrum of YBCORe-  vertex correctiod (multiplied by a small factoron the three
cently it has been showhthat the collective mode due to the Raman response functions in the superconducting state.
fluctuations of the amplitude of the-wave gap may also Comparison with Figs. 1 and 2 shows that Big, response
yield a broadening of the calculated pair-breaking peak ins strongly suppressed while tili, response is slightly en-
Fig. 1. Our results foB,4 response in the superconducting hanced. The pair-breaking peak in thg, response function
state(see Fig. 1 agree qualitatively with results of non-self- hecomes now somewhat smaller than that in Big re-
consistent calculations which include the effect of inelasticsponse while in the absence of vertex corrections the former
scattering’ peak is much larger than the latter peak.

The Raman response function 85, symmetry shown in Recently, a sharp Raman resonanceBg§ symmetry at
Fig. 2 does not exhibit such dramatic effects belwas that  aphout 75 meV has been observed in underdoped Bi2212
for Byq symmetry in Fig. 1. One notices that the spectrum iscompounds at different doping levélsThe question arises
linear in w for small  and that the slope at=0 decreases hether or not this resonance has its origin in the normal-
and the normal state peak broadens and shifts to somewh&ate pseudogap which has been inferred from measurements
higher frequency a3 decreases beloW, (dashed curves in  of the specific heat and Knight shift angle-resolved photo-
Fig. 2. The spectrum above this peak is somewhat enhanceginission(ARPES,*® and tunneling density of stafésn un-
up to frequencies near the pair-breaking threshold. In conderdoped cuprates. We have shown previously that a phe-
trast to our results shown in Fig. 2 the non-self-consistenhomenological d-wave pseudogap Eq4(K) = E4[ cosky)
calculation yields a distinct pair-breaking peak befdwin  —cosk)], together with the normal-state self-energy compo-
the B4 response which occurs much closer to Byg pair-  nents determined by the FLEX approximation is capable of
breaking peak.We do not show the calculated Raman specescribing qualitatively the Knight shift, nuclear-spin relax-
trum for A;, symmetry because it is quite similar to that for ation rate 1T,, ARPES, and tunneling data in the under-
the By; symmetry. In order to obtain the measurad ' doped cuprate¥ It should be stressed that this is a nontrivial
spectrum we have to add to the, spectrum theB,, spec-  calculation because the pseudogap gives rise to anomalous
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FIG. 4. Density of stateBl(w) for d-wave pseudogap with am- 0al ]
plitude E;=0.08, in the normal state af=0.1t and 0.028 (solid ’ (b) B, polarization
lines) and in the superconducting state B&=0.021 and 0.018 ¢
(T/T,)=0.78 (dashed lines The valueN(0) decrease in this se- 03l Eg = 0.15t i
qguence of temperatures.
02}

Green'’s functions contributions to the susceptibilities which
in turn lead to strong effects on the quasiparticle self-
energies. Below . the square of the total gap becomes equal 01}
to ES(k)+ |#(k,w)|? where is calculated self-consistently

from the Eliashberg gap equation. In Fig. 4 we show our

Im ¥4 (q=0,m)

results for the density of staté{ w) for a pseudogap ampli- 0'00.0 0.1 0.2 0.3 0.4 0.5
tudeE4=0.08 which is assumed to be temperature indepen- Raman shift o / t
dent. One sees that for decreasih@ typical d-wave gap
. ! 0.12

develops also in the normal state and that this spectrumr o
merges continuously into the superconducting spectrufi as 010 L (© By, polarization
decreases through,=0.022. One can see that beloW. a —_ Eg=0.15t
dip develops at negative below the quasiparticle peak and § 0.08 - .
that the spectrum is quite asymmetric with respect to the N
Fermi energy aw=0. These results are quite similar to the 7 006
measured tunneling spectra in underdoped Bi2@R&f. 17 xR 0.04 :
apart from the double peak at negativevalues occurring in E '
Fig. 4 which is not seen in the experiments. 0.02 L ]

These results encourage us to calculate the Raman re
sponse functions above and beldwin the presence of this 0'000.0 m ) 53 07 o5

d-wave pseudogafy(k). In Fig. 5@ we show our results .
for the B;, symmetry again for a gap amplituig=0.0% as Raman shift o /¢t

in Fig. 4. Comparison with the results f&;=0 in Fig. 1 FIG. 5. (8) Raman intensity foB,, polarization withd-wave
shows that the most prominent effect of the pseudogap is tgseudogap amplitudg,=0.0% in the normal state &f=0.1t and
produce a broad peak at about a frequeney0.078  0.023 (solid lines with increasing slopgsand in the superconduct-
=(3/2)E4 asT approached . from above. This frequency is ing state aff=0.021 and 0.018 (T/T.)=0.78 (dashed lines with
nearly the same as the frequency difference between the quiacreasing pealis(b) The same folE;=0.18 and T=0.1, 0.050,
siparticle peaks in the density of states in Fig. 4. We havend 0.030 in the normal statéincreasing peaks in this sequehce
also carried out calculations for larger values of the gap amé) B,, Raman response fdE,;=0.1% and the samd as in (b)
plitude E, corresponding to lower doping levef$!” i.e.,  (increasing peaks in this sequehce

E,=0.07% and 0.1."° Then we find analogous results,

namely, that for decreasing in the normal state a peak peak for decreasind@ is accompanied by a suppression of
evolves in theB,;; Raman spectrum at a frequency of aboutlow-frequency spectral weight as it is seen in the experi-
(3/2)E4 which corresponds to the frequency difference be-ments[see Fig. )]

tween the peaks in the density of states. The continuous evo- The question arises whether the pseudogap can explain
lution of the B;; Raman peak for decreasifigas shown in  also the normal-state data f8,, Raman spectra of YBCO
Fig. 5(b) for Eg=0.1% is similar to the observed evolution and Bi2212 in the underdoped regime where a reduction of
of the peak in slightly underdoped Bi22#2We note that spectral weight for decreasing temperature is obset¥éde

the position of the peak at about=0.25=62 meV fort find indeed that spectral weight at higher Raman shifts is lost
=250 meV is of the order of magnitude of the observedwhile the slope ato=0 is increased for decreasing tempera-
resonance at 75 me¥t. The increase of the normal-state ture T [see Fig. %c) for Ey=0.18]. The broad peak arising
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0.05 w optical conductivity on underdoped Bi2212, YBCO, and
n-state (a) LSCO compound$’ For example, for underdoped Bi2212
0.04 . with T.=67 K the scattering rate #{w) is linear inw at
iy T>T*=200 K, and forT<T* the low-frequency scattering
003 5 = | rate is suppressed fap<500—700cm? (62—87 meV.?
8 ) - This is in qualitative agreement with our results shown in
& o0 z, 12 ) Fig. 6b) from which we estimate &* =0.1t=250 K and a
- threshold energy for the steep rise of about£€.35 meV. It
e T e e T i should be stressed that we hawsalculatedthe frequency-
0.01 @/t | dependent scattering rate and mass enhancement with the
_____________________________________________ _ help of the FLEX equations while these quantities have been
0005 o1 0.2 03 0.4 obtained in Ref. 20 from theoretical expressions involving
the complex conductivity.
o/t
0.7 . . . IV. CONCLUSIONS
0.6 (b) In summary, we have calculated the electronic Raman
~ 05 response function within the framework of the FLEX ap-
8 - proximation for the 2D Hubbard model. The FLEX approxi-
g 0.4 mation is capable of describing the most important properties
N of the highT. cuprates, namely, their unusual normal state
,§ 03 behavior arising from strong electronic correlations, and the
8 02 unconventional superconducting state which is widely be-
lieved to haved,>_,2> wave pairing. These properties are re-
01 flected in the calculated Raman response functions fgror

AXX' By, andB,y polarizations. In the normal state these
spectra start linearly in frequenay with a slope that in-
o/t creases with decreasing temperatlireand at high frequen-
FIG. 6. (@ Optical conductivity o;(w) for amplitude Eg cies _these spectra become a_lmost constant. The Igtter prop-
=0.13 of the pseudogap, at temperaturs-0.1, 0.050, and €rty is a consequence of the linear frequency variation of the
0.03Q; inset: ReZ(k,,w) for the same temperaturdmcreasing ~duasiparticle damping. In the superconducting state one ob-
peaks atw=0 in this sequende dashed line forE,=0 and T tains a gap and a pair-breaking peak in Byg channel be-
=0.03Q. (b) Quasiparticle dampingeIm Z(k,,»), at antinode cause this polarization probes the region in momentum space
ka, for amplitudeE;=0.1% of the pseudogap, at temperatufes ~around the antinode of the gap. The effect of superconduc-
=0.1, 0.050, and 0.030(decreasing values ab=0 in this se- tivity on the B,y spectrum is much smaller which is not
quence of temperatures surprising because tt#,, channel probes the region around
the node of the gap. Our results for photoemission and Ra-
below the pair-breaking thresholdEg is much less pro- man spectra agree qualitatively with experiments on opti-
nounced than the sharp peak occurring in Byg Raman  mally doped cuprates.
spectrum[see Fig. ®)]. In the superconducting state the  The exotic behavior of the cuprates in the underdoped
slope atw=0 decreases for decreasifign agreement with  regime can be described qualitatively by a phenomenological
the experimental data for ti#,4 channel, however, our pair- normal-stated-wave gap which enters the expressions of the
breaking maximum(see Fig. 2 is much less pronounced FLEX approximation in addition to the superconducting gap
than the experimental orf8. occurring belowT . .*° Here we show that such a pseudogap
Finally, we discuss our normal-state results for the opticaleads in the density of states for decreasingp the devel-
in-plane conductivityo;(w) in the presence of @-wave opment of a typicati-wave gap structure which merges con-
pseudogafky(k). This has the form of a Drude peak where tinuously into the superconducting spectrum. These results
for increasingE, the maximum aw=0 is increased which are in agreement with recent STM dafaA corresponding
is balanced by a loss of spectral weight at higher frequenciegair-breaking peak develops continuously in g, spec-
[see Fig. 6a) for E4=0.18]. The quasiparticle damping, trum asT decreases in the normal state and below The
I'(k,w) =w Im Z(k, w) is highly anisotropic and exhibits for increase of the normal-state peak is accompanied by suppres-
k along the direction of the antinode of the gap and forsion of low-frequency spectral weight for decreasifig
decreasingl a gap of the ordeEy [see Fig. @) for E;  These results are similar to the recently observed resonance
=0.1%]. At the same time the effective mass ratid/m  and simultaneous reduction of low-frequency intensity in the
=ReZ(k, o) is enhanced at about=2E above its value at B, spectrum of underdoped Bi222However, this inter-
=0 where R&Z~2 [see inset in Fig. @]. In the absence pretation is somewhat questionable because the resonance
of the pseudogap the scattering rdtevaries linearly with  energy of 75 meV is almost independent of doping level
frequencyw as can be seen in Fig(l§ for higher tempera- while one needs a pseudogap whose amplitude increases
tures. These results are in qualitative agreement with opticalith decreasing doping level in order to describe the Knight-
conductivity data and the frequency-dependent scatteringhift and tunneling measurementsThis issue should be
rate and effective mass spectra obtained from the complesiarified experimentally.

0.0 L L L L L L L L
00 01 02 03 04 05 06 07 08 09 1.0
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Support for th_e exist_ence of a pseudogap in the unqler- Po(a)=(312U%xs(q), xs=xs0(1—Uxso) L
doped cuprates is obtained from our results for the optical
conductivity and their agreement with experiment. The pres- ) 1
ence of a pseudogap leads at lower temperatures to an in- Pe(a)=(1/2U"xc(a),  Xc=Xco(1+Uxeo) ™
crease of the maximum of the Drude peak which is balanced
by a loss of spectral weight at higher frequendisse Fig. . )
6(a)]. At the same time a gap develops for decreasing tem! "€ ladder approximation for the vertex functibiy corre-
perature in the quasiparticle damping below a threshold freSPonding to the FLEX approximation faf yields the fol-
quency of the order of the pseudogap amplitidee Fig. 0wing linear equation:
6(b)]. These results are in qualitative agreement with the
in-plane optical conductivity data in underdoped cuprafes. I',(k+q,k)=1v,(k+0q,k)
This makes us believe that the calculated peaks in the Raman
alp:jlc.:tra should be observable in the underdoped cuprates as +§ [76G(K' +Q)T (K’ +0,k )G(K')

(A4)

X 1oPs(k—k")+ m3G(K'+)I" (K" +1q,K")
XG(k")m3Pc(k—k")]. (A5)
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(6) of Ref. 12.
APPENDIX: VERTEX FUNCTION AND WARD'S Gauge invariance of the electromagnetic kernel requires
IDENTITY thatT", satisfies the Ward identy

First we show that Ward's identity for the electromagnetic

kernel holds also for the FLEX approximation. The general > 0,0 .(k+0,k) =736 k)~ G 1 (k+q)73. (AB)

expression of the current-charge correlation function in the m

2x 2 Nambu matrix formalism is given By

One can derive Ward's identit§A6) from Eq. (A5) by in-

serting Eq.(A6) on the right side in the resulting equation

and then making use of the Eliashberg equatids). For

g=0 it follows from Eq. (A6) the important relationship

(u,v=1,2,3,0), (Al)  Poo(q=0,ivy) =€2xc0(q=0,i v,,) =0. Furthermore, we ob-
tain from Ward'’s identity in Eq(A6) for g=0 the following

2 1 .
Pun=—¢e Ek 5T yu(kk+@)Gk+aq)T',(k+a,k)G(K)];

with expression for the vertek,:
G=qivm, k=kion, 2 =T 3. To(k, 0+ v,0)=Z(K, 0+ 1) 75
Here,T', is the dressed vertex function, ang is the bare +o[Z(k,0+v)=Z(k,w)]v 1y
current-charge vertex ek o+ v)— £(K.w)] v g
Yu(kk+ @) =0, (k+q/2) 7 (£=1,2.3), koot )+ S(k,w)]p trars.
Yo=T3- (A2) (A7)

Notice thatPqo(q) =€xc0(q) Where xo is the irreducible  The last term proportional tesm, =i 7, in Eq. (A7) diverges

charge susceptibilit. The Dyson equation yields the for ,—0 and corresponds to the collective gauge nfodé.

dressed X2 matrix Green'’s functioiG in terms of the bare  Thjs is renormalized by the Coulomb interaction to the 2D

Green’s functionG, and the self-energ¥ plasmon.

_ 1 We turn now to the Raman response functjppfor po-

G (k=G (k) ~2(k) larization symmetryy [see Eq.(2)]. This is derived from
=i w,Z(K) ro—[ e(K) + £(K)]75— B(K) 74 . (A3) roo(q) in Eq. (Al) by replacing?/o andI", by the bare and

ull Raman verticesyr; andI 75:
In the FLEX approximation for the Hubbard Hamiltonian the
self-energy, is determined by the following generalized

Eliashberg equations 0AQ=-2 %Tr[F(kJrQ,k)raG(kJrQ)y(k)rgG(k)].
(A8)
(k=23 [Po(k—k) 76G(K') o+ Pe(k—K') 73G(k') 73],

k!

The full Raman vertex” satisfies the following integral
with equation:
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=(m,m) and since forB,y; (B;q) Raman polarization

T'(k+Q.k)=y(k)+ X [Ps(q)+Pe(a)] Vo, (kI =g, (K) [7s, (k+ID=—vg (K] [see Eq.
‘ (2)], we can approximately set
1
X5T73G(k+q+Q)75G(k+0q)] Ve, (Kt v, (K)=+1,
XTI (k+g+Q,k+q). (A9) e, (K+a)/vg, (K)=—1. (A10)

Relabeling of variables and analytical continuation in Eqs.Then the equation for the vertex functio}ngzg agrees with
(A8) and (A9) from Q=Q,ivy to Q=0,w, k=K,iw, 10  Eq. (A5) for the vertexI', of the charge density. This is
k,w', andg=q,iuy to q,v, leads to Eqgs(1) and(3). given for g=0 by Eq. (A7). Ignoring the collective mode
We redefine now the vertex functiol by A(k+Q,k)  term and lettingv tend to zero we estimate that
=I'(k+Q,k)/y(k). The resulting equatiotA9) for A con-
tains on the right hand side under the integral ogethe  T's, (K, 0)=7vg, (K)[Z(k,0")+ o' (d/de")Z(k,0")].
factor y(k+q)/y(k). SinceP4(q) is strongly peaked akl (Al
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