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Hall effect and resistivity in high-Tc superconductors: The conserving approximation
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The Hall coefficientRH in high-Tc cuprates in the normal state shows the striking non-Fermi-liquid behav-
ior: RH follows a Curie-Weiss type temperature dependence anduRHu@1/uneu at low temperatures in the
underdoped compounds. Moreover,RH is positive for hole-doped compounds and negative for electron-doped
ones, although each of them has a similar holelike Fermi surface. In this paper, we give the explanation of this
long-standing problem from the standpoint of the nearly antiferromagnetic~AF! Fermi liquid. We consider
seriously the vertex corrections for the current which are indispensable to satisfy the conservation laws, which
are violated within the conventional Boltzmann transport approximation. The obtained total currentJW k takes an
enhanced value and is no longer perpendicular to the Fermi surface due to the strong AF fluctuations. By virtue
of this mechanism, the anomalous behaviors ofRH in high-Tc cuprates are naturally explained. Both the
temperature and the~electron, hole! doping dependences ofRH in high-Tc cuprates are reproduced well by
numerical calculations based on the fluctuation-exchange approximation, applied to the single-band Hubbard
model with a holelike Fermi surface. We also discuss the singular temperature dependence ofRH in other
nearly AF metals, e.g., V2O3 , k-BEDT-TTF organic superconductors, and heavy fermion systems close to the
AF phase boundary.@S0163-1829~99!13321-6#
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I. INTRODUCTION

In the normal state of high-Tc superconductors~HTSC’s!,
various quantities deviate from the conventional Ferm
liquid behaviors.1 These non-Fermi-liquid features have be
studied intensively both theoretically and experimentally
cause they have close relation to the mechanism of highTc

superconductivity. For example, the electrical resistivityr
and the longitudinal NMR relaxation rate 1/T1 in HTSC’s
show universally the behaviorsr}T, 1/T1}T0 for a wide
range of temperatures.2 These are quite different from th
conventional Fermi-liquid behaviors,r}T2, 1/T1}T.

In HTSC’s, the Hall coefficientRH also shows an inter
esting non-Fermi-liquid behavior: It shows a drastic tempe
ture dependence although the Fermi surfaces~FS’s! in
HTSC’s are nondegenerate and simple in shape. At h
temperatures (;1000 K!, RH takes a nearly constant valu
and its doping dependence is very small. Its value is clos
the one estimated by the LDA band calculationRH

band.3 And
the doping dependence ofRH is also very small there.

On the other hand, as the temperature decreases,RH be-
gins to show a Curie-Weiss type temperature depende
and its maximum value is a few times larger thanRH

bandat the
optimum doping. This enhancement ofRH further increases
in the underdoped region. In the hole-doped compoun
e.g., YBa2Cu3O72d ~YBCO! or La22dSrdCuO4 ~LSCO!,
dRH /dT,0 is observed andRH is positive for a wide range
of temperatures.4–9 On the other hand, in the electron-dop
compounds, e.g., Nd22dCedCuO4 ~NCCO!, dRH /dT.0 is
PRB 590163-1829/99/59~22!/14723~17!/$15.00
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realized and the sign ofRH changes to negative at low tem
perature although its FS is holelike.4,10,11 Figure 1 shows a
summary of experimental results of LSCO and NCCO in
underdoped region, where an approximate electron-h
symmetry is realized.4 In both compounds,uRHu increases
near half filling.

FIG. 1. Temperature dependence ofRH in LSCO ~hole doping!
and NCCO~electron doping! in the paramagnetic state. Note th
1/uneu;1.531023 cm3 C in HTSC’s.
14 723 ©1999 The American Physical Society
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The Hall effect is one of the unsolved problems
HTSC’s. Its unusual features mentioned above are sum
rized as follows.~i! The Curie-Weiss type behavior ofRH in
a quite wide range of temperatures.~ii ! The enhancement o
RH in the underdoped region.~iii ! RH,0 in the electron-
doped compounds.

Nowadays, various non-Fermi-liquid phenomena
HTSC have been explained by using different types of sp
fluctuation theories, e.g., the SCR theory,12 the spin-
fluctuation model,13 and the fluctuation-exchange~FLEX!
theory.14,15 They can explain a reasonableTc of the dx22y2

superconductivity. They can also explain the pseudogap
mation in density of states,16–18 the shadow band
formation,16 and the collective modes emerging belo
Tc .19,20

So far, various attempts have been made on the Hal
fect in HTSC’s.21–24 Some of them are in the framework o
the spin fluctuation model, by using the Boltzmann transp
approximation~or one-loop approximation!.23,24 However,
the Boltzmann approximation cannot explain the magnitu
of uRHu in the underdoped region. Moreover, it predictsRH
.0 for both YBCO and NCCO because they have sim
holelike FS’s. This result contradicts with the experimen
shown in Fig. 1. Therefore, the behavior ofRH noted as
~i!–~iii ! above have cast some suspicion on the validity
the nearly antiferromagnetic~AF! Fermi liquid description
for HTSC.

In this paper, we study the Hall effect of HTSC’s bas
on a conserving approximation.25,26 We use the expression
for the conductivity (sxx) and the Hall conductivity
(sxy /H) derived from the Kubo formula.27–30 Then, we
study the total currentJW k including all the vertex correction
so that the conservation laws are satsfied~i.e., conserving
approximation!. We find that JW k shows critical behaviors
which are a natural consequence of the strong backward
terings by the AF fluctuations. By virtue of this fact, th
present theory succeeds in explaining the overall feature
RH , noted as~i!–~iii ! above, without assuming a non-Ferm
liquid ground state. We also find that the conventional Bo
zmann approximation, where the conservation laws are
lated, cannot reproduce any of~i!–~iii !.

We analyze the extended Hubbard model as an effec
model for HTSC’s. We use the FLEX approximation to ca
culate the Green function and the self-energy.14,15It is a kind
of self-consistent perturbation theory with respect toU, and
it has advantages for handling large spin fluctuations.

Phenomenologically, the spin propagator in HTSC’s
expressed for smallq andv as follows:12,13,23

xq
s~v!5

xQ

11j2~q2Q!21 iv/vsf

, ~1!

whereQ is the AF wave vector, andj is the AF correlation
length. Experimentally,j2 follows a Curie-Weiss type tem
perature dependence below;1000 K in many HTSC’s. It
ceases to increase atTc in the overdoped region, or at th
characteristic temperatureT* (.Tc) in the underdoped re
gion. We callT* the pseudo-spin-gap temperature as us
In general, the following relations are satisfied forT.T*
experimentally:31
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j2'a0 /~T1Q!, ~2!

xQ'a1j2, 1/vsf'a2j2, ~3!

whereQ, a0 , a1, anda2 are constants.32 The coefficienta0
increases rapidly in the underdoped region, andj2 reaches
;O(100) atT* nearby the half filling~we put the unit-cell
lengtha51) anda2 decreases rather moderately in the u
derdoped region. The relationvsf*T (vsf&T) is satisfied in
the overdoped~underdoped! region.

The typical spin-fluctuation theories reproduce the exp
mental relations~2! and~3! for T.T* .18 Moreover, the fol-
lowing relations are obtained by the spin-fluctuati
theories:12,23,24,33

r}CT2, 1/T1}CT, ~4!

whereC has a strong temperature dependence in the ne
AF Fermi liquid. According to them,C}j2}1/T is derived,
so the experimentally observed non-Fermi-liquid behavi
of r and 1/T1 are explained well by the spin-fluctuation the
ries. One may naturally expect that theT dependence ofRH
is also governed by the spin fluctuations. In this paper,
find that RH}j2 through the vertex corrections for the cu
rent. A similar study based on the phenomenological
spin-fluctuation model is reported in another paper.34

The contents of this paper are as follows. In Sec. II,
introduce the single-band Hubbard model with some set
parameters corresponding to YBCO, LSCO, and NCCO
Sec. III, we review the general formulation forsxx and
sxy /H based on the Fermi-liquid theory, and rewritesxy /H
into a simpler form. In Sec. IV, the vertex corrections to t
current is studied by using the conserving approximati
We find that only the Maki-Thompson term is dominant.
Sec. V, we solve the Bethe-Salpeter equation for the t
current JW k analytically, and derive the relationRH}j2. In
Sec. VI, numerical results forr and RH obtained by the
FLEX theory are presented, which are consistent with
experimental behaviors in HTSC’s. Finally, in Sec. VII, th
Hall effect in heavy fermion systems is discussed brie
The readers who are mainly interested in the numercal
culation ofRH can proceed to Sec. VI B for the first readin
where the sufficient set of equations for the numerical cal
lations forsxx andsxy /H are explained shortly.

II. MODEL HAMILTONIAN

In this paper, we treat the following extended Hubba
model with (U,t0 ,t1 ,t2):

H5(
ks

ek
0cks

† cks1U (
kk8q

ck1q↑
† ck82q↓

† ck8↓ck↑ , ~5!

ek
052t0@cos~kx!1cos~ky!#14t1 cos~kx!cos~ky!

12t2@cos~2kx!1cos~2ky!#, ~6!

wherecks
† is the creation operator of an electron with m

mentumk and spins, andU is the on-site Coulomb repul
sion. We represent the filling of the electrons byn, and n
51 corresponds to the half filling.

Taking the results by the LDA band calculation in
account,35–38 we choose the following set of parameters.~I!
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YBCO ~hole doping!, NCCO ~electron doping!: t0521,
t151/6, t2521/5.35,36,39 ~II ! LSCO ~hole-doping!: t0
521, t151/10, t2521/10.37,38 Figure 2 shows the Ferm
surfaces~FS’s! for U50, together with those for finiteU
calculated by the FLEX approximation atT50.02. In the
case of~I!, the FS is holelike everywhere and the spectrum
~p,0! is below the chemical potentialm at least forn.0.6.
On the other hand, in the case of~II ! the spectrum at~p,0! is
abovem for n,0.77 atU50, andn&0.85 forU56, respec-
tively. These characters of the calculated FS’s coinc
qualitatively with those by the LDA band calculations35–38

or by the angle resolved photoemission~ARPES!
experiments.40–42

FIG. 2. Fermi surface of~a!YBCO, ~b!NCCO, and~c!LSCO. In
~a! and ~b!, t0521, t151/6, and t2521/5. In ~c!, t0521, t1

51/10, andt2521/10.
t

e

Here, we summarize the formalism of the FLEX theo
which will be used throughout this paper. The Dyson eq
tion is written as

$Gk~en!%215 i en1m2ek
02Sk~en!, ~7!

The self-energy is given by

Sk~en!5T(
q,l

Gk2q~en2v l !Vq~v l !, ~8!

Vq~v l !5U2S 3

2
xq

s~v l !1
1

2
xq

c~v l !2xq
0~v l ! D1U, ~9!

xq
s~v l !5xq

0$12Uxq
0~v l !%

21, ~10!

xq
c~v l !5xq

0$11Uxq
0~v l !%

21, ~11!

xq
0~v l !52T(

k,n
Gq1k~v l1en!Gk~en!, ~12!

where en5(2n11)pT and v l52lpT, respectively. The
self-energy is shown by Fig. 3. We solve Eqs.~7!–~12! self-
consistently, choosing the chemical potentialm so as to keep
the filling constantn5T(k,nGk(en)e2 ien0.

In a Fermi liquid, the real-frequency Green function in t
vicinity of v;0 anduku;kF is represented as

Gk~v!5zk /~v1m2ek2 izkDk!, ~13!

where zk is the renormalization factor given byzk5@1
2]Sk(v)/]v#21, ek is the quasiparticle spectrum given b
the solution of Re$Gk(v)%2150, and Dk52Im Sk(v
1 id).0. The density of states~DOS! is given by

rk~v!52
1

p
Im Gk~v1 id!. ~14!

In the case ofzkDk!T, rk(v)5zkd(v1m2ek).
The FLEX approximation is suitable for the analysis

the nearly AF Fermi liquid. It has been applied to the squ
lattice Hubbard model by many authors.14,16–18,20,49Though
it is an approximation, imaginary time Green function o
tained by the FLEX agrees with the results by the QM
simulation very well for a moderateU.14 Recently, it has also
been applied to the superconducting ladder compo
Sr142xCaxCu24O41 ~Ref. 43! and the organic superconductin
k-BEDT-TTF compounds.44,45

FIG. 3. The self-energy of the FLEX theory. The full line an
the wavy line representG(k2q) andV(q), respectively.
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Here, we comment on the change of the FS. Figur
shows that the shape of the FS changes as a functionU
.0. It also means that the FS changes significantly depe
ing on the temperature. The effect of this change onRH is
discussed in Sec. VI. We also comment on the anisotrop
Dk on the FS, which becomes larger as the AF fluctuat
grows at low temperatures.Dk takes a large value around th
crossing points with the magnetic Brillouin zone~MBZ!
boundary, which we call hot spots as often referred to in
literature.23,24 Dk becomes small at the points where the d
tance from the MBZ boundary is the largest, which are cal
cold spots.~see Fig. 4!. These cold spots play major role fo
r andRH . We study this subject in Sec. VI in detail.

Finally, we discuss on the validity and the limitation
the FLEX theory on HTSC’s. In the FLEX approximatio
Eqs.~2! and ~3! are satisfied well, and the coefficienta0 in
Eq. ~2! increases rapidly asn approaches to the half filling
(n51). Moreover, the relationvsf&T (wsf*T! in the under-
doped~overdoped! region is satisfied qualitatively as show
in Table I, which is consistent with experiments. Howev
the FLEX approximation cannot explain the experimenta
observed pseudo-spin-gap behaviors forT* .T.Tc , where
j cease to increase and 1/vsf begins to decrease as the tem
perature decreases. It would also be inapplicable near
Mott-insulating state, i.e., 0.9*n*1.1. In this paper we per
form numerical studies forn<0.9 or n>1.1, where the
FLEX approximation gives reasonable results.

III. FORMALISM OF CONDUCTIVITY IN THE FERMI
LIQUID THEORY

In this section, we review the transport theory. By t
Kubo formula, the conductivity is given by

smn5e2 (
kk8ss8

vkm
0 vk8n

0 Im Kks,k8s8~v1 id!

v U
v50

, ~15!

FIG. 4. The hot spots and the cold spots in YBCO and NCC
respectively.

TABLE I. The value ofvsf for n50.90 ~underdoped!, n50.85
~nearly optimum!, andn50.80 ~overdoped! obtained by the FLEX
approximation atT50.02.

n50.90 n50.85 n50.80

YBCO (U58) 0.018 0.034 0.046
LSCO (U56) 0.013 0.019 0.024
2

d-

of
n

e
-
d

,

he

Kks,k8s8~ ivn!5E
0

1/T

dt evnt^Tt$cks
† ~t!cks~t!ck8s8

† ck8s8%&,

~16!

wherevkm
0 (k)5]ek

0/]km andvn52pTn is the even Matsu-
bara frequency, ande(.0) is the absolute value of th
charge of an electron. In the absence of the magnetic fi
the analytic continuation fromKks,k8s8( ivn) to Kks,k8s8(v
1 id) has been performed by Eliashberg.27 According to
him, the conductivity carried by the quasiparticles are giv
by

sxx5e2(
k

S 2
] f

]e D
ek

zkvkxJkx

1

Dk
, ~17!

where f (e)51/(11e(e2m)/T). In Eq. ~17! we have done the
energy integration by assuming the relationzkDk!T, which
is not always satisfied in HTSC’s as shown in Sec. VI, ho
ever.

In Eq. ~17!, vkx andJkx are given by

vkx5
]

]kx
@ek

01ReSk~v50!#, ~18!

Jkx5vkx1(
k8

E
2`

` de

4p i
Tkk8~0,e!uGk8~e!u2Jk8x , ~19!

whereTkk8(e,e8) is the irreducible four point vertex intro
duced by Eliashberg, which is discussed in the next sec
in detail. It plays an important role to treat the umklap
processes of conduction electrons.28 The total currentJW k is
given by the solution of the Bethe-Salpeter~BS! equation
~19!, which is shown by Fig. 5.

The Hall coefficientRH under a weak magnetic field
alongz axis H is give by

RH5
sxy /H

sxxsyy
. ~20!

The analytic continuation for the normal Hall conductivi
sxy due to the quasiparticle contribution in the presence
the magnetic fieldH has been performed by Kohno an
Yamada,29 or Fukuyamaet al.,30 in the gauge invariant man
ner. According to them, assuming that the fourfold symme
of the system

smn /H52emnz

1

2
e3(

k
S 2

] f

]e D
ek

Amn~k!
zk

~Dk!2
,

Amn~k!5vkmFJkm

]Jkn

]kn
2Jkn

]Jkm

]kn
G , ~21!

where exyz52eyxz51, reflecting Onsagaer’s reciprocit
theorem. Equation~21! means sxy /H}(Dk)

22, whereas

,

FIG. 5. The BS equation forJkm .
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sxx}(Dk)
21 by Eq. ~17!. Thus, RH5const in the conven-

tional Fermi liquid at low temperatures.
The expression~21! can be rewritten into a simpler form

where there is only the symmetry with respect to the ori
@see Eq.~3.21! of Ref. 29#

sxy /H52
e3

4 (
k

S 2
] f

]e D
ek

As~k!
zk

~Dk!2 ,

As~k!5Axy~k!1Ayx~k!

5@Jkx~eW z3vW k!¹W •Jky2^x↔y&#

5uvW kuS JW k3
]

]ki
JW kD

z

5uvW ku•uJW ku2S duJ~k!

dki
D , ~22!

whereki is the component ofkW along the vectoreW i(k)5(eW z

3vW k)/uvW ku, and tangential to the FS atk becausevW k is per-
pendicular to the FS. In Eq.~22!, uJ(k) is the angle between
JW k and thex axis except for an arbitrary constant. Contrary
Amn(k), As(k) introduced in Eq.~22! is a scalar variable
i.e., independent of the choice of coordinates. As a result
know thatsxy /H is also independent of the choice of coo
dinates, if only the reflection symmetry exists. This prope
of sxy /H has been proved so far only by the Boltzma
transport theory.46–48

By using the relationdek /dkm5zkvkm , Eq. ~22! becomes

sxy /H52
e3

4 R
FS

dkiuJW ku2S duJ~k!

dki
D 1

~Dk!2
~23!

at sufficiently low temperatures. In this line integration, thek
point moves anticlockwise along the FS.

Finally, we discuss the Boltzmann transport approxim
tion. The conductivity in the magnetic fieldHW is given by

smn5e(k(2] f /]ek)vkmFn(vW k) for EW ieW n, where Fn(vW k)

5@12eDk
21(vW k3HW )•¹W #•(eDk

21vkn) up to the first order of
HW within the relaxation time approximation.47 As a result,
the conductivity in this approximationsxx

0 is given by Eq.
~17! by replacingJW k with vW k. In the same way, the Hal
conductivity within the relaxation time approximationsxy

0 is
given by

sxy
0 /H52

e3

4 R
FS

dkiuvW ku2S duv~k!

dki
D 1

~Dk!2
, ~24!

whereuv(k) is the angle betweenvW k and thex axis. Thus,
the sign ofsxy

0 /H is determined by the sign of@duv(k)/dki#,
which is nothing but the curvature of the FS atk.46–48

In the later sections, we calculateJkm by solving Eq.~19!.
In the nearly AF Fermi liquid, we find thatJW k is no longer
perpendicular to the FS, so@duJ(k)/dki# and @duv(k)/dki#
at the samek can be quite different, even in sign. This is th
reason why the Boltzmann approximation fails to reprodu
the anomalous behavior ofRH in HTSC.
n

e

y

-

e

IV. VERTEX CORRECTIONS FROM Tk,k8„e,e8…

In this section, we study the vertex corrections for t
current, which is essential for the transport phenomena.
self-energy in the FLEX theory, which is given by Eq.~8!, is
also obtained by the functional derivative ofFFLEX as
Sk(e)5dFFLEX /dGk(e), where FFLEX is given by the
closed skeleton diagrams made ofGk(e) andU, with a factor
1/n for Un diagrams. The existence ofFFLEX , which is de-
picted in Fig. 6, means that the FLEX theory is classified
a conserving approximation whose framework was c
structed by Baym and Kadanoff25 and Baym.26 In the con-
serving approximation, the particle-hole transport functionL
is given as the solution of the BS equation, where the ir
ducible particle-hole vertexGkk8(e,e8)5dSk(e)/dGk8(e8)
is used as the kernel. Then, theL obtained in this way satis
fies various conservation laws automatically. This is the r
son why we call it the conserving approximation.

Significance of the conserving approximation in the c
culation of correlation functions is well recognized in va
ous situations. Conductivity is one typical quantity. With
the conserving approximation, Yamada and Yosida sh
that the conductivity given by Eq.~17! diverges at finite
temperatures in the absence of the umklapp processes
flecting the momentum conservation law. Their work sho
that the vertex correction fromTkk8(e,e8) in Eq. ~19!, which
is neglected within the Boltzmann theory, is necessary
treat the momentum dissipation through the umklapp sca
ing processes of electrons.

The irreducible particle-hole vertexGkk8(e,e8) within the
FLEX theory is shown in Fig. 7:

Gkk8~en ,en8 ;v l !5G (a)1G (b)1G (c), ~25!

where v l52lpT is the external frequency, anden5(2n
11)pT is the odd Matsubara frequency. We put the exter
momentum zero.G (a)-G (c) are given by

FIG. 6. Each full line represents the dressed Green func
Gk(v) and each broken line representsU.

FIG. 7. The irreducible four-point vertexes, which are sufficie
for the conserving approximation. In~a!, the wavy line represents
V(k2k8). In ~b! and ~c!, the two wavy lines representW(q) and
the q summation should be taken.
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Gkk8
(a)

~en ,en8 ;v l !5Vk2k8~en2en8!, ~26!

Gkk8
(b)

~en ,en8 ;v l !52T(
q,l 8

Wq~v l 8 ,v l 82v l !

3Gk1q~en1v l 8!Gk81q~en81v l 8!,

~27!

Gkk8
(c)

~en ,en8 ;v l !52T(
q,l 8

Wq~v l 8 ,v l 81v l !

3Gk1q~en1v l 81v l !Gk82q~en82v l 8!,

~28!

whereVk(en) is given by Eq.~9!, and we have introduced
Wk(v l ,v l 8) as

Wk~v l ,v l 8!5
3

2
U2@Uxk

s~v l !11#@Uxk
s~v l 8!11#

1
1

2
U2@Uxk

c~v l !21#@Uxk
c~v l 8!21#2U2.

~29!

These three irreducible verticesG (a), G (b) andG (c) are suffi-
cient for the conserving approximation. In the literature, p
cess~a! is called the Maki-Thompson~MT! term, and~b! and
~c! are called Aslamazov-Larkin~AL ! terms.

In order to solve the BS equation~19!, we have to obtain
the functional form of the irreducible vertexTkk8(e,e8) in
Eq. ~19!. For this purpose, we perform the analytic contin
ation of G (a), G (b), and G (c) with respect toen and en8 in
Appendix A. We note thatTkk8(e,e8) is nothing but the
T 22

(0)(e,e8) in Eliashberg’s paper.27 This correction gives rise
to singular temperature dependence of the Hall coefficien
HTSC’s ~see Sec. V!.

Now, we obtain the vertex corrections for the current
replacingTkk8(0,e) in Eq. ~19! with T kk8

(a2c)(0,e) given by
Eqs.~A9!–~A11!. At first, the contribution coming fromT kk8

(a)

is given by

DJkm
a 5

1

2 (
k8

E de8S cotanh
e8

2T
2tanh

e8

2TD
3Im Vk82k~e81 id!rk8~e8!

1

Dk8~e8!
Jk8m , ~30!

where we put e50, and we have used the relatio
uGk(e)u25prk(e)/Dk(e). These vertex corrections play a
important role in the singular behavior of the Hall coef
cient. in HTSC’s, which will be discussed in Sec. V.

Next, we consider the correction terms coming fromT kk8
(b)

andT kk8
(c) . Approximately, they are given by
-

-

in

DJkm
b,c5

p

4 (
k8

E deS cotanh
e

2T
2tanh

e

2TD(
q
E dv Wq~v!

3S tanh
v1e

2T
2tanh

v

2TD rk1q~0!rk81q~0!

3
rk8~0!

Dk8~0!
Jk8m , ~31!

whereWq(v) is introduced by Eq.~A6!. Here we have ne-
glected thev dependences ofrk(v) and Dk(v) because
only the regionsuvu,ueu&min$T,vsf% are important in the
v,e integrations in Eq.~31!. The variable changek8→2k8

is performed forDJW k
c. Thus,DJW k

b andDJW k
c are equal in this

approximation, which is not a rigorous relation, however.
Now, we show that Eq.~31! is negligible in the case o

j2@1 andQ5(p,p). In this case, the leading contribution
in theq summation in Eq.~31! come only fromq;Q. In the
k8 summation of Eq.~31!, there is a cancellation between th
contributions fromk8 and 2k8 if we put q5Q, because
k81Q andk82Q are the same in the momentum space.
a result, we expect that bothDJkm

b andDJkm
c are negligibly

smaller thanDJkm
a . This statement becomes rigorous in t

case ofj2→`. In Appendix B, we show this cancellation i
the two AL terms explicitly by the numerical calculation
This is one of the main conclusions of this paper.

V. ANALYSIS FOR THE BETHE-SALPETER „BS…
EQUATION FOR Jkµ

The aim of this section is to give the qualitative unde
standing of the mechanism for the temperature depende
of RH in HTSC’s. We try an analytical approach to solve t
BS equation~19! for Jkm , by neglecting the AL terms. To
simplify the discussion, we assume thatQ5(p,p), where
the MBZ boundary is defined by the line between (p,0) and
(0,p). This situation is realized in YBCO experimentally.

For a qualitative discussion, we use the phenomenolog
expression forxq

s(v) given by Eq. ~1! and neglect other
terms in the definition ofVq(v) in Eq. ~9!. We introduce the
functionH(x)51/x22c(x11)12c(x1 1

2 ), wherec(x) is
the digamma function. Then, the imaginary part of the se
energy is given by

Dk5(
q
E de

2p Fcotanh
e

2T
2tanh

e

2TG
3prk2q~e!Im Vq~e1 id!

5
3U2

4 (
q

xQvsfHS vq

2pTD rk2q~0!, ~32!

HS vq

2pTD'
~pT!2

vq~vq1pT/2!
, ~33!

where vq5vsf1vsfj
2(q2Q)2.23,24 The approximate form

of H(vq/2pT) given by Eq.~33! becomes exact both fo
vsf@T and vsf!T. Here, the average ofDk over the FS is
given by
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^Dk&FS[(
k

Dkrk~0!

5
3U2

4 (
q

xQvsf~pT!2

vq~vq1pT/2!

] Im xq
0~v1 id!

]v
U

v50

}xQTj22@12~11pT/2vsf!
21/2#, ~34!

where we have assumed that theq dependence o
(]/]v)Im xq

0(v1 id)uv50 is moderate. As a result,

^Dk&FS}H j2T2}T for vsf*T,

j0T}T for vsf&T,
~35!

which is independent ofj for vsf&T ~underdoped region!.
Because the resistivityr is approximately proportional to
^Dk&FS, r}T is expected for various fillingn, which is con-
sistent with experiments. We calculater more exactly in
Sec. VI B.

Next, we examine the vertex correction for the curre
which is given by Eq.~30!. We stress that ImVk(v) appear-
ing in Eqs.~30! and ~32! are the same, which is ensured
the conserving approximation. We can show that

DJkm5
3U2

4 (
q

xQvsfHS vq

2pTD rk2q~0!

Dk2q
Jk2qm. ~36!

Comparing Eq. ~36! with Eq. ~32!, and noticing that
H(vq2pT) is negligibly small foruQ2qu*j21, we get

DJW k'^ JWq & uq2k8u,1/j

'JW k8^cos@uJ~q!2uJ~k8!#& uq2k8u,1/j , ~37!

wherek, k8, andq are on the FS. Here, we have introduc
k8 so thatk8 andk have the relation (kx8 ,ky8)5(2ky ,2kx)
for kxky.0 and (kx8 ,ky8)5(ky ,kx) for kxky,0, respectively.
The positions ofk andk8 are shown in Fig. 8. We see tha
k8'k1Q is satisfied in the momentum space. Moreover,
assumeuQ2(k2k8)u&j21 everywhere on the FS because
seems to be satisfied in the present numerical calculatio
the FLEX approximation. Thus, we obtain a simplified B
equation

JW k5vW k1ak•JW k8 , ~38!

FIG. 8. The relation betweenk andk8. Both points locate on the
FS.
,

e

by

where ak'(12c/j2),1 and c;O(1) is a constant.ak
takes the maximum value around the hot spots.

Now, Eq. ~38! can be easily solved as

JW k5
1

12ak
2 ~vW k1akvW k8!. ~39!

Equation~39! means thatJW k is not parallel tovW k . For ex-
ample,~i! at kx5ky , JW k5vW k /(11ak);

1
2 vW k is satisfied.~ii !

Near the MBZ boundary,JW k'(j2/2c)(vW k1vW k8), which is
nearly parallel or perpendicular toQ. ~iii ! On the BZ bound-
ary, JW kivW k because of the symmetry. Moreover,JW k'vW k since
the contribution fromk8 point cancels out with that from
2k8 point approximately, due to the fact thatuk2k8u5uk
1k8u'uQu in the momentum space. Thus, we should p
ak50 in Eq. ~39! on the BZ boundary. These behaviors
JW k together withvW k are shown schematically in Fig. 9. Phys
cally, this peculiar behavior ofJW k comes from the multiple
backward scattering betweenk and k8 caused by the AF
fluctuations. Now we stress the importance of the conse
tion approximation to get the correctak. For instance, we ge
ak5` in Eq. ~38!, if we replaceuGk(e)u2 with uGk

0(e)u2 in

Eq. ~19!, which leads to the divergence ofJW k .
First, we consider the conductivitysxx by using Eq.~39!.

According to Eq.~17!, sxx is given by the averaged value o
vkx•Jkx over the FS, that is,

vkx•Jkx5
1

12ak
2 $uvkxu22akuvkxvkyu%. ~40!

Although 1/(12ak
2) takes an enhanced value as is discus

above, the resultantsxx is not enhanced by this factor. Fo
example, if we assumeuvkxu'uvkyu, which is satisfied near
the cold spots in YBCO and LSCO, then Eq.~40!
'uvkxu2/(11ak) is satisfied. This means that the conduct
ity sxx is smaller than that given by the Boltzmann appro
mation, due to the vertex corrections for the current given
Tkk8(e,e8). This is confirmed by the numerical calculation
in Sec. VI.

Next, we discuss the Hall conductivity. By using Eq.~39!,
dJkx /dkm is given by

FIG. 9. Schematic behaviors ofJW k andvW k . Contrary tovW k , JW k is
not perpendicular to the FS. For example, (duJ /dki),0 on theXY
line, and (duJ /dki).0 on the BZ boundary@see Eq.~39!#.
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d

dkm
Jkx5

7bk,m

12ak
2 vky1

2akbk,m

12ak
2

Jkx

1
1

12ak
2 S dvkx

dkm
7ak

dvky

dkm
D , ~41!

where bk,m[dak /dkm . Hereafter, the7 in equations is
equal to sgn(2kxky). By using Eq.~36!, which gives the
definition of ak , thenbk,m is given as

bk,m'2j2@Q2~k2k8!#m ~42!

when uQ2(k2k8)u&j21 is satisfied. We can see thatbk,m

is positive whenkW1e•eWm is closer to the MBZ boundary
thankW is (eWm is a unit vector alongm direction, ande.0 is
a small constant! and vice versa.

As a result,As(k) introduced in Eq.~22! is given by

1

uvW ku
As~k!5

1

12ak
2 S vW k3

d

dki
vW kD

z

1
7bk,i

~12ak
2!2

@vkx
2 2vky

2 # , ~43!

where we defineki as the momentum which is tangential
the FS, and is along the anticlockwise direction. Th
sxy /H is enhanced by the factor 1/(12ak

2);j2/2c or bk,i
}j2, contrary to the case ofsxx. The first term of Eq.~43! is
proportional to the contribution given by the Boltzman
transport theory, whose sign is determined by the curva
of the FS. It takes larger value inside of the MBZ, as sho
in Fig. 2. On the other hand, the second term of Eq.~43! is
negative inside of the MBZ, and is positive outside of
Clearly, this term is dominant outside of the MBZ becau
ubk,iu@1 anduvkx

2 2vky
2 u;uvW ku2 is satisfied there. We notic

that bk,i50 on the MBZ boundary and on theXY axis.
The obtained results in HTSC’s are summarized qual

tively as follows~see Fig. 9!: The portion of the FS inside o
the MBZ gives rise to a positive contribution toRH . In other
words, @duJ(k)/dki#,0 inside of the MBZ. Whereas, th
outside part of the MBZ gives rise to a negative contribut
to RH in the presence of the strong AF fluctuations beca
@duJ(k)/dki#.0 there. In the aboveuJ(k) is introduced in
Eq. ~23!. This change of the sign ofRH never occurs within
the Boltzmann approximation because@duv(k)/dki#,0
everywhere.

Because of the factor (Dk)
22 in Eq. ~23!, the Hall coef-

ficient will be determined by the region near the cold spo
As shown in Fig. 4, the cold spots locate inside~outside! of
the MBZ in the case of YBCO~NCCO!. As a result, we can
understand the reason whyRH.0 in the hole doped systems
and why the sign ofRH changes in the electron-doped sy
tems.

In conclusion, the temperature dependence ofRH is pro-
portional toj2}1/T both in the hole-doped systems and t
electron-doped ones. We find that theT dependence ofsxx
andsxy /H for a system with the strong AF fluctuation are

sxx;j0/Dk ,
,

re
n

e

-

e

.

sxy /H;6j2/Dk
2 , ~44!

RH;6j2;6xQ ,

where1(2) is for the hole-doping~electron-doping! case.
The factorj2 comes from the vertex corrections for the cu
rent introduced in this paper, which does not appear wit
the Boltzmann approximation. We will confirm the analys
of this section by numerical calculations based on the FL
theory in the next section.

VI. NUMERICAL RESULTS

A. One-particle properties and magnetic properties obtained
by the FLEX approximation

Here, we show electronic properties obtained by
FLEX approximation. They are important to understand
transport quantities. In this section, we useU58ut0u for
YBCO in numerical calculations, considering that the ba
width W is 8ut0u. On the other hand, we useU56ut0u for
LSCO andU55.5ut0u for NCCO, to reduce the Stoner facto
in the FLEX calculation,aS5maxq$Uxq(0)%. We have
checked the numerical results do not depend onU qualita-
tively.

In this section, we putut0u51. Then,T50.1 will corre-
spond to;500 K becauseut0u;0.5 eV in the LDA calcula-
tion. In the calculation, 4096k-point meshes and 256 Mat
subara frequencies are used. By solving the lineari
Eliashberg equations, we obtainTc'0.02 (;100 K! for
YBCO and LSCO atn50.85, which is close to theTc given
by the previous works by the FLEX approximation.15,18,20,49

Also, Tc'0.01 for NCCO atn51.15. We find that the sym
metry of the superconducting state isdx22y2-like in all cases.

Figure 10 shows the temperature dependence of the
for YBCO, NCCO, and LSCO, respectively. They are det
mined by the relationek1ReSk(0)5m. In all the cases, the
FS’s transform so as to strengthen the nesting characte
the temperature decreases, which is more prominen
YBCO and LSCO. Apparently, this change of the FS mak
uRHu smaller because its curvature around the cold spots
creases at low temperatures. Now we look at the real pa
the self-energy which is the origin of the deformation of t
FS. According to Ref. 24,

ReSk~0!52
3U2

4p
xQvsf(

q

1

vq
21ek2q

2

3@2ek2q lnuek2q /vqu1pvq sgn~ek2q!#

~45!

at T50, whereek is measured fromm. This equation means
that the sign ofSk(0) is equal to that of (m2ek2Q) approxi-
mately. Thisk dependence ofSk(0) moves the FS toward
the MBZ boundary.

Moreover, in the FLEX approximation, the flat-ban
structure~i.e., extended saddle point! is created around the
van-Hove singularity points (6p,0) and (0,6p), because of
the renormalization effect by 1/zk&10.49 This is also the ori-
gin of the sensitive temperature dependence of the FS
YBCO and LSCO shown in Fig. 10. This flat-band structu
is actually observed by ARPES experiments.42
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Next, we consider theq dependence of the static magne
susceptibilityxq

s(0), given by Eq.~10!. Because it does no
contain the vertex corrections required in the conserva
approximation, it gives a slightly overestimated value in t
underdoped region.18 In general, the observedxq

s(0) by the
neutron diffraction experiments cannot be expressed by
simple phenomenological model, Eq.~1!: For YBCO,xq

s(0)
shows a peak aroundq'Q5(p,p).50 On the other hand, it
is incommensurate for La22dSrdCuO4, and shows a peak
aroundq'@(12d)p,p#,@p,(12d)p# for 0.2*d*0.05.51

Figure 11 shows the calculated (qx ,qy) dependence o
xq(0) for YBCO (n50.90, T50.02), NCCO (n51.20, T
50.02), and LSCO (n50.85, T50.06), respectively. We
see thatxq(0) is commensurate for YBCO and NCCO
which is also consistent with neutron diffraction expe
ments. In the case of LSCO,xq(0) shows an incommensu
rate structure at low temperatures. Atn50.85, the peaks
locate atq5(0.83p,p),(p,0.83p) at T50.02, which is con-
sistent with experiments, and it becomes commensurate

FIG. 10. The temperature dependence of the FS’s for var
compounds. It is small and negligible in the case ofU50.
n
e

e

or

T>0.08. In conclusion, main characters ofxq
s(0) for each

compound are reproduced well by the FLEX calculation w
appropriate set of parameters (t0;t2 ,U).

Figure 12 shows the temperature dependence
maxq$xq(0)% of YBCO, NCCO, and LSCO for different fill-
ing numbers. These plots are nothing but theT dependence
of j2. Various experimental works on HTSC’s by neutro
diffraction or by NMR confirm thatj2 follows the Curie-
Weiss law qualitatively forT.T* , and its Curie constan
increases asn→1.31,32 As shown in Fig. 12, the FLEX ap
proximation reproduces both the temperature and the do

s

FIG. 11. The (qx ,qy) dependence ofxq
s(0) obtained by the

FLEX approximation.
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dependence ofj2 in HTSC’s for T&0.1. However, the cal-
culation of xq(0) including the vertex corrections will b
required for more detailed studies.

Finally, we discuss thek dependence ofDk52Im Sk(0
1 id) on the FS. Here, we define

D~ki![E dk'Dk•rk~0!Y E dk'rk~0!, ~46!

whereki andk' are the momentum parallel and perpendic
lar to the FS, respectively.D(ki) is an averaged value ofDk
over thek'-direction on the FS, which has a finite width
finite temperatures. Figure 13 shows theki dependence o
D(ki) over the 1/8 part of the FS, as shown in Fig. 14.
each case, the relationzkDk;T is realized around the cold
spots because 1/zk&10 is satisfied.

For YBCO and LSCO,D(ki) takes a maximum not on th
hot spots shown in Fig. 4, but on the BZ boundary where
flat-band structure is created. As a result, the spectral we
at the Fermi energy is reduced around~p,0!, which is con-
sistent with ARPES experiments. AndD(ki) takes a mini-
mum at the cold spot. On the other hand, for NCCO, the
spot locates close to theXY axis, and the cold spot locates o
the BZ boundary. It is quite important that the position of t
cold spots changes acrossn'1 by using the FLEX approxi-
mation, which causes the change of sign ofRH as shown in
Sec. V. To prove this result, the ARPES measurements
NCCO are desired.

FIG. 12. The temperature dependence of maxq$x(q,0)% for vari-
ous filling numbers. All of them follow the Curie-Weiss law, whic
is a universal feature of HTSC’s. In YBCO and NCCO,xq(0) takes
the maximum value atq5Q. We note thatxQ(0)}j2.
-

e
ht

t

or

As shown in Fig. 13,D(ki) at the cold spots decreases
proportion toT qualitatively in all cases, which is consiste
with the analysis in Eq.~34!. @Note thatrk(0) takes larger
values around the cold spots.# At the hot spots, however,T
dependence ofD(ki) deviates fromT-linear behavior. In
fact, D(ki) at the hot spot is given by using Eq.~32! as

Dhot5
3U2

4p E
FS

dqi

uvqu
xQvsf

~pT!2

4vq~vq1pT/2!

'
3pU2

2uvu
xQTj21@12~11pT/2vsf!

21/2#. ~47!

As a result,

FIG. 13. Theki dependence ofD(ki) at various temperatures
The T dependence ofD(ki) at the cold spot and the hot spot a
quite different.

FIG. 14. The path ofki in the case of YBCO.
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Dhot}H T2j3}AT for vsf*T,

Tj}AT for vsf&T.
~48!

Thus, we find thatDhot}AT for a wide range of the fillingn,
which is clearly seen in Fig. 13 in all the cases. This relat
does not contradict with theT-linear resistivity becauser is
determined mainly by the cold spot properties.

Finally, we show the temperature dependence of the
isotropy of D(ki), r 5Dcold/Dhot in Fig. 15. In all cases,r
becomes smaller for the underdoped region, which is con
tent with recent ARPES experiments.52 However, we see tha
r depends on the shape of the FS sensitively. The relatior
}AT, which is expected according to Eqs.~34! and ~47!, is
satisfield clearly only in YBCO. In conclusion, the relatio
r}AT is less universal than the Curie-Weiss behavior ofxQ
in HTSC, which is reproduced by the FLEX approximatio
for all compoounds~see Fig. 12!.

B. Resistivity and Hall coefficient

In Sec. V, we find that the vertex correction from the M
term gives singular behaviors. In this subsection, we ob
the self-consistent solution forsxx andsxy /H, by using the
self-consistent Green function given by the FLEX appro
mation. We solve the BS equation forJkm(v) explicitly by
including all the MT terms. Here we do not use Eqs.~17!,
~19!, and ~22! because the energy integration in derivi
them have been done under the assumption thatzkDk!T.
However,zkDk;T is realized as shown in the previous su
section. By this reason, we perform the energy integra
seriously by taking account of the energy depende
of vkm(v)5vkm

0 1d ReSk(v)/dkm , Dk(v)52Im Sk(v
1 id), Vk(v), andJkm(v) for the numerical calculations o
the transport properties.

To obtainsxx and sxy /H, we solve the following equa
tions self-consistently:

sxx5e2(
k
E de

p S 2
] f

]e D „uGk~e!u2vkx~e!Jkx~e!

2Re$Gk
2~e!vkx

2 ~e!%…, ~49!

sxy /H52 e3 (
k
E de

2p S 2
] f

]e D
3uImGk~e!uuGk~e!u2As~k,e!, ~50!

FIG. 15. The temperature dependence ofDcold/Dhot .
n

n-

is-

in

-

n
e

As~k,e!5vkx~e! FJkx~e!
]

]ky
Jky~e!

2Jky~e!
]

]ky
Jkx~e!G1^x↔y&, ~51!

Jkm~v!5vkm~v!1 (
q
E de

2p Fcotanh
e2v

2T
2tanh

e

2TG
3Im Vk2q~e2v1 id!uGq~e!u2 Jqm~e!, ~52!

where f (e)5$exp@(e2m)/T#11%21, and G(v1 id) and
S(v1 id) are derived fromG(vn) and S(vn) through
the numerical analytic continuation.53 We note that
uGk(v)u25prk(v)/Dk(v) and uGk(v)u2

•Im Gk(v)
5prk(v)/2Dk

2(v). Thee integration in the above equation
are not difficult because its leading contribution comes o
from ueu&T. As for the conductivity, the existence of th
second term of Eq.~49!, whose derivation will be published
elsewhere, has been overlooked in the literature so fa
gives a quantitatively important contribution in the case
zkDk;T.

BecauseSk(v) satisfies the self-consistency conditio
vkm(v) includes all the vertex corrections~a!–~c! in Fig. 7
automatically. WhereasJk(v) contains only the~a! process
of Tkk8(e,e8) in the present calculation because the oth
give only tiny corrections as shown in Sec. IV and in A
pendix B. In this sense, our theory satisfies the condition
the conserving approximation well numerically. We did n
find any difficulty in solving the BS equation~52! for
Jkm(v) numerically, since the self-consistency condition f
Gk(v) is satisfied in the FLEX approximation.25,26Figure 16
shows the obtainedJW (ki) for YBCO on the FS along the pat
shown in Fig. 14. Its feature is close to the schematic one
Fig. 9. We note thatJy(ki) is negative around the hot spo
in this figure. Clearly, such a region is enlarged in the case
NCCO.

Below, we examine the obtained numerical results
YBCO, NCCO, and LSCO. The calculated temperature
pendence ofr51/sxx and RH5(sxy /H)r2 are shown in
Figs. 17 and 18, respectively. In these figures, we also
ther051/sxx

0 andRH
0 5(sxy

0 /H)(r0)2, wheresxx
0 andsxy

0 is
given by replacingJkm(v) with vkm(v) in Eqs. ~49! and
~50!. Both sxx

0 and sxy
0 are equal to those derived by th

relaxation time approximation in the Boltzmann transp
theory, where the conservation laws are violated.

Resistivity.At first, we discuss theT dependences of the
resistivity shown in Fig. 17, where we pute2/\51. T50.1
corresponds to;500 K if we assumeut0u;0.5 eV. In every
case bothr0 and r show approximateT-linear behaviors,

FIG. 16. The obtainedJW (ki) together withvW (ki) on the FS.
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reflecting the temperature dependence ofDk at the cold spots
as shown in Fig. 13.23,24 They are consistent with exper
ments. In all the cases the relationr.r0 is realized, as is
expected from the analysis in Sec. V. In LSCO and YBC
the extrapolated value ofr0 at T50 from the higher tem-
perature region is zero, while that ofr seems to take a finite
value even in a pure system. This behavior ofr can be ex-
plained by looking at Eq.~40! becauseak decreases asT
increases, reflecting the decrease of the backward scatt
processes at higher temperatures.

The doping dependence ofr in YBCO and LSCO is very
small for 0.8<n<0.9 by using the present set of paramete
This behavior is expected qualitatively by Eq.~34!, which
shows ^Dk&FS is independent ofj in the case ofvsf&T.
Experimentally, however,dr/dT in La22dSrdCuO4 in-
creases ford>0.10 moderately asd decreases. In this com
pound, dra /dT'1.331026 @V cm# for d50.18 and 2.0
31026 @V cm# for d50.11 between T5100;300 K
approximately.54 This discrepancy will be improved b

FIG. 17. Temperature dependence ofr andr0. We find r.r0

in all the cases. Note thatr51.0 in this figure corresponds to;4
31024 V cm in single layer compounds. ‘‘VC’’ means the verte
corrections for the current. We stress thatdr/dT increases below
T'0.08 forYBCO and LSCO, which is caused by the VC, not b
the psendo-gap-formation in the DOS.
,

ing

.

choosing the more appropriate set of parameters. Appare
we cannot reproduce the doping dependence of the resi
resistivity observed experimentally because we neglect
impurity effect.

Hall Coefficient.Next, we discussRH shown in Fig. 18.
At higher temperaturesT;0.2, wherej!1 is satisfied, we
see thatRH'RH

0 for all compounds. In all cases,uRH2RH
0 u

increases following the Curie-Weiss like behavior asT de-
creases. Moreover, its coefficient increases rapidly as the
ing approaches ton51, which is consistent with the exper
mental relation RH}u12nu21. These behaviors are
consistent with the analysis in Sec. V.

Moreover, the sign ofRH in NCCO changes to negativ
below T'0.08ut0u;400 K, which is consistent with experi
ments. The Boltzmann approximation cannot explain this
havior because the shape of the FS is holelike everywher

FIG. 18. Temperature dependence ofRH andRH
0 . RH

0 is denoted
by ‘‘without VC’’. We see thatRH ~more preciselyRH2RH

0 ) fol-
lows the Curie-Weiss type law in all the cases. This universal
havior is ascribed to theT dependence ofj2. Here we pute51.
Note that 1/uneu;1.531023 cm3/C in HTSC’s.
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the case of LSCO, the FS around (6p,0) or (0,6p) are
convex in the overdoped region. In this caseRH

0 can be nega-
tive within the Boltzmann approximation. Experimentall
RH in La12xSrxCuO2 becomes negative and almost tempe
ture independent forx*0.32, where no superconductin
transition occurs and the AF fluctuations are very weak
the present calculation for LSCO atn50.65, we findthat
RH is nearly zero forT50.2 – 0.02, andRH'RH

0 is real-
ized. As a result, important features ofRH in LSCO are
reproduced in the present study foru12nu>0.1.

Here, we consider theT dependence of the Hall coeffi
cient given by the Boltzmann approximation. First, we co
sider the effect of theT dependence of the shape of the F
As shown in Fig. 10, the curvature of the FS around the c
spots decreases asT decreases, which should makeuRH

0 u
smaller. Secondly, we discuss theT dependence ofr
5Dcold/Dhot, which becomes smaller at low temperatures
shown in Fig. 15. This effect makesuRH

0 u larger at lowT
because only the cold electrons contribute to the trans
phenomena then. This mechanism has been pointed ou
several authors to explain the enhancement ofRH

0 in
YBCO.23,24 For this reason,RH

0 of YBCO slightly increases
at T,0.05 in Fig. 18, wherer}AT is observed. However
RH

0 decreases moderately in LSCO, which means that
effect of the change of the FS is stronger. In conclusi
through the cancellation of these two effects, the Hall co
ficient given by the Boltzmann transport approximation
nearly 1/ne and is not enhanced significantly.

Now we stress thatRH in our calculation follows the
Curie-Weiss law, even if theT dependence of the FS is take
into account. Undoubtedly, this behavior ofRH comes from
the vertex corrections for the current, which is proportion
to xQ as shown in Eq.~44!. In fact, the calculatedRH are
similar to those ofxQ shown in Fig. 12, in all cases. In
summary, the vertex corrections for the current are esse
for the Curie-Weiss behavior ofRH in HTSC’s observed
experimentally. This universal behavior ofRH is quite robust
in the present calculations.

Hall Angle. We also discuss the temperature depende
of the Hall angle uH , which is defined by cot(uH)
5sxx /(sxy /H)5r/RH . Figure 19 shows that cot(uH) is ap-
proximately proportional toT2 for 0.02<T<0.08. This rela-
tion has been observed experimentally in various kinds
HTSC’s forT51002300 K.5,7,8 Our theory can explain this
relation without assuming the non-Fermi-liquid ground st

FIG. 19. T dependence of the Hall angle as cot(uH) vs T2 in
YBCO and LSCO, for 0.02<T<0.08. The thin line represents th
cot(uH

0 ) obtained within the Boltzmann approximation.
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which possesses two kinds of relaxation rates.55 Figure 19
means thatRH follows the Curie-Weiss behavior, becauser
is proportional toT. We stress that the relation cot(uH)}T2

is also observed experimentally ink-BEDT-TTF
compounds67 or in V2O3,70 both of them are also nearly AF
Fermi liquids.

Here, we discuss the following functions:

Sxy~ki![2E dk'rk~0!As~k,0!
1

„Dk~0!…2

52uJW~ki!u2S duJ~ki!

dki
D 1

$D~ki!%
2

, ~53!

whereki is the momentum along the FS.As(k,e) is given by
Eq. ~51!, andk' is the momentum perpendicular to the FS.
is clear thatsxy /H5*FSdkiSxy(ki). We also defineSxy

0 (ki)
by replacingJkm with vkm in Eq. ~52!, which means that
sxy

0 /H5*FSdkiSxy
0 (ki). Figure 20 shows theki dependence

of Sxy(ki) and Sxy
0 (ki) along the path shown in Fig. 14. I

both cases of YBCO and NCCO,Sxy
0 (ki) is positive every-

where. Whereas,Sxy(ki) is positive inside the MBZ and
negative outside of it, which is consistent with the analysis
Sec. V.

In the case of YBCO,Sxy(ki) takes a maximum value on
the XY axis because it is a cold spot for YBCO. It takes
enhanced value because the relationSxy(kcold)/Sxy

0 (kcold)
51/@12a2(kcold)#}j2 is expected according to Eq.~43!. As
a result, RH}j2 is realized. We have also calculate
Sxy(ki) for LSCO, and found that its behavior is similar t
that for YBCO in spite of the incommensurability ofx(q,0).

On the other hand, in the case of NCCO,Sxy(ki) takes a
maximum value on the BZ boundary which is a cold spot
NCCO. It is also enhanced becauseSxy(kcold)/Sxy

0 (kcold)
}b i(kcold)}j2 is expected by Eq.~43! in this case. As a
result,RH}2j2 is realized and it becomes negative at lo
temperatures.

FIG. 20. ki dependence ofSxy(ki) and Sxy
0 (ki) on the FS~see

Fig. 14!.
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VII. SUMMARY AND DISCUSSIONS

First, we outline the main results of this paper. We ha
calculated the conductivitysxx and the Hall conductivity
sxy /H in the single-band Hubbard model based on

Fermi-liquid theory. We have calculated the total currentJW k
including the vertex corrections, which are demanded in
framework of the conservation approximation by Baym a
Kadanoff. In nearly AF Fermi liquids, the Bethe-Salpeter E
~19! for JW k can be simplified to Eq.~38!, which is solved
easily. The obtainedJW k shows nontrivial critical behaviors a
seen in Fig. 9, which is the natural consequence of the str
backward scatterings caused by the strong AF fluctuatio
In conclusion,RH}j2 is realized in HTSC’s through the
anomaly ofJW k. This mechanism has not been pointed o
previously.

We also have done the numerical calculations by us
the FLEX approximation. We can reproduce characteri
features of the spin fluctuations for YBCO, NCCO, a
LSCO, by using the appropriate set of parameters. In e
case,dx22y2 superconductivity is realized atTc550 – 100
K. Next, we have determinedJW k by solving Eq.~19! numeri-
cally, and calculated bothr andRH for various filling num-
bers. As shown in Fig. 18, the overall features ofRH in each
compound are reproduced quite well. Especially, both
relationsRH}1/T and r}T are obtained at the same tim
We have found thatRH,0 is realized in NCCO because th
cold spots in NCCO locate around the BZ boundaries, wh
may be verified by ARPES experiments.

The vertex corrections mentioned above are not inclu
in the Boltzmann approximation. We have confirmed that
Hall coefficient given by the Boltzmann approximationRH

0

remains of orderO(1/ne) if we take theT dependence of the
interacting FS into account correctly~see Fig. 18!. Moreover,
RH

0 remains positive because the FS is holelike everywh
In conclusion, the anomalous behaviors ofRH in HTSC is
reproducible only if the vertex corrections for the current a
taken into account.

Here, we discuss the validity of the relationRH}j2 given
by Eq. ~44!. In a conserving approximation~including the
FLEX approximation! the interactionVk(v) which gives
Im Sk(v) also determines the MT-type vertex correctio
for JW k , as shown by Eqs.~32! and~36!. This condition leads
to ak;1 in Eq. ~38!, which strongly suggests thatRH}j2

will be valid beyond the FLEX approximation. Now we a
sume that the relationRH}j2 is valid near the half filling
case (n'1). Then, the experimental relation max$uRHu%
}u12nu21 is derived qualitatively because max$j2%}u12nu21

is observed experimentally near half filling. Next, we co
sider the Hall coefficient belowT* , where RH in YBCO
decreases asT decreases experimentally. It is also consist
with the theoretical relationRH}j2 becausej slightly de-
creases belowT* experimentally.56

Unfortunately, the FLEX approximation becomes insuf
cient near the Mott insulating state. By this reason, we
not apply the present method for 0.9<n<1.1. Experimen-
tally, bothuRHu anddr/dT for 0.9<n<1.1 increases rapidly
asn→1. The FLEX approximation is also inappropriate f
study of the electronic states belowT* , which is one of the
important future problems on HTSC. Recently, Ref. 57 c
e
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culated some vertex parts of the self-energy. As an alte
tive possibility, the preformed pairs may be formed forT
,T* . This scenario has been intensively studi
recently.58,59

In Ref. 34, it is shown that a similar numerical stud
based on the AF spin-fluctuation model also leads to
enhancement ofRH , by using the set of spin fluctuatio
parameters consistent with experiments. Although the c
servation laws are not satisfied exactly in that study, it c
firms the importance of the vertex corrections for the curre
It indicates that the numerical results presented in this pa
should not be taken as an artifact specific to the FLEX
proximation.

Now we would like to discussRH in heavy Fermion~HF!
compounds. In the paramagnetic compounds,RH shows a
drastic temperature dependence and takes an enha
value.60–62At low temperatures, the relationRH5cr2 is ob-
served in many compounds, and the coefficientc is positive
for all compounds. It is explained in terms of the anomalo
Hall effect ~AHE!, which originates from the localized
f-orbital angular momentum, and its enhancement facto
given byx0[xq50(0).63,64 On the other hand, in many HF
compounds with AF ground state, the relationRH5cr2 is
not satisfied and the sign ofdRH /dT at T.TN changes de-
pending on compounds.60–62 This behavior is also observe
in non-Fermi-liquid HF compounds, which is near the A
quantum phase boundary, e.g., Ce(Ni12xPdx)2Ge2.65 We
stress that the normal Hall effect can exceed the AHE
RH}XQ will be realized in these nearly antiferromagne
HF compounds, wherexQ@x0 is realized. We note tha
xQ}(T2TN)23/2 in three dimensions is obtained by the SC
theory.

We also comment on thek-BEDT-TTF organic supercon
ductors. Several experiments show thatRH of this system
increases asT decreases.66,67 This will be explained accord-
ing to our theory, because the recent studies based on
FLEX calculation reveal that there are large AF fluctuatio
in k-BEDT-TTF compounds, which are the origin of th
d-wave superconductivity.44,45 Also, the relationRH}1/T is
observed in the superconducting ladder compou
Sr142xCaxCu24O41.68 The main electronic properties in thi
compound, e.g., the pseudogap behavior and thed-wave su-
perconductivity, are well explained by the FLE
approximation.43 In addition,RH in V2O3 shows the singular
T dependence near the AF phase boundary.69,70
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APPENDIX A: ANALYTIC CONTINUATION
FOR G„eN ,en8…

In this appendix, we derive the irreducible verte
Tkk8(e,e8) which are the kernel of the BS equation, Eq.~19!.
For this purpose, we perform the analytic continuation



X

-

e

f

PRB 59 14 737HALL EFFECT AND RESISTIVITY IN HIGH-Tc . . .
G(en ,en8 ;v l), wherev l52pTl ( l .0) is the external fre-
quency. The irreducible vertices consistent with the FLE
approximation are given by Eqs.~26!–~28!.

According to Eq.~12! in Ref. 27,

Tkk8~e,e8!5cotanh
e82e

2T
@Gkk8

II
~e,e8!2Gkk8

III
~e,e8!#

1cotanh
e81e

2T
@Gkk8

III
~e,e8!2Gkk8

IV
~e,e8!#

2tanh
e8

2T
@Gkk8

II
~e,e8!2Gkk8

IV
~e,e8!#, ~A1!

whereG II(e,e8), G III (e,e8) andG IV(e,e8) are given by the
analytic continuations ofG(en ,en8 ;v l) for regions II, III,
and IV in the complex (e,e8) plane shown in Fig. 21, re
spectively.

Next, we take the limitiv→10. For Eq.~26!, we get

Gkk8
(a)II

~e,e8!5VR~k2k8,e82e!, ~A2!

Gkk8
(a)III

~e,e8!5Gkk8
(a)IV

~e,e8!

5VA~k2k8,e82e!, ~A3!

where A(R) represents the advanced~retarded! function.
Taking account of the relation Im$e82e%.0 in the II region
and Im$e82e%,0 in the III,IV region, we get for Eq.~27! as

Gkk8
(b)II

~e,e8!5(
q
E dv

2p
Wq~v!F tanh

v1e

2T
Im Gk1q

R ~v1e!

3Gk81q
R

~v1e8!1tanh
v1e8

2T

3Gk1q
A ~v1e!Im Gk81q

R
~v1e8!G1C, ~A4!

Gkk8
(b)III

~e,e8!5Gkk8
(b)IV

~e,e8!5(
q
E dv

2p
Wq~v!

3F tanh
v1e

2T
Im Gk1q

R ~v1e!Gk81q
A

~v1e8!

1tanh
v1e8

2T
Gk1q

R ~v1e!Im Gk81q
R

~v1e8!G
1C, ~A5!

FIG. 21. G(e,e8;v) (v.0) is an analytic function inside o
each~II,III,IV ! region, and has the cuts on each line.
whereC is a real function, andWq(v) is given by

Wq~v!5
3

2
U2uUxq

s~v!11u21
1

2
U2uUxq

c~v!21u22U2.

~A6!

In the same way, taking the relation Im$e81e1v%.0 in the
II,III region and Im$e81e1v%,0 in the IV region into ac-
count, we get for Eq.~28! as

Gkk8
(c)II

~e,e8!5Gkk8
(c)III

~e,e8!5(
q
E dv

2p
Wq~v!

3F tanh
v1e

2T
Im Gk1q

R ~v1e!Gk81q
R

~2v1e8!

1tanh
v2e8

2T
Gk1q

R ~v1e!

3Im Gk81q
R

~2v1e8!G1C8, ~A7!

Gkk8
(c)IV

~e,e8!5(
q
E dv

2p
Wq~v!F tanh

v1e

2T

3Im Gk1q
R ~v1e!Gk81q

A
~2v1e8!

1tanh
v2e8

2T
Gk1q

A ~v1e!

3Im Gk81q
R

~2v1e8!G1C8, ~A8!

whereC8 is a real function.

FIG. 22. The obtainedT dependence of the resistivity and th
Hall coefficient. MT and MT1AL are given byJkm(v) derived
from Eqs.~52! and ~B1!, respectively.
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By inserting the above equations into Eq.~A1!,
Tk,k8(en ,en8 ;v l) is given byT (a)1T (b)1T (c). They are de-
rived as

Tk,k8
(a)

~e,e8!5S cotanh
e82e

2T
2tanh

e8

2TD
32i Im Vk82k~e82e1 id!, ~A9!

Tk,k8
(b)

~e,e8!5S cotanh
e82e

2T
2tanh

e8

2TD(
q
E dv Wq~v!

3~2 ip!S tanh
v1e

2T
2tanh

v1e8

2T D
3rk1q~v1e!rk81q~v1e8!, ~A10!

Tk,k8
(c)

~e,e8!5S cotanh
e81e

2T
2tanh

e8

2TD(
q
E dv Wq~v!

3~2 ip!S tanh
v1e

2T
1tanh

v2e8

2T D
3rk1q~v1e!rk82q~2v1e8!. ~A11!

Note thatT kk8
(a2c)(e,e8) is purely imaginary.
e

da

J.

ev

.

s.
APPENDIX B: CORRECTIONS FROM THE AL TERMS
FOR Jkµ

In this appendix, we study the contributions from the A
terms to the total currentJW k . For this purpose, we solve th
BS equation forJW k(v) including both the MT process an
AL processes, and compare the obtained results with thos
Sec. VI B. The exact Bethe-Salpeter equation is

Jkm~v!5vkm~v!1 (
r

a,b,c

DJkm
r ~v!, ~B1!

DJkm
r ~v!5(

q
E

2`

` de

4i
Tk,q

(r ) ~v,e!
rq~e!

Dq~e!
Jqm~e!, ~B2!

where r 5a,b,c and Tk,q
(r ) (v,e) are given by Eqs.~A9!–

~A11!. Note thatTk,q
(r ) (v,e) are purely imaginary.

For simplicity of the numerical calculation, we put all th
energy variables inrk8(v), Dk(v) and Jkm(v) as zero for
DJkm

b (v) and DJkm
c (v). The strict justification of this sim-

plification is difficult, although it may be sufficient for a
rough estimation of the magnitude of the AL terms. We re
resent the solution of Eq.~B1! asJkm

MT1AL(v).
Figure 22 shows the resistivity and the Hall coefficie

RH
MT1AL for YBCO (n50.90) derived fromJkm

MT1AL(v), to-
gether with those given in Sec. VI B. We see that the A
terms give only a small correction tor andRH .
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