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Hall effect and resistivity in high-T . superconductors: The conserving approximation
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The Hall coefficientR,, in high-T cuprates in the normal state shows the striking non-Fermi-liquid behav-
ior: Ry follows a Curie-Weiss type temperature dependence |Rad>1/ng| at low temperatures in the
underdoped compounds. MoreovBy, is positive for hole-doped compounds and negative for electron-doped
ones, although each of them has a similar holelike Fermi surface. In this paper, we give the explanation of this
long-standing problem from the standpoint of the nearly antiferromag(&kg Fermi liquid. We consider
seriously the vertex corrections for the current which are indispensable to satisfy the conservation laws, which
are violated within the conventional Boltzmann transport approximation. The obtained total dyrtakes an
enhanced value and is no longer perpendicular to the Fermi surface due to the strong AF fluctuations. By virtue
of this mechanism, the anomalous behaviorsRaf in high-T. cuprates are naturally explained. Both the
temperature and thelectron, holg doping dependences &, in high-T. cuprates are reproduced well by
numerical calculations based on the fluctuation-exchange approximation, applied to the single-band Hubbard
model with a holelike Fermi surface. We also discuss the singular temperature depend&cenafther
nearly AF metals, e.g., 303, xk-BEDT-TTF organic superconductors, and heavy fermion systems close to the
AF phase boundarfS0163-182609)13321-4

[. INTRODUCTION realized and the sign d® changes to negative at low tem-
perature although its FS is holeliké®!! Figure 1 shows a

In the normal state of higi- superconductorHTSC’s),  summary of experimental results of LSCO and NCCO in the
various quantities deviate from the conventional Fermi-underdoped region, where an approximate electron-hole
liquid behaviors: These non-Fermi-liquid features have beensymmetry is realized.In both compounds|Ry| increases
studied intensively both theoretically and experimentally benear half filling.
cause they have close relation to the mechanism of Tijgh- .
superconductivity. For example, the electrical resistiyity L Laz-ySryCuOq4 ]
and the longitudinal NMR relaxation rateT/in HTSC's
show universally the behaviogs=T, 1/T;=T° for a wide
range of temperaturésThese are quite different from the
conventional Fermi-liquid behaviorpe< T2, 1/T < T.

In HTSC's, the Hall coefficienR, also shows an inter-
esting non-Fermi-liquid behavior: It shows a drastic tempera-
ture dependence although the Fermi surfa¢ES’s) in
HTSC's are nondegenerate and simple in shape. At high
temperatures1000 K), Ry takes a nearly constant value,
and its doping dependence is very small. Its value is close to
the one estimated by the LDA band calculatiff"®3 And
the doping dependence B, is also very small there.

On the other hand, as the temperature decre&kefe-
gins to show a Curie-Weiss type temperature dependence,

Ry (1073 cm3/C)

-10

and its maximum value is a few times larger tHfii"at the L Ndg_,Ce,CuOs4 ]
optimum doping. This enhancement Rf; further increases o 560
in the underdoped region. In the hole-doped compounds, T (K)

e.g., YBaCuwO,;_5 (YBCO) or La,_sSrsCuQ, (LSCO),

dR4/dT<O0is obgserved anky is pOSiti_Ve for a wide range FIG. 1. Temperature dependenceRqyf in LSCO (hole doping

of temperature$-® On the other hand, in the electron-doped and NCCO(electron dopingin the paramagnetic state. Note that
compounds, e.g., Nd sCe;CuQ, (NCCO), dRy/dT>0 is  1/ne/~1.5x107% cm®C in HTSC's.
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The Hall effect is one of the unsolved problems in E~agl(T+0), )
HTSC's. Its unusual features mentioned above are summa-
rized as follows(i) The Curie-Weiss type behavior B in xo~ @182, oy~ ayé?, 3

a quite wide range of temperaturés) The enhancement of
Ry in the underdoped regioniii) Ry<<0 in the electron-
doped compounds.

Nowadays, various non-Fermi-liquid phenomena of
HTSC have been explained by using different types of spin
fluctuation theories, e.g., the SCR thedfythe spin-
fluctuation model? and the fluctuation-exchangéLEX)
theory’*'® They can explain a reasonabile of the d,z_2
superconductivity. They can also explain the pseudogap fo
mation in density of state$ '® the shadow band Hooriesl2 25,2433
forr?glggon,le and the collective modes emerging below theOMes.

T.. ™ 2

So far, various attempts have been made on the Hall ef- prCT:,  UTy=CT, @
fect in HTSC's?1~2* Some of them are in the framework of WhereC has a strong temperature dependence in the nearly
the spin fluctuation model, by using the Boltzmann transpor@F Fermi liquid. According to themCe &2 1/T is derived,
approximation (or one-loop approximatiorf>?* However, o the experimentally observed non-Fermi-liquid behaviors
the Boltzmann approximation cannot explain the magnitude®f p and 1T ; are explained well by the spin-fluctuation theo-
of |Ry| in the underdoped region. Moreover, it predifts  ries. One may naturally expect that thedlependence dRy
>0 for both YBCO and NCCO because they have similaris also governed by the spin fluctuations. In this paper, we
holelike FS’s. This result contradicts with the experimentsfind thatRy &2 through the vertex corrections for the cur-
shown in Fig. 1. Therefore, the behavior Bf; noted as rent. A similar study based on the phenomenological AF
(i)—(iii) above have cast some suspicion on the validity ofspin-fluctuation model is reported in another pafler.
the nearly antiferromagnetiAF) Fermi liquid description The contents of this paper are as follows. In Sec. II, we
for HTSC. introduce the single-band Hubbard model with some sets of

In this paper, we study the Hall effect of HTSC’s basedparameters corresponding to YBCO, LSCO, and NCCO. In
on a conserving approximatiéi2® We use the expressions Sec. lll, we review the general formulation fary, and
for the conductivity ¢,,) and the Hall conductivity oy,/H based on the Fermi-liquid theory, and rewritg,/H
(oxy/H) derived from the Kubo formuld—3° Then, we into a simpler form. In Sec. IV, the vertex corrections to the
study the total currend, including all the vertex corrections Current is studied by using the conserving approximation.
so that the conservation laws are satsfiee., conserving e find that only the Maki-Thompson term is dominant. In

L . > . . Sec. V, we solve the Bethe-Salpeter equation for the total
approximation. We find thatJ, shows critical behaviors

which are a natural consequence of the strong backward scU"TentJ analytically, and derive the relat'(?RH“'fZ- In
terings by the AF fluctuations. By virtue of this fact, the S€C: VI, numerical results fop and Ry, obtained by the
present theory succeeds in explaining the overall features ¢f-EX theory are presented, Wh',Ch are consistent with the
R, noted ag(i)—(iii) above, without assuming a non-Fermi experimental behaviors in HTSC's. Finally, in Sec. VII, the

liquid ground state. We also find that the conventional Bolt-all €ffect in heavy fermion systems is discussed briefly.

zmann approximation, where the conservation laws are vio! "€ readers who are mainly interested in the numercal cal-

lated, cannot reproduce any Gj—iii ). culation of Ry can proceed to Sec. VI B for the first reading,
We analyze the extended Hubbard model as an effectivhere the sufficient set of equations for the numerical calcu-

model for HTSC’s. We use the FLEX approximation to cal- lations foray, and oy, /H are explained shortly.

culate the Green function and the self-enetgy It is a kind

of self-consistent perturbation theory with respectjfoand Il. MODEL HAMILTONIAN

it has advantages for handling large spin fluctuations. . :
Phenomenogllogically the .Spin gprop%gator in HTSC's is In th|s_ paper, we treat the following extended Hubbard

expressed for smatj and » as follows*?1323 model with (U, to,t;,15):

where®, aq, a;, anda, are constant¥ The coefficienta
increases rapidly in the underdoped region, §hdeaches
~0(100) atT* nearby the half filling(we put the unit-cell
lengtha=1) and«, decreases rather moderately in the un-
derdoped region. The relatiang=T (ws=T) is satisfied in
the overdopedunderdopegregion.

The typical spin-fluctuation theories reproduce the experi-
[mental relations2) and(3) for T>T*.*® Moreover, the fol-
lowing relations are obtained by the spin-fluctuation

— 0.1 T T
H—kE 6kcko'cka'+UE Ck+qTCk'—qLCk’lckT' (5)
o

PR XQ Kk’
w)= , 1 q
Xl 0= 0y il g @ .
€= 2to[ cog k) +cogk,) |+ 4t; cogk,)cogky)
whereQ is the AF wave vector, and is the AF correlation +2t,[ cod 2k,) + cog 2k,)] ©6)
X y/ s

length. Experimentally£? follows a Curie-Weiss type tem-
perature dependence belowl000 K in many HTSC's. It wherecﬁg is the creation operator of an electron with mo-
ceases to increase @t in the overdoped region, or at the mentumk and spino, andU is the on-site Coulomb repul-
characteristic temperaturE* (>T,) in the underdoped re- sion. We represent the filling of the electrons byandn
gion. We callT* the pseudo-spin-gap temperature as usual=1 corresponds to the half filling.

In general, the following relations are satisfied fbrT* Taking the results by the LDA band calculation into
experimentally* account® 3 we choose the following set of paramete(is.
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FIG. 2. Fermi surface ofa)YBCO, (b)NCCO, and(c)LSCO. In
(@ and (b), tp=—1, t;=1/6, andt,=—1/5. In (¢c), to,=—1, t;
=1/10, andt,= —1/10.

YBCO (hole doping, NCCO (electron doping to=—1,
t,=1/6, t,=—1/53>%%3 (1|) LSCO (hole-doping: t,

=—1, t;=1/10, t,= — 1/103"* Figure 2 shows the Fermi

surfaces(FS’s) for U=0, together with those for finit&J

calculated by the FLEX approximation dt=0.02. In the
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FIG. 3. The self-energy of the FLEX theory. The full line and
the wavy line represer®(k—q) andV(q), respectively.

Here, we summarize the formalism of the FLEX theory
which will be used throughout this paper. The Dyson equa-
tion is written as

{Gi(en)} 1=ientu—ep—Si(en), (7)

The self-energy is given by

Ek(en>=T; Gyl €n— @) Vq( @), ®)

3 1
V(@) =U? Sxg(en+ 5 xg(@) —xg(e) | +U, (9)

xs(@)=xg{1-Uxg(w)} 2, (10)
x50 =xg{1+Uxq(w)} 1, (11)
Xo(w)= —Tk2n Gqs k(@ + €,) Gyl €n), (12)

where €,=(2n+1)7T and w,=21 7T, respectively. The
self-energy is shown by Fig. 3. We solve E¢§—(12) self-
consistently, choosing the chemical potentiaso as to keep
the filling constann=TZ, .G, (€,)e'“°.

In a Fermi liquid, the real-frequency Green function in the
vicinity of w~0 and|k|~kg is represented as

Grlw)=z/(0+ p—ec—izAy), (13
where z, is the renormalization factor given by, =[1
— 93 (w)ldw] ™Y, € is the quasiparticle spectrum given by

the solution of REG(w)} =0, and Ay=—Im3,(w
+i68)>0. The density of statedOS) is given by

pk(w)=—%ImGk(w+i5). (14

In the case o, Ay <T, pr(w) =2z 0w+ u—¢€).
The FLEX approximation is suitable for the analysis of

case of(l), the FS is holelike everywhere and the spectrum athe nearly AF Fermi liquid. It has been applied to the square

(m,0) is below the chemical potential at least forn>0.6.
On the other hand, in the case(dif) the spectrum at,0) is

aboveu for n<0.77 atU=0, andn=<0.85 forU =6, respec-

lattice Hubbard model by many authdfst8-182049Though
it is an approximation, imaginary time Green function ob-
tained by the FLEX agrees with the results by the QMC

tively. These characters of the calculated FS's coincidesimulation very well for a moderatd.'* Recently, it has also

qualitatively with those by the LDA band calculatigns®
or by the angle resolved photoemissiofARPES
experimentd?-42

been applied to the superconducting ladder compound
Sna_xCa.Cuy40,; (Ref. 43 and the organic superconducting
k-BEDT-TTF compoundé**°
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~ BZ-boundary (n,m)
P> > TP

J® V(k) Tkk) Jx)

FIG. 5. The BS equation fad,, .

Arepunog-zg

ur
; ©nT t
Kko’,k’a”(lwn):fo dre®n <TT{CE0(T)CKG(T)Ck’g—’ck’o-’}>y

~

(16)
/// 0 : hot spot N whereuy (k) = dep/ Kk, andw,=27Tn is the even Matsu-
. 9 ¢ cold spot o bara frequency, ana(>0) is the absolute value of the
0.0 charge of an electron. In the absence of the magnetic field,

: the analytic continuation frory, ', (iwp) to Ky, /o (@

resgﬁii\?él;he hot spots and the cold spots in YBCO and NCCO’+ié5) has been performed by EliashbéfgAccording to
him, the conductivity carried by the quasiparticles are given

Here, we comment on the change of the FS. Figure by

shows that the shape of the FS changes as a functidh of

>0. It also means that the FS changes significantly depend- . =822 (_ ﬁ) 200.] i (17)

ing on the temperature. The effect of this changeRpnis xx . ge| TN

discussed in Sec. VI. We also comment on the anisotropy of K

Ay on the FS, which becomes larger as the AF fluctuatiorwheref(e)=1/(1+e¢#'T). In Eq. (17) we have done the

grows at low temperatured, takes a large value around the energy integration by assuming the relatg < T, which

crossing points with the magnetic Brillouin zon®BZ) is not always satisfied in HTSC's as shown in Sec. VI, how-

boundary, which we call hot spots as often referred to in thever.

literature®>?* A, becomes small at the points where the dis- In Eq. (17), vy andJ,, are given by

tance from the MBZ boundary is the largest, which are called

cold spots(see Fig. 4 These cold spots play major role for _d .

p andR,,. We study this subject in Sec. VI in detail. ka_a_lg([ekJrReEk(w_o)]’ (18)
Finally, we discuss on the validity and the limitation of

the FLEX theory on HTSC's. In the FLEX approximation, de

Egs.(2) and (3) are satisfied well, and the coefficieay in Jx= Vit 2 mﬂw(oyfﬂGk'(fﬂka'x, (19
Eq. (2) increases rapidly as approaches to the half filling Ko

(n=1). Moreover, the relatioms<T (W=T) in the under-  where 7. (€,€’) is the irreducible four point vertex intro-
doped(overdoped region is satisfied qualitatively as shown duced by Eliashberg, which is discussed in the next section
in Table I, which is consistent with experiments. However,in detail. It plays an important role to treat the umklapp
the FLEX approximation cannot explain the experimentally,rocesses of conduction electrdfsThe total current), is
observed pseudo-spin-gap behaviorsTor-T>T,, where  giyen by the solution of the Bethe-Salpet®S) equation

& cease to increase andulf begins to decrease as the tem- (19) which is shown by Fig. 5.

perature decreases. It would also be inapplicable near the The Hall coefficientR, under a weak magnetic field
Mott-insulating state, i.e., 0:9n=1.1. In this paper we per- jongz axisH is give by

form numerical studies fon=<0.9 or n=1.1, where the

FLEX approximation gives reasonable results. R oyy/H

H (20

lIl. FORMALISM OF CONDUCTIVITY IN THE FERMI DTy
LIQUID THEORY The analytic continuation for the normal Hall conductivity

. : . oy due to the quasiparticle contribution in the presence of
K LnotfrgfmsTgtl?hné Z\(’)endre\cl'fv.\; thse t_raennsgort theory. By thethe magnetic fieldH has been performed by Kohno and
u uia, uctivity 1S given by Yamada® or Fukuyamaet al,*’ in the gauge invariant man-

o MKy ko (@+id) ner. According to them, assuming that the fourfold symmetry

0= X vpue, , (15 of the system

w

kk' oo’ w=0
TABLE I. The value ofwg for n=0.90 (underdopel n=0.85 o JH=—e 1632 _ ‘9_f A, (K) Zy
(nearly optimum, andn=0.80 (overdoped obtained by the FLEX wy mrzp = 4 de) KR (AR
approximation aff =0.02. k
= = - Ak AN
n=0.90 n=0.85 n=0.80 A,“,(k)zvkﬂ ‘]k,u ak: ~ 3, &kf , 21)
YBCO (U=8) 0.018 0.034 0.046
LSCO (U=6) 0.013 0.019 0.024 where €,,,= —€,x,=1, reflecting Onsagaer’s reciprocity

theorem. Equation(21) meanSUXy/Hoc(Ak)*z, whereas
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0@ (A) "t by Eq. (17). Thus, Ry=const in the conven- OO

tional Fermi liquid at low temperatures. ® — OO + ~ 4.
The expressioli21) can be rewritten into a simpler form, FLEX OO

where there is only the symmetry with respect to the origin

[see Eq(3.2)) of Ref. 29
+ + + .-
IH= e3 2 of Ak Zy
Oxy/A=""7 & |~ . o )W,

de
FIG. 6. Each full line represents the dressed Green function

G and each broken line represefits
ALK) = Ayy(K) Ay (K) ) P

—[J (é lek)ﬁ"]k — (x> y)] IV. VERTEX CORRECTIONS FROM 7, /(€,€")

x\*z y

In this section, we study the vertex corrections for the

jkxijk) current, which is essential for the transport phenomena. The
(9k‘

self-energy in the FLEX theory, which is given by E§), is

=lvil

also obtained by the functional derivative dfg gy as
=104 |jk|2<d93(k)) , (22) (€)= 5(I)FLEX/5_GK(5), where & ey is givgn by the
dk; closed skeleton diagrams made@f(e) andU, with a factor
. . . 1/n for U" diagrams. The existence @fg gx, which is de-
wherek is the component ok along the vectoe (k)=(e,  picted in Fig. 6, means that the FLEX theory is classified as
xJk)/|5k|, and tangential to the FS htbecause?k is per- a conserving approximation whose framework was con-
pendicular to the FS. In EG422), 6,(k) is the angle between structed by Baym and Kadanéffand Baynt® In the con-
J and thex axis except for an arbitrary constant. Contrary toS€rving approximation, the particle-hole transport function
A,,(K), Ag(K) introduced in Eq.(22) is a scalar variable, is given as t_he solution of the BS equation, where the irre-
i.e., independent of the choice of coordinates. As a result, wgucible particle-hole vertex':(e,e’) = 62y(€)/ 6Gy (')
know thata,,/H is also independent of the choice of coor- 'S used as the kernel. Then, theobtained in this way satis-
dinates, if only the reflection symmetry exists. This propertyf'es various consgrvatlon laws .automatlca_llly. Thls is the rea-
of ay,/H has been proved so far only by the BoltzmannSO" why we call it the conserving approximation.
transport theor§/o—48 S|gn|f|cance of t_he conserving approximation in _the cgl-
By using the relatiomle, /dk, =270, , Eq.(22) becomes culation of correlation functions is well recognized in vari-
# # ous situations. Conductivity is one typical quantity. Within
o3 d40,(k) the conserving approximation, Yamada and Yosida show
o /H=——§> dk|J |2( -
X 4 Jes 1K dKg

! (23)  that the conductivity given by Eq17) diverges at finite
(A2 temperatures in the absence of the umklapp processes, re-
o o ) flecting the momentum conservation law. Their work shows
at _suff|C|entIy Iovy temperatures. In this line integration, ke iyt the vertex correction fro: (e,€') in Eq. (19), which
point moves anticlockwise along the FS. is neglected within the Boltzmann theory, is necessary to

Finally, we discuss the Boltzmann transport approximatreat the momentum dissipation through the umklapp scatter-
tion. The conductivity in the magnetic field is given by  ing processes of electrons.

0 =eZ(— dflde)vy, P, (vy) for Elé,, where ® () The irreducible particle-hole vertdx (e,€’) within the
f[l—eAk’l(ka H)-V]-(eA; lvy,) up to the first order of FLEX theory is shown in Fig. 7:
H within the relaxation time approximatidf.As a result, Ty (€nr€n ;wl)zl—*(a)+1—*(b)+l-(c), (25)

the conductivity inﬁ this approximationf(’X is given by Eq. .
(17) by replacingJ, with 7. In the same way, the Hall Where o;=2l=T is the external frequency, ane,=(2n
conductivity within the relaxation time approximatier}, is ~ +1)7T is the odd Matsubara frequency. We put the external

given by momentum zerol'®-T'(©) are given by

o im=— § agli 2200) L do Ko e M e M

oyH==7 ﬁs jlokd TG (24) L <
s kk k+ k
where 6, (k) is the angle betweeny and thex axis. Thus, 2ee k’+q ! k’-q
the sign ofagy/H is determined by the sign ¢816,(k)/dk], -~ ’ -
which is nothing but the curvature of the FSkat®—*® ke ke k.e ke ke ke
In the later sections, we calculalg, by solving Eq.(19). ' eeo ' o I e

In the nearly AF Fermi liquid, we find thal, is no longer ke KK KEASE
perpendicular to the FS, dal6,(k)/d k||] and[dé,(k)/dk] FIG. 7. The irreducible four-point vertexes, which are sufficient

at the samé can be quite different, even in sign. This is the for the conserving approximation. ia), the wavy line represents
reason why the Boltzmann approximation fails to reproduce/(k—k’). In (b) and (c), the two wavy lines represe/(q) and
the anomalous behavior & in HTSC. the g summation should be taken.
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P (enen io)=Vic(en—en),  (26) sbe=TS [ ae

CotanI}iT —tanhziT) % j do Wy(w)

r® o)=—T> W, - «| tanheo€ — tanh (0) (0)
k' (€ns€nr s o)) q(wl’ W1~ ) 2T hZ_T Pk+q\Y)Pk’ +q

ql’
><G‘k+q(6n+“’I’)Gk’-¢—q(5n’+wl’)a ka’(o)
k
(27) A(0) "

(31)

whereWy(w) is introduced by Eq(A6). Here we have ne-

glected thew dependences of(w) and A, (w) because

o only the regions|w|,|e|=min{T,wy} are important in the
w, € integrations in Eq(31). The variable changk’ — —k’

X Gyrqlent @i+ @) Gy —g(€n —@i1), is performed forAJS. Thus,AJ? and AJS are equal in this

(28 approximation, WhICh is not a rigorous reIatlon however.

, Now, we show that Eq(31) is negligible in the case of
S . &°>1 andQ=(m,). In this case, the leading contributions
://vvh((ez)eva,;(o;ngsls given by Eq.(9), and we have introduced in theg summation in Eq(31) come only fromg~ Q. In the

AT k' summation of Eq(31), there is a cancellation between the
contributions fromk’ and —k’ if we put q=Q, because
3 k' +Q andk’ —Q are the same in the momentum space. As
Wi(wp,w1)= EUZ[Uxﬁ(wl)JF1][UXﬁ(w|')+1] a result, we expect that bothJ?, and AJf, are negligibly
smaller thanAJg, . This statement becomes rigorous in the
1, c c 5 case ofé?—o. In Appendix B, we show this cancellation in
+ EU [Uxi(@)—1][Uxi(w)—1]—U% the two AL terms explicitly by the numerical calculations.
This is one of the main conclusions of this paper.

F(ki)’(en yEn? ,w|)= _TE Wq(w|/ ,w|/+w|)

(29)
_ _ . b . V. ANALYSIS FOR THE BETHE-SALPETER (BS)
These three irreducible vertic#$?, I'® andT'© are suffi- EQUATION FOR J
. . . . . kp
cient for the conserving approximation. In the literature, pro- _ _ o _ o
cess(a) is called the Maki-ThompsofMT) term, andb) and The aim of this section is to give the qualitative under-
(c) are called Aslamazov-LarkifAL) terms. standing of the mechanism for the temperature dependence

In order to solve the BS equatidh9), we have to obtain of Ry in HTSC'’s. We try an analytical approach to solve the
the functional form of the irreducible verteX.(e,e’) in  BS equation(19) for J,,, by neglecting the AL terms. To
Eqg. (19). For this purpose, we perform the analytic continu-simplify the discussion, we assume th@t=(m,7), where
ation of I'®, T® andT'(® with respect toe,, and e, in  the MBZ boundary is defined by the line between@) and
Appendix A. We note thatl.(e,€’) is nothing but the (0,m). This situation is realized in YBCO experimentally.
T9(e,€’) in Eliashberg’s papef’ This correction gives rise For a qualitative discussion, we use the phenomenological
to smgular temperature dependence of the Hall coefficient ixpression foryg() given by Eq.(1) and neglect other
HTSC's (see Sec. V. terms in the def|n|t|on oV4(w) in Eq.(9). We introduce the

Now, we obtain the vertex corrections for the current byfunctionH(x)=1/x— 2¢(x+ 1)+ 2¢4(x+ 3), wherey(x) is
replacing 7y (0,€) in Eq. (19) with 7 9(0,€) given by  the digamma function. Then, the imaginary part of the self-
Eqgs.(A9)—(A11). At first, the contribution coming frorﬂ*ki), energy is given by

is given by q
€ € €
| | Ak=2q fﬂ cotanfy— — tanh,—
€ €
AX,= 22 de’| cotan— — tanh,— X pr_q( €)IM Vg(e+i16)
3u?
. 1 =72 wasfH( )pk (0, (32
XIka,,k(e’+|5)pk,(e') , ‘Jk’,u,! (30) 27T
Ayi(€e)
. H wq | _ (7T)? 33
where we pute=0, and we have used the relation 20T) " oglogt 7T12)"

|G(€)|2=mpy(€)/Ax(€). These vertex corrections play an

important role in the singular behavior of the Hall coeffi- \\here wq= wgt w£4(q— Q)22 The approximate form

cient. in HTSC’s,.wh|ch will be @scussed in Sgc. V. ) of H(wg/27T) given by Eq.(33) becomes exact both for
Next, we consider the correction terms coming fr@{ﬁ, ws>T and wy<T. Here, the average af, over the FS is

and?’f(k, Approximately, they are given by given by
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(-n,m) (n,m) 0,m) BZ (m,m0)

Fermi
Surface
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s

pa— (o) MBZ” "
0,0) (w,0)

FIG. 8. The relation betwednandk’. Both points locate on the

FS. FIG. 9. Schematic behaviors &f andv, . Contrary tov, , Jy is
not perpendicular to the FS. For exampleg(/dk;) <0 on theXY
<Ak>FSE; Api(0) line, and @6,/dk))>0 on the BZ boundarysee Eq.(39)].
) ) 0 ) where a,~(1—c/£?)<1 andc~O(1) is a constanta,
_3U Xous{mT)e dIm x4(w+i6) takes the maximum value around the hot spots.
=7 2 g gt 7T12) Jw o Now, Eq.(38) can be easily solved as
< xoTE [1—(1+ 7T2wg) ~ Y7, (34) - 1 . R
Q S Jk=—2(vk+ akvk,). (39)
where we have assumed that tlep dependence of 1—a
0 ; ; = -~
(&/aw)lqu(er'é)'“’:O is moderate. As a result, Equation(39) means thatl, is not parallel tov,. For ex-
22T for wy=T, ample, (i) atk,=k,, J=v,/(1+ @)~ 3v| is satisfiedii)
(AK)Fs* OTeT  for wg=T, (35  Near the MBZ boundaryJ,~ (£%/2c)(vy+0y:), which is

nearly parallel or perpendicular Q. (iii) On the BZ bound-

which is independent of for wg=<T (underdoped regign  ary, 3k||5k because of the symmetry. Moreovég~uv, since
Because the resistivity is approximately proportional to the contribution fromk’ point cancels out with that from

(A s, p=T is expected for various filling, which is con-  —k’ point approximately, due to the fact thi—k'|=|k
sistent with experiments. We calculage more exactly in  +k’|~|Q| in the momentum space. Thus, we should put
Sec. VIB. a,=0 in Eq. (39 on the BZ boundary. These behaviors of

Next, we examine the vertex correction for the current,j, together withy, are shown schematically in Fig. 9. Physi-
Wh'(.:h is given by Eq(30). We stress that Wk(‘.") appear- cally, this peculiar behavior oik comes from the multiple
INg 1n Eqs.(_30) and (32.) are the same, which is ensured in backward scattering betwedn and k' caused by the AF
the conserving approximation. We can show that fluctuations. Now we stress the importance of the conserva-

302 0g \ pr_q(0) tion approximation to get the correef.. For instance, we get
A‘JKM:T > XQ%H(%) kA_q Jk—qu- (36) ay= in Eq. (39), if we replace|G,(¢)|? \ivith |G2(€)|? in
q k= Eqg. (19), which leads to the divergence af.
Comparing Eq.(36) with Eqg. (32, and noticing that First, we consider the conductivity,, by using Eq.(39).
H(wq27T) is negligibly small for|Q—g|=¢*, we get According to Eq(17), o is given by the averaged value of
Uiy Jix over the FS, that is,

Ajk%< jq >|q7k’\<1/§ 1
> , = ——— 2— . 40
~Ji{(cog 0;(q)— 0;(k )])lq—k'|<l/§v (37) Ukx Jkx 1 2{|ka| a’k|kaUky|} (40)

—a?
wherek, k', andq are on the FS. Here, we have introducedajthough 1/(1- of) takes an enhanced value as is discussed
k” so thatk’ andk have the relationk} ,ky)=(—ky,—Ks)  above, the resultant,, is not enhanced by this factor. For
for keky>0 and & ,ky) = (ky k) for k,k,<0, respectively. example, if we assump,|~|v,|, which is satisfied near
The positions ok andk’ are shown in Fig. 8. We see that the cold spots in YBCO and LSCO, then Eg40)
k'~k+Q is satisfied in the momentum space. Moreover, we=|y,,|?/(1+ «,) is satisfied. This means that the conductiv-
assuméQ— (k—k')|=<¢& ! everywhere on the FS because it ity o, is smaller than that given by the Boltzmann approxi-
seems to be satisfied in the present numerical calculation byation, due to the vertex corrections for the current given by
the FLEX approximation. Thus, we obtain a simplified BS 7,,,(e,€’). This is confirmed by the numerical calculations
equation in Sec. VI.

Next, we discuss the Hall conductivity. By using Eg9),

Je=vi+ oy Jyr (38)  dJ/dk, is given by
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d B 20y B oxy/H~ = AL, (44)
W‘]kx: 1 7 Uky T 1- o2 kx
" %k %k RHNigz“‘iXQ,
1 [dog_  doyy where +(—) is for the hole-dopingelectron-dopinyg case.
+ 1— aﬁ dk, - dk, )’ (42) The factoré? comes from the vertex corrections for the cur-

rent introduced in this paper, which does not appear within

where By ,=da,/dk,. Hereafter, thex in equations is the Boltzmann approximation. We will confirm the analysis
equal to 'sgn(— keky). By using Eq.(36), which gives the of this section by numerical calculations based on the FLEX

definition of  , theng, , is given as theory in the next section.
Bk~ —E1Q—(k—k")], (42) VI. NUMERICAL RESULTS
when|Q—(k—k')|<¢ ! is satisfied. We can see théj . A. One-particle properties and magnetic properties obtained
is positive whenk+e-€,, is closer to the MBZ boundary by the FLEX approximation
thank is (e, is a unit vector alonge direction, ande>0 is Here, we show electronic properties obtained by the
a small Constamtand vice versa. FLEX apprOXImatlon. They are ImpOI’tant to understand the
As a resultA(K) introduced in Eq(22) is given by transport quantities. In this section, we use=8|to| for
YBCO in numerical calculations, considering that the band
1 d width W is 8|ty|. On the other hand, we usé=6|t,| for
= Ag(k)= —2( kaﬂgk) LSCO andU =5.5t,| for NCCO, to reduce the Stoner factor
v 11— 1/ in the FLEX calculation, as=max{Ux4(0)}. We have

checked the numerical results do not dependUogualita-
[U2 _U2 ] (43) t|Ve|y ) )
o Thy In this section, we puto|=1. Then, T=0.1 will corre-
spond to~500 K becausét,|~0.5 eV in the LDA calcula-
where we defind as the momentum which is tangential to tion. In the calculation, 409&-point meshes and 256 Mat-
the FS, and is along the anticlockwise direction. Thussubara frequencies are used. By solving the linearized
oy, /H is enhanced by the factor 1/(—1a§)~§2/20 or By, Eliashberg equations, we obtaifl.~0.02 (~100 K) for
« &2, contrary to the case af,,. The first term of Eq(43)is ~ YBCO and LSCO ah=0.85, which is close to th&, given
proportiona| to the Contribution giVen by the Boltzmann by the previous works by the FLEX approxima‘[ib‘}vﬂ:&zov‘lg
transport theory, whose sign is determined by the curvatur@|so, T.~0.01 for NCCO an=1.15. We find that the sym-
of the FS. It takes larger value inside of the MBZ, as showrmetry of the superconducting statedig - ,2-like in all cases.
in Fig. 2. On the other hand, the second term of &®) is Figure 10 shows the temperature dependence of the FS’s
negative inside of the MBZ, and is positive outside of it. for YBCO, NCCO, and LSCO, respectively. They are deter-
Clearly, this term is dominant outside of the MBZ becausemijned by the relatior, + ReZ, (0)= 4. In all the cases, the
|BiI>1 and|vﬁx—vﬁy|~|5k|2 is satisfied there. We notice FS’s transform so as to strengthen the nesting character as
that 8, ;=0 on the MBZ boundary and on th¢Y axis. the temperature decreases, which is more prominent in
The obtained results in HTSC's are summarized qualitaYBCO and LSCO. Apparently, this change of the FS makes
tively as follows(see Fig. & The portion of the FS inside of |Ry| smaller because its curvature around the cold spots de-
the MBZ gives rise to a positive contribution Ry . In other  creases at low temperatures. Now we look at the real part of
words, [d6,(k)/dkj]<0 inside of the MBZ. Whereas, the the self-energy which is the origin of the deformation of the
outside part of the MBZ gives rise to a negative contributionFS. According to Ref. 24,
to Ry in the presence of the strong AF fluctuations because

+ By
+(1—a@2

[d8;(k)/dkj]>0 there. In the abové,(k) is introduced in 3u? 1

Eg. (23). This change of the sign &}, never occurs within ReX(0)= - EXQ‘”Sf% Wit e

the Boltzmann approximation becaugel6,(k)/dk]<0 a’ “k-a
everywhere. X[2€ex—qIN|€—q/ wg| + g S €c—q)]

Because of the factorA) ~2 in Eq. (23), the Hall coef- (45)
ficient will be determined by the region near the cold spots.
As shown in Fig. 4, the cold spots locate insi@etside of  atT=0, wheree, is measured from.. This equation means
the MBZ in the case of YBCANCCO). As a result, we can that the sign oE,(0) is equal to that of ¢ — €, ) approxi-
understand the reason wRy;>0 in the hole doped systems, mately. Thisk dependence ak,(0) moves the FS towards
and why the sign oRy changes in the electron-doped sys-the MBZ boundary.
tems. Moreover, in the FLEX approximation, the flat-band
In conclusion, the temperature dependenc®gfis pro-  structure(i.e., extended saddle pojnis created around the
portional tog2=1/T both in the hole-doped systems and thevan-Hove singularity points¥ 7r,0) and (0;= ), because of
electron-doped ones. We find that thedependence ofr,,  the renormalization effect by 4/<104° This is also the ori-
and o,y /H for a system with the strong AF fluctuation are gin of the sensitive temperature dependence of the FS in
YBCO and LSCO shown in Fig. 10. This flat-band structure
Oy~ E A, is actually observed by ARPES experimeftts.
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FIG. 10. The temperature dependence of the FS’s for various
compounds. It is small and negligible in the casdJof 0. 0 &

Next, we consider thg dependence of the static magnetic
susceptibilityxg(O), given by Eq.(10). Because it does not
contain the vertex corrections required in the conservation
approximation, it gives a slightly overestimated value in the Ax (1,0)
underdoped regioff In general, the observe)@f](O) by the _
neutron diffraction experiments cannot be expressed by the FIG. 11. The y,q,) dependence of(0) obtained by the
simple phenomenological model, Ed): For YBCO, x§(0) FLEX approximation.
shows a peak aroungr Q= (r,7).>° On the other hand, it
is incommensurate for La s;SrsCuQ,, and shows a peak T=0.08. In conclusion, main characters pz(O) for each
aroundq~[(1— &), ],[ m,(1— &) ] for 0.2= 6=0.05>* compound are reproduced well by the FLEX calculation with

Figure 11 shows the calculated(q,) dependence of appropriate set of parametery{t,,U).

Xq(0) for YBCO (n=0.90, T=0.02), NCCO (=1.20, T Figure 12 shows the temperature dependence of
=0.02), and LSCO r{=0.85, T=0.06), respectively. We max{x4(0)} of YBCO, NCCO, and LSCO for different fill-
see thatyy(0) is commensurate for YBCO and NCCO, ing numbers. These plots are nothing but Thdependence
which is also consistent with neutron diffraction experi- of £2. Various experimental works on HTSC’s by neutron
ments. In the case of LSCQy,(0) shows an incommensu- diffraction or by NMR confirm that&? follows the Curie-
rate structure at low temperatures. AE=0.85, the peaks Weiss law qualitatively forT>T*, and its Curie constant
locate aig=(0.83,7),(,0.837) atT=0.02, which is con- increases asa—1.31%? As shown in Fig. 12, the FLEX ap-
sistent with experiments, and it becomes commensurate fgroximation reproduces both the temperature and the doping
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0.00 0.05 0.10 0.15 0.20

T

FIG. 12. The temperature dependence of ghakq,0)} for vari-
ous filling numbers. All of them follow the Curie-Weiss law, which 0.0
is a universal feature of HTSC's. In YBCO and NCCg(0) takes
the maximum value aj=Q. We note thatyo(0)= £ FIG. 13. Thek; dependence oA(k)) at various temperatures.

The T dependence oA (k) at the cold spot and the hot spot are
dependence of? in HTSC's for T<0.1. However, the cal- quite different.
culation of x4(0) including the vertex corrections will be

T=0.02
BZ XYBZ XY

required for more detailed studies. As shown in Fig. 13A(k;) at the cold spots decreases in
.Fmally, we discuss thé& dependence ah=—-ImZ (0  proportion toT qualitatively in all cases, which is consistent
+i6) on the FS. Here, we define with the analysis in Eq(34). [Note thatp,(0) takes larger

values around the cold spadjtgit the hot spots, howevefl,
dependence ofA(kj) deviates fromT-linear behavior. In
A(kH)EJ dk, Ay- pk(0) f dki pk(0), (46 fact, A(k)) at the hot spot is given by using ER2) as

wherek; andk, are the momentum parallel and perpendicu-

_ ; 3U2 [ dq (nT)?

lar to the FS, respectivelA (k) is an averaged value df ) t:_f _HX DAY L A—

over thek, -direction on the FS, which has a finite width at " An Jedug 9 M hwg(wgt TTI2)

finite temperatures. Figure 13 shows thedependence of 37U2

A(k)) over the 1/8 p_art of the_FS, as shown in Fig. 14. In o XQTgfl[l_(l_Fﬂ,-l-/zwsf)71/2]. (47)
each case, the relatiagA~T is realized around the cold 2Jv|

spots because 4/<10 is satisfied.

For YBCO and LSCOA (k) takes a maximum notonthe o o raquit
hot spots shown in Fig. 4, but on the BZ boundary where the ’
flat-band structure is created. As a result, the spectral weight
at the Fermi energy is reduced arouf€0), which is con-
sistent with ARPES experiments. Anki(k;) takes a mini-
mum at the cold spot. On the other hand, for NCCO, the hot
spot locates close to theY axis, and the cold spot locates on
the BZ boundary. It is quite important that the position of the
cold spots changes acrass-1 by using the FLEX approxi-
mation, which causes the change of sigrRpf as shown in
Sec. V. To prove this result, the ARPES measurements for
NCCO are desired. FIG. 14. The path ok in the case of YBCO.

(n,m)

00
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Acold/ Ahot YBCO (n=0.90)  T=0.02
10 y

0.0

0.0

-2.0

BZ MBZ XY
0'000 0.1 02T - 3 g
: - i FIG. 16. The obtained(k,) together withv (k) on the FS.
FIG. 15. The temperature dependence\gfiy/Apot-
d
As(K, €)= vix(€) | Jux(€) 5~ Jky(€)
T28« T for wy=T, JKy

Ahotoc - (48)
Téx T for wy=T. +{x—y), (51)

Jd
_Jky( 6) W\]kx( 6)
y

Thus, we find that\,,<\/T for a wide range of the filling, d
which is clearly seen i_n Fig. 1_3 in all the cases. This re_Iation Jip(@)=vi,(0)+ 2 f J€
does not contradict with thé-linear resistivity becausg is q 2m
determined mainly by the cold spot properties. .
Finally, we shgw %lhe tempera?urepde%endence of the an- XIMV_g(€=0+i8)[Gq(e)[*Igule), (52
isotropy of A(k)), r=Aco/Apet in Fig. 15. In all casest  where f(e)={exd(e—w)/T]+1}"%, and G(w+id) and
becomes smaller for the underdoped region, which is consiss (w+i8) are derived fromG(w,) and 3(w,) through
tent with recent ARPES experimerifsHowever, we see that the numerical analytic continuatiGi. We note that

r depends on the shape of the FS sensitively. The relation |G, (w)|?= mp(w)/Ay(w) and  |Gy(w)|? ImGy(w)

T, which is expected according to Eq84) and(47), is = 7p,(w)/2A2(w). Thee integration in the above equations
satisfield clearly only in YBCO. In conclusion, the relation are not difficult because its leading contribution comes only
re\T is less universal than the Curie-Weiss behavioxgf from |e|<T. As for the conductivity, the existence of the
in HTSC, which is reproduced by the FLEX approximation second term of Eq(49), whose derivation will be published
for all compooundgsee Fig. 12 elsewhere, has been overlooked in the literature so far. It
gives a quantitatively important contribution in the case of
ZkAk"‘T.

BecauseX,(w) satisfies the self-consistency condition,

In Sec. V, we find that the vertex correction from the MT vk(w) includes all the vertex correctiorta)—(c) in Fig. 7
term gives singular behaviors. In this subsection, we obtaigutomatically. Wheread,(w) contains only thea) process
the self-consistent solution fer,, andoy,/H, by using the  of 7,,,(¢,€e’) in the present calculation because the others
self-consistent Green function given by the FLEX approxi-give only tiny corrections as shown in Sec. IV and in Ap-
mation. We solve the BS equation fdg,(w) explicitly by  pendix B. In this sense, our theory satisfies the condition of
including all the MT terms. Here we do not use E(E7),  the conserving approximation well numerically. We did not
(19), and (22) because the energy integration in derivingfind any difficulty in solving the BS equatioi52) for
them have been done under the assumption 2pa(<T.  J, (w) numerically, since the self-consistency condition for
However,z, A ~T is realized as shown in the previous sub- G, () is satisfied in the FLEX approximatidn:® Figure 16
sec_tion. By this reason, we perform the energy integrationpows the obtaineﬁi(kH) for YBCO on the FS along the path
seriously by gakmg account of the energy dependenc@nown in Fig. 14. Its feature is close to the schematic one in
of vyu(w)=vi, +dReZ(w)/dk,, A(@)=-ImZ (@  Fig 9. We note thad, (k) is negative around the hot spots
+i6), Vi(w), andJy,(w) for the numerical calculations of in this figure. Clearly, such a region is enlarged in the case of

E—W €
cotan h—2_|_ tankﬁ

B. Resistivity and Hall coefficient

the transport properties. NCCO.
~ To obtainoy, andoy,/H, we solve the following equa-  Below, we examine the obtained numerical results for
tions self-consistently: YBCO, NCCO, and LSCO. The calculated temperature de-

pendence ofp=1/0,, and RHZ(O'Xy/H)pZ are shown in

de of Figs. 17 and 18, respectively. In these figures, we also plot
T =€, J — (— ﬁ—>(|Gk(e)|zvkx(e)‘]kx(e) the p°= 1/o5, andR} = (o5,/H) (p%)?, whereoy, andor, is
k T € given by re%Iacinngg(w) with vy, (@) in Eqs..(49) and
—Re[G(e)v2 ()}, (490  (50). Both o,, and oy, are equal to those derived by the

relaxation time approximation in the Boltzmann transport
theory, where the conservation laws are violated.
3 de of Resistivity.At first, we discuss thd dependences of the
oxylH=—e zk: J om 5) resistivity shown in Fig. 17, where we pet/A=1. T=0.1
corresponds te-500 K if we assuméty|~0.5 eV. In every
X |ImG(€)||Gy(€)|?Aq(k,€), (500  case bothp® and p show approximateT-linear behaviors,



14734 HIROSHI KONTANI, KAZUKI KANKI, AND KAZUO UEDA PRB 59
4.0 4.0
e—=e p (n=0.90) o—on=0.90
%---x py (n=0.90) YBCO 4 &---8n=0.85
30 [ o——0p(n=0.80) o a0t ——0n=0.80
0 +-—+p, (n=0.80)
20| Ry
20 |
10 | without VC
10} -
0.0 ' ' ' T *K
0.00 0.05 0.10 0.15 0.20 without VC (n=0.9)
0.0 ‘ - - T
15 0.00 0.05 0.10 0.15 0.20
e—-op (n=1.10) NCCO , ,
NN (f]"_j‘ -2‘0‘;) without VC (n=1.15)
=1.. - S e —3
10 b -~ p (n=1.20) ] 10
p e
0.5
*
0.0 - : - T
0.00 0.05 0.10 0.15 0.20 a e—eon=1.15
8---an=1.20
3.0
e—o p (n=0.90) -2.0 . . . T
%= py (1=0.90) LSCO 0.00 0.05 0.10 0.15 0.20
——0 p (n=0.80)
20 |+~ p (n=0.80) - 3.0
i —o n=0.90
P 2---8n=0.85
a9 &-——0n=0.80
10 f . 2.0
’ 2 without VC
i Ry
«
ol
0.0 . . . T 1.0}
0.00 0.05 0.10 0.15 0.20
FIG. 17. Temperature dependencepofind p°. We find p> p° .
in all the cases. Note that=1.0 in this figure corresponds te 4 0.0 K\ ;
%x10™* Q cm in single layer compounds. “VC” means the vertex - without VC (n=0.9) T
corrections for the current. We stress thiat/dT increases below 0.00 0.05 0.10 0.15 0.20

T~0.08 forYBCO and LSCO, which is caused by the VC, not by

the psendo-gap-formation in the DOS. FIG. 18. Temperature dependenceRpfandR, . R, is denoted

by “without VC”. We see thatR, (more preciselyR,,— Rﬂ) fol-
lows the Curie-Weiss type law in all the cases. This universal be-

reflecting the temperature dependencé pfat the cold spots  havior is ascribed to th@ dependence of?. Here we pute=1.
as shown in Fig. 18%2?* They are consistent with experi- Note that Jjne|~1.5x 103 cm?/C in HTSC's.
ments. In all the cases the relatipr>p° is realized, as is
expected from the analysis in Sec. V. In LSCO and YBCO,choosing the more appropriate set of parameters. Apparently,
the extrapolated value gf° at T=0 from the higher tem- we cannot reproduce the doping dependence of the residual
perature region is zero, while that pfseems to take a finite resistivity observed experimentally because we neglect the
value even in a pure system. This behaviopofan be ex- impurity effect.
plained by looking at Eq(40) becausex, decreases a$ Hall Coefficient.Next, we discus®R,; shown in Fig. 18.
increases, reflecting the decrease of the backward scatterifg higher temperature$~0.2, where¢<1 is satisfied, we
processes at higher temperatures. see thaiRHmRE, for all compounds. In all casefR,;— Rﬂ|

The doping dependence pfin YBCO and LSCO is very increases following the Curie-Weiss like behaviorTasle-
small for 0.8<n=0.9 by using the present set of parameterscreases. Moreover, its coefficient increases rapidly as the fill-
This behavior is expected qualitatively by E®@4), which  ing approaches ta=1, which is consistent with the experi-
shows (A )rs is independent oft in the case ofwy<T.  mental relation Ryx|1—n|~!. These behaviors are
Experimentally, however,dp/dT in La,_sSrsCuQ, in-  consistent with the analysis in Sec. V.
creases fo=0.10 moderately ag decreases. In this com- Moreover, the sign oRy in NCCO changes to negative
pound, dp,/dT~1.3x10"° [Qcm] for §=0.18 and 2.0 below T~0.08t,|~400 K, which is consistent with experi-
x10°® [Qcm] for 6=0.11 betweenT=100~300 K ments. The Boltzmann approximation cannot explain this be-
approximately’* This discrepancy will be improved by havior because the shape of the FS is holelike everywhere. In
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FIG. 19. T dependence of the Hall angle as aqff vs T2 in
YBCO and LSCO, for 0.0&2 T<0.08. The thin line represents the
cot(eﬂ) obtained within the Boltzmann approximation.

the case of LSCO, the FS around ¢,0) or (O ) are
convex in the overdoped region. In this cﬁecan be nega-
tive within the Boltzmann approximation. Experimentally,
Ry in La; -,SKCuO; becomes negative and almost tempera-  FIG. 20. k; dependence o8,(k) and S (k)) on the FS(see
ture independent fox=0.32, where no superconducting Fig. 14.

transition occurs and the AF fluctuations are very weak. In

the present calculation for LSCO &t=0.65, we findthat  yhich possesses two kinds of relaxation rafefigure 19
Ry is nearly zero forT=0.2-0.02, andRy~Ry, is real-  means thaR, follows the Curie-Weiss behavior, becayse
ized. As a result, important features B in LSCO are s proportional toT. We stress that the relation céf()« T2
reproduced in the present study fdr—n[=0.1. is also observed experimentally ink-BEDT-TTF

Here, we consider th& dependence of the Hall coeffi- compound® or in V,05,7° both of them are also nearly AF
cient given by the Boltzmann approximation. First, we con-germi liquids.

sider the effect of thd dependence of the shape of the FS.  Here, we discuss the following functions:
As shown in Fig. 10, the curvature of the FS around the cold

spots decreases & decreases, which should mak|

smaller. Secondly, we discuss thE dependence ofr .

= Ao/ Anot, Which becomes smaller at low temperatures as Swy(kp)= _J Olklpk(o)'A‘S(k’O)(Ak(O))z
shown in Fig. 15. This effect makd®?| larger at lowT

because only the cold electrons contribute to the transport w2905k 1
phenomena then. This mechanism has been pointed out by __|‘J(kH)| ( dk; ){A(k )}2’
several authors to explain the enhancement Rjf in |
YBCO.22*For this reasonR’, of YBCO slightly increases

at T<0.05 in Fig. 18, where o \/T is observed. However, wherek; is the momentum along the F&(K, €) is given by

R?, decreases moderately in LSCO, which means that theEq'(Sl)’ andk, is the momentum perpendicular to the FS. It

effect of the change of the FS is stronger. In conclusion!> clear thatoy, /H = [ rsdkjS,y(k)). We also definey, (k)
through the cancellation of these two effects, the Hall coef—b% replacngkMO with vy, in Eq. (52), which means that
ficient given by the Boltzmann transport approximation isxy/ H =/ rsdkiScy(k)). Figure 20 shows thk dependence
nearly 1he and is not enhanced significantly. of Syy(kj) and Sgi/(kH) along the path shown in Fig. 14. In
Now we stress thaRy in our calculation follows the both cases of YBCO and NCC@ (k) is positive every-
Curie-Weiss law, even if th€ dependence of the FS is taken Where. Whereass, (k) is positive inside the MBZ and
into account. Undoubtedly, this behavior Rf, comes from negative outside of it, which is consistent with the analysis in
the vertex corrections for the current, which is proportionalSec. V. _
to xq as shown in Eq(44). In fact, the calculate®Ry are In the case of YBCOS,(k|) takes a maximum value on
similar to those ofyo shown in Fig. 12, in all cases. In the XY axis because it is a cold spot for YBCO. It takes an
summary, the vertex corrections for the current are essenti@nhanced value because the relati®g(Keoi)/Sey(Keoid
for the Curie-Weiss behavior dRy in HTSC’s observed = 111— a?(Keod) ] &% is expected according to E¢3). As
experimentally. This universal behavior Rf, is quite robust @ result, Ry=£&? is realized. We have also calculated

(53

in the present calculations. S,y(ky) for LSCO, and found that its behavior is similar to
Hall Angle. We also discuss the temperature dependencthat for YBCO in spite of the incommensurability £{q,0).
of the Hall angle 6, which is defined by co#y) On the other hand, in the case of NCCg),(k) takes a

= oyx/(oyxy/H)=p/Ry . Figure 19 shows that cad(;) is ap- ~maximum value on the BZ boundary which is a cold spot of
proximately proportional td2 for 0.02<T<0.08. This rela- NCCO. It is also enhanced becauSgy(kco,d)/SEy(kcmd)
tion has been observed experimentally in various kinds of<8,(ked > &2 is expected by Eq(43) in this case. As a
HTSC's for T=100-300 K>"8Our theory can explain this result, R« — &2 is realized and it becomes negative at low
relation without assuming the non-Fermi-liquid ground statetemperatures.
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VIl. SUMMARY AND DISCUSSIONS culated some vertex parts of the self-energy. As an alterna-

. . . . tive possibility, the preformed pairs may be formed for
First, we outline the main results of this paper. We have<.|.*_ This scenario has been intensively studied

calculated the conductivityr,, and the Hall conductivity recently>®59

oxy/H in the single-band Hubbard model based on the |, Ref 34, it is shown that a similar numerical study
Fermi-liquid theory. We have calculated the total currgnt  based on the AF spin-fluctuation model also leads to the
including the vertex corrections, which are demanded in thenhancement oR,;, by using the set of spin fluctuation
framework of the conservation approximation by Baym andparameters consistent with experiments. Although the con-
Kadanoff. In nearly AF Fermi liquids, the Bethe-Salpeter Eq.servation laws are not satisfied exactly in that study, it con-
(19 for J can be simplified to Eq(38), which is solved firms the importance of the vertex corrections for the current.
easily. The obtained, shows nontrivial critical behaviors as It indicates that the numerical results presented in this paper
seen in Fig. 9, which is the natural consequence of the strongf?ould not be taken as an artifact specific to the FLEX ap-
backward scatterings caused by the strong AF fluctuationgroximation. . _ _ ,

In conclusion,R, &2 is realized in HTSC’s through the ~ Now we would like to discus®,, in heavy Fermior(HF)

anomaly ofJ,. This mechanism has not been pointed Outcompounds. In the paramagnetic compourRs, shows a
previously. drastic temperature dependence and takes an enhanced

6062 iy a2 B}
We also have done the numerical calculations by usin 2Iru2d in r’i‘tafwct;?:psrigu;eghghteh;egggi;;p éz'?be
the FLEX approximation. We can reproduce characteristi ved| y pounds, . ' positiv

features of the spin fluctuations for YBCO, NCCO, and or all compounds. It is explained in terms of the anomalous

LSCO, by using the appropriate set of parameters. In eac}:n|a|| .effect (AHE), which origina’ges from the localized .
case,dy2_,> superconductivity is realized &,=50—100 -orbital angular momentum, and its enhancement factor is

o ) ~ given by xo=xq-0(0).2***On the other hand, in many HF
K. Next, we have determined}, by solvmg.Eq.(l_g). numeri-  compounds with AF ground state, the relatiBn=cp? is
cally, and calculated both andRy for various filling num-

arr : not satisfied and the sign dfR,/dT at T>Ty changes de-
bers. As shown in Fig. 18, the overall featuredRpfin each ending on compound®-62 This behavior is also observed
compound are reproduced quite well. Especially, both th

) ' X n non-Fermi-liquid HF compounds, which is near the AF
relationsRy=1/T and pxT are obtained at the same time.

_ btain quantum phase boundary, e.g., Ce(NPd,),Ge,.> We
We have found thaR,; <0 is realized in NCCO because the giregs that the normal Hall effect can exceed the AHE and

cold spots in NCCO locate around the BZ boundaries, WhichHocXQ will be realized in these nearly antiferromagnetic
may be verified by ARPES experiments. HF compounds, whergo> x, is realized. We note that

~ The vertex corrections mentioned above are not include 0 (T—Ty)~*Zin three dimensions is obtained by the SCR
in the Boltzmann approximation. We have confirmed that th heory

Hall coefficient given by the Boltzmann approximatiﬁiﬁl We also comment on the-BEDT-TTF organic supercon-
remains of orde©(1/ne) if we take theT dependence of the qyctors. Several experiments show tiRg of this system
m(t)eractmg FS into account correctiyee Fig. 18 Moreover,  increases a¥ decrease®” This will be explained accord-

Ry remains positive because the FS is holelike everywhergng to our theory, because the recent studies based on the
In conclusion, the anomalous behaviorsRyf in HTSC is  FLEX calculation reveal that there are large AF fluctuations
reproducible only if the vertex corrections for the current arejn «-BEDT-TTF compounds, which are the origin of the
taken into account. d-wave superconductivit§**> Also, the relationRy 1/T is

Here, we discuss the validity of the relati®p<£” given  ghserved in the superconducting ladder compound
by Eg. (44). In a conserving approximatiotincluding the St Ca,Clyy Oy .% The main electronic properties in this
FLEX approximation the interactionV,(w) which gives  compound, e.g., the pseudogap behavior andithave su-
ImZ(w) also determines the MT-type vertex correctionsperconductivity, are well explained by the FLEX
for J,, as shown by Eqg32) and(36). This condition leads approximatiorf In addition,Ry in V,05 shows the singular
to ay~1 in Eq. (38), which strongly suggests th&t,«&> T dependence near the AF phase boundafy.
will be valid beyond the FLEX approximation. Now we as-
sume that the relatioRy > £2 is valid near the half filling
case (~1). Then, the experimental relation nfg,|}
«[1—n|1 is derived qualitatively because n{g%«|1—n|™* We are grateful to Kosaku Yamada for stimulating discus-
is observed experimentally near half filling. Next, we con-sions. We also thank T. Moriya, H. Fukuyama, M. Satoh, H.
sider the Hall coefficient below*, whereRy in YBCO Kohno, and Y. Yanase for valuable comments. This work
decreases ab decreases experimentally. It is also consistentvas financially supported by a Grant-in-Aid for Scientific
with the theoretical relatioiR, < &2 becauset slightly de-  Research on Priority Areas from the Ministry of Education,
creases beloW* experimentally’® Science, Sports and Culture.

Unfortunately, the FLEX approximation becomes insuffi-
cient near the Mott insulating state. By this reason, we did
not apply the present method for &@&=<1.1. Experimen-
tally, both|Ry| anddp/dT for 0.9<n=1.1 increases rapidly
asn—1. The FLEX approximation is also inappropriate for  In this appendix, we derive the irreducible vertex
study of the electronic states beloW, which is one of the 7, (€,€’) which are the kernel of the BS equation, Efp).
important future problems on HTSC. Recently, Ref. 57 cal-For this purpose, we perform the analytic continuation for
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FIG. 21. I'(¢,€’;0) (w0>0) is an analytic function inside of Ry
each(ILIILIV ) region, and has the cuts on each line.
3.0
I'(en, €0 ;0), Wherew,=27TI (1>0) is the external fre-
guency. The irreducible vertices consistent with the FLEX 20}
approximation are given by Eq&6)—(28).
According to Eq.(12) in Ref. 27, 1.0
T ")=cot h€: r! DT ! %00 0.05 0.10 1 y
' (€,€")=cotan 5T [[y (€,€)—T (€¢€)] . ‘ . 0.15 0.20

- FIG. 22. The obtained dependence of the resistivity and the
If € IV , Hall coefficient. MT and MT-AL are given byJ,,(w) derived
+cotan 2T [T (€ €)=y (€,€)] from Egs.(52) and(B1), respectively.
E’ H H H H
—tanhz—T[F:('k/(e,e’)—F:(Y(,(e,e’)], (A1) whereC is a real function, aniVy(w) is given by

wherel'(e,€’), T'"(e,e’) andT"'V(e,€e’) are given by the Wq(w)=§U2|UXZ(w)+1|2+ 1U2|ng(w)—1|2—uz.
analytic continuations of'(e,,¢e, ;) for regions I, lll, 2 2

and IV in the complex é,¢') plane shown in Fig. 21, re- (A6)
spectively. . In the same way, taking the relation{&i + e+ }>0 in the
Next, we take the limitw— +0. For Eq.(26), we get 11,1l region and Im{e’ + e+ w}<0 in the IV region into ac-
count, we get for Eq(28) as
F(ki),“(e,e')=VR(k—k',e'—e), (A2) g q(28)
(@ i (@)IV , dw
P e €)=l (e€) M@ (e =T ee)=3 | Fowo
=VA(k—k', e —€), (A3)

where A(R) represents the advancddetarded function. 5¢ tanhw+6|mGR (0+€)GR . (—w+e)
Taking account of the relation ¥’ — e}>0 in the Il region 2T k+q k' +q

and Im{ e’ — €} <0 in the IIL,IV region, we get for Eq(27) as

w—¢€'
R
(Ol ) dw w+e R +tanh?Gk+q(w+€)
T (€€ )=% > Wy()| tanho—Im GE, j(w+e)
o w+e X|mGE,+q(_ﬁ)+e’) —I—C’, (A?)
><Gk,+q(w+e’)+tanh?
R , dw w+e
XGﬁ+q(w+e)|mGk,+q(a)+e) +C, (A4) Fl((f(),lv(e,e')Zz fz_wq(w) tanh?
q v
dw R A
T (e,e)=T RN (e,e)=2 f 5 Wy(w) XIM G, g(@+€)Gy, o —w+€)
q
wte R A +tanha:GA (w+€)
X tanhflmGk+q(w+e)Gk,+q(w+g') 2T k+q
ote g R : XIMGR . (—w+e)|+C’ (A8)
+tanh?Gk+q(w+e)ImGk,+q(w+e) kgl T@T€ )

+C, (A5)  whereC’ is a real function.
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By inserting the above equations into EdA1l), APPENDIX B: CORRECTIONS FROM THE AL TERMS
T (€n, € ;@) is given byZ®+T®) 4+ 7(%) They are de- FOR Jy,
rived as

In this appendix, we study the contributions from the AL
terms to the total currenl, . For this purpose, we solve the

cotanh— tanh2—> BS equation forJ,(w) including both the MT process and
AL processes, and compare the obtained results with those in
Sec. VIB. The exact Bethe-Salpeter equation is

’Z()(ee

X 2i |kar_k(€I_€+i5), (Ag)

a,b,c
fee ¢ Il @) =vigu(@)+ 2 A (@), (81)
b) " — _
7f(,k,(e,e ) cotanhF tanhz—_l_)é f do Wy(w) o
€
w+e w+e' A (@)= 2 f _7«21( Ay(e) qu(€), (B2)
X (—ir)| tanh T —tanh 5T q
where r=a,b,c and 7§rq(w €) are given by Eqs(A9)—
X pirg(0+ €)pyrig(w+e'), (A10)  (A11). Note that?f('g(w €) are purely imaginary.
For simplicity of the numerical calculation, we put all the
- . energy variables iy (w), Ay(w) andJy,(w) as zero for
€ € €
7f<(,;)k’(6'6’): Cotanh_z_l_ _tanhz_T)E J'deq(w) AJk (0) and AJg (). The strict justification of this sim-
q pl|f|cat|on is d|ff|cult although it may be sufficient for a
N . rough estimation of the magnitude of the AL terms. We rep-
X (—im)| tanhoe— + tanh—— ) resent the solution of EqB1) asJy, ().
2T Figure 22 shows the resistivity and the Hall coefficient
MT+AL MT+AL
X pres g @+ €)pyr g —w+e€'). (A11) Ry for YBCO (n=0.90) derived fromJy (w), to-
gether with those given in Sec. VIB. We see that the AL
Note that?ﬁ, C)(e,e’) is purely imaginary. terms give only a small correction pandRy .
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