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Self-organization of vortices in type-II superconductors during magnetic relaxation
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We revise applicability of the theory of self-organized criticality~SOC! to the process of magnetic relaxation
in type-II superconductors. The driving parameter of self-organization of vortices is the energy barrier for flux
creep and not the current density. The power spectrum of the magnetic noise due to vortex avalanches is
calculated and is predicted to vary with time during relaxation.@S0163-1829~99!07221-5#
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I. INTRODUCTION

The magnetic response of hard type-II superconductor
particular magnetic flux creep, is an issue of contempor
research~see for review Refs. 1–3!. In the 1960’s a very
useful model of the critical state was developed to desc
the magnetic behavior of type-II superconductors.4–6,8 One
of the distinguishing features of this behavior, observed
perimentally, is that the density of flux lines varies across
whole sample. This model of the critical state remains in u
even though a significant progress has been made in un
standing the particular mechanisms of a magnetization
creep in type-II superconductors.1–3,6 It has also been note
that the magnetic flux distribution in type-II superconducto
is, in many aspects, similar to a sandpile formed when,
example, sand is poured onto a stage.6,8,7When a steady stat
is reached the slope of such a pile is analogous to the cri
current densityj c of a superconductor. The study of the d
namics ~i.e., sand avalanches! of such strongly correlated
many-particle systems has led to the development of a
concept called self-organized criticality~SOC!, proposed
originally by Bak and co-workers.9 Tang first analyzed the
direct application of SOC to type-II superconductors.7 Later
numerous studies significantly elaborated on this topic.10–14

In practice, especially in high-Tc superconductors, persis
tent current densityj in the experiment is much lower tha
the critical current densityj c due to ‘‘giant’’ flux creep.3 The
classical concept of SOC is strictly applied to the vicinity
the critical statej 5 j c , and it describes the system dynami
towardsthe critical state. Nevertheless, it is tempting to an
lyze the magnetic flux creep in type-II superconductors wh
the system movesawayfrom the critical state. The dynamic
of the avalanches, triggered by thermal activation, can
described by the modified theory of self-organiz
criticality.12–14 However, it was found that modifications o
the relaxation law due to vortex avalanches are minor
can hardly be reliably distinguished in the analysis of exp
mental data. Furthermore, flux creepuniversality has been
analytically demonstrated in the elegant paper by Vino
et al.10 Universality of the spatial distribution of the electr
field during flux creep has also been found by Gurevich a
Brandt.15 The direct application of SOC to the problem
magnetic flux creep thus meets a number of serious gen
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difficulties. It is clear that critical scaling~power laws for
vortex-avalanche lifetimes and size distributions! observed
in the vicinity of the critical state must change during lat
stages of relaxation due to a time-dependent~or current-
dependent! balance of the Lorentz and pinning forces.

In this paper we propose a physical picture of se
organization in a vortex matter during magnetic flux creep
type-II superconductors. In this approach the driving para
eter is the energy barrier for magnetic flux creep rather t
the current density. We show that notwithstanding its min
influence on the relaxation rate, self-organized behavior m
be observed by measuring magnetic noise during flux cre

II. BARRIER FOR MAGNETIC FLUX CREEP AS THE
DRIVING PARAMETER OF SELF-ORGANIZATION

We consider a long superconducting slab infinite in thy
andz directions and having width 2d in the x direction. The
magnetic field is directed along thez axis. In this geometry,
the flux distribution is one-dimensional, i.e.,B(r ,t)
5@0,0,B(x,t)#. As a mathematical tool for our analysis w
use a well known differential equation for flux creep:1,2,5

]B

]t
52

]

]x
$Bv0 exp@2U~B,T, j !/T#%. ~1!

HereB is the magnetic induction,v5v0 exp@2U(B,T,j)/T# is
the mean velocity of vortices in thex direction andU(B,T, j )
is the effective barrier for flux creep. Note that we ado
units withkB51, thus energy is measured in K. Since in o
geometry 4pM5*V(B2H)dV we get for the mean volume
magnetizationm5M /V from Eq. ~1!

]m

]t
52A exp@2U~H,T, j !/T#, ~2!

whereA[Hv0/4pd.
It is important to emphasize that we do not modify t

pre-exponent factorBv0 of Eq. ~1! or A of Eq. ~2!, as sug-
gested by previous works on SOC~see, e.g., Ref. 7!. Such
modifications result only in logarithmic corrections to th
effective activation energy, and may be omitted in a fl
creep regime.12–14 Instead, we concentrate on the details
the spatial behavior of flux creep barrierU(x), as analyzed
14 687 ©1999 The American Physical Society
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FIG. 1. Results of numerical solution of Eq.~1! for U( j )5U0(B/B0)5( j c / j 21) at j , j c . Spatial distribution of magnetic induction
B(x)/H ~filled squares!, corresponding profile of the normalized current density~solid line!, and the corresponding profile of the effectiv
barrier for flux creepU(x)/T ~open circles!.
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in detail in our previous work.16 In that work Eq.~1! was
solved numerically and semianalytically for different situ
tions. We emphasize that, in general, the barrier for
creep depends on magnetic fieldB, and persistent curren
density j (x) is not uniform across the sample~see Fig. 1!.
Thus, j cannot be used as a driving parameter for a S
model. Instead the relevant parameter isU, which stays con
stant across the sample. Also, since experiments on mag
relaxation are usually carried out at constant temperature
at high magnetic field, we can assumeU(B,T, j )5U( j ). The
central results of Ref. 16 are shown in Fig. 1 using a ‘‘c
lective creep-type’’ dependenceU( j )5U0(B/B0)5( j c / j
21) as an example , see also Eq.~5! below ~other models
are analyzed in Ref. 16 as well and produce essentially s
lar results!. Filled squares in Fig. 1 represent the distribut
of the magnetic inductionB(x)/H at some late stage of re
laxation~so thatj , j c), the solid line represents the norm
ized current density profile~note thatj c is constant across th
sample!, and open circles show the profile of the effect
barrier for flux creepU(x)/T. All quantities are calculate
numerically from Eq.~1!. The important thing to note is tha
the energy barrierU(x) is nearly independent ofx, so that its
maximum variationdU is of order ofT. As also shown from
general arguments,16 such behavior means that the flux
system organizes itself to maintain a uniform distribution
the barrierU across the sample.

The vortex avalanches are introduced in an integral w
An avalanche of sizes causes a change in the total magne
momentdM[s. This change is equivalent to a change of
average current densityd j 5dMg5gs, whereg52c/dV. If
the barrier for flux creep isU( j ), then the variation of cur
rent d j leads to a variation of the energy barrier

dU5U]U

] j Ud j 5gU]U

] j Us. ~3!
x
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As mentioned above, maximum fluctuation in the ener
barrier udUumax is of order ofT in the creep regime (dU,
,U). Any fluctuationdU larger thanT is suppressed befor
it arrives to the sample edge due to exponential feedbac
the local relaxation rate, which is proportional
exp(2U/T) @Eq. ~1!#. This means that only fluctuationsdU
<T can be observed in global measurements of the sam
magnetic moment. Thus,

sm5
T

gu]U/] j u
}VT, ~4!

where we denote the maximum possible avalanche assm ,
which depends on time via]U/] j . It is worth noting that Eq.
~4! gives the correct dependence ofsm on the system size
and on temperature. It is clear that in a finite system
largest possible avalanche must be proportional to the sys
volume. Since it is thermally activated, it is proportional
temperatureT, consistent with our derivation. The characte
istic time-dependent upper cutoff of the avalanche size w
experimentally observed by Fieldet al.12 who studied mag-
netic noise spectra at different magnetic field sweep ra
i.e., at different time windows of the experiment.

Our central idea is that in the vicinity ofj c the system of
fluxons, indeed, exhibits self-organizedcritical behavior, as
initially proposed by Tang.7 During flux creep, it maintains
itself in a self-organized, however,not critical state in the
sense that it cannot be described by the critical scaling.
self-organization manifests itself by maintaining almost s
tially constant energy barrierU. Avalanches do not vanish
but there is a constraint on the largest possible avalanche
Eq. ~4!. Importantly,sm depends upon current density and,
we show below, decreases with decrease of current~or with
increase of time!, so their relative importance vanishes.
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In order to calculate physically measured quantities let
derive the time dependence ofsm assuming a very usefu
generic form of the barrier for flux creep, introduced
Griessen19

U~ j !5
U0

a F S j c

j D a

21G . ~5!

This formula describes all widely known functional forms
U( j ) if the exponenta attains both negative and positiv
values. Fora521 Eq. ~5! describes the Anderson-Kim
barrier;5 for a521/2 the barrier for plastic creep20 is ob-
tained. Positivea describes collective creep barriers.1 In the
limit a→0 this formula reproduces exactly logarithm
barrier.18 An activation energy written in the form of Eq.~5!
results in an ‘‘interpolation formula’’ for flux creep1 if the
logarithmic solution of the creep equationU( j )5T ln(t/t0) is
applied17 ~for aÞ0):

j ~ t !5 j cF11
aT

U0
lnS t

t0
D G21/a

. ~6!

For a50, a power-law decay is obtainedj (t)5 j c(t0 /t)n,
wheren5T/U0.

Using this general form of the current dependence of
activation energy barrier, we obtain from Eq.~4!

sm~ j !5
T j

gU0
S j

j c
D a

~7!

and

sm~ t !5
T jc

gU0
F11

aT

U0
lnS t

t0
D G2(111/a)

. ~8!

As we see, the upper limit for the avalanche size decrea
with the decrease of current density or with the increase
time for all a.21. Fora,21 the curvature

]2U

] j 2
5

~a11!

j 2
U0S j c

j D a

~9!

is negative and largest avalanche does not change with
rent, but is limited by its value at criticality. In this cas
self-organizedcriticality describes the system dynami
down to very low currents. On the other hand the Kim
Anderson barrier must be always relevant whenj→ j c ,1 thus
our model produces a correct transition to a self-organi
critical state atj 5 j c . In practice, most of the observed cas
obeya>21 andsm decreases with decrease of current d
sity ~due to flux creep!.

III. AVALANCHE DISTRIBUTIONS AND THE POWER
SPECTRUM

Before starting with calculation of the power spectrum
the magnetic flux noise due to flux avalanches, let us st
that the time dependence ofsm is very weak@logarithmic,
see Eq.~8!#. This allows us to treat the process of the fl
creep as quasistationary, which means that during a s
time, as required for the sampling of the power spectru
current density is assumed to be constant. In more soph
cated experiments12 the external field can be swept with th
s
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constant rate, which insures that the current density does
change, althoughj , j c . Actually, constant sweep rate fixes
certain time window of the experimentt/t0}1/(]H/]t).
Thus, decreasing the sweep rate allows the noise spect
be studied at effectively later stages of the relaxation.

Once an avalanche is triggered by a thermal fluctuati
its subsequent dynamics is governed only by interactions
tween vortices for which motion isnot due to thermal fluc-
tuations. Thus, we expect same relationship between the
lanche lifetimet and its sizes as in the case of a sandpile
t(t)}ss(t) andtm(t)}sm

s (t), respectively. Using the simpli
fied version of the distribution of lifetimes estimated for
superconductor in a creep regime from computer simulati
by Pan and Doniach13

r~t!} exp~2t/tm!, ~10!

and assuming that avalanches of sizes and lifetimet con-
tribute the Lorentzian spectrum

L~v,t!}
t

11~vt!2
, ~11!

the total power spectrum of magnetic noise during flux cre
is

S~v!5E
0

`

r~t!L~v,t!dt. ~12!

Using Eq.~10! we find

S~p!}
1

2p2 H cosS 1

pDReFEiS i

pD G2sinS 1

pD ImFEiS i

pD G J .

~13!

Herep[vtm(t) and Ei(x)5*0
`e2xh/hdh is the exponential

integral. The power spectrumS(v,t) described by Eq.~13!
is plotted in Fig. 2 using a solid line. Since there an upp
cutoff for the avalanche lifetime attm , the lowest frequency
which makes sense is 2p/tm . Thus, only frequency domain

FIG. 2. The power spectrumS(v,t) described by Eq.~13! ~solid
line! and the approximate asymptotic solution~dashed line!, Eq.
~14!.
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14 690 PRB 59R. PROZOROV AND D. GILLER
2p/tm,v (p.1) is important. In the limit of largep, the
spectral density of Eq.~13! has a simple asymptote:

S~v!}
ln~p!2ge

p2
, ~14!

where ge'0.577. . . is Euler’s constant. This simplifie
power spectrum is shown in Fig. 2 by a dashed line. Fop
.10 this approximation is quite reasonable. The usual w
to analyze the power spectrum is to present it in a fo
S(v)}1/vn and extract the exponentn simply as n5
2] ln(S)/] ln(v). In our case the parameterp5vtm is a re-
duced frequency, so the exponentn can be estimated as

n52
] ln~S!

] ln~p!
522

1

ln~p!2ge
. ~15!

This result is very important, since it fits quite well the e
perimentally observed values ofn which were found to vary
between 1 and 2.12,21As seen from Fig. 2, it is impossible t
distinguish between real 1/vn dependence and that predicte
by Eq. ~13! at large enough frequencies. Remarkably,
many experiments the power spectrum was found to dev
significantly from the 1/vn behavior at lower frequencies
which fits, however, Eq.~13!.

Using Eqs.~13! or ~14! one can find the temperature
magnetic field and time dependence of the power spect
substitutingp5vtm5vsm

s and using values ofsm(H,T,t)
derived in the previous section. Specifically, from Eq.~8! we
obtain that at any given frequency, the amplitude of a pow
spectrum increases with time in the collective creep regi
but saturates in the case of the logarithmic barrier and
mains constant in the case of the Kim-Anderson barrier.

In general, we emphasize that the power spectrum of
magnetic noise during flux creep depends on time. Si
parameterp decreases with the increase of time, the expon
n becomes closer to 1 during flux creep. At these later sta
of relaxation the effect of the avalanches is negligible a
n,
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magnetic noise is mostly determined by thermally activa
jumps of vortices with the usual~noncorrelated! 1/v power
spectrum. Thus, the manifestation of the avalanche-dri
dynamics during flux creep is noise spectra with 1/vn and
decreasingn(t) when sampled at different times during r
laxation. This explains the experimental results obtained
Field et al.,12 who measured directly vortex avalanches
different sweep rates. Those found that the exponentn de-
creased from a relatively large value of 2 at a large sw
rate of 20G/sec to a smaller value of 1.5 for a sweep rate
1 G/sec. This is in good agreement with our model.

IV. CONCLUSIONS

In conclusion, self-organization of vortices in hard type
superconductors during magnetic flux creep was analyz
Using results of a numerical solution16 of the differential
equation for flux creep, it was argued that the self-organi
criticality describes the system dynamics atj 5 j c . During
flux creep, the vortex system remainsself-organized, but
there isno criticality in the sense that there are no simp
power laws for distributions of the avalanche size, lifetim
and for the power spectrum. The driving parameter of
self-organized dynamics is the energy barrierU(B, j ) and
not the current densityj, as proposed by previous work. Us
ing a simple model the power spectrumS(v) of the mag-
netic noise is predicted to depend on time. Namely, fitt
S(v) to a 1/vn behavior will result in a time-dependent ex
ponentn(t) decreasing in the interval between 2 and 1.
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