PHYSICAL REVIEW B VOLUME 59, NUMBER 22 1 JUNE 1999-II

From microscopic theory to Boltzmann kinetic equation: Application to vortex dynamics
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We show how to lift the problem of calculating the force acting on a topological defect in a superfluid from
the microscopic to the semiclassical level: Starting from the microscopic kinetic equations for a clean super-
conductor, we derive a Boltzmann equation for the quasiparticle distribution function in and around the defect.
The velocityq and forceb appearing in this Boltzmann equation are given through the Hamiltonian equations
q=¢9pEn(p,q) andb= —dqEn(p,q), whereE,(p,q) denotes ther{th branch in thg spectrum of the quasi-
particles in the vicinity of the defect. Second, we reformulate the microscopic expression for the force acting
on the defect in terms of the total momentum transfer of the quasiparticles from the heat bath to the vortex
core. We illustrate our result with an application to vorticesiwave superconductors, where we derive the
vortex equation of motion and identify the Magnus, Hall, and dissipative fof&€463-182699)11321-3

I. INTRODUCTION in the small parameterpgé) <1, the equations for the
distribution functionf have been obtained without assuming

The microscopic nonstationary theory of superconductivthe spatial variations dfA| andvg to be small; however, the
ity based on the Green function technique in the real-timgesulting equations did not have the canonical form
representatiol? has established itself as a powerful method
to describe the vortex dynamics both in dikfer a review, af of J9E, OIE, of (4
see Ref. Band in clean superconductdfs as well as in e === . 1)
. _ ; _ gt 99 op aq ap \at)_,
other superfluid Fermi system§.However, a practical dis- co
advantage of the method is its mathematical complexity _ L .
which tends to hide the physical picture of the phenomenonHere.’ ?ﬁﬂa.t)cf“ IS t:}et colhsmn;ntegreﬂ an(Etn(q,p()j 's ﬂtf
For a clean system, where the excitation spectrum is weffludsiclassical excitation spec runl, charac er,|’ze “y € ca-
' . . . nonically conjugated generalized “coordinatg’and “mo-
defined, an alternative way to deal with dynamical processes ; .
is based on the semiclassidalr quasiclassicalBoltzmann Mmentum™ p of the e>$C|tat_|on .(] dgnotes Fhe .set of ot.her
guantum numbejs It is this kinetic equation in canonical

iclassical G ¢ . h he Bol Jorm which was successfully applied by Stéhe the vortex
quasiclassical Green function approach to the OtzmalnlEiynamics in clean superconductors and which produced re-

equation has been demonstrated by Keldyhe quasiclas-  g\jis consistent with those of a whole-scaled Green function
sical approximation usually applies well to superconductors.5culation.

since, typically, the coherence lengghis much larger than In this paper we present a microscopic derivation of Eq.
the quasiparticle wave length*. Generalized sets of ki- (1): i.e., we demonstrate that the kinetic equations for the
netic equations have been derived for diffiyr a review, see generalized distribution function as derived from the quasi-
Ref. 3 and clean superconductofsee, for example, Refs. classical Green function version of the microscopic nonsta-
10 and 11. In the review? (see also references thergithe  tionary theory can be further transformed into the simple and
kinetic equation has been derived under the assumption of ghysically transparent canonical form of Ed). We restrict
nearly constant magnitude of the order paraméteand of  ourselves to the particular example of vortex dynamics; the
the superflow velocityvs (more precisely, their gradients calculation can be easily generalized to include the dynamics
have been assumed to be slow such ¥k 1, wherek is  of other topological defects in superfluid Fermi systémsg.,

the characteristic wave vector of the variations|A] and see Ref. 18

Vo). It has been shovifl that this kinetic equation can be  In a second step, we derive the corresponding expressions
written in the form of a Boltzmann transport equation, andfor the force and the torque acting on a moving vortex: we
some applications of this method have been considered. Urshow that, within the quasiclassical approximation, the force
fortunately, the approach of Ref. 10 could not be applied td= can be represented as the momentum transfer from the heat
the dynamics of vortices, because the basic assumption dfath, via the localized gquasiparticle excitations, to the vortex,
slow spatial variations is not justified near the vortex core. A
more general scheme of deriving the kinetic equations from

dgygd
the microscopic theory for clean superconductors has been F=—> f d"qd’p f(q'p)%' )
developed in Ref. 11. Using the quasiclassical approximation n (2m)d ot
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where d;p,= — d4En(d,p). Our analysis thus provides a mi- . 1 .

croscopic verification of the phenomenological approach to 2(rtgty) = mg(rl!tl;r21t2)|rl=r2=r'

the vortex dynamics based on the concept of semiclassical

particles obeying the Boltzmann kinetic equation. In this lat-The equation of motion for the Keldysh Green functighs
ter approach, the nonequilibrium distribution of the quasiparcgn pe written in the form

ticles in the vortex core follows from the solution of a Boltz-

mann equation, where the quasiclassical spectinplays 5_1(f1,t1;51)5(f1,t1;f2,tz)
the role of the Hamiltonian, and the force acting on the vor-
tex results from the forcep,/dt the quasiparticles exert on —G(ry 500, t)G Mot p0) =21yt 112, t0),
the vortex core.
We illustrate our result with an application sawave su- @)

perconductors, where we make use of the semiclassical fofyhere the collision-integral matrix is
malism to reproduce the force on a moving vortex. In par-
ticular, we show how the total force acting from the T(ry,ty:r5,t)=3SRG—G SA+3GA-GRS.. (8)
environment on the vortex can be decomposed into the Mag-
nus, Hall, lordanskii, and dissipative forces. The consistentere, an integration over internal times and coordinates is
derivation of the total force rather than its various elementsmplied, e.g.,
sheds light on a recent controveYsyegarding the nature of oL
the transverse force acting on a vortex line in fermionic su{G,G>](rq,t1;r,,t5)
perconductors and superfluids.
:f d3r,dtrél(rl,tl;r,,t,)éz(r,,t,;rz,tz). (9)
Il. KINETIC EQUATION

The time-dependent state of a superconductor can be de-gbe retardeq 'and_ advanced Green functions satisfy(Bq.
cribed by the total Green functions introduced by Keldysh with the collision integral
or, equivalently, by Eliashberon the basis of the analytical . . . . .
continuation of the Matsubara Green functions onto the real- IRA =3RAG RA) _ g RIVZRA), (10

frequency domain. We define the matri¢esNambu space _ ) ) ) o
Equation(7) is the starting point for the derivation of the

. G F quasiclassical kinetic equations. We briefly review the deri-
g(rl,tl;rz,tz)z( ) (3) vation of the kinetic equations for a clean superconductor;
see Ref. 11 for details. We assume that the temporal varia-
tions are slow with characteristic frequencies small com-
pared to the order parameter magnitug€ A. In the quasi-
classical limit, the relative distancels,—r,|~pg' are

) shorter than the coherence lengtliletermining the scale of
representing the Keldysh and the retarded and advanceghatial variations of the order parameter.

Green functions, respectively, and the matrix operators

_FT 6

GR® FR(A)
G R(A)(rl,tl;rz,tz)z( _FTRA) gR(A))’ (4)

For each Green functiog(r; ,t; .ri,t;) we define the
o+ e(p)—E 0 center-of-mass coordinatez(ri+rj)/2 and time t=.(ti
QS 1(,[,5):( t F : ) (5) +15)/2. The.convollutlons of the typ@®) are expanded in t.he
0 i9,+ e(p)— Eg small coordinate differencds; —r;| close tor as well as in
the small time differencel$; —t;| near the time. We go over

and to Fourier space,
.. [hrp) —ARY d3p,d3p,de;de
FU(r,t;p) = -] 6 G(rytiirant =J#“ ,
p (Ag(r,t) h(r.t:—p) G(ryty;ra.ts) (2m)° Ge, ,(P1.P2)
wheree(p) is the quasiparticle spectrum in the normal state, X g!(Par1para) —ileata = eta),

Ap(r,t) is the order parametep=—iV, and and introduce the quasiclassical Green functions

h(r t-é):—i(\“/-A+A-\7)+ i +ep et wizewi(PE 1K) (11
1% 20 2m* CZ .
. .. ddp. k k
Herev=2de(p)/dp andm* is the effective mass. The opera- = f ngm/z,e—w/z p+ E,IO— 2 (12

tors (5) and (6) are combined into

. e eivl . integrated over the enerdy= e(p) — E¢ near the Fermi sur-
G Hr.t;p) =Gy 1(p) +H(r t;p). face. The matrix

Interactions with phonons, particle-particle collisions, and
scattering by impurities introduce the corresponding self en- = _(

g f
) ) ! . + —) (13
ergies; e.g., that for impurity scattering reads —-f' g
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is composed of the quasiclassical Green functions in the 1

same way as is the matrix of the usual Green functioves 9725(92{—9?), fo= E(fﬁ—fﬁ)-
distinguish between the quasiclassical anomalous Green

function f and the distribution function)f Below, we shall We define the gauge-invariant operator@A:[V

als_o make use of the mixed coordinate-momentum represen_-(Zie/C)A]A and VA* =[V+ (2ie/c)A]A*, as well as
fation JAlot=(alat+2ie@)A and GA*/at=(oldt—2ieg)A*,
5 d3kdw. _ _ where ¢ is the scalar potential. The electric field =
0pg;r,t)= f ————— Ot w2 e—wPE, K)EKTTIOL —(1/c)(aAlat)—V ¢ andJ is the collision integra(see also
(2m)* ’ Ref. 3,

Here,{:]e(pF;r,t) depends on the momentum directipn [V © © -
and on the energy, as well as on the center-of-mass coor- J= J ETF[I—IR(" + ) +(F+H)I7].
dinater and the timd.
The total quasiclassical Green function factorizes to takd=quations(15) and (16) constitute the full set of equations

the fornm?!t for the functionsf, and f,. Equation(15) differs from the
kinetic equation derived for dirty superconductots the
Oet oe w2PEK) =[G~ T et wize— w2 PEK), presence of the momentum derivatives of the distribution

(14)  function and of the order parameter. In the clean limit, we
. . o _ can consistently keep the terms with the momentum deriva-
where f(pg;r,t) derives from the distribution function five in the expansion of Eq7) as compared to the collision
F(rq,ty:r,,t5) as outlined above and the product in Ety) integral(see Ref. 1L Note that this procedure does not work
involves the usual integration over internal coordinates. Theor dirty superconductors, where the collision integral domi-
matrix distribution function}"E(pF;r,t) contains On|y two in- nates and the momentum derivatives become small in the
dependent components and can be written in the form  quasi-classical parametepg¢) ~*. Also, in the dirty limit
Eqg. (16) changes and the functiaf is no longer constant.
fe(pF ;r,t): (f(50)+ fl,e)1+ f2,e;3'
Ill. TRANSFORMATION

Here f(EO)=tanh(e/2T)_ is the equilibrium distribution:f (6_0) INTO THE BOLTZMANN EQUATION
=1-2n., wheren, is the Fermi function. The functions .
f (per.t) and £, (pg;r.t) describe deviations from equi-  Let us proceed with a few preparatory steps before trans-

librium; £, . is odd whilef, . is even in the energy and the ~ forming the kinetic equatiof15) into the Boltzmann equa-
momentum directiopg . The nonequilibrium part§ andf, tion. First, in a clean superconductor, the odd part of the
of the distribution function are determined by E@). Taking  distribution functionf; is much larger than the even pdjt

its trace, we arrive at one of the equations for two unknowrindeed, using Eq(15), an order of magnitude estimate gives
distribution functions. The second equation is obtained by~ —fi/7 and L,~[§(T)/I1f,. Furthermore, using Eq16),
taking the trace of E(7) after multiplication with the matrix ~we find that the distribution functiof is constant along the

e quasiparticle trajectory. Second, quasiparticles with classi-
In what follows, we concentrate on clean superconduct-c‘?‘"y localized trajectories have a di;tribqtion qualitati\_/ely
ors. For a momentum-independent order parameter the deﬂjffergnt f_rom that of delocal_|zed quasiparticles. Delocalized
vation of the kinetic equations for clean superconductordlu@siparticles can move distances away from the vortex
with a mean free path>£(T) has been carried out in Ref. Which are much longer than the mean free path and are prac-
11 and the equations have been generalized to include tfiically in equilibrium with the heat bath; their contribution to

momentum dependence in Ref. 8. In the gauge invariant regh€ force on the vortex is smallAs the largest contribution
resentation they take the form to the vortex dynamics arises from localized excitations, we

concentrate on the excitations localized in the vortex core

T3.

_— E % . % 9f © t9_f1 I(mc(;}lre generally, in the potential well of the order parameter
FEOF T TG e T andscapk - i
In what follows we concentrate on linear topological de-
1 IA* IA fects _such as vortices; hence all _the functions dependl on the
+(Ve-V)(g_fy)+=| f_ _r T__p) -V coordinates in the plane perpendicular to the vortex axis. The
2 ap ap z axis is chosen parallel to the axis of the vortex, with the

afy positive direction along the vortex circulationz
a_p: =sgnE)H/H. We introduce the distance=p cos(—a)
along the quasiparticle trajectory, as well as the impact pa-
(159  rameterb=p sin(¢—a), wherep and ¢ are the radial dis-
tance and the azimuthal angle in the cylindrical frame, re-
spectively, andv is the angle betweewn, and thex axis; see
g_(Ve-V)f,=0. (16)  Fig. 1. In this representation, the quasiclassical Green func-
tion is specified by the momentum projection on the vortex
Here,g_, f_, andf' are combinations of stationary re- axis p,=pr cos6, the momentum directiom in the plane
tarded and advanced quasiclassical Green functions, e.g., perpendicular to the vortex axis, and the impact paranigter

+

e 1 f ket
E[vaH]g_—z(f_VAanf_VAp) .

and
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Y A L O N
B da) " ds 50" da
S vy
g ) and the spatial gradient in the,b) frame is
A 2 a

~ 0 A~ a0
V=VL£+[ZXVL]%. a7

xy

In the presence of a vortex, the order parameter has the
form Ap(p,¢)=ApL(a,s,b)e'“. HereApL(a,s,b) is the or-
der parameter expressed in the coordinate fram)(
where the azimuthal angle is measured from the momentum
direction. For a nonaxisymmetric vortex and/or ird-avave
superconductorApL(a,s,b) can have an explicit depen-

FIG. 1. The coordinate frame used to describe the quasiparticled€nce on the angular coordinate _
moving in the vortex coréshaded regionalong the localized tra- We then are ready to proceed with the transformation of
jectory AB. Given the velocityv, , the particle position=(p,)  the various terms in the kinetic equatioh5). Keeping in
in polar coordinates can alternatively be specified by the distance mind thatf, is independent of [see Eq(16)], we rewrite the
of the trajectory from the vortex axiémpact paramet¢rand the  terms in the second line of E@L5) in the form
distances along the trajectory.

of;
- _ o (FvAr+fivay.
which is related to the angular momenty+ +bp, , with ap
p, the momentum projection on the plane perpendicular to

th . o ; . 1 ( IA* aA)(afl ﬂfl)

e vortex axis. The upper sign is for particles wih par- =+ |f_ +f 2| 2222

allel to v, while the lower sign is for holes with, antipar- p. b T b\ da b

allel to v, (the terms “particles” and “holes” refer to the IA* IA\ of

normal-state spectrumUp to corrections of orderp&) 1 i(f +fT—)—1 (18)
we can assume straight trajectories for the quasiparticles and Js 9s ) dp,

thus the angular momentupa is a conserved quantity even
for a nonaxisymmetric vortex. The Green functions then carand
be written as sums over the energy spectrum of bound
states;>1
AT dA
(f—”+fT —Pl.vg

é_=§ On(@,b,p,;8) 8 e—En(a,b,p,)],

. 1 ; aA*+fT dA ¢ aA*+fT dA\ |91y
- o "o\ T %a) 3 T TG0 o
and, similarly, the collision integral can be presented as a
sum over the quasiclassical states, +i ¢ IN* gt % &_fl 19
Py T s s db’
JZEn: Jn(a,b,p;;s)8(e=Ey). Moreover, sincéA does not depend on the momentum direc-

tion, we can subtract the zero term

Next, we transform the operators in Ef5). The momen-
tum derivativedp in Eqg. (15) is taken at a constant position e (?_A, V=0
vectorr=(p, ¢) with respect to variations in the momentum cULi p/, 1
direction, with the magnitude of the momentum being fixed

at the Fermi surface. The planar projection can be written aﬁom the last line of Eq(15). Next, we integrate Eq(15)

along the quasiclassical trajectory, usiff/ds=0 and one
d ) of the Eilenberger equations,
;

i(Ve-V)g_=AfT —A*f_. (20)

with \A/L the unit vector in the direction of, and the upper
(lower) sign again applying for particldboles. Changingto After some algebra, the second line on the left-hand side
variabless andb, the derivative with respect ta becomes  (LHS) of Eq. (15) takes the form
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fd © H Lt oarifioan |t fd A vt 785 Lt 2ol gy
E[VFX ]97_5( VA +fVA) 0_p+ S~ gULi apg 1t ~p 1= r?p 1

1 J 1 f IA* . dA\ e 9As |of J aA* LA\ e 0Ag ofy -

T, 2\ ") T b 9 e T, P T ol R

The termdAs/da accounts for the expliciw dependence state as produced by time variations of the order parameter
picked up by the vector potential when expressed in the cotogether with the electric field. In the present context, the

ordinate frame ¢,b). The s derivatives present in Eq§18)

vortex moving with a velocityu induces the time variations

and(19) disappear in Eq(21), as can be seen from the iden- through the vortex displacement,

tity derived in Ref. 5,
f dsTr[(W:()é_]=fdsTr[(Vﬁ)é_]
—2w[z><vi]2

5(6 E), (22

A(r,t)=Ap(r—ut)+Aq,

A(r,t)=Aq(r—ut)+A,,

whereA; and A, are corrections proportional to the vortex
velocity. Restricting ourselves to the linear response me
can approximate the time derivativ#ot=—(u-V). Inte-

and valid for localized states. Here, the quasiclassical “fieldgrating by parts, we see that the scalar potential drops out;

matrix” takes the form
. —(elc)(vg-A) —A
H= A} (elc)(vg-A)

and the gauge-invariant field gradient is

(23

o [(elofHXve]  —¥a,
VH= . . (24
VAQ —(elc)[HXVE]
In particular, taking they, projection of Eq.(22) we find
f dsT o |-
Sir E g-|=

It is this relation which serves to eliminate tkalerivatives
from Eq. (21).
The first term on the RHS of E¢21) has the form

1 afl JH
2pl

which can be transformed with help of E@2). Using the
relation

de‘“
sTr|~

ds Tr{g_

(25

H .
—0- :Zﬂvlz 8(e—E
o n

derived in Appendix A, the second term

1 af,

R —

*2p, @b dsTr

. 9H
9-%a

is transformed in a similar way. As a result, the RHS of Eq.

(21) takes the simple form
1 JE, ofy JE, of
- E 1 1

P "

———— —-|mv, 8(e—E,).

b da  da db (26)

Next, we concentrate on the first line of EQ5). The

the resulting kinetic equation does not depend on the scalar
potential, a result which holds only for clean superconduct-
ors. In the dirty case, the scalar potential plays an important
role through the(so-called charge imbalance phenomenon.
Combining the elements in the above discussion we can cast
the first term of the kinetic equatiail5) into the form

1 af(°>

fdsTr[(u V)Hg_],

which then can be further transformed using E2R).

The second term in the first line of E(L5) vanishes after
integration overds. The next term can be transformed with
help of the identity

f dsTr[7s9_1=2mv, >, 8(e—E,) (27)

(see Appendix A and we finally obtain the equation

y af © gE, Lt 1 o 9E, _ 1 9E, o oh
(V. xu]-2) JE b p,da db p, da db  at
mu f ds J,=0, (28

which is nothing but the Boltzmann equation. Indeed, since

JE__ OE
%—Ha@,
we find
.~ df O 9E, af, of, 9E, IE, of,
(P XUl-D 5t o T 5 on  9a in
= 1f d 29
= s . (29

with E,=E,(u,a;p,) andu=Fbp, . Equation(29) can be

driving term =<4, f(© is the source of the nonequilibrium rewritten into the generic fornil) for the total distribution
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function f=f (O(E,) + f; with the canonical variableg=a  where the operatdk has been defined in E3), the func-

andp=u and the collision integral tion ™Y denotes the nonstationary part of the total quasi-
classical Green functiofsee Eq.(34) below], and the inte-
d 1 fw q 30 gration
E coll—ﬂ-vi —® S \]n ( ) dS,:
The driving term is obtained from Eql) if we assume that j (27)3vE

the energyE, contains a time dependence through the im-
pact parameterb(t)=F u(t) PIlv where w(t)=[(r—ut) is taken over the Fermi surface. The force acting on the
xp]-z vortex is obtained through the variatid@t{=(d- V)7, with
d an arbitrary constant vector. Note that the gauge-invariant
of of O gE. au af© I, ) representations’{=(d- V) produces the same resliftee
—= —_— = —([p.Xul-2). (31 Eq. (22)]. The force per unit length exerted by the environ-
ot JE dp st JE du ment on the moving vortex takes the fotii

Tr[gM™WH], (33

Equation(1) deals with the localized states. As we already de ds
Fon— [ o [ 22 S5
(2m)°ve

have mentioned above, delocalized quasiparticles are in
equilibrium with the heat bath and their contribution to the

force is small. However, in the case of a vortex in a charged - L .
where the spatial integration is taken over the area occupied

sup_erfluid, _the_associated r_nagr_1etic fi?ld introd_uces & Mady the vortex. With the distribution function in the form
netic quantization and quasiparticles with energies above theY '

gap become localized at cyclotron orbits. As a result, the)fel,ezzf(eo)5(€1_52)+f11+f273 we obtain the nonequilib-
give a finite contribution to the force acting on a moving rium Green functioh[cf. Eq. (14)]
vortex which can also be calculated within the framework of
Eq. (1). . i d(gR+gP) af @
To summarize the results of this section, we have started g("V=— > P
with the exact microscopic description of the nonstationary
processes in terms of the Green function technique. Using +(gRT3— 130™) 6, (34)
the quasiclassical approximation, we have been able to re-
duce the problem of finding the nonequilibrium state of thewhere the first term arises from an expansion in frequency
superconductor with a moving vortex to the problem of solv-,,= ¢, —¢,=ig9, (we drop the term [gFf, o2 o2
ing the _c_an_onlcal B_olt_zmann equation for the distribution Of_"A+ e /2]f(0): which is even inw and does not enter
nonequilibrium excitations localized in the vortex core. The h et wlce ol sf f the force acting on the vortex: see Ref
only information needed to find the distribution function ist € expression 10 ng o ’
the energy spectrum of the equilibrium excitations in thel®)- The operatop/dt has the formy/dt=d/dt+2iee when
vortex core. applied tof and f', respectively, and reduces &t when
In the next section, we demonstrate that the knowledge ofipplied to the functiong andg. The first term on the RHS
the energy spectrum is also sufficient to calculate the forcef Eq. (34) is of the order of (/&) (af (9 ge), much smaller
acting on the moving vortex. The full problem of the vortex thanf;, where an order-of-magnitude estimate gijsse Eq.
dynamics thus reduces to several much easier and mofé5)] f,~ (pgu)(af 9 d€), with u the vortex velocity. Since
transparent steps which are finding the equilibrium energwlsof,<f,, the main contribution to Eq33) comes from the
spectrum of the excitations in the vortex core, solving thepart containingf;.
Boltzmann equation, and, finally, calculating the momentum As delocalized quasiparticles are in equilibrium with the
transfer from the localized excitations. heat bath and hendeg=0 they do not contribute to the force.
Using the identity22), the localized states produce the con-
tribution

+(gR—gMh

IV. FORCE ON A MOVING VORTEX

In order to calculate the force exerted by the environment de ds v oa
on the moving vortex, we start again with the Green function Fenv=— f db dsf 7J 2—3Tr [9_VHIA
formalism. Consider the thermodynamic potenfinlof the (2m)vr
superconductor, which is a function of the order parameter ds: JE
and the magnetic field, as well as of temperature, volume, =—my, f dbj —— [zxv,]—f,. (35
and the chemical potential. In a nonstationary case, the varia- n (2m)%vk db
tion of the thermodynamic potential of the superconducto

r, . . .
with respect toA andA can be written &5 This expression can be rewritten as the momentum transfer

from the localized excitations to the vortex. Indeed, with the
Fermi-surface area element

d d . .
d3r8Qg(t)= | dr - —SFTr[g(”St)(SH],
4J (2m); dS-=dp'dp, =—Fdp, p,da
(32) pap, v, p; p da,
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wheredp’ is the increment in the direction perpendicular to rated from then=0 spectrum by energies of the order/yf

Vg anddp, , we obtain and are even functions qf.
Using the relaxation time approximation for the collision
1 dp, dadu JE, . . integral
Fenv__zz fﬁ o W[ZXVL]’CI ; s .
1
dp, dadu ap, (Eq B Bl 89

1
=5 2 fﬁ—zw Fat (39

Here, we make use of the Hamilton equat{see Eq(17)]

the solution of Eq(1) is simplified considerablyin our es-
timates below we will usually use,~ 7 with 7 the normal
state impurity scattering time and ignore the specific depen-
dences in the radial quantum numpdfor an axisymmetric

J JE, ~ - .
%Pn _ —VE,=— —”[z>< v, ]. (37 swave vortex the energids,, do not depend omv and the
at b term 9E/da vanishes. Using the ansatz

Note that, in our notation, the deviation from the equilibrium 9f (© .

distribution isf,=—26n_, wheredn, is the deviation from fi=— {([uxXp,1-2)yo+ (u-p,) vy}

the Fermi distribution, thus explaining the positive sign in JE
Eq. (36). The normalization in Eq¥35) and(36) is chosen for the distribution function, the Boltzmann equation Eqg.
such that the sum over the two spin states enters asX1/2) (29 gives

We emphasize that the forde,,, is defined as the re-

sponse of the whole environment to the vortex displacement. WnTh w37
i i Yo= T 5 v YHT 3 5 .
It is therefore thetotal force acting on the vortex from the wﬁrﬁJr 1 wﬁrﬁJrl

ambient system, including all partial forces such as the lon-
gitudinal friction force and the nondissipative transversewhere we remind thamn:pil(aEn/&b). The force splits
force. The transverse force, in turn, includes various partinto the two termsFen,~= Fi+F_, with the friction F| and
which can be identified as the lordanskii force, the spectrajransversé=, forces given by
flow force, and the part of the Magnus force containing the
vortex velocity. du af (©

For a moving vortex, the force from the environment Fj=—mN ; f?wnyoﬁ_E u, (39
should be balanced by the Lorentz fofcE:F +F ¢,~0, F

where the Lorentz force is du 9f (©

®, ) FL:’JTN< S WOYH >F[Z>< uj, (40
F.=—TIjyXZ]sgne),
e v z]sgrie) where p,= pr cosd and N is the electron density- - -) is

with the flux quantunib,= 7rc/|e|. The force balance equa- the average over the Fermi surface with the weight

tion then determines the transport current in terms of the 3

vortex velocity and thus allows to find the flux flow conduc- (- ~>F=Zf dosinde (---).

tivity tensor. This conductivity was calculated in Refs. 4,5

and 8 using the Green function technique. On the other han@nly the spectral branch with=0 contributes to the trans-
the semiclassical description in terms of the Boltzmannyerse forceF, as all w, with n#0 are odd functions oft
equation was employed in Refs. 6 and 12. The above derand thus drop out of the sum ovarin Eq. (40). A simple
vation then demonstrates the equivalence of these two metlstimate givesw,~ wo~A3/Eg, where Ex denotes the
ods. Fermi energy.

In order to understand the structure of the total force more - The|ongitudinal forceF; defines the friction coefficient in
clearly, we review, by way of example, the solution of thethe vortex equation of motion and determines the Ohmic
Boltzmann equation for a vortex inswave superconductor component of the conductivityo. Expressing the vortex
in the limit of low fields whenw.7<1 and no localized velocity u through the average electric field, u=c[E
above-gap states complicate the situation. This limit also aps, 71/B sgne), we find
plies to an unchargestwave Fermi superfluid. '

Nle|c du i, f©

V. VORTICES IN ssWAVE SUPERCONDUCTORS 0o~ B E J?Tf .

n wnTht 1 F

We consider normal particles with a parabolic spectrum

and a spherical Fermi surface. The excitation spectrum ofn the moderately clean limit wher@,7<1, the conductiv-
bound states in the vortex core consists of an anomalouy roughly follows the Bardeen-Stephen expression at low
chiral branch® with the radial quantum number=0; this  temperatures, but exhibits an additional temperature-
branch has the energo(u)=—wou for |Eg|<A, and  dependent factod, /T on approaching,”
saturates aEy=— A, sgn(u) for u— *=oo. HereA, denotes
the modulus of the order parameter at large distances away oo~0 E ﬂ
from the vortex core. The other branches with 0 are sepa- "H T,
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(we recall thatA, denotes the temperature-dependent gag-ermi see of normal excitations to the moving vortex via the
parameter far away from the vortex chre gapless spectral branch going through the vortex core from
The transverse forcedetermines the Hall conductivity. negative to positive energiés.Due to the time-dependent

Within the quasiclassical approximation, the re¢d@) gives  angular momentum of the excitationg(t)=[(r—ut)

the total transverse force. However, historically, variousxp].z, there appears a flowith the velocity du/at) of
terms have been calculated separately and we proceed wiffpectral levels characterized by the angular momentm
Identlfylng these contributions within E(q40) We first iso- Each partide on a level carries a momentpm. The mo-
late the Magnus and Iordarlsﬁiforces Fu=mNg(Vs—U)  mentum transfer to the vortex associated with the spectral
Xz] and Fj=7N,[(v,—u)Xz] (we assume, for the mo- flow is effective if the quasiparticle relaxation occurs
ment, that both fluids are at rest=v,=0 in the laboratory  quickly: the factor (372+1)"* in Eq. (42) accounts for the
frame, relaxation rate: the relaxation and hence the momentum
. . transfer is complete fowy7p<<1, and vanishes in the oppo-
Fi=—aNJuXz]—7N,[uXz]+Fg. (41)  site limit. The first term in Eq.(42) thus describes the

They represent, respectively, the hydrodynamic forces Origigiisorder-mediated momentum flow along the anomalous chi-

nating from the Magnus effect due to the superfluid density@ PranchEq(u) for energies below the gap. For energies

N, and the normal quasiparticle density,, with N=Ng above the gap, the spectrum also has a chiral brambich

+N, the total particle density. The remaining term is thels made from the Landau levels for the states with definite
n .

(so-called spectral flow force angular momenta. For small magnetic fields such that
<1, the magnetic levelg(w) form a continuum. The inte-

. dp  wy  If©® gral over energies above the gap
Fs=mN[uXZz] JT
F

w%ré%—l JE =dy  9f @ - hﬁ—o
—w;—==1—tanh—,
A2 JE T

where w.= — JE/Jdu, then provides the second term in Eq.
(42).%
It is interesting to note that the spectral flow force from
above gap states is related to the anomalous contribution to
Ag the transverse scattering cross section of delocalized quasi-
=tanhz—_|_ particles as found in Ref. 23,

Ao
1—tanhz—_|_ , (42

where, usingsg= — JEq/du, we have accounted for the fact
that

+7N[uXZ]

du of©@

J 2 “OGE
[we point out that going over to the quasiclassical description ™ €
in Eqg. (12) we lose an additional term arising from broken UL:E \/ﬁ_l : (43
particle-hole asymmetry; see Refs. 19 and 20: this term can 0
be well ignored in the present discussion of the clean situarere, the first term corresponds to the cross section found in
tion; however, it does become relevant in the dirty case Bose superfluid! o, =2m/mvy, wherev, is the group
where the Hall force is smdllAn estimate of the first term  velocity. Inserting this term into the expression for the force
in Eq. (42), which is due to states localized in the core, givesexerted on the vortex by scattered excitations,
F%~ 7N[ux Z](w375+ 1) ! tanh(¢/2T) (wWe assume a cy- e 5@ 1 g
Imt?:rlcal Fermi surface . _ _ F¢=f de g f ﬁpB 3], (a2

or a superfluid moving with the velocity the first term | 27 LTt

in Eq. (41) combines with the Lorentz forc& = 7N vy
x 7] into the usual expressidfy,= 7N (vs—u)x z] for the ~ we recover the lordanskii forcg=—wN[uxz]. The sec-
Magnus force involving the relative velocity between theond term in Eq.(43) originates from the fact that here, in
superfluid and the vortex lingsimilarly, in case of a moving contrast to the situation in a Bose superfluid, the phase of the
normal fluid the lordanskii force has to be generalized tosingle-particle wave function changes byupon encircling
involve the relative velocityw,—u; here, we always assume the vortex, while it is the order parameter phase which
that the normal fluid is at restThe full force balance equa- changes by 2. It is this singularity, produced by the vortex

5|>A04 Je

tion then takes the form in the single-particle wave function, which results in the
anomalous contribution to the cross section in Eg); in-
Fu+ F+Fgt F=0. serted into Eq(44), it exactly reproduces the second term in

Eqg. (42). Again we see that the spectral flow force is related
to a single-particle anomaly associated with the vortex.

Let us confirm that indeed all contributions from delocal-
ized states vanish from expressi¢hl) for the transverse

While the original resul{40) involves only localized states
from then=0 chiral branch, the introduction of the Magnus
and lordanskii forces-,, and F, seemingly adds contribu-
tions from delocalized states to the result. However, as w _ _ o6
will explain below, the corresponding terms mutually cancel orce. We split the Aspectral fordey into the two terms-
each other such that only forces from localized states survivand F&f °= 7N[ux z][1—tanh@y/2T)]. As shown above,

in the end. scattering of delocalized states on the vortex produces the
A detailed discussion of the spectral flow force is given intwo termde;:§;25= F,+F%"¢. On the other hand, we can write
eloc

Ref. 21. The forcd is due to the momentum flow from the the termF¢ ™" as the difference between a contribution from
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all states(the termzN[ux z]) and one from localized states T :} 3 j % du da a_l_nf @7
(the second termmN[uXxZz]tanh(\y/2T)]), Fieoe=—pal 24 ) 2w) 2w ot Y

[ loc_ h_ 5 i -
+F2°, where F2°=F |, ... The term —FZ'=7N[uXz]  The above approach has been used to find the friction torque
then cancels the sum of Magnus and lordanskii forceS in  on a rotating nonaxisymmetric vortex cdre.
and we find that the transverse force indeed arises from the
0C|

localized states alones, = F'f+Fi° (note thatF'gf], .. VII. CONCLUSIONS
—0). o
The characteristic feature of the transverse force is that if, We have demonstrated that the description of the vortex

vanishes in the limitwy7<1: the lordanskii force together dynamics in superfluid Fermi systems based on the kinetic

with the spectral flow force cancels the part of the Magnusequatlons for the quasiclassical Green functions of the mi-

force which contains the vortex velocity, in agreement with CroScopIC non-stationary theory is equivalent to the concept

usual experimental findinas. The results of the microsco ié)f semiclassical particles localized in the vortex core, with a
analysis Fc))f the vortex d ngar.nics thus show that the cIaimpindistribution function governed by the kinetic Boltzmann

y y . equation in its canonical form. We have derived expressions
Ref. 25 of the Magnus force being the only transverse forc

. ) o Sor the force and torque acting on a moving vortex and have
acting on a moving vortex is incorrect.
shown that they can be represented as the momentum trans-
fer to the vortex from the localized particles. Our analysis
VI. TORQUE ON A NONAXISYMMETRIC VORTEX provides a microscopic justification of the phenomenological

Assume that the vortex core has no axial symmetry. Sucﬁ‘ppro{leh based on semiclassical dynamics.
nonaxisymmetric vortices exist in superfluid phases’lde
and ind-wave superconductors. Let us further assume that
the vortex core can rotate with respect to the heat bath— Thjs work was supported by the Swiss National Founda-
such rotating vortices have been experimentally observed ifion cooperation Grant No. 7SUP J048531. N.K. acknowl-
superfluid *He B (Ref. 26 (in a d-wave superconductor the edges support by the Russian Foundation for Fundamental

asymmetry is coupled to the crystalline axes inhibiting theresearch and by the program “Statistical Physics” of the
free rotation of the vortex cojelf the vortex core rotates Ministry of Science of Russia.

with respect to the heat bath, it experiences a torque from the

ambient |IVQUId wh|(3h can be obtained from E§2) with the APPENDIX: DERIVATION OF THE IDENTITIES

choice §H=5B(dH/3B), where 63 is a rotation angle _ _ ROA) _
around thez axis. The torque per unit length then follows  Consider the Green function matri ™ and expand it

ACKNOWLEDGMENTS

from in the eigenfunctions of a quasiclassical particle with the
momentump~ p> ¢~ 1 moving along the trajectory defined
0 by its velocity vp and the impact parametér The wave
T,= —f d?r B = functions depend on the distance along the trajectoiy/e
find that
_J erJ EJ d—SFTr ﬁé(nst) . (45 R GRA  FRA
4) 2mPve LB Ge M (viDis1,S) = | _ Lirea) GRA)
In the coordinate frames(b), the rotation angle becomes the . t .
anglea along the momentum increment. Therefore, -3 u“(v’b’sl)u”(v.’b’SZ)
n e—E,(b)xis
def d JH. Al
Tzz—fdb dsj —f —S;Tr —g_|fi (46 ] A
2) (2m)%v¢ da where the eigenvectors are
and using the identity25) we obtain u
U= , UT=(ur v).
T,=— 772 f dbj d—SFUL a_E”fl_ The Green function matrix obeys the equation
n (2m)%vg ~ da

, . [en(—1V)—Ep—ers+T{]G=158(s1-5,),  (A2)
Replacing the impact parameteby the angular momentum ) )
« and using the equation of motion where €,(p) is the normal-state spectrum. The Bogoliubov
wave functiond/{ are solutions of the equation
Lo__ %0 [en(—iV)— Ep+ H]U=Ersld (A3)
at Jda

and satisfy the orthogonality conditions
we find that the total torque follows from the transfer of the
angular momentunh, from the quasi-particle excitations to T U(SOUT(S)=1(s —5 Ad
the vortex core. 2 Taln(s)U(S2)=15(81=52), (Ad)
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. 1 A e
| a3 7 (9= 501 (AS) 5| st 970 -5

Next, we determine the relation between the Green func- 1 L <R va
tion R and its quasiclassical counterpgRt®). We repre- - EJ dsTri(d-VH)(g"-g")].  (A8)
sent the Green function as
o . . Second, we use again E@7) and find that the RHS of Eqg.
G=ePL17%)a, 0(s;—s,)—a_0(s,—s1)], (A6)  (A8)is
wherea. (s) are functions o= (s;+5,)/2; they vary over
distances of the order @f From Eq.(A2) we finda, +a_ —ivlJ dsTr{(d- VH)[GR(s,5)— G (s,5)]}
=ilv, . The functionéi satisfy the same Eilenberger equa-
tions as the quasiclassical Green functigf&"). Using the IH IH
boundary cor?ditions at large distances,g\fjgob(amﬁpare :Zm’i; ‘S(E_E“)f dST{UE(dSEJ“db%)UH}
with Ref. 17 a, =i(1+=g)/2v, . Thus,

iy

y . 5 =27v,d, >, S(e—E )f dsTr{uT

GFW(s1—85)= 5 —g" W +1sgris;—sp)]. (A7) Lo n T
1

We now are ready to derive Eq&2), (25), and (27). =2m([v, xd]- Z)Z
Consider the energids|<A,. We find

—En).

1 oL This proves the identity22). In the same way, we obtain for
Ej dsTr r3(gR—g™)] localized states
: < - 1 IH Lo o
=—|vif dsTr{r3[G%(s,5)—G*(s,9) 1} Ef dsTr a—H(gR—gA)
a

=210, >, 5(5—En)f dsTHU () r3Un(9)]

=—ivlf dsTr %[GR(s,s)—éA(s,s)]}

=2mv, >, 8(e—E,),
n

—2va2 S(e— En)f dsTr uT—u}

which is Eqg.(27). Note that the second term in EGA7)

vanishes under the trace. —> 2 ), (A9)
We turn to derivation of Eq(22). Integrating the first part —emuL n

of the relation by parts and assuming that vanishes at

large distances from the vortex we obtain which proves the identity25).
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