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From microscopic theory to Boltzmann kinetic equation: Application to vortex dynamics
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We show how to lift the problem of calculating the force acting on a topological defect in a superfluid from
the microscopic to the semiclassical level: Starting from the microscopic kinetic equations for a clean super-
conductor, we derive a Boltzmann equation for the quasiparticle distribution function in and around the defect.

The velocityq̇ and forceṗ appearing in this Boltzmann equation are given through the Hamiltonian equations

q̇5]pEn(p,q) and ṗ52]qEn(p,q), whereEn(p,q) denotes the (nth branch in the! spectrum of the quasi-
particles in the vicinity of the defect. Second, we reformulate the microscopic expression for the force acting
on the defect in terms of the total momentum transfer of the quasiparticles from the heat bath to the vortex
core. We illustrate our result with an application to vortices ins-wave superconductors, where we derive the
vortex equation of motion and identify the Magnus, Hall, and dissipative forces.@S0163-1829~99!11321-3#
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I. INTRODUCTION

The microscopic nonstationary theory of superconduc
ity based on the Green function technique in the real-ti
representation1,2 has established itself as a powerful meth
to describe the vortex dynamics both in dirty~for a review,
see Ref. 3! and in clean superconductors,4–6 as well as in
other superfluid Fermi systems.7,8 However, a practical dis-
advantage of the method is its mathematical complex
which tends to hide the physical picture of the phenomen
For a clean system, where the excitation spectrum is w
defined, an alternative way to deal with dynamical proces
is based on the semiclassical~or quasiclassical! Boltzmann
kinetic equation. For normal metals, the equivalence of
quasiclassical Green function approach to the Boltzm
equation has been demonstrated by Keldysh.9 The quasiclas-
sical approximation usually applies well to superconduct
since, typically, the coherence lengthj is much larger than
the quasiparticle wave lengthpF

21 . Generalized sets of ki
netic equations have been derived for dirty~for a review, see
Ref. 3! and clean superconductors~see, for example, Refs
10 and 11!. In the review10 ~see also references therein!, the
kinetic equation has been derived under the assumption
nearly constant magnitude of the order parameterD and of
the superflow velocityvs ~more precisely, their gradient
have been assumed to be slow such thatkj!1, wherek is
the characteristic wave vector of the variations inuDu and
vs). It has been shown10 that this kinetic equation can b
written in the form of a Boltzmann transport equation, a
some applications of this method have been considered.
fortunately, the approach of Ref. 10 could not be applied
the dynamics of vortices, because the basic assumptio
slow spatial variations is not justified near the vortex core
more general scheme of deriving the kinetic equations fr
the microscopic theory for clean superconductors has b
developed in Ref. 11. Using the quasiclassical approxima
PRB 590163-1829/99/59~22!/14663~11!/$15.00
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in the small parameter (pFj)21!1, the equations for the
distribution functionf have been obtained without assumin
the spatial variations ofuDu andvs to be small; however, the
resulting equations did not have the canonical form

]f
]t

1
]f
]q

•

]En

]p
2

]En

]q
•

]f
]p

5S ]f
]t D

coll

. ~1!

Here, (]f /]t)coll is the collision integral andEn(q,p) is the
quasiclassical excitation spectrum, characterized by the
nonically conjugated generalized ‘‘coordinate’’q and ‘‘mo-
mentum’’ p of the excitation (n denotes the set of othe
quantum numbers!. It is this kinetic equation in canonica
form which was successfully applied by Stone12 to the vortex
dynamics in clean superconductors and which produced
sults consistent with those of a whole-scaled Green func
calculation.

In this paper we present a microscopic derivation of E
~1!; i.e., we demonstrate that the kinetic equations for
generalized distribution function as derived from the qua
classical Green function version of the microscopic nons
tionary theory can be further transformed into the simple a
physically transparent canonical form of Eq.~1!. We restrict
ourselves to the particular example of vortex dynamics;
calculation can be easily generalized to include the dynam
of other topological defects in superfluid Fermi systems~e.g.,
see Ref. 13!.

In a second step, we derive the corresponding express
for the force and the torque acting on a moving vortex:
show that, within the quasiclassical approximation, the fo
F can be represented as the momentum transfer from the
bath, via the localized quasiparticle excitations, to the vort

F52(
n
E ddqddp

~2p!d
f ~q,p!

]pn

]t
, ~2!
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where] tpn52]qEn(q,p). Our analysis thus provides a m
croscopic verification of the phenomenological approach
the vortex dynamics based on the concept of semiclass
particles obeying the Boltzmann kinetic equation. In this l
ter approach, the nonequilibrium distribution of the quasip
ticles in the vortex core follows from the solution of a Bolt
mann equation, where the quasiclassical spectrumEn plays
the role of the Hamiltonian, and the force acting on the v
tex results from the force]pn /]t the quasiparticles exert o
the vortex core.

We illustrate our result with an application tos-wave su-
perconductors, where we make use of the semiclassical
malism to reproduce the force on a moving vortex. In p
ticular, we show how the total force acting from th
environment on the vortex can be decomposed into the M
nus, Hall, Iordanskii, and dissipative forces. The consist
derivation of the total force rather than its various eleme
sheds light on a recent controversy14 regarding the nature o
the transverse force acting on a vortex line in fermionic
perconductors and superfluids.

II. KINETIC EQUATION

The time-dependent state of a superconductor can be
cribed by the total Green functions introduced by Keldys9

or, equivalently, by Eliashberg,1 on the basis of the analytica
continuation of the Matsubara Green functions onto the r
frequency domain. We define the matrices~in Nambu space!

Ǧ~r1 ,t1 ;r2 ,t2!5S G F

2F† Ḡ
D , ~3!

Ǧ R(A)~r1 ,t1 ;r2 ,t2!5S GR(A) FR(A)

2F†R(A) ḠR(A)D , ~4!

representing the Keldysh and the retarded and advan
Green functions, respectively, and the matrix operators

Ǧ0
21~ t,p̆!5S 2 i ] t1e~ p̆!2EF 0

0 i ] t1e~ p̆!2EF
D ~5!

and

Ȟ~r ,t;p̆!5S h~r ,t;p̆! 2D p̆~r ,t !

D p̆
* ~r ,t ! h~r ,t;2p̆!

D , ~6!

wheree(p̆) is the quasiparticle spectrum in the normal sta
D p̆(r ,t) is the order parameter,p̆52 i¹, and

h~r ,t;p̆!52
e

2c
~ v̆•A1A• v̆!1

e2A2

2m* c2
1ew.

Here v̆5]e(p̆)/]p̆ andm* is the effective mass. The opera
tors ~5! and ~6! are combined into

Ǧ21~r ,t;p̆!5Ǧ0
21~ p̆!1Ȟ~r ,t;p̆!.

Interactions with phonons, particle-particle collisions, a
scattering by impurities introduce the corresponding self
ergies; e.g., that for impurity scattering reads
o
al
-
r-

-

r-
-

g-
t

s

-

es-

l-

ed

,

-

Š~r ;t1 ,t2!5
1

2pn~0!t
Ǧ~r1 ,t1 ;r2 ,t2!ur15r25r .

The equation of motion for the Keldysh Green functionsǦ
can be written in the form1

Ǧ21~r1 ,t1 ;p̆1!Ǧ~r1 ,t1 ;r2 ,t2!

2Ǧ~r1 ,t1 ;r2 ,t2!Ǧ21~r2 ,t2 ;p̆2!5Ǐ~r1 ,t1 ;r2 ,t2!,

~7!

where the collision-integral matrix is

Ǐ~r1 ,t1 ;r2 ,t2!5ŠRǦ2Ǧ ŠA1ŠǦA2ǦRŠ. ~8!

Here, an integration over internal times and coordinate
implied, e.g.,

@ Ǧ1Ǧ2#~r1 ,t1 ;r2 ,t2!

5E d3r 8dt8Ǧ1~r1 ,t1 ;r 8,t8!Ǧ2~r 8,t8;r2 ,t2!. ~9!

The retarded and advanced Green functions satisfy Eq.~7!
with the collision integral

ǏR(A)5ŠR(A)Ǧ R(A)2Ǧ R(A)ŠR(A). ~10!

Equation~7! is the starting point for the derivation of th
quasiclassical kinetic equations. We briefly review the de
vation of the kinetic equations for a clean superconduc
see Ref. 11 for details. We assume that the temporal va
tions are slow with characteristic frequencies small co
pared to the order parameter magnitudev!D. In the quasi-
classical limit, the relative distancesur12r2u;pF

21 are
shorter than the coherence lengthj determining the scale o
spatial variations of the order parameter.

For each Green functionǦ(r i ,t i ;r j ,t j ) we define the
center-of-mass coordinater5(r i1r j )/2 and time t5(t i
1t j )/2. The convolutions of the type~9! are expanded in the
small coordinate differencesur i2r j u close tor as well as in
the small time differencesut i2t j u near the timet. We go over
to Fourier space,

Ǧ~r1 ,t1 ;r2 ,t2!5E d3p1d3p2de1de2

~2p!8
Ǧe1 ,e2

~p1 ,p2!

3ei (p1r12p2r2)2 i (e1t12e2t2),

and introduce the quasiclassical Green functions

ǧe1v/2,e2v/2~pF ,k! ~11!

5E dzp

p i
Ǧe1v/2,e2v/2S p1

k

2
,p2

k

2D ~12!

integrated over the energyzp5e(p)2EF near the Fermi sur-
face. The matrix

ǧ5S g f

2 f † ḡ
D ~13!
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is composed of the quasiclassical Green functions in
same way as is the matrix of the usual Green functions~we
distinguish between the quasiclassical anomalous G
function f and the distribution function f!. Below, we shall
also make use of the mixed coordinate-momentum repre
tation

ǧe~pF ;r ,t !5E d3kdv

~2p!4
ǧe1v/2,e2v/2~pF ,k!eik•r2 ivt.

Here, ǧe(pF ;r ,t) depends on the momentum directionpF
and on the energye, as well as on the center-of-mass coo
dinater and the timet.

The total quasiclassical Green function factorizes to t
the form3,11

ǧe1v/2,e2v/2~pF ,k!5@ ǧRf̌2 f̌ǧA#e1v/2,e2v/2~pF ,k!,
~14!

where f̌e(pF ;r ,t) derives from the distribution function
F̌(r1 ,t1 ;r2 ,t2) as outlined above and the product in Eq.~14!
involves the usual integration over internal coordinates. T
matrix distribution functionf̌e(pF ;r ,t) contains only two in-
dependent components and can be written in the form

f̌e~pF ;r ,t !5~ f e
(0)1f1,e!1̌1f2,eť3 .

Here f e
(0)5tanh(e/2T) is the equilibrium distribution:f e

(0)

5122ne , where ne is the Fermi function. The function
f1,e(pF ;r ,t) and f2,e(pF ;r ,t) describe deviations from equ
librium; f1,e is odd whilef2,e is even in the energye and the
momentum directionpF . The nonequilibrium partsf1 and f2
of the distribution function are determined by Eq.~7!. Taking
its trace, we arrive at one of the equations for two unkno
distribution functions. The second equation is obtained
taking the trace of Eq.~7! after multiplication with the matrix
ť3.

In what follows, we concentrate on clean supercondu
ors. For a momentum-independent order parameter the
vation of the kinetic equations for clean superconduct
with a mean free pathl @j(T) has been carried out in Re
11 and the equations have been generalized to include
momentum dependence in Ref. 8. In the gauge invariant
resentation they take the form

Fe~vF•E!g21
1

2
S f 2

]̂Dp*

]t
1 f 2

† ]̂Dp

]t
D G ]f (0)

]e
1g2

]f1
]t

1~vF•¹!~g2 f 2!1
1

2 S f 2

]Dp*

]p
1 f 2

† ]Dp

]p D •¹f1

1Fe

c
@vF3H#g22

1

2
~ f 2¹̂Dp* 1 f 2

† ¹̂Dp!G• ]f1
]p

5J

~15!

and

g2~vF•¹!f150. ~16!

Here, g2 , f 2 , and f 2
† are combinations of stationary re

tarded and advanced quasiclassical Green functions, e.g
e
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1

2
~ge

R2ge
A!, f 25

1

2
~ f e

R2 f e
A!.

We define the gauge-invariant operators¹̂D5@¹

2(2ie/c)A#D and ¹̂D* 5@¹1(2ie/c)A#D* , as well as
]̂D/]t5(]/]t12iew)D and ]̂D* /]t5(]/]t22iew)D* ,
where w is the scalar potential. The electric field isE5
2(1/c)(]A/]t)2¹w andJ is the collision integral~see also
Ref. 3!,

J5E dzp

4p
Tr@ Ǐ2ǏR~ f (0)1f1!1~ f (0)1f1!ǏA#.

Equations~15! and ~16! constitute the full set of equation
for the functionsf1 and f2. Equation~15! differs from the
kinetic equation derived for dirty superconductors3 by the
presence of the momentum derivatives of the distribut
function and of the order parameter. In the clean limit,
can consistently keep the terms with the momentum der
tive in the expansion of Eq.~7! as compared to the collision
integral~see Ref. 11!. Note that this procedure does not wo
for dirty superconductors, where the collision integral dom
nates and the momentum derivatives become small in
quasi-classical parameter (pFj)21. Also, in the dirty limit
Eq. ~16! changes and the functionf1 is no longer constant.

III. TRANSFORMATION
INTO THE BOLTZMANN EQUATION

Let us proceed with a few preparatory steps before tra
forming the kinetic equation~15! into the Boltzmann equa
tion. First, in a clean superconductor, the odd part of
distribution functionf1 is much larger than the even partf2.
Indeed, using Eq.~15!, an order of magnitude estimate give
J;2f1 /t and f2;@j(T)/ l #f1. Furthermore, using Eq.~16!,
we find that the distribution functionf1 is constant along the
quasiparticle trajectory. Second, quasiparticles with cla
cally localized trajectories have a distribution qualitative
different from that of delocalized quasiparticles. Delocaliz
quasiparticles can move distances away from the vo
which are much longer than the mean free path and are p
tically in equilibrium with the heat bath; their contribution t
the force on the vortex is small.5 As the largest contribution
to the vortex dynamics arises from localized excitations,
concentrate on the excitations localized in the vortex c
~more generally, in the potential well of the order parame
landscape!.

In what follows we concentrate on linear topological d
fects such as vortices; hence all the functions depend on
coordinates in the plane perpendicular to the vortex axis.
z axis is chosen parallel to the axis of the vortex, with t
positive direction along the vortex circulationẑ
5sgn(e)H/H. We introduce the distances5r cos(f2a)
along the quasiparticle trajectory, as well as the impact
rameterb5r sin(f2a), wherer and f are the radial dis-
tance and the azimuthal angle in the cylindrical frame,
spectively, anda is the angle betweenv' and thex axis; see
Fig. 1. In this representation, the quasiclassical Green fu
tion is specified by the momentum projection on the vor
axis pz5pF cosu, the momentum directiona in the plane
perpendicular to the vortex axis, and the impact parameteb,
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which is related to the angular momentumm57bp' , with
p' the momentum projection on the plane perpendicula
the vortex axis. The upper sign is for particles withp' par-
allel to v' while the lower sign is for holes withp' antipar-
allel to v' ~the terms ‘‘particles’’ and ‘‘holes’’ refer to the
normal-state spectrum!. Up to corrections of order (pFj)21

we can assume straight trajectories for the quasiparticles
thus the angular momentumm is a conserved quantity eve
for a nonaxisymmetric vortex. The Green functions then c
be written as sums over the energy spectrum of bo
states,15,16

ǧ25(
n

ǧn~a,b,pz ;s!d@e2En~a,b,pz!#,

and, similarly, the collision integral can be presented a
sum over the quasiclassical states,

J5(
n

Jn~a,b,pz ;s!d~e2En!.

Next, we transform the operators in Eq.~15!. The momen-
tum derivative]p in Eq. ~15! is taken at a constant positio
vectorr5(r,f) with respect to variations in the momentu
direction, with the magnitude of the momentum being fix
at the Fermi surface. The planar projection can be written

S ]

]p'
D

r

56 v̂'

]

]p'

6
@ ẑ3 v̂'#

p'
S ]

]a D
r

,

with v̂' the unit vector in the direction ofv' and the upper
~lower! sign again applying for particles~holes!. Changing to
variabless andb, the derivative with respect toa becomes

FIG. 1. The coordinate frame used to describe the quasipart
moving in the vortex core~shaded region! along the localized tra-
jectory AB. Given the velocityv' , the particle positionr5(r,f)
in polar coordinates can alternatively be specified by the distanb
of the trajectory from the vortex axis~impact parameter! and the
distances along the trajectory.
o

nd

n
d

a

s

S ]

]a D
r

5b
]

]s
2s

]

]b
1

]

]a

and the spatial gradient in the (s,b) frame is

¹5 v̂'

]

]s
1@ ẑ3 v̂'#

]

]b
. ~17!

In the presence of a vortex, the order parameter has
form Dp(r,f)5Dp'

(a,s,b)eia. HereDp'
(a,s,b) is the or-

der parameter expressed in the coordinate frame (s,b),
where the azimuthal angle is measured from the momen
direction. For a nonaxisymmetric vortex and/or in ad-wave
superconductor,Dp'

(a,s,b) can have an explicit depen

dence on the angular coordinatea.
We then are ready to proceed with the transformation

the various terms in the kinetic equation~15!. Keeping in
mind thatf1 is independent ofs @see Eq.~16!#, we rewrite the
terms in the second line of Eq.~15! in the form

~ f 2¹Dp* 1 f 2
† ¹Dp!•

]f1
]p

56
1

p'
S f 2

]D*

]b
1 f 2

† ]D

]b D S ]f1
]a

2s
]f1
]b D

6S f 2

]D*

]s
1 f 2

† ]D

]s D ]f1
]p'

~18!

and

S f 2

]Dp*

]p
1 f 2

† ]Dp

]p D •¹f1

56
1

p'
F S f 2

]D*

]a
1 f 2

† ]D

]a D2sS f 2

]D*

]b
1 f 2

† ]D

]b D G]f1
]b

6
1

p'
F S f 2

]D*

]s
1 f 2

† ]D

]s DbG ]f1
]b

. ~19!

Moreover, sinceA does not depend on the momentum dire
tion, we can subtract the zero term

e

c
v' i S ]Ai

]p D
r

•¹f150

from the last line of Eq.~15!. Next, we integrate Eq.~15!
along the quasiclassical trajectory, using]f1 /]s50 and one
of the Eilenberger equations,

i ~vF•¹!g25D f 2
† 2D* f 2 . ~20!

After some algebra, the second line on the left-hand s
~LHS! of Eq. ~15! takes the form

es
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E dsFe

c
@vF3H#g22

1

2
~ f 2¹̂Dp* 1 f 2

† ¹̂Dp!G]f1
]p

1E dsF2
e

c
v' i

]Ai

]p
g2¹f11

1

2 S f 2

]Dp*

]p
1 f 2

† ]Dp

]p D G¹f1

57
1

p'
E dsF1

2 S f 2

]D*

]b
1 f 2

† ]D

]b D2
e

c
v'

]As

]b
g2G]f1

]a
6

1

p'
E dsF1

2 S f 2

]D*

]a
1 f 2

† ]D

]a D2
e

c
v'

]As

]a
g2G]f1

]b
. ~21!
c
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The term]As /]a accounts for the explicita dependence
picked up by the vector potential when expressed in the
ordinate frame (s,b). The s derivatives present in Eqs.~18!
and~19! disappear in Eq.~21!, as can be seen from the ide
tity derived in Ref. 5,

E dsTr @~¹̂Ȟ!ǧ2#5E dsTr @~¹Ȟ!ǧ2#

52p@ ẑ3v'#(
n

]En

]b
d~e2En!, ~22!

and valid for localized states. Here, the quasiclassical ‘‘fi
matrix’’ takes the form

Ȟ5S 2~e/c!~vF•A! 2Dp

Dp* ~e/c!~vF•A!
D ~23!

and the gauge-invariant field gradient is

¹̂Ȟ5S ~e/c!@H3vF# 2¹̂Dp

¹̂Dp* 2~e/c!@H3vF#
D . ~24!

In particular, taking thev' projection of Eq.~22! we find

E dsTr F ]Ȟ
]s

ǧ2G50.

It is this relation which serves to eliminate thes derivatives
from Eq. ~21!.

The first term on the RHS of Eq.~21! has the form

7
1

2p'

]f1
]aE dsTrF ǧ2

]Ȟ
]b

G ,

which can be transformed with help of Eq.~22!. Using the
relation

E dsTrF ]Ȟ
]a

ǧ2G52pv'(
n

d~e2En!
]En

]a
~25!

derived in Appendix A, the second term

6
1

2p'

]f1
]bE dsTrF ǧ2

]Ȟ
]a

G
is transformed in a similar way. As a result, the RHS of E
~21! takes the simple form

7
1

p'
(

n
F]En

]b

]f1
]a

2
]En

]a

]f1
]bGpv'd~e2En!. ~26!

Next, we concentrate on the first line of Eq.~15!. The
driving term }]e f (0) is the source of the nonequilibrium
o-

d

.

state as produced by time variations of the order param
together with the electric field. In the present context,
vortex moving with a velocityu induces the time variations
through the vortex displacement,

D~r ,t !5D0~r2ut !1D1 ,

A~r ,t !5A0~r2ut !1A1 ,

whereD1 andA1 are corrections proportional to the vorte
velocity. Restricting ourselves to the linear response inu we
can approximate the time derivative]/]t52(u•¹). Inte-
grating by parts, we see that the scalar potential drops
the resulting kinetic equation does not depend on the sc
potential, a result which holds only for clean supercondu
ors. In the dirty case, the scalar potential plays an impor
role through the~so-called! charge imbalance phenomeno
Combining the elements in the above discussion we can
the first term of the kinetic equation~15! into the form

2
1

2

]f (0)

]e E dsTr@~u•¹!Ȟg2#,

which then can be further transformed using Eq.~22!.
The second term in the first line of Eq.~15! vanishes after

integration overds. The next term can be transformed wi
help of the identity

E dsTr@ ť3ǧ2#52pv'(
n

d~e2En! ~27!

~see Appendix A!, and we finally obtain the equation

~@ v̂'3u#• ẑ!
]f (0)

]E

]En

]b
6

1

p'

]f1
]a

]En

]b
7

1

p'

]En

]a

]f1
]b

2
]f1
]t

1
1

pv'
E

2`

`

ds Jn50, ~28!

which is nothing but the Boltzmann equation. Indeed, sin

]E

]b
57p'

]E

]m
,

we find

~@p'3u#• ẑ!
]f (0)

]E

]En

]m
1

]f1
]t

1
]f1
]a

]En

]m
2

]En

]a

]f1
]m

5
1

pv'
E

2`

`

ds Jn , ~29!

with En5En(m,a;pz) andm57bp' . Equation~29! can be
rewritten into the generic form~1! for the total distribution
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function f5f (0)(En)1f1 with the canonical variablesq5a
andp5m and the collision integral

S ]f
]t D

coll

5
1

pv'
E

2`

`

ds Jn . ~30!

The driving term is obtained from Eq.~1! if we assume that
the energyEn contains a time dependence through the i
pact parameterb(t)57m(t)p'

21 , where m(t)5@(r2ut)

3p#• ẑ:

]f
]t

5
]f (0)

]E

]En

]m

]m

]t
5

]f (0)

]E

]En

]m
~@p'3u#• ẑ!. ~31!

Equation~1! deals with the localized states. As we alrea
have mentioned above, delocalized quasiparticles are
equilibrium with the heat bath and their contribution to t
force is small. However, in the case of a vortex in a charg
superfluid, the associated magnetic field introduces a m
netic quantization and quasiparticles with energies above
gap become localized at cyclotron orbits. As a result, th
give a finite contribution to the force acting on a movin
vortex which can also be calculated within the framework
Eq. ~1!.

To summarize the results of this section, we have sta
with the exact microscopic description of the nonstation
processes in terms of the Green function technique. Us
the quasiclassical approximation, we have been able to
duce the problem of finding the nonequilibrium state of t
superconductor with a moving vortex to the problem of so
ing the canonical Boltzmann equation for the distribution
nonequilibrium excitations localized in the vortex core. T
only information needed to find the distribution function
the energy spectrum of the equilibrium excitations in t
vortex core.

In the next section, we demonstrate that the knowledg
the energy spectrum is also sufficient to calculate the fo
acting on the moving vortex. The full problem of the vorte
dynamics thus reduces to several much easier and m
transparent steps which are finding the equilibrium ene
spectrum of the excitations in the vortex core, solving
Boltzmann equation, and, finally, calculating the moment
transfer from the localized excitations.

IV. FORCE ON A MOVING VORTEX

In order to calculate the force exerted by the environm
on the moving vortex, we start again with the Green funct
formalism. Consider the thermodynamic potentialV of the
superconductor, which is a function of the order parame
and the magnetic field, as well as of temperature, volu
and the chemical potential. In a nonstationary case, the va
tion of the thermodynamic potential of the superconduc
with respect toD andA can be written as3,7

E d3rdVs~ t !5E d3r E de

4 E dSF

~2p!3vF

Tr @ ǧ(nst)dȞ#,

~32!
-
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where the operatorȞ has been defined in Eq.~23!, the func-
tion ǧ(nst) denotes the nonstationary part of the total qua
classical Green function@see Eq.~34! below#, and the inte-
gration

E dSF

~2p!3vF

is taken over the Fermi surface. The force acting on
vortex is obtained through the variationdȞ5(d•¹)Ȟ, with
d an arbitrary constant vector. Note that the gauge-invar
representationdȞ5(d•¹̂)Ȟ produces the same result@see
Eq. ~22!#. The force per unit length exerted by the enviro
ment on the moving vortex takes the form3,17

Fenv52E d2r E de

4 E dSF

~2p!3vF

Tr @ ǧ(nst)
“̂H#, ~33!

where the spatial integration is taken over the area occu
by the vortex. With the distribution function in the form
f̌e1 ,e2

5f e
(0)d(e12e2)1f11̌1f2ť3 we obtain the nonequilib-

rium Green function3 @cf. Eq. ~14!#

ǧ(nst)52
i

2

]̂~ ǧR1ǧA!

]t

]f (0)

]e
1~ ǧR2ǧA!f1

1~ ǧRť32 ť3ǧA!f2 , ~34!

where the first term arises from an expansion in freque
v5e12e25 i ] t ~we drop the term @ ǧe1v/2,e2v/2

R

2ǧe1v/2,e2v/2
A #f e

(0) , which is even inv and does not ente
the expression for the force acting on the vortex; see R
16!. The operator]̂/]t has the form]̂/]t5]/]t62iew when
applied tof and f†, respectively, and reduces to]/]t when
applied to the functionsg and ḡ. The first term on the RHS
of Eq. ~34! is of the order of (u/j)(]f (0)/]e), much smaller
thanf1, where an order-of-magnitude estimate gives@see Eq.
~15!# f1;(pFu)(]f (0)/]e), with u the vortex velocity. Since
alsof2! f 1, the main contribution to Eq.~33! comes from the
part containingf1.

As delocalized quasiparticles are in equilibrium with t
heat bath and hencef150 they do not contribute to the force
Using the identity~22!, the localized states produce the co
tribution

Fenv52E db dsE de

2 E dSF

~2p!3vF

Tr @ ǧ_“̂Ȟ#f1

52p(
n
E dbE dSF

~2p!3vF

@ ẑ3v'#
]En

]b
f1 . ~35!

This expression can be rewritten as the momentum tran
from the localized excitations to the vortex. Indeed, with t
Fermi-surface area element

dSF5dp8dp'5
vF

v'

dpz p'da,
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wheredp8 is the increment in the direction perpendicular
vF anddp' , we obtain

Fenv52
1

2 (
n
E dpz

2p

dadm

2p

]En

]b
@ ẑ3 v̂'#f1

5
1

2 (
n
E dpz

2p

dadm

2p

]pn

]t
f1 . ~36!

Here, we make use of the Hamilton equation@see Eq.~17!#

]pn

]t
52¹En52

]En

]b
@ ẑ3 v̂'#. ~37!

Note that, in our notation, the deviation from the equilibriu
distribution isf1522dne , wheredne is the deviation from
the Fermi distribution, thus explaining the positive sign
Eq. ~36!. The normalization in Eqs.~35! and ~36! is chosen
such that the sum over the two spin states enters as (1/2(s .

We emphasize that the forceFenv is defined as the re
sponse of the whole environment to the vortex displacem
It is therefore thetotal force acting on the vortex from th
ambient system, including all partial forces such as the l
gitudinal friction force and the nondissipative transve
force. The transverse force, in turn, includes various p
which can be identified as the Iordanskii force, the spec
flow force, and the part of the Magnus force containing
vortex velocity.

For a moving vortex, the force from the environme
should be balanced by the Lorentz force:3,17 FL1F env50,
where the Lorentz force is

FL5
F0

c
@ j tr3 ẑ#sgn~e!,

with the flux quantumF05pc/ueu. The force balance equa
tion then determines the transport current in terms of
vortex velocity and thus allows to find the flux flow condu
tivity tensor. This conductivity was calculated in Refs. 4
and 8 using the Green function technique. On the other h
the semiclassical description in terms of the Boltzma
equation was employed in Refs. 6 and 12. The above d
vation then demonstrates the equivalence of these two m
ods.

In order to understand the structure of the total force m
clearly, we review, by way of example, the solution of t
Boltzmann equation for a vortex in as-wave superconducto
in the limit of low fields whenvct!1 and no localized
above-gap states complicate the situation. This limit also
plies to an unchargeds-wave Fermi superfluid.

V. VORTICES IN s-WAVE SUPERCONDUCTORS

We consider normal particles with a parabolic spectr
and a spherical Fermi surface. The excitation spectrum
bound states in the vortex core consists of an anoma
chiral branch15 with the radial quantum numbern50; this
branch has the energyE0(m)52v0m for uE0u!D0 and
saturates atE052D0 sgn(m) for m→6`. HereD0 denotes
the modulus of the order parameter at large distances a
from the vortex core. The other branches withnÞ0 are sepa-
t.

-
e
ts
al
e

t

e

d,
n
ri-
th-

e

p-

of
us

ay

rated from then50 spectrum by energies of the order ofD0
and are even functions ofm.

Using the relaxation time approximation for the collisio
integral

S ]f
]t D

coll

5
1

pv'
E

2`

`

ds Jn'2
f1
tn

, ~38!

the solution of Eq.~1! is simplified considerably~in our es-
timates below we will usually usetn;t with t the normal
state impurity scattering time and ignore the specific dep
dences in the radial quantum number!. For an axisymmetric
s-wave vortex the energiesEn do not depend ona and the
term ]E/]a vanishes. Using the ansatz

f152
]f (0)

]E
$~@u3p'#• ẑ!gO1~u–p'!gH%

for the distribution function, the Boltzmann equation E
~29! gives5

gO5
vntn

vn
2tn

211
, gH5

vn
2tn

2

vn
2tn

211
,

where we remind thatvn5p'
21(]En /]b). The force splits

into the two termsFenv5Fi1F' , with the friction Fi and
transverseF' forces given by

Fi52pNK (
n
E dm

2
vngO

]f (0)

]E L
F

u, ~39!

F'5pNK E dm

2
v0gH

]f (0)

]E L
F

@ ẑ3u#, ~40!

wherepz5pF cosu and N is the electron density;̂•••& is
the average over the Fermi surface with the weightp'

2 ,

^•••&F5
3

4E du sin3u ~••• !.

Only the spectral branch withn50 contributes to the trans
verse forceF' as all vn with nÞ0 are odd functions ofm
and thus drop out of the sum overn in Eq. ~40!. A simple
estimate givesvn;v0'D0

2/EF , where EF denotes the
Fermi energy.

The longitudinal forceFi defines the friction coefficient in
the vortex equation of motion and determines the Ohm
component of the conductivitysO. Expressing the vortex
velocity u through the average electric fieldE, u5c@E
3 ẑ#/B sgn(e), we find

sO5
Nueuc

B K (
n
E dm

2

vn
2tn

vn
2tn

211

]f (0)

]E L
F

.

In the moderately clean limit wherev0t!1, the conductiv-
ity roughly follows the Bardeen-Stephen expression at l
temperatures, but exhibits an additional temperatu
dependent factorD0 /Tc on approachingTc ,5

sO;sn

Hc2

H

D0

Tc
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~we recall thatD0 denotes the temperature-dependent g
parameter far away from the vortex core!.

The transverse forcedetermines the Hall conductivity
Within the quasiclassical approximation, the result~40! gives
the total transverse force. However, historically, vario
terms have been calculated separately and we proceed
identifying these contributions within Eq.~40!. We first iso-
late the Magnus and Iordanskii18 forces FM5pNs@(vs2u)
3 ẑ# and FI5pNn@(vn2u)3 ẑ# ~we assume, for the mo
ment, that both fluids are at rest,vs5vn50 in the laboratory
frame!,

F'52pNs@u3 ẑ#2pNn@u3 ẑ#1Fsf . ~41!

They represent, respectively, the hydrodynamic forces or
nating from the Magnus effect due to the superfluid den
Ns and the normal quasiparticle densityNn , with N5Ns
1Nn the total particle density. The remaining term is t
~so-called! spectral flow force

Fsf5pN@u3 ẑ#K E dm

2

v0

v0
2t0

211

]f (0)

]E L
F

1pN@u3 ẑ#F12tanh
D0

2TG , ~42!

where, usingv052]E0 /]m, we have accounted for the fac
that

E dm

2
v0

]f (0)

]E
5tanh

D0

2T

@we point out that going over to the quasiclassical descrip
in Eq. ~12! we lose an additional term arising from broke
particle-hole asymmetry; see Refs. 19 and 20: this term
be well ignored in the present discussion of the clean si
tion; however, it does become relevant in the dirty ca
where the Hall force is small#. An estimate of the first term
in Eq. ~42!, which is due to states localized in the core, giv
F sf

loc'pN@u3 ẑ#(v0
2t0

211)21 tanh(D0/2T) ~we assume a cy
lindrical Fermi surface!.

For a superfluid moving with the velocityvs the first term
in Eq. ~41! combines with the Lorentz forceFL5pNs@vs

3 ẑ# into the usual expressionFM5pNs@(vs2u)3 ẑ# for the
Magnus force involving the relative velocity between t
superfluid and the vortex line~similarly, in case of a moving
normal fluid the Iordanskii force has to be generalized
involve the relative velocityvn2u; here, we always assum
that the normal fluid is at rest!. The full force balance equa
tion then takes the form

FM1FI1Fsf1Fi50.

While the original result~40! involves only localized state
from then50 chiral branch, the introduction of the Magnu
and Iordanskii forcesFM and FI seemingly adds contribu
tions from delocalized states to the result. However, as
will explain below, the corresponding terms mutually can
each other such that only forces from localized states sur
in the end.

A detailed discussion of the spectral flow force is given
Ref. 21. The forceFsf is due to the momentum flow from th
p

s
ith

i-
y

n

n
a-
e

s
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e
l
e

Fermi see of normal excitations to the moving vortex via t
gapless spectral branch going through the vortex core f
negative to positive energies.22 Due to the time-dependen
angular momentum of the excitationsm(t)5@(r2ut)
3p] • ẑ, there appears a flow~with the velocity ]m/]t) of
spectral levels characterized by the angular momentumm.
Each particle on a level carries a momentumpF . The mo-
mentum transfer to the vortex associated with the spec
flow is effective if the quasiparticle relaxation occu
quickly: the factor (v0

2t0
211)21 in Eq. ~42! accounts for the

relaxation rate: the relaxation and hence the momen
transfer is complete forv0t0!1, and vanishes in the oppo
site limit. The first term in Eq.~42! thus describes the
disorder-mediated momentum flow along the anomalous
ral branchE0(m) for energies below the gap. For energi
above the gap, the spectrum also has a chiral branch5 which
is made from the Landau levels for the states with defin
angular momenta. For small magnetic fields such thatvct
!1, the magnetic levelsE(m) form a continuum. The inte-
gral over energies above the gap

E
D

`dm

2
vc

]f (0)

]E
512tanh

D0

2T
,

wherevc52]E/]m, then provides the second term in E
~42!.21

It is interesting to note that the spectral flow force fro
above gap states is related to the anomalous contributio
the transverse scattering cross section of delocalized qu
particles as found in Ref. 23,

s'5
p

p'
F e

Ae22D0
2

21G . ~43!

Here, the first term corresponds to the cross section foun
a Bose superfluid,24 s'52p/mvg , wherevg is the group
velocity. Inserting this term into the expression for the for
exerted on the vortex by scattered excitations,

F'5E
ueu.D0

de

4

]f (0)

]e E dpz

2p
p'

3 s'
(1)@ ẑ3u#, ~44!

we recover the Iordanskii forceFI52pNn@u3 ẑ#. The sec-
ond term in Eq.~43! originates from the fact that here, i
contrast to the situation in a Bose superfluid, the phase of
single-particle wave function changes byp upon encircling
the vortex, while it is the order parameter phase wh
changes by 2p. It is this singularity, produced by the vorte
in the single-particle wave function, which results in th
anomalous contribution to the cross section in Eq.~43!; in-
serted into Eq.~44!, it exactly reproduces the second term
Eq. ~42!. Again we see that the spectral flow force is relat
to a single-particle anomaly associated with the vortex.

Let us confirm that indeed all contributions from deloca
ized states vanish from expression~41! for the transverse
force. We split the spectral forceFsf into the two termsFsf

loc

and Fsf
deloc5pN@u3 ẑ#@12tanh(D0/2T)#. As shown above,

scattering of delocalized states on the vortex produces
two termsFscatt

deloc5FI1F sf
deloc. On the other hand, we can writ

the termFsf
deloc as the difference between a contribution fro
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all states~the termpN@u3 ẑ#) and one from localized state
„the second termpN@u3 ẑ#tanh(D0/2T)] …, Fsf

deloc52F`
all

1F`
loc , where F`

loc5F'ut0→` . The term2F`
all5pN@u3 ẑ#

then cancels the sum of Magnus and Iordanskii forces inF'

and we find that the transverse force indeed arises from
localized states alone,F'5F sf

loc1F`
loc ~note thatF sf

locut0→`

→0).
The characteristic feature of the transverse force is th

vanishes in the limitv0t!1: the Iordanskii force togethe
with the spectral flow force cancels the part of the Magn
force which contains the vortex velocity, in agreement w
usual experimental findings. The results of the microsco
analysis of the vortex dynamics thus show that the claim
Ref. 25 of the Magnus force being the only transverse fo
acting on a moving vortex is incorrect.

VI. TORQUE ON A NONAXISYMMETRIC VORTEX

Assume that the vortex core has no axial symmetry. S
nonaxisymmetric vortices exist in superfluid phases of3He
and in d-wave superconductors. Let us further assume
the vortex core can rotate with respect to the heat bat
such rotating vortices have been experimentally observe
superfluid 3He B ~Ref. 26! ~in a d-wave superconductor th
asymmetry is coupled to the crystalline axes inhibiting
free rotation of the vortex core!. If the vortex core rotates
with respect to the heat bath, it experiences a torque from
ambient liquid which can be obtained from Eq.~32! with the
choice dȞ5db(]Ȟ/]b), where db is a rotation angle
around thez axis. The torque per unit length then follow
from

Tz52E d2r
]Vs

]b
5

2E d2r E de

4 E dSF

~2p!3vF

Tr F ]Ȟ
]b

ǧ(nst)G . ~45!

In the coordinate frame (s,b), the rotation angle becomes th
anglea along the momentum increment. Therefore,

Tz52E db dsE de

2 E dSF

~2p!3vF

Tr F ]Ȟ
]a

ǧ2G f1 ~46!

and using the identity~25! we obtain

Tz52p(
n
E dbE dSF

~2p!3vF

v'

]En

]a
f1 .

Replacing the impact parameterb by the angular momentum
m and using the equation of motion

]Ln

]t
52

]En

]a
,

we find that the total torque follows from the transfer of t
angular momentumLn from the quasi-particle excitations t
the vortex core,
he

it

s

ic
n
e

h

at

in

e

he

Tz5
1

2 (
n
E dpz

2p E dm da

2p

]Ln

]t
f1 . ~47!

The above approach has been used to find the friction tor
on a rotating nonaxisymmetric vortex core.27

VII. CONCLUSIONS

We have demonstrated that the description of the vor
dynamics in superfluid Fermi systems based on the kin
equations for the quasiclassical Green functions of the
croscopic non-stationary theory is equivalent to the conc
of semiclassical particles localized in the vortex core, with
distribution function governed by the kinetic Boltzman
equation in its canonical form. We have derived expressi
for the force and torque acting on a moving vortex and ha
shown that they can be represented as the momentum t
fer to the vortex from the localized particles. Our analy
provides a microscopic justification of the phenomenologi
approach based on semiclassical dynamics.
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APPENDIX: DERIVATION OF THE IDENTITIES

Consider the Green function matrixG e
R(A) and expand it

in the eigenfunctions of a quasiclassical particle with t
momentump;pF@j21 moving along the trajectory define
by its velocity vF and the impact parameterb. The wave
functions depend on the distance along the trajectorys. We
find that

Ǧe
R(A)~v,b;s1 ,s2!5S GR(A) FR(A)

2F†R(A) ḠR(A)D
52(

n

Un~v,b;s1!U n
†~v,b;s2!

e2En~b!6 id
,

~A1!

where the eigenvectors are

U5S u

2v D , U †5~u* v* !.

The Green function matrix obeys the equation

@en~2 i¹!2EF2eť31Ȟ#G51̌d~s12s2!, ~A2!

whereen(p) is the normal-state spectrum. The Bogoliub
wave functionsU are solutions of the equation

@en~2 i¹!2EF1Ȟ#U5Eť3U ~A3!

and satisfy the orthogonality conditions

(
n

ť3Un~s1!U n
†~s2!51̌d~s12s2!, ~A4!
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E dsU n
†~s!ť3U n8~s!5dn,n8 . ~A5!

Next, we determine the relation between the Green fu
tion ǦR(A) and its quasiclassical counterpartǧR(A). We repre-
sent the Green function as

Ǧ5eip'(s12s2)@ ǎ1Q~s12s2!2ǎ2Q~s22s1!#, ~A6!

whereǎ6(s) are functions ofs5(s11s2)/2; they vary over
distances of the order ofj. From Eq.~A2! we find ǎ11ǎ2

5 i /v' . The functionsǎ6 satisfy the same Eilenberger equ
tions as the quasiclassical Green functionsǧR(A). Using the
boundary conditions at large distances, we obtain~compare
with Ref. 17! ǎ65 i (1̌6ǧ)/2v' . Thus,

ǦR(A)~s1→s2!5
i

2v'

@ ǧR(A)11̌ sgn~s12s2!#. ~A7!

We now are ready to derive Eqs.~22!, ~25!, and ~27!.
Consider the energiesueu,D0. We find

1

2E dsTr@ ť3~ ǧR2ǧA!#

52 iv'E dsTr$ť3@ ǦR~s,s!2ǦA~s,s!#%

52pv'(
n

d~e2En!E dsTr@U n
†~s!ť3Un~s!#

52pv'(
n

d~e2En!,

which is Eq. ~27!. Note that the second term in Eq.~A7!
vanishes under the trace.

We turn to derivation of Eq.~22!. Integrating the first part
of the relation by parts and assuming thatǧ2 vanishes at
large distances from the vortex we obtain
n

c-

1

2E dsTr@~d•¹̂Ȟ!~ ǧR2ǧA!#

5
1

2E dsTr@~d•¹Ȟ!~ ǧR2ǧA!#. ~A8!

Second, we use again Eq.~A7! and find that the RHS of Eq
~A8! is

2 iv'E dsTr$~d•¹Ȟ!@ ǦR~s,s!2ǦA~s,s!#%

52pv'(
n

d~e2En!E dsTrFU n
†S ds

]Ȟ
]s

1db

]Ȟ
]b

DUnG
52pv'db(

n
d~e2En!E dsTrFU n

† ]Ȟ
]b
UnG

52p~@v'3d#• ẑ!(
n

]En

]b
d~e2En!.

This proves the identity~22!. In the same way, we obtain fo
localized states

1

2E dsTrF ]Ȟ
]a

~ ǧR2ǧA!G
52 iv'E dsTrF ]Ȟ

]a
@ ǦR~s,s!2ǦA~s,s!#G

52pv'(
n

d~e2En!E dsTrFU n
†]Ȟ
]a
UnG

52pv'(
n

]En

]a
d~e2En!, ~A9!

which proves the identity~25!.
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