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Phase locking and flux-flow resonances in Josephson oscillators driven
by homogeneous microwave fields
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We investigate both analytically and numerically phase locking and flux-flow resonances of long Josephson
junctions in the presence of homogeneous microwave fields. We use a power balance analysis and a pertur-
bation expansion around the uniform rotating solution to derive analytical expressiohg faurves. The
dependence of the flux-flow step on the amplitude of the rf field and the appearance of satellite steps are
explained. As a result we show that satellite steps around the main flux-flow resonance are spaced by both odd
and even harmonics of the rf frequency. An analytical expression for the locking range in current of the
phase-lock steps is also derived. These results are found to be in good agreement with numerical results.
[S0163-182609)14221-9

[. INTRODUCTION practical way to distinguish the type of couplifigniform vs
boundary realized in a real experiments.

Long Josephson oscillators operating in the flux-flow re- The paper is organized as follows. In Sec. Il we review
gime have been studied both numerically and experimentallyhe model for the flux-flow oscillator, and derive thé char-
by several groups.’ The interest in such systems arisesacteristic in the absence of microwave fields by using a
mainly from their high output power, wide bandwidth, and power balance analysithis provides an alternate derivation
tunability features, these being interesting properties for apef the results in Ref. @ In Sec. lll we apply homogeneous
plications in superconducting millimeter-wave electrofiics. microwave fields to the junction, and use a perturbative ex-
The dynamical states characterizing flux-flow oscillatorspansion around the uniform rotating background solution to
manifest themselves in current-voltag®/J characteristic as derive analytical expressions for tH& curve (flux-flow
high-voltage steps split into a series of equally spaced Fiskeesonancesas well as for the locking ranges of the phase-
substeps. Recently, an analytical description of these singuiecked steps. In Sec. IV we compare our analytical expres-
larities in the absence of external microwave fields wassion for thelV characteristic with the results of numerical
provided® On the other hand, it is known, both from real integrations of the system, obtaining an excellent agreement
experiments and numerical simulatiotfsthat the applica- between theory and numerical experiment. Finally, in Sec.
tion of an external rf field gives rise to “satellite” steps V, we summarize the main results of the paper.
around the main flux-flow resonance which are spaced by
harmonics of the applied rf frequency. An analytical expla-
nation of this phenomenon is presently lacking.

The aim of the present paper is to provide a theory for the The electrodynamics of a Josephson junction in the pres-
appearance of satellite steps and phase-locking resonanceseifice of microwaves and magnetic field is described by the
the IV characteristic of a Josephson flux-flow oscillator in perturbed sine Gordon equation
the case of spatially homogeneous microwave fields. To this
end we use both an energy power balance analysis and a Cd e _ : _
perturbative expansion around the uniform rotati)rqg back- Prox =SIn(®)+a®y= 7+ 7y SINAL= o) (1)
groun_d to derive analytical expressions for thé curve, _subject to the boundary conditions
both in the absence and presence of homogeneous micro-
wave fields. As a result we show that satellite steps appear at
positions shifted from the main resonance by both even and D,(0t)=Dy(L,t)=T. v
odd harmonics of the applied frequency. The heights of these
resonances are modulated by the rf field, and can be chang#tithis equation space and time have been normalized to the
by increasing the amplitude of the microwave field. More-Josephson penetratlon length and to the inverse plasma
over, we derive an analytical expression for the lockingfrequencywg ,respectlvelya is the loss parameter associ-
range in current which extends the one derived in Ref. 10 t@ted to the quasiparticle tunneling, is the normalized dc
arbitrary phase-locking steps. It is worth remarking that thebias current, and” is the normalized magnetic field. A rf
case of the homogeneous rf field investigated here is quitBeld of amplitudes,; and frequency} is uniformly applied
different from the case of the inhomogeneous rf field inves-along the junction, and this may be considered a realistic
tigated in Refs. 3 and 4. In this last case, indeed, numericassumption for overlap and annular geométry.
and experimental results show that only even satellite steps In this section we concentrate on the main flux-flow reso-
appear in theV characteristic. This difference suggests anance, i.e., on the step which arises in absence of micro-

Il. FLUX-FLOW OSCILLATOR
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waves due to the applied magnetic field. The flux-flow re- — o+ aw2+a(\l7>=0 (11)
gime is characterized by excitations which travel on top of a { ’

fast rotating backgr_ound, so that the_ effective nonlinearity "rom which the current voltage characteristic is obtained as
the system is drastically reduced. It is then natural to assume

a solution of Eq(1) (with 7,:=0) of the form

[

1 A2+ B?
1+_ 2 n n
2 n=0 1+ 5n10

. (12

d(x,t)=wt+I'x+W(x,t)+ 6. 3 n=aw

Here W (x,t) denotes a small modulatio(<1) around the

rotating background, and, is an arbitrary phase. Inserting In explicit form, using the above expressions #f, and
Eqg. (3) into Eq. (1) and linearizing aroundb,= wt+I'x B,, we have

+ 64, one obtains

o

1 rL |2
Vi~ Vy—a¥Vi=aw—ntsinwt+I'x+6;) 7;=aw+—n:2_m TL+k,L
+coq wt+T'x+ 6,7, 4 2 IL—k,L
whose solution can be expressed as a Fourier series in space, > ( 2 2) aw . (13
(FL—anL) [(0®~K})*+ a®w’]

v(x,t)= A, cog wt) + B, sin(wt) Jcogk 5
0 nZO [An cOg ) + By sifwt) Jeogtknx)  (5) Note that here the sum has been extended from to oo.

. ) The first term in Eq(13) represents the Ohmic part of the
with wave numberk,=(/L)n. Note that the function  ¢,e \while the second term is associated with flux-flow.
satisfies the boundary conditiodr,(0t)=W,(L,t)=0, SO \ye see that the flux-flow step consists of an infinite series of
that Eq.(2) is automatically satisfied. By substituting £§) resonanceéFiske modesspaced byr/L and modulated by

into Eq. (4), we obtain a fast Fraunhofer factor which enhances only a few reso-
s 2 nances close te=1I". Throughout this papexlL <, corre-
A — 2 (0"—kplg(n)+awl(n) ®) sponding to low damping. In the limit of infinite length these
" 1+6,p (02— K2)%+ a?w? ' resonances overlap around=1I", and Eq.(13) reduces to the

Eck-Scalapino-Taylor result in Ref. 13. It is worth to remark
22 _ that in Eq.(13) there is no dependence on the phase afigle
= 2 (o7 kyle(n) awIS(n), (7y  and that the present derivation based on the power balance
1+6h0 (02—k2%+ a’w? analysis is completely equivalent to the one given in Ref. 9
due to the identityr/ (W)= (¥ cosft+Tx)).

where
() =TL [cog 61) —cogkyL)cosT'L +6,)] ® lll. FLUX-FLOW OSCILLATORS IN HOMOGENEOUS
) (I'2L2-K2L2) ’ MICROWAVE FIELDS
) i In this section we consider the case of a nonzero homo-
|.(n)=T'L [sin(I"L + 65)coskyL) —sin(6,) ] geneous rf field applied to the junction. To provide a pertur-
Cc .

(T2L2—K2L?) bative expansion for Ed1) with 7, # 0, on the background
rotation we superimpose a uniform oscillation with the same

In the absence of microwaves =0), thelV characteristic  frequency as the rf field, and consider solutions of the form
can be computed by introducing the energy of the system,

L D=dy+VY(x,t), (14)
H=J {3(®F+ @) +[1—cod®)}dx, 9
° with
and performing a power balance analysis around the consid-
ered solutiont? More precisely, differentiatingd with re- Po=wt+Tx+ BsinQt)+ 6. (15)

spect to time and using Eql) (with 7,;=0), we obtain

dH L Here ¥ is a small modulatio ¥ (x,t)<1] having both
_:f [(—aq>t+n)q>t]dx+r¢t|5- (10 space and time averages equal to zero. We see that the
dt 0 boundary conditions in Eq2) are fulfilled if ¥ (x,t) satisfy

Power balance is achieved by averaging in time over one

period of the rf field and in space over the length of the P, (0t) =T, (L,t)=0. (16
junction and by imposing the conditiofdH/dt)=0 (here

and in the following() and the overline denote time and Inserting Eq.(14) into Eq.(1), and using the smallness f,
space averages, respectiyelWe have we obtain the linearized equation



PRB 59 PHASE LOCKING AND FLUX-FLOW RESONANCESN . .. 14 655

V= Vi~ aWi= aw— n+[ 7,1 €0 ) — BAZISIN(Qt) — [ 7, SiN( 6p) — aBQ]cod Q) +sin(P) + cogd Do) P

17
To eliminate the explicit dependence on the frequeficfrom Eq. (17), we choose
3:L tar(0)=£ (18)
N "o
so that
7 O Bg) — BQ?= 74 SIN( 6p) — aBQ=0. (19

Note that this puts no restriction on the sizemf. By expanding the last two terms in E.7), using the Bessel relation
eiB sin(Qt) — E Jm(,B)eimQt, (20)
m=—®
and using Eqgs(15)—(18), we can rewrite Eq(17) in the form

oo o0

Vo~ Vyi—aV=ao—n+ X, In(B)[SINCX+ont+0)]+ > In(BcoITX+opnt+6;) ]V, (21)
m=—o m=—o
where
= w+ma. (22)
To solve Eq.(21) we expand the functiod as a double Fourier series of the form

[

V)= X [AgmCod@mt) + By Sin(@nt) Jcogky), (23)

n=0m=—o

with k,=a/Ln, so that Eq.(16) is automatically satisfied. reduce to the ones in Eq&) and (7). ThelV characteristic

By substituting Eq.(23) into Eq. (21) and projecting along and the locking ranges in current of the phase-locked steps

thek, and ®,,, modes, we obtain follow from the dc part of Eq(21)
A 2 (@2—KIHT(n,m)+awnls(n,m) 20 n—aw=(V cogdPg))+(sin(®y)). (27
"M 14 600 (03— k2)%+ a?w? ' It is important to note that the first average on the right-hand
side of this equation is related to the flux-flow part of the
2 (03—kHT(n,m)— awmlg(n,m) curve (it is different from zero mainly forw+0) while the
Bnm= ~% 33 27 . (25 second average is related to phase lockiitgs different
1+ 640 (o= ki) ta‘w ~ .
from zero only foro=0, i.e., foro=MQ).
with Assumingw#0, we can compute
Ts(n,m)=J(B)15(n), (26)

- 1 o) o) _
(Wood@o)y=71 2 2 [Annlc(nm)
Te(n,m)=Jn(B)Ie()

[herel4(n) andl.(n) are given by Eq(8)]. Note that the

effect of rf field is to introduce the Bessel function(B)  The flux-flow part of thelV characteristic follows from the
and to shift the frequencyw t0 w,=w+m. For 7 balance between the dc part of E@8) and a¢w— 7, this
=0 [Jm(0)=6pm] the expressions in Eq$24) and (25 giving

— Bl s(n,m)]. (28)
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~[TL—k,L
2$|r12<—2 ) az)m
2 ~ ~ .
(FL—knL> [(03—K2)2+ a?wd]

1 o0 oo
_ - 2

=—ow m=-—©

(29

2

In deriving this expression we substituted Eg8) into Eq.  should be noted, however, that a contribution to phase lock
(27) and used Eqsi24)—(26), together with the assumption can also come from the resonant part of E2g) (this is
w#0. It is worth to note that Eq29) is independent of the negligible if ¥ is small, i.e., if thelV curve is close to the
phase ang|wl and it has vertical asymptotes far=mQ), Ohmic ||ne Results on the |0Cking ranges valid fok=1
m=0,1,2, ... . These singularities have no direct physicapnd in the limitI'/L>1 were also derived in Ref. 10 by a
meaning [Eq. (29) was derived under the assumptian ~ Power balance analysigote that here we have no restric-
#+ MQ], however, they reflect the presence of phase |ockindi0ns onM andF/L) Fina”y, we note that in the considered

(see below. case (7,#0), (a/w)(\lf_tz#(\lf cosy)), so that the power

Assumingw = M(), we have that balance analysis of Sec. Il is not useful to derive the flux-
flow part of thelV characteristic.
sinl F_L) IV. NUMERICAL EXPERIMENT
_ I
(sin(CDO)>=JM(,8)Tsin 01+7 , (30 In order to check the analytical results derived above, we
il have performed a direct numerical integration of Bg.sub-
2 ject to the boundary conditions in E). For fixed values of

magnetic field, damping constant, amplitude, and frequency
of the rf field and length of the junction, we computed the
normalized average voltage across the junctien(®,) as a
function of the bias curreny, taking as initial conditiom
=TI"L/27 fluxons equally spaced along the junction. The nu-

and the locking ranges follow, by changing the phégen
the interval[ 0,27], as

(TL mericallV characteristic was obtained by integrating ELQ.
SNy —- long enough to eliminate all transients and measuring for
Agu=2|Iu(B)] | (3)  each value of the bias current the corresponding voltage
il V=w. To trace the curve, the bias current was increased in
2 small steps frony=0 to 1 and then back to zero. At eagh

step the final configuration of the field in the junction was
used as initial condition for the next step.

In Fig. 1 we report théV characteristic of a long Joseph-
aon junction in the absence of microwave fields;=0) for
parameter valuesy=0.1] =15, and'=6. We see the ap-

It is interesting to note that the weight of the singularity at
w=MQ in Eq. (29 is proportional to the square of the
above locking range and the vertical distance between th
two hyperboliclike branches of the singularity is justy, .

We also remark that Eq31) predicts the elimination, at

least to first order, of phase locklifL is a multiple of 27. It 0§ A
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FIG. 2. IV characteristic of a long Josephson junction in the
FIG. 1. IV characteristic of a long Josephson junction in the presence of a microwave field of amplitugg = 3.0 and frequency
absence of microwave fieldsyf;=0) for parameter valuese ) =1.4 for parameter values=0.1,L=15, andI'=6. Insets A
=0.1, L=15, andI'=6. The inset shows an enlargement of the and B show an enlargement of the satellite stepsafl’—Q and
flux-flow resonance ab=1" with the appearance of hysteretic phe- =1+, respectively. The thin curve refers to the analytical ex-
nomena. The thin curve refers to the analytical expression in Eqgoression in Eq(29), while the thick curve is obtained from numeri-
(13) while the thick curve is obtained from numerical integration. cal integration.
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_5F(I)G' 3. Same as in Fig. 2, but for the ri-field amplituge; FIG. 4. Locking ranges in current vs the amplitude of the ap-

plied microwave field for the first three phase locked steps. The
solid curves refer to the analytical expression in &3), while the
circles, squares, and triangles denote numerical result$vferQ,
pearance of a flux-flow step as=I" consisting of a few 1.and?2, respectivelfthe dotted lines were drown to easily distin-
Fiske substeps spaced byL. Here the thin curve refers to 9uish the different casgs
the analytical expression in E¢l3), while the thick curve
represents the numerical results. The inset of the figure
shows the flux-flow step in more detail, from which we also€Ye to distinguish the different cagesespectively. We see
see the appearance of hysteretic phenom@n@ws show that there is a good agreement between analysis and experi-
the direction of switching Note that two of the numerical Mment even for higher values of;; and the deviation, espe-
Fiske substeps appear broken due to our unidirectional pre&ially for M=2, is due to mixing with the flux-flow struc-
cedure of swiping the bias current. From this figure it isture. We also checked tH& characteristic of a junction for
evident that, except for stability problentsot included in  Values of the magnetic field for which E¢31) predicts a
our analysis the two curves overlap in most of the plot, suppression of the phase-lock. We found that phase lock is
giving a good qualitative agreement between analytical angtrongly reduced(to first ordey but not completely sup-
numerical results. This agreement becomes even better in thgessed. These effects are ascribed to second-@rdeing)
presence of an external microwave field as shown in Fig. 2contributions which were neglected in our analysis.
where thelV curve of a junction with the same parameter
values of Fig. 1 but with an applied rf-field of amplitude
it =.3.0 and frequencﬁzl.t_L, is reported..A's before, the V. CONCLUSIONS
thin line represents the analytidd characteristi¢Eq. (29)],
while the thick one represents the numerical results. From We have developed a simple theory for a long Josephson
this figure we see the appearance of satellite steps around tRex-flow oscillator in the presence of spatially homogeneous
main flux-flow resonance of Fig. 1, in agreement with ourmicrowave fields, which accounts for the appearance of
analysis(small second satellite stepsat=I' =2} are also phase locking and satellite steps around the flux-flow reso-
visible). The insets of Fig. 2 show the first two satellite stepsnance. As a result we derived an analytical expression for the
at w=T = in more detail. By increasing the amplitude of 1V characteristic of the oscillator in terms of an infinite se-
the microwave field, Eq(29) predicts al.,(8)?> modulation  ries, themth term of which is modulated by the Bessel func-
of the flux-flow resonance with a total suppression of thetion of orderm. This expression predicts the appearance of
step for appropriate values af,; . This is actually what we satellite steps around the flux-flow resonances at all the har-
find, as reported in Fig. 3, where the numerical and the anamonics of the external rf frequency. We also derived the
lytical 1V curves are shown for the same parameter valuelcking range in current for the phase-locking steps as a
used before, but fo,;=5.0. We see that the two satellites function of the junction parameters. We showed that by
are still present, but the main resonancesatl” has almost changing the amplitude of the rf field one can suppress the
disappeared. The number of satellite steps which can appefiux-flow resonance, and, for values bf and L such that
in the IV characteristic depends on the parameters of thé'L=2pm, pe N, phase-locking phenomena are strongly re-
junction, and increases with the amplitude of the rf field.duced(at least to first order These analytical results were
This suggests the possibility of using the flux-flow oscillatorfound to be in excellent agreement with direct numerical
as a mixer device for high-frequency electronicg., one integrations of the system, this being a confirmation of the
can pump a signal at frequendy and detect it at a fre- validity of our approach. The extension of the above analysis
quencyl’ +m(}). to the case of f fields applied through boundary conditions is
Before closing this section we check E1) for the  presently under investigation.
phase-locked steps. This is done in Fig. 4, where the locking
ranges vsy,; are reported for the fird¥ =0,1, and 2 phase-
locked steps. Here the thin line represents Bd), while the
circles, squares, and triangles denote numerical results for One of us(M.S.) wishes to acknowledge financial support
M =0, 1, and 2(the dotted lines were drawn just to help the from the INFM (Istituto Nazionale di Fisica della Matejia
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