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Penetration depth in conventional layered superconductors: A proximity-effect model
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We propose a theory for the penetration depffi) of superconducting bilayers and multilayers, which are
composed of two dissimilar superconducting layB=@nd S’ with arbitrary coupling strength, and with tig
layer thickness 1. s> T, s) less than or comparable to its coherence length. Within the framework of the
theory, we discuss the influences of tBelayer parameters, and of the coupling strength betweeS'tteand
Slayers. We show that their variations lead to a variety of temperature dependendd9 dflany of the basic
features observed experimentally in conventid®8l structures have been reproduced. The theory begins with
an extension of the proximity-effect model developed by Golusioal. [Phys. Rev. B51, 1073(1995], which
is based on the Usadel equations. It therefore applies to theigtgystem, and provides a description of the
superconducting properties over the entire temperature range Bglpvthe transition temperature of the
system. We shall compare our model with a phenomenological model developed within the proximity-effect
theory which is applicable nedr, . A brief discussion on the highly anisotropic systems in connection with the
intrinsically layered highF. superconductors is also presentg$0163-18269)05923-§

I. INTRODUCTION Apparently, the magnitude of. ¢ relative to T, g should
play an important role in the overall shape of thg,(T)
Magnetic penetration depthA(T) of superconducting curve.
bilayers and multilayers is known to have temperature In this paper, starting from an extension of the proximity-
dependences that are quite different from those of bulk BC®ffect model developed by Golubov and co-workers,we
superconductors. In particular, recent measurements gpresent an approach for the calculations of both in-plane and
Nb/Al,Y Nb/Cu?® and NbN/AI (Ref. 3 bilayer structures in-  out-of-plane penetration depths®8 bilayers and multilay-
dicate that in a wide temperature range, (&) curve can ers, which takes the above considerations into account. The
have a linear or sublinear temperature dependence, or obeypsoperties ofSN systems are discussed in the limit Bse
power law® These results deviate substantially from the BCS—0. In our model, we assume that tBé layer thickness is
exponential behaviofat low temperaturgsand are believed arbitrary, while theS layer thickness should be less than or
to be associated with the spatial variations of the supercorcomparable to its coherence length. The coupling strength
ducting properties. In an earlier attempt to explain these phebetweenS and S’ layers is arbitrary, and is equal on each
nomena, Pambianchi, Mao, and Anlageoposed a phenom- interface for a multilayer. Based upon our approach, we shall
enological model utilizing the proximity-effect theory which discuss the roles of the thickness, resistivity, and transition
is based upon the linearized self-consistency equation for theemperature of th&' layers, and of their coupling strength to
order parametét?® Similar treatment was also used by Claas-the Slayers. We shall show that our model leads to a variety
senet al. in Ref. 3. of temperature dependences fT), from which many of
From these studies oBN (superconductor/normal metal the basic features experimentally obsefV&aan be repro-
or SS (we setT. s <T s throughout this papgstructures, duced.
it appears that the variations of the sample and material pa- The present model is based upon the Usadel equalfons,
rameters of the\ or S’ layers and their coupling strength to which are the dirty-limit version of Eilenberger's thedry.
the S layers greatly affect the experimental observationsTherefore our theory applies to the dir§S systems. For
This can be understood in part from the following simplethe systems to which the theory applies, it provides a de-
cases. Let us consider the in-plane penetration depitir) scription of the superconducting properties over the entire
of an SS structure. If the coupling betwee® and S’ is  temperature range beloW,, the transition temperature of
sufficiently weak so that they are not affected by each otherthe system. We shall compare our results with those pre-
one expects a clear two-gap structure in tg(T) curve. dicted by the phenomenological model of Pambianchi, Mao,
Namely, it undergoes a faster decrease around and beloand Anlagé, which is strictly valid only neaff.
T. s, which is a result of the onset of superconductivity in A frequently observed feature of,,(T) in the intrinsi-
S’. When the coupling increases, such a feature should agairally layered high¥, superconductot8 has been its linear
be obvious if theS’ layer thicknessls, is much larger com- and quadratic temperature dependences at low and very low
pared to its coherence lengg, , since in this case, much temperature$>®which are often interpreted in terms of im-
part acrosslg remains unaffected. For less extreme casespurity scattering’ or nonlocal effect$ for a d-wave super-
the A ,,(T) curve is expected to become “smoother,” but to conductor. This linear plus quadratic feature is also obtained
decrease with decreasing temperature in a way that should our calculations in certain parameter range. Although the
differ from the behavior of a single BCS superconductor.high-T, superconductors can hardly be described by the
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z4 for —dg<z<0. Here a prime denotes a derivative with re-
i B spect toz, w, represents the Matsubara frequeney,
2ds, s ro | =(2n+1)(T/T), n=0,1,2 ..., anddgg is defined by
! i Y
teveege === | S q)S,S’:wnFS,S’/GS,S" (3)
..... Lstl s In Egs.(1)-(3), Gss andFgg are Gorkov's Green func-
W 0 Wy tions integrated over energy and averaged over the Fermi

------------------- |8 surface, which SatiSfﬁgS, + ng, =117, is the transition

temperature of the multilay€or a bilayer, see belowAg s
and £&s g are the order parameters and coherence lengths,

bilayer: dg+ds | 8

s with
FIG. 1. AnSS multilayer system with constituent layer thick- s =\ /hDS'S' = mhK , (4)
nesses of 85 and g, and T, s<T.s. Due to its symmetric ' 27kT, 6e2p5,5, Vs Tc

configuration, it is sufficient to discuss the bilayer in the region

—ds<z<dg, as indicated by two dashed lines, for our model - . . o
calculation. The rectangular contaziis used to deriva,(T) in Eq coefficients, and coefficients of the normal electronic specific
. c .

(23) for the multilayer slab with thickness ofi2 The slab is sup- heat, respectively. All the quantities with a unit of energy in
posed to be infinite in botl andz directions. Egs.(1)—(3) have been normalized tokT.. To solve these
equations, proper boundary conditions should be supple-

present simpleswave SS multilayer, our results indicate Mented, which have the foriis**

that the proximity effect may play an important role in the 2D = puG2D! 5

N(T) behavior of these materials, a point already suggested PsPs® s =P PsE s (52

by Pambianchi, Mao, and Anlagéyy Adrianet al,'® and by ,

Klemm and Liu®® ReGsPs= psGs (Ps— Pyg), (5b)
The paper proceeds as follows. We first present the basig; {he interfacez=0, whereR; is the specific resistance of

equations for dirtySS layered superconductors and make e interface(i.e., the product of the interface resistance and
the thinSlayer approximation. Thefi; is evaluated in two 5 ared. At z=dg andz=—ds, we havé!
different ways, from which we discuss the validity of the '

wherepss , Dsg , andygg are the resistivities, diffusion

approximation made. Next, we compute both in-plane and ., (ds)=0, (6)
out-of-plane penetration depths and present the numerical
results, which are then compared with the phenomenological Y4 —dg)=0. )

model of Pambianchi, Mao, and Anlagesinally, a brief

discussion in connection with the highly anisotropic supern principle, Eqs.(1), (2), and(5)—(7), which should be ac-
conducting multilayers and highz cuprates is presented. ~ curate, completely determine the properties of the supercon-
ducting multilayers.

In discussing arSS bilayer in whichdg is large, but
dg << €4 so that the variation of the order parameters across
dg is small, Golubowet al1° showed that by taking a slow
variation approximation ofbg , it is possible to obtain a

In Fig. 1 we show a multilayer with constituent layer boundary condition that includes the influences of 8ie
thicknesses of @s s . Due to the symmetric configuration, it layer. In this way, a complete solution can be obtained by
is sufficient to consider the bilayer confined between the twasolving the equations for th8 layer alone. Notice that in a
dashed lines, and the Usadel equations can be writtért’as bulk superconductor where there is no spatial variation, the

second terms on the right-hand sides of Eds) and (28
, 1 . disappear and we hawgss =Ags , with Egs. (1b) and
Oy =Ag+&, —— (G5 Pg)', (1a  (2b) reduced to the usual BCS gap equations. Therefore in
wnGs Golubov’s treatment, Eq(7) is replaced bybgs=Ay(T) at
the thick S layer surface, whereAy(T) is the BCS
Ag—Dg Gy temperature-dependent energy gap of Hailkaterial.
—— =0, (1b) We now use the same approximation to Eds, (2), and
(5)—(7) by assumingds<¢s. The closed-form equations in
for 0<z<dg , and the S’ region, when we introducés function satisfying

Il. BASIC EQUATIONS FOR SS' LAYERED
SUPERCONDUCTORS AND THIN S LAYER
APPROXIMATION

T T
Ag In +2T—E

c.s c wp Wn

Gsrz COSHSr y Fsrz sin 057 y (8)
Ps=Ast grgw G (G5, (28 can be written as
ns
T o A ®Gs g (w,,2) +Ag(2)c0S0s (@, ,2) — @, SiNfs (w,,2) =0,

1
Agln=—+2=— >, ——=>2=0, (2b)
Tes c oy Wn O0<z=dg /¢y . (9
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Z is normalized toég, . The boundary conditions read
fg (wy,ds)=0, (10

YM [(l)n sin 05/((1)n,0) - AS COSHS,(wn,O)]

0',(&) ,0)= ,
ST 14 43R+ A + 2 yp[w, cOSOs (w4,0) + AgSin O (,0) 1112

(11)

in which yg describes the coupling strength, whijg; is a  z=dg and—dg) (see Fig. 1 Hence our formalism applies,
measure of the strength of the proximity effect, betw&n and the following results should be true, in both cases.
andS' layers'® To solve the system of Eqé9)—(14), which are the basic
equations for the following calculations, we begin by using
Rg dg ps s dg certain starting values dfs s and s and Eqs(9)—(11) are
YBT e Er YMT o solved numerically. The resultings is inserted into Egs.
Psts &s psts £s (13) and(14) to calculateAs s , which are used for solving
The order parameteiSs s, are given by the recurrency ex- Egs.(9)—(11) again. This proceeds until a satisfactory accu-
pressions racy is reached. In the calculations, the input parameters re-
quil‘ed are&)Dys, wD’Sr, TC,S! TC,S'! ds/, VB> and YM -

12

@p,s’
AQ,”(z)=vS,NS,(0)T— > Fl(wn.2), (133
c wp>0 Il. TRANSITION TEMPERATURE
m . om Since we have . o <T.<T. s in general,T. needs to be
Fg(@n,2)= sinfg (wn,2), (13D calculated first for given input parameters. One way for do-
ing this is to sefl; equal toT in Egs.(133 and(14a. Then,
i by solving the system of equations, the order parameter
m+1__ m !
As _VSNS(O)T_C w2>0 Fs(@n), (149 Ags (>Ag) is found to decrease monotonically with in-
" creasingl, andT. can be defined &b at whichA 5 vanishes.
12 The typicalT.~dg curves are shown in Fig. 2, taking Nb/Al

multilayers as an example. In the calculations, we have taken
wD,Nb= 275 K, wD,A|:428 K Bulk Values Oﬂ—C’szg.Z K
andT; 5=1.2 K were also used regardless of their possible
in which wpss are Debye frequencies of the suppression with Nb layer thickness2§y, and with smaller
individual layers, and [VN(0)]ss=[In(T/T,ss) dai- As can be seen in the figurd, increases with the
+(2T/TC)EZD,>SOS’(1/%)]*1 are the BCS coupling increase ofyy and ofyg. Ittends toT. n, asda—0, and is

3% . , : almost constant fod,, above 2 or 34, as expected.
constants™*In arriving at Eqs'(9) _.(14)’ the first step is to Another way for evaluating . from the Usadel equations,
take the slow gradient approximation of E§a) and to let hich i twall licable for dirt&S il ith
D7) = wn D(0)— Ag](z+ de)/ E2G&(0), which automati- which is actually applicable for IS multilayers wi
ca?ly satisfies Eq(7). A is considered to be space indepen—ar-bltrary values of bOtl%S andds, has been proposed by
dent. From this and Eq5b), one obtaingb<(0) expressed in Biagi, Kogan, and Clent for the case of zero interface re-
terms of the quantities in th&' region and ofAg. One . . . .
further assumes a space independkp{z) = ®4(0). Insert- 10 L |
ing it into Eq. (2b) leads to Eq(14). Further, from Eq(5a) yv.=0 y =50
and the obtained expressions, we can derive(Ef). Equa-
tions (9), (10), and(13) are Eqgs(1a), (6), and(1b) rewritten 8 10 05 1
in terms of A, , respectively.

We note that one of the main differences between the
present formalism and that of Ref. 10 is reflected in the
boundary condition Eq10), since if we interchange the sub-
scriptsSandS’, Egs.(9)—(14) will essentially be identical to
those of that reference except that this condition is replaced 0 05
by 65w, ,ds—)=arctafiAy(T)/w,]. This arises directly 2 | B
from the thickSlayer considered there, which is the opposite
of our case. An important consequence of this difference is 0 2 4 6 8 10
that T, no longer equald, s, but may vary betweeil; s d /&
and T s in our case. In addition, the boundary conditions Al
given in Egs(6) and(7) are more general in a sense thatthey  FIG. 2. Transition temperaturB, vs d, /£, for Nb/Al layered
should apply both t&S multilayer systemgdue to symme-  systems. We have assume,~énp, Tea=1.2 K, and T¢ b
try) or to anisolated SS bilayer (due to its free surfaces at =9.2 K. See text for other material parameters.

cosO™ (0,0 + Ygwy | -
(14b

sin 021,((1),1,0) + ygAT

Fg‘(wn):|:1+<

T (K)

Al
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sistanceRg . The basic idea is that nedi,, one hasGs s
—1, andFgg , Ags—0 so that Eqs(1a) and(2a) can be
linearized with respect t&s g :

ﬁDS/ n
- 2akT FS':AS’_wnFS’i (15@
c
ADs .,
- 2akT FS:AS_ wnFs. (15b)
c

Since bothFsg and Agg vanish nearT,, we assume a
solution of the form

AS,S'
(,L)n+ (T/TC) 53’31 .

Inserting these into Eq$lb) and(2b), we find thatés s/ are
determined by the following expressions:

Fss= (16

T 1
In| —|=-2 - a7
(TC’SV) n=0 2n+1 2I’H—l+ 53/ ( a
T 1
'”(TC,J:_ZEO 2n+1_2n+1+5s)' (17b)

The boundary conditions betweé&hand S’, now with R
#0, are Eq.(5), which can be written in terms dfs s as
psFs=psFg (540)

FS_FS’:(RB/pS’)F,S" (Sb’)

Using these relations, one is able to obtain the following

simple transcendental equation governing 23

psUs tani(qgs ds) — psrgstanqsds)

=Rg0sds tanh(gs/ds/)tan(gsds), (18
in which qs s are given by
2’7TkT5 ’
2 S
y=— 19
s ADg (193
27kTéS
2 S
qS_ ﬁDS (19b)

Equations(17)—(19) can be used to evaluaig, for any
SS systems if the parameters ®f s, pss , ds s, and

Rg are knowr?* and they reduce to the well-known results

of de Gennes and Wertharfié??® when Rz=0. Moreover,
since they are derived directly from Ed$), (2), and(5), the
method is therefore accurate. We have compared thdata
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the influence of th&' layers on\(T), we shall for simplic-
ity fix the Slayer parameters, and takiy=£5. Using Egs.
Rg

(12) and(4), we have
Vo= Y= [Ps' Vs
B Psgs, M ps’}/sr'

These simpler expressions will be used in the following nu-
merical calculations.

(20

IV. PENETRATION DEPTHS

With known T, other superconducting quantities for the
given bilayer or multilayer system can be obtained by solv-
ing Egs.(9)—(14). In this section, we derive the formulas for
the in-plane and out-of-plane penetration depths. We then
present some typical results for the Nb/Al and Nb/Cu layered
systems.

Since Fg s are real quantities in our case, the current
density is directly proportional to the vector potenﬁ?al e.,
we haved= — (L/uh?)A, with

2ok T “R.SS

2 |FS,S'|21

wn>0

1 po€Ns s

>— =
m
)\S,S’

(21
hpss

whereng o are the superfluid densitieBg s = sin 55 rep-
resent the end results of Eq4.3b) and (14b) (removing all
superscripts Equation(21) defines the locakss andngs
that vary along thez axis. The in-plane penetration depth
Nap(T) is related to the areal superfluid densitiass 5 dz,
and is given by

dS+ dS’

— = (22)
s,
de N 4(T,z)dz

N2p(T) =

in which \ is given by Eq(21). To evaluate the out-of-plane
componentx(T), we follow Clem and Coffey’ and con-
sider an infinite slab of multilayer, as shown in Fig. 1, with
its thicknessw>\, and with an external magnetic fiell,
applied along the axis. In this geometry, there exist super-
currentsJ, along thez axis near the surfaces of the slab. If
we assume\>dss , By andJ, will approximately be the
functions ofx only. If we make a contou€, the magnetic
flux within C is (ds+ds) /5By (x")dx'=[cA-dl. Using
London’s equation and Ampere’s law, and differentiating
with respect tax, we are led tdB,=\2(4°B, /dx?), with

dg )
\°(T,z)dz
_ds

A= de+d
S g’

(23

evaluated in the above two different ways. We found that

whendg is smaller tharég, say,ds= £4/5, the two methods

Figure 3 shows the calculated result\gf(T) and\ ;(T)

produce basically the same results with discrepancies belovor Nb/Al (solid lineg and Nb/Cu(dashed lingssystems in
0.5%, which is largely due to the accuracy we adopted in thehe temperature range below 0192 In Fig. 4, the low-
calculations. Wherds= &5, the discrepancy increases to 1 temperature region of ,,(T) is plotted. For the calculation

~1.5%. These results indicate that E(®—(14) are a rea-

of these data, we usedp c,=343 K, and instead of the

sonable thinS layer approximation from the original Usadel experimental value 01TC cu= =0 K, we used the theoretical

equations, which could have an acceptable accuraayfas

value of T, ¢,=0.015 K28 which is close ® 0 K and makes

large asés. Since in this work we are mainly interested in our model applicableyy,, yai,» andyc, were taken to be
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FIG. 3. Calculated\,,(T) for Nb/Al (solid curve$ and Nb/Cu
(dashed curvgslayered structures. Open symbolds /¢ = 20;
solid symbols:dg /&g =2.5. Triangles:yg=0, yy=5; squares:
vg=270, yu=5. The inset shows the corresponding data &fT).
See text for other material parameters.

7.3, 1.36, and 0.9710 * Jlcn?K?, respectively. pnp
=5u() cm was also used, while,; andp,, were calculated
from Eq. (20) for given yy values. From Figs. 3 and 4, we
can see that, depending dg,, T. s, andyg, the form of

700+ -

600

500

400

(nm)

ab

300

A

275¢

250

225

200

0 1 2 3 4
T(K)

FIG. 4. Low-temperature part of,,(T) of Fig. 3: (a) dg/ /ég
=20, (b) dg /és=2.5. Results foryg=50, yy=5 are added
(circles. The curve foryg=50, yy=5, dg /¢ =2.5 is also plot-
ted in the insets, and the variations wjilp andT, s are shown in
insets(a) and(b), respectively.
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N(T) curves is very much varied. If we fit the data
AN(T)/N(0) in the lowest temperature regioss K) with

a power lawaT#, we find thatB would range from 1—6 for
Ne(T). For A gp(T), our fit also leads to the power law in
most cases, and an exponential behavior is obtaingd 4f

is well above 1 K.

In the temperature region below-34 K, we mention two
interesting features of thk,,(T) data that result from the
calculations. First of all, a two-gap-like,,(T) can be seen
clearly in Fig. 4a) for Nb/Al system with largesyg anddy,
(solid line plus open squaresAs yg decreases, such feature
becomes less clear, and so it does whgnis smaller, as can
be seen in Fig. é). These might be anticipated from a
simple physical consideration since for weaker Nb/Al inter-
layer coupling and larged,,, there will be larger volume of
Al that is less affected by Nb, which therefore contributes
more to the decrease af,,(T) aroundT, 4;. In the region
nearT, 5 where a faster decrease occurs, xg(T) curve
shows a sublinear temperature dependence. This is the case
also for the Nb/Cu system, as demonstrated by some of the
dashed curves in Fig. 4. All these results seem to be consis-
tent with the data experimentally obtained by Pambianchi
and co-workers in Nb/A[Ref. 1) and Nb/Cu(Ref. 2 bilay-
ers and the data obtained in NbN/Al and Nb/Cu bilayer sys-
tems by Claasseet al3

A second interesting feature from the calculation is that in
some parameter range, thg,(T) curve shows a linear tem-
perature dependence, and with decreasing temperature it
switches to a power law arount. s,. To see this more
clearly, we plot the\,,(T) curve of solid line plus solid
circles in Fig. 4b) again in the insets\ 4,(T) is shown to
decrease linearly from about 3.5-1.2 K, below which it
switches to a power law witjg~ 3. In inset(a), we see that
changingpg [from Eg. (20), it means changingy,, with
other parameters fixgdesults in the change ef, but notg.

In inset (b), the effect of changind. s is shown. In this
case andB and the point at which the curve switches from
linear to power law will all change. Fdr, s;=0.5 and 0.015
K, B equals 2.3 and 2 approximately.

V. DISCUSSIONS
A. Comparison with phenomenological model

The rich characteristics in the(T) data are a result of the
spatial variations of the superconducting properties, as men-
tioned earlier. In Ref. 7, Pambianchi, Mao, and Anlage pro-
posed a phenomenological approach to evaludfE) that
utilizes a space- and temperature-dependent order parameter.
Their model | considers an activi& (or N) layer in screen-
ing due to proximity effect, while th& layer is unaffected by
the presence of th8' (or N) layer. The situation is actually
what we are considering in the present work if we simply
approximateA g(T) to Ag(T) in our formalism[Eq. (14) can
be removed under this approximatidii Their model II, on
the other hand, considers an opposite case in whichNthe
layer has a zero pair potential, and tBelayer suffers a
suppressed order parameter within a distance-gg near
the interface. This model is similar to the situation Golubov
et al. discussed for arsN bilayer3®3! We now discuss in
further detail their model I, in which the order parameter has
the form
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Vs Ao(T) : . :
Ag(2,T)~— e Kz, 24 E . T .
S( ) VS Ao(o) ( ) A
whereVs g are the BCS coupling constants for individ@l 3 T/T =004
andS' layers, and<‘1:K;,l is the decay length in th&' 10.2;
layers which is given by o ;
I_
| ( T l//(l ’ 1 hDS,K2) o5 ¥
n——|=vl5|-vl5- = Iy
Tes 2 2  AxkT — 10 [}
for T>T, o, wherey is the digamma function, and by l\'/_ n
kD I3 <
1 s _Ss _ i
2ekT t=T/T, (26) 0|
for T, s =0. It is obvious that Eq(25) is simply Eq.(17a I .
with o 5 10 15 20
K2¢£2, zl¢
55/: S . (27) Al

t FIG. 5. Space dependence &f, for several reduced tempera-

The order parameter described by E2d) has the expo- [Ures in the case ofg=0, yy=5, andd, /£, =20. An exponen-
nential decay characteristics in the space variations. The d jal decay can be seen over a large portion acthggprovided that

. e temperature is not very low. The decay lengtit, taken as the
cay lengths from Eqs(25) and (26), when normalized to distance across which ,, drops toe™? of its initial value atz=0,
&g, are, respectively,

is plotted in the inset as solid squares. The solid and dashed lines in
K-1 1 the inset are calculated according to E(&8a and (28b), respec-

_ (283 tively.

(s gt
Eq. (28) indicate that the decay length is divergentTaap-
K1 1 proachesT, g or zero. This has been discussed in detail in
5_5/ = ﬁ (28D the case of Nb/Cu bilayer systefsiowever, this divergent
behavior does not appear in our calculations, as can be seen
The temperature variations, on the other hand, arise from thigom Eq. (13) thatAg is expected to change smoothly &s
BCS temperature-dependent energy gap as well as the decayns aroundT, s . Although it is well known that the co-
length as expressed in E@8). herence length for a bulk material diverges near its transition
Pambianchi’s model is found to explain successfully thetemperature, which is typical of the second-order phase tran-
experimental data on Nb/Al and Nb/Cu systems to a temsition in the Ginzburg-Landau theoty,t is less clear
perature as low as 2 K2 It will therefore be interesting to  whether the decay length should be the cas& &snds to
compare our results with their model. In Fig. 5, we show theT, 5 or O for the spatially inhomogeneo&S or SN struc-
semilog plot of the spatial variations of the order parametertures, since Eq$25) and(26) are derived from the linearized
as given by Eq(13), at several reduced temperatures for aself-consistency equation valid only for temperatures near
Nb/Al structure with vanishing interface resistarRg. We  T..8 In fact, Eq.(25) is derived again in Sec. lll from Eq.
see that neaf,, the order parameter shows a nice exponen{1b) under the small g approximation neaf.. The picture
tial decay behavior over a large distance, as described by Egesulting from our calculations is that with decreasing tem-
(24), except for the boundary regions-€,;) next toz=0 perature, the decay gradually deviates from the exponential
and z=20¢&,,. With decreasing temperature, these regionsehavior, and becomes very slow at low temperatures so that
expand, and at low temperatures the decay is no longer exhe influence of th&layer on theS’ or N layer can extend to
ponential and is much slower. If we take the distances across large distance away from the interface, which is consistent
which the order parameters decreaseetd of their initial ~ with the experimental observations.
values atz=0 for the decay lengths, they would vary with  In Fig. 6 the temperature dependences of the order param-
temperature as is shown in the inset of Figsélid squares  eters at several positions are sho@nolid lines. The dotted
The solid and dashed lines in the inset are the decay lengthise shows the data in the Nb layers, which is space indepen-
from Egs. (289 and (28b), with 65 computed from Eq. dent. The dashed lines are the results from&4), with the
(179 for given T, s . While the two curves both tend to coefficient set to match the data &t =T/T.=0, while
infinite mathematically wherm approached . s and zero, K1 is given by Eq.(28b. According to Eq.(24), the tem-
the latter appears to be closer to our results as a whole. perature dependence of the order parameter=4t is that of
Results plotted in Fig. 5 were obtained with the param-the rescaled BCS energy gag(T). Our data,A, nearz
etersyg=0, yu=>5, andd,,/é, =20, and they are rather =0 andAy,, follow closely such a dependence, as is seen in
general. From the figure, we can see an important, qualitativEig. 6. As z increases, the order parameter decreases faster
difference predicted by different models. The results fromwith increasing temperature than expected fraxg(T),
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' - - . far as the temperature is not very low. These include the
oL T —— ) exponential decay characteristics with a decay lengitt
""""""" - Ao and space- and temperature-dependent superconducting
/ properties like the order parameters and penetration depths.
In the low-temperature region, however, the predictions from
the two models are qualitatively different. Further experi-
N o ments will be required in testing the model predictions in this
e 1 temperature region.

04F T —— ) 1

(z,T)/nkT

0.2f

Al

B. Highly anisotropic multilayers and high-T. superconductors

20 T T N High-T. superconductors are intrinsically layered materi-
"""""" als which usually have highly anisotropic propertigs-
0.0 0.2 0.4 06 0.8 10 plane vs out-of-plane"* Experimental measurements of the
T penetration depth on these materials have revealed a variety
¢ of temperature dependences. Some experiments indicate a

FIG. 6. Temperature dependences\qf, (dotted ling, andA 4, two-gap-like?” or an exponential, behavidf. Most experi-
(solid line) at several positions acrosk, for the parameters of _me_nts show tha)tC(T)_ obeys a power law; whereas\ a,(T)
7a=0, yu=5, anddy, /£, =20. The dashed lines are computed IS linear and quadratic at low and very low _temperat@?éé,,
according to Eqs(24) and (26) by adjusting the coefficient in Eq. Which is often interpreted in terms of impurity scatterihgr
(24) to match the solid curve &/ T,=z/&,=0. nonlocal effect! within the framework ofl-wave supercon-

ductivity. In addition to thed-wave pairing symmetry,
which is realized by a temperature-dependent decay lengtAdrian et al*® and Klemm and Lié° demonstrated the im-
K~1in Eq.(24). From Fig. 6 we can see that our results andportance of the proximity effect by considering a multilayer
those from Pambianchi’'s model give basically the samesystem consisting of on8& and oneN layer per unit cell.
trends of the temperature dependences of the order pararfihey concluded that the exponential or power'faand lin-
eters. At low temperatures, however, the deviations are corear behavid? can be produced, provided that the proximity-
siderable. AST— 0, all the dashed curves approakk(0,0), coupledN layers are taken into account. As can be seen in
due to the fact thak ~*—c in this limit. the previous section, our results support this picture. In ad-

The inverse of the space- and temperature-dependent pedition we have taken into account the finite thickness of the
etration depthi,(z,T), computed from Eq(21) for the S’ layers, and their material parameters. We see that many of
same parameters is shown in Fig. 7. 'I7h,§1 data display our results mimic those observed experimentally in the high-
quite similar features ad ,; shown in Fig. 6. In Ref. 1, a Tc cuprates, although the work is based upon the simple
simple way using. '~ A is employed to fit the Nb/Al data. SWave superconductivity, which alone can hardly be the
The dashed lines are plotted in this way with, calculated —case for the cuprates.
from Eq.(24). Again the coefficient is chosen so that the two ~ We point out that ar§S multilayer with anisotropies as
sets of data coincide af ¢, =T/T,=0. large as the cuprates will usually have the parameters out of

From the discussions above, we may conclude that outrhe range in which the distinct features like the linear p|US
model and Pambianchi’s model can lead to similar results sfuadratic behavior in ,,(T) appear. This can be seen in the

following way. For a muItiIaﬁ/er in Fig. 1, the macroscopic
4 : , , , sample resistivitiep' and p' can be easily shown to be
related tops s, ds s andRg as

0.0

~ psdstpsds +Rg=p* (dstdg), (29
£

= psps (ds+dg)=pl(psds +ps ds). (30)
= Here Rg=ygpsds. For highT, materials, p*/p! ranges
- from 40 to 8< 10°.1* With this large anisotropy, Eqg29)
:. and(30) would yield largeyg or pg (We assumes > pg),
= which from Eq.(20) means largeyy , and from Eq.(21)

reducesS’ layer contribution to\(T). If we take Xg /2dg

=8.4 A/3.34 A=25, and the lowest ratip’/pl=40 for

YBCO,* for example, we havey=270 andpg /ps=3.31

0.0 0.2 0.4 0.6 0.8 1.0 or yg=0 andpg /ps=193. According to our results, these

/T will already make the linear plus quadratic feature disappear

altogether. Hence for a multilayer with higﬁ/p“ ratio, usu-
FIG. 7. Temperature dependences)\gf at several positions ~ally two limiting cases are expected in thg,(T) character-

acrossd,, in the case ofyg=0, yy=5, andda /£éx=20. The istics. One is a clear two-gap structufer large yg values,

dashed lines are from the simple relation!~A,,, computed ac- the other is a nearly exponential behavior of a single BCS

cording to Eqs(24) and(26) by adjusting the coefficient in E24)  superconductoffor largeps, values. The possibility of hav-

to match the solid curve at/T.=2z/¢5=0. ing a “nontrivial” \4,(T) characteristic in the highly aniso-

-1
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tropic multilayers exists if they are composed of certain kindapproximationds< ¢5. This may be the main constraint on
of bilayers or structure§for instance, the region between applying the approach to the real systems. However, the
=—2dg—dg andz=dg in Fig. 1) as unit cells, and high present model can be useful in describing the superconduct-
ptl pH ratios are attributed to additional, stronger barriers being properties of thesS layered systems in the whole tem-
tween these unit cells, which do not necessarily enter into thperature range belov.. In this paper, we have compared
calculation. Under the circumstances, a differepfT), as  our model with the phenomenological model of Pambianchi

compared to that of Eq23), will result. et al. which is valid strictly neafT;.. We find that the two
models yield results that are very similar if the temperature is
VI. SUMMARY not low (say, T>0.3T.), but in the low-temperature region,

_ the results differ considerably. We note that in Pambianchi’'s

We have calculated the penetration depti) of con-  model, the order parameter of tBdayer is approximated by
ventionalSS (T¢s>Tcs) layered superconductors which jis pylk valueAo(T). If we use the same approximation, the
contain both multilayers and bilayers. TI&N structures boundary problem Eqs(9)—(11) can be solved withA,
have been discussed in the limit ©f ;— 0. The variations given by Eq.(13 and Ag by A(T), and Eq.(14) is not
of the parameters of th®' layers, which include the transi- required.
tion_ tempe_rature, layer thickness, and resisti_vity, as well as \within our formalism\ (T) can be accurately determined
their coupling strength to thB layers, are considered. These if the material parameters like the transition temperatures,
factors influence in many ways the space and temperatuigepye frequencies, coefficients of the electronic specific
variations of the order parameters, which give rise_ to a varineat, and resistivities, and sample parameters like the indi-
ety of temperature dependences)d{fT). Many basic fea- jqual layer thicknesses and specific resistance of the inter-
tures experimentally observed, like the linear, sublinear, of5ce are known. This would allow for a guantitative compari-
power-law dependences, have been reproduced. ~ son between our model and experimental observations. Of

Our calculations are based upon Usadel's quasiclassic@larticular interest will be tha (T) characteristics under the
equations, which are the dirty-limit version of Eilenberger'sgriation of these parameters in the low-temperature region.

theory. The approach is therefore applicable to the 8%  Fyrther experimental work will be required in these studies.
systems. Although we have obtained in this paper a simple

transcendental equation for the evaluation of the transition
temperature, which is rather general for arbitrary individual
layer thicknesses and can reduce to the well-known results of
de Gennes and Werthamer for zero interface resistance, the We thank R. F. Wang for helpful discussions during the
rest of the calculations have been made on the $iayer  early stage of this work.
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