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Berry phases and pairing symmetry in Holstein-Hubbard polaron systems
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We study the tunneling dynamics of dopant-induced hole polarons that are self-localized by electron-phonon
coupling in a two-dimensional antiferromagnet. Our treatment is based on a path-integral formulation of the
adiabatic(Born-Oppenheimerapproximation, combined with many-body tight-binding, instanton, constrained
lattice dynamics, and many-body exact diagonalization techniques. The applicability and limitations of the
adiabatic approximation in polaron tunneling problems are discussed in detail and adiabatic results are com-
pared to exact numerical results for a two-site polaron problem. Our results are mainly based on the Holstein-
tJ and, for comparison, on the Holstein-Hubbard model. We also study the effects of second-neighbor hopping
and long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics is mapped onto an
effective low-energy Hamiltonian that takes the form of a fermion tight-binding model with occupancy-
dependent, predominantly second- and third-neighbor tunneling matrix elements, excluded double occupancy,
and effective intersite charge interactions. Antiferromagnetic spin correlations in the original many-electron
Hamiltonian are reflected by an attractive contribution to the first-neighbor charge interaction and by Berry
phase factors that determine the signs of effective polaron tunneling matrix elements. In the two-polaron case,
these phase factors lead to polaron-pair wave functions of eitheg.-wave symmetry op-wave symmetry
with zero and nonzero total pair momentum, respectively. Implications for the doping-dependent isotope effect,
pseudogap, and. of a superconducting polaron-pair condensate are discussed and compared to observed
properties of the cuprate high: materials[S0163-182@99)04602-(

I. INTRODUCTION an AF-correlated spin background may leaddtwave and
other nons-wave pairing states.

The symmetry of the superconducting order parameter in A Berry phase factor in finite systems with time-reversal
the cuprate high+, superconductors had been controvetsial symmetry has been relevant to the observation of half-odd-
before phase-sensitive experiments firmly established thiateger quantum numbers in the spectrum of the; Na
de2_y2-wave pairing symmetry in YB& O, using tri- moleculé®to the cross section of the-+H, reaction and its
crystal ring magnetometrd, superconducting quantum isotope analod$ and to the problem of integer vs half-odd-
interference device interferometry and single-junction  integer spin tunneling in anisotropic potentialsContribu-
modulation* Migdal-Eliashberg—type diagrammatic theoriestions to the pair-binding energy in thegmolecule have
find d-wave pairing to be favored by antiferromagne##¢)  also been discussed in terms of Berry phase argumgirs.
spin-fluctuation exchangeand s-wave pairing by the con- the present case, the nsrwave symmetry is caused by a
ventional electron-phonon mechanisth.There is indeed (—1) Berry phase factor, associated with predominantly
strong experimental evidence for the importancéath AF  second- and third-neighbor polaron tunneling processes. It
spin correlations and electron-phonon interactiohsn the  also determines the total momentum: the one-polaron ground
cuprates. However, when combined in the diagrammatic apstate has a momentum on the Fermi surface of the half-filled
proach, the two mechanisms are mutually destructive, sincight-binding model on the square lattice. The dynamics of
d-wave pairing is strongly suppressed by phonons andew hole polarons reflects the local AF spin correlations of
swave pairing is suppressed by AF spin fluctuations, respeanany electrons through the Berry phase factor.
tively. Also, the magnitude of the observed isotope effect in  This paper is organized as follows: In Sec. Il, we intro-
cuprate systems away from “optimal” dopifgoints to- duce the basic Holstein-Hubbard and Holstelnmodel
wards an unusually strong electron-phonon effect that cannd#amiltonians and their extensions to include second-
be accounted for in the diagrammatic approaches. neighbor hopping or long-range Coulomb repulsion. We then

Strong-coupling studie¥;*® going beyond the Migdal- derive the effective action for the lattice degrees of freedom
Eliashberg regime, suggest that the AF spin correlationin the adiabatic approximation. In Sec. lll, we illustrate the
themselves can effectively enhance the electron-phonon ebasic physical principles and formal concepts of our adia-
fect by lowering the electron-phonon coupling threshold forbatic treatment of the polaron tunneling in the context of a
polaron formation, that is, the threshold for electron-simple two-site model. In Sec. IV, we discuss the conditions
phonon—induced self-localizatith of the dopant-induced under which the adiabatic approximation is valid, as well as
carriers in the Cu@planes. In the present paper, we showits limitations when applied to polaronic systems on large or
how the tunneling dynamics of such self-localized holes inmacroscopic lattice systems. In particular, we clear up some
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recent misunderstandings concerning the applicability of thevith the small polaron shift

adiabatic approach to polaronic systems. In Sec. V, we use

an instanton approach to elucidate the basic structure of the Uoe E )
low-energy tunneling dynamics of hole polarons in Holstein- P K’

Hubbard or Holsteind systems near half filling. We show
that the dynamics of such hole polarons is governed by a
effective tight-binding Hamiltonian which includes second-
and third-neighbor hopping matrix elements and a first
neighbor attraction. In Sec. VI, we discuss the Berry phase K\ 112
factors and, with the help of lattice symmetry operations, we Qzﬁ(m> ,
show how such phases can be properly assigned to each seg-

ment of a closed tunneling path. The Berry phase factors argnd the ionic-limit (—0) small polaron binding energy
then interpreted in terms of quasiparticle statistics and inter-

nal symmetries of the many-electron wave functions. In Sec. E— C_2
VII, we analytically solve the effective model to show how PP K-
the Berry phase factors determine the total momenta ang . . .

internal symmetries of the few-hole-polaron wave functions/! €sults in the following are therefore stated in terms of
In Sec. VIII, we report numerical results for the effective up, 2, andEp on_Iy. )

polaron hopping and effective pair-binding energy as func- The tJ model is written &&
tions of the phonon frequency and electron-phonon coupling nn.
strength. In Sec. 1X, we discuss the implications of our nu- He=—t 2 (CiT,,CJ-,,+ H_C_)+JE (S'Sj— J) (8)
merical results for a possible superconducting pairing insta- (iLi)o (i.5) 4

bility, the isotope effect, and the pseudogap in a hole polarogith first-neighbor electron hoppingand AF exchange cou-
|IqUId at finite doplng concentration in the nearly half-filled p||ng J. Here,cig annihilates an electron with Spm at site
HolsteintJ and Holstein-Hubbard systems and compare thg, Nig=Cl Ciyr M= Ny, SZ%Ea,,eCiTaUaﬁCiﬁ with o
results to experimental observations in the cuprates. In Sec—‘(o'x,ay,az) denoting the vector of Pauli spin matrices.

X, we summarize the present work. Part of the results preThe Hijlbert space is restricted to states with no double occu-
sented in this paper were reported briefly in an unpubllshe%ancy at any sit¢, i.e.,n;=0,1 only.

paper and proceeding8. The Hubbard model is written as

}]hen HepnandHy, can be completely parametrized in terms
of only two characteristic energies, the bare Einstein phonon
energy

(6)

)

II. MODEL AND EFFECTIVE ACTION +
He=—t > (c

We use mainly the Holstein} modet? and occasion- (i)
ally the Holstein-Hubbard model for comparison. Later, Wewjith on-site repulsiorJ and no restrictions on the on-site
also include second-neighbor electron hopping and/or longgccupancy, i.e.n;=0,1,2. In the following, we seti=1,
range electron-electron repulsion terms in the model. The=1 and use ‘%01_3 or U=8t in the tJ or Hubbard model

(o

CJU+H.C.)+UZ nisN; 9)

total Hamiltonian is of the general form respectvely, unless stated otherwise
_ In addition to the standaréld and Hubbard electronic
H=Het He.pnt Hpn, @ model, we will also study the effects of additional, poten-

whereHy, is the purely electronitJ or Hubbard model part, tially important electronic terms, the second-neighbor hop-
defined on a two-dimensionéD) square lattice with lattice ping H;,, and the long-range Coulomb repulsidh, .
sitesj=1, ... N and on-site electron occupation numbersNamely,

n;, as specified below.

Ho=—t" > (cl.cjpt+H.c), (10)
He_phzcz ujn; (2 {i.it.o
! where{i,j} denotes second-neighbor bonds &hid the cor-
is the Holstein electron-phono(EP) interaction, coupling responding second-neighbor matrix element. The long-range
the local oscillator displacemeni; to the electron on-site 1/r Coulomb repulsion is
occupationn; with an EP coupling constai@ and

1 nin;
K , 1 , Hic=5Vc ;J HE (11
th:E? uﬁm; P’=Hy+Hy ©) j
wherei andj are summed independently over all sites ex-
describes the noninteracting Einstein phonon system, coreludingi=j andr;; denotes the vector pointing froito j,

sisting of the bare harmonic lattice potenti} , with restor-  measured in units of the 2D lattice constart 1. On a lat-
ing force constank, and of the lattice kinetic energi tice with periodic boundary conditions we make the defini-

with an atomic massM and conjugate moment@;= tion of |rij| unique by requiringr;; to be a vector of the
—ihdldu; . If we rescale to dimensionless displacements anghortest possible length connectint j, subject to all pos-
conjugate momenta sible periodic boundary shifts. The matrix elem¥gtis thus

o o . the Coulomb repulsion energy between two electrons at first-
uj=u;/up, p;=—idldu, (4) neighbor distance.
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To study the tunneling dynamics of self-localized holes,follow the motion of the lattice adiabatically. That is, the
we consider the path integrals for transition amplitudes irpath integration is restricted to configurations, where, during
imaginary time in the Born-Oppenheiméadiabati¢ ap- 7 evolution, the electrons remain in the same eigenstate, i.e.,
proximation. Following the standard Feynman-Trotter k= «,_;=k=const. Transitions between different elec-
approacH; we break up the Hamiltonian in the imaginary- tronic eigenstates,# «,_, are neglected. Formally, this ap-

time evolution operator proximation restores the leading-ordeMltorrections to the
CpH_ ¢ CATHe— ArHo L lattice dynamics. At sufficiently low temperatures, one re-
e ~"=lim(e e )", (120 stricts the path integral further to include only the electronic

Lo

ground statex=0. Suppressing thex{ superscript alto-
whereA r=pB/L, H,, is the lattice kinetic energy defined in gether, one then arrives at the standard first-order adiabatic
Eq. (3) and the zeroth-order pat,=H—H,, commutes (Born-Oppenheimerapproximation, with an effective Eu-
with all lattice displacement operataus. At each time slice ~ clidean action

n=KA7, withk=1,... L, we now insert a complete set of .
electron-phonon basis statbg{,”) that are chosen to be si- s _ 2 M2 [uj(rk)—uj(rk_l)]2
multaneous eigenstates bfy and of allu;. They can be ad U(T)]= ~ | & AT
i k=1 ]

written in the form

()= WO (u)) x| D), (13) +ATWolu(m) ] = I(¥ [u(r) | W [u(7-1)]) |-
where|® ) is the lattice part andW()(u)) the electronic (18)
part of |x{)). Written in first-quantized notation, the lattice
part is simply Note thatS,, depends explicitly only on the coordinates of

the lattice. The first 1/2) term is the standard form of the
lattice kinetic energy for discretized imaginary tinginite

D y(x)= 5(U_X):H S(uj—X;) (14 ). The electronic ground-state enengis(u) plays the role
of a zeroth-ordefin 1/M) effective lattice potential energy.
with lattice coordinate vectorsx=(xq, ...,XN) and u The last term, containing the logarithms of the electronic
=(uy, ...,uy). The electronic parf¥(9(u)) denotes the ground-state wave function overlaps at adjacent time slices
xth electronic eigenstate of the zeroth-order adiabatic Hamilduring 7 evolution, contains the Berry phase andltor-
tonian rections to the potential energy, as we will now discuss.
In exp(=S,Ju(7)]), the overlap product
Ho(u)=He+Hepu) +Hy(u), (15

L
at fixedu. That is,Hq(u) is defined to act only on the elec- _
tronic degrees of freedom dixed (c-numbej lattice dis- Q[U(T)]zkll (Wlu(r ¥ u(r-1)]) (19
placement coordinatas=(u, . . .uy) and
exists and which contains the Berry phase factor,
Ho(u) [P (u)y =W (u) ¥ (u)), (16)

where|¥((u)) and its eigenenergW{”(u) depend para- exp(—i 6[u(n) ) =QLu(n[QLu(7]l, 20

metricglly on the_ lattice displacementss The exact imagi- je., g[u(7)]=—ImIn(Q[u(n)]). Due to time-reversal sym-
nary time evolution undeH can thus be represented by a metry, all|[¥[u(7)]) have real amplitudes in an appropri-
path integral with a Euclidean action, written at finiteds  ately chosen electron basis and hence the phase factor is real:
g e n? S o O AL
_ i(7i) —Uj(7i—1 also rewrite Re(IQ[u(n)])=In|Q[u(79)] in S.du(7)] as a
Su(r) (7] gl (M/Z); At 1/M correction to the effective lattice potential which thus
) becomes
+ AW Tu(7y)]
W(u)=Wo(u)+Wy(u), (21

= In(WIu(n) ]| ¥ *-D[u( 7 1)]) |- with W, given by

7

1
The path integration is to be carried out both over the con- Wi (u)= m; <‘9Uj\P(u)|‘9”j\P(u)>' (22
tinuous lattice coordinatesa(r,)=[u.(7) . ..un(7)] and
over the discrete electronic quantum numbeys «( 7). Thus, the effective action fdr—o becomes

In the zeroth-order adiabatic approximation, correspond-
ing formally to theM — oo limit, one neglects the imaginary L
time evolution of u altogether and replaces;, by a S Ju(n]=>, [
r-independent classical field. The first-order adiabatic ap- k=1
proximation restores the dependence of the lattice coordi-
natesu, under the simplifying assumption that the electrons +ATW[u(7)]

M [Uj(m)—Uj(me-1)]?
?2 At

+ig[u(n)]. (23)
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Equivalent results can be derived in the Hamiltonian ap-of the electronic wave function¥ (u)).** In that case elec-
proach to the adiabatic approximation. The basic idea here igonic overlap effects arising from bot#] u(7)] andW;(u)
to restrict the full electron-lattice Hilbert space to an “adia- can become quite important.
batic” subspace that is spanned by the set of zeroth-order
adiabatic electron-lattice eigenstatg$”) defined above in Ill. TWO-SITE PROBLEM
Eqgs.(13)—(16) with « restricted to the electronic groundstate

x=0. The adiabatic subspace thus consists of EP states of 1n€ two-site version of the Holstein-Hubbard modB-
the general form (3) (Refs. 22—-24is a simple toy problem that retains some

essential physical features of the lattice polaron problem. We
will use it here to elucidate the basic underlying physical
|¢>:f dVu ¢(u)|‘lff,°)>, (24) ideas and formal concepts _of our adiabati_c treatment _and,
also, to test the validity and illustrate some important limita-
tions of the adiabatic approximation. We restrict ourselves to
whereg(u) is an arbitrarysquare-integrabjavave-function  the single-electron case on two sites, with an electronic in-
amplitude that depends only on the lattice coordinatéEhe  tersite hybridizationt. The adiabatic electronic wave func-
basic approximation step is then to project the full EP Hamil-tion | ¥ (u)) can be solved exactly by diagonalizity(u)
tonian H onto the adiabatic subspace. In this manner onehat reduces to a22 matrix.
arrives at a first-order effective Hamiltoniéh,y that is math- The two sites are labeled 1 and 2 with on-site oscillator
ematically equivalent to the first-order adiabatic Euclidearcoordinatess; andu, and on-site electron occupation num-

action Syq in Eq. (23), after L—c. Since the adiabatic EP persn, andn,. With symmetrized coordinates
states| ¢) can be expressed entirely in terms of their wave-

function amplitudep(u), one can recast ,qinto the form of ur=(u;* uz)/\/i, (25

an effective Hamiltonian acting only on the lattice coordi-

natesu in ¢(u), without explicit reference to the underlying

electronic ground-state wave functigf’ () contained in Wo(u) =W, (U, )+Wo_(u_) (26)

|$). However, it is crucial to keep in mind the formal rela- i '

tionship (24) between the full adiabatic EP stdi¢) and its ~ Where

lattice wave-function amplitudeé(u) if one wants to prop-

erly compare first-order adiabatic results to exact results, ob- Wo. (U, )= Euz n Eu _

tained by, e.g., numerically diagonalizing the full EP Hamil- EAR + *

tonian on small model clusters. (27
In systems obeying standard harmonic lattice dynamics,

the zeroth-order Born-Oppenheimer ‘“energy surface” K c2u?

Wy(u) exhibits one unique global minimum configuration Wo_(u_)=—=u?— —

u(™" which is, in terms of energy or in terms of configura- 2 2

tional distance, well separated from other, if existent, local

minima. In that case, the path integral is dominated by small- _

amplitude “harmonic” fluctuations around™™ and a de-

scription of the lattice dynamics in terms of renormalized (29)

harmonic oscillators, i.e., phonons, remains valid. Since the

displacement excursions arouné™™ are small, so are the and

fluctuations in the electronic wave functig® (u)); hence ) )

the small-amplitudé“phonon™) paths all haved[u(7)]=0 W, (u)=W,_(u ):E Q_ (t/Ep)

and Berry phase effects are negligible. Also, théeriva- 1 T4 B, [(u_/up)?+ 2(t/Ep)2]2'

tives of | (u)) entering intow; are well behaved and the (29

mth order u derivatives of the overlap matrix elements

(auj\lf(u)wujllf(u)) are typical of the order of inverse lattice

constants or inverse atomic distances raised to tme (
+2)th power. ThaN; contribution to the harmonic restoring
force constants, for example, are thus smaller than th
zeroth-orderW, contributions by factors of order of the
fourth power of the lattice oscillator zero-point displacement_
amplitude over the lattice constant. Thus, the electronic overs,
lap factor effectsw,(u) and 6[u(7)] can be altogether ne-
glected. _ _ _ u<+0>: —up/ V2, (30)
By contrast, in polaronic systems the zeroth-order lattice
potential W, exhibits a large number of nearly degenerateand the electron ground staté (u))=|¥(u_)), and hence
local minima. The low-energy lattice dynamics is dominatedW;, do not depend omn, .
by tunneling processes between the local minima that re- Sinceu_ couples to the charge imbalance =n;—n,
quires anharmonic large-amplitude excursions of the locabetween the two sites, the shapeW§_ is renormalized by
displacement coordinateg and large local rearrangements the EP coupling andV, depends oru_. As shown in Fig.

W, andW; can be written as

N

With the Berry phasé#[u(7)]=0, the problem is equivalent
to solving the Hamiltonian of a quantum particle of mass
in a two-dimensional potentialV(u)=W(u, ,u_)=Wy(u)
+W,(u). Because of Eqs(26) and (29) this dynamics is
geparable when written in terms of - andu_-coordinates.
Since u, couples only to the total electron charge
n,+n,, Wy, is just a harmonic potential with shifted equi-
rium position
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o (1 t)?
Apo=Wy(0)—Wyp_(£u)=|5—=]| Ep, (39
2 Ep
increases withEp and approache€p/4 in the strong-
coupling limit (34).
The physical origin of the double-well potential can be
most easily understood starting from the “ionic’t=€0)
limit of the model: Fort =0, the two electronic eigenstates of

Ho(u),

|[wy=|n;=1, n,=0) (36)

and
|w(2y=|n,=0, n,=1) (37)

have the electron completely localized on sites 1 and 2, re-
spectively, with eigenenergies

wit2(_)= g(uftup/ﬁ)z— %Ep, (39
where the upperlower sign refers tow(? (W('?)  as
shown by the two parabolic potential curves in Figa)l
AssumingC>0,|W (1) is the ground state fon_<0 and

| w(12)y for u_>0. At u_=0, the two parabolic eigenenergy
curvesW(D(u_) and W2 (u_) intersect, both states are
degenerate, and the ground-state wave function changes dis-
continuously as a function af _ . When the hybridization

is turned on, the two fully localized wave functiop® (1))
and|¥(2)) become mixed, the electronic degeneracy at

effective adiabatic lattice potential in the 2-site Holstein model with =0 is lifted, and a minimum excitation gap ot dpens up

1 electron. In(a), the electronic ground-state enel /Ep and the
first-excited-state energW{"/Ep of the electronic Hamiltonian
Ho(u) are shown as functions af_ /up, atu, =0 fort/Ep=0, 0.1,
0.3, 0.5, and 0.7. Inb), W; XEp/Q? vs u_/up is shown atu,
=0 for t/Ep=0.1,0.3,0.5, and 0.7.

1(a), W,_ retains a single global minimum at_=0, for
small Ep, with a harmonic restoring force constant

&2 Ep
KO_E_ZWO_(U_:O):(].__)K (31)
oJu

2 2t
that softens with increasingp and changes sign whdap
reaches a critical value

EL™ =2t (32

For Ep>ES™  W,_ acquires two degenerate minima at

u_=+u® separated by a maximum at =0, with

2t\“u
w2t
Eel 2

where up=C/K is the polaron shift(5). u® approaches
up/+/2 in the strong-coupling limit

(33

Ep>t. (34

between the electronic ground state and first excited state.
The sharp cusp at_ =0 in thet=0 double-parabolic poten-
tial function

Wo— (U-)|t=o=minf W'D (u_) W2 (u_)]

IE(|U—|—UP/\/§)2—EEP (39

2 4
[see Fig. 1a)] is rounded by the finit& as a function ofi_,
the ground-state wave functigi’(u_)) now changes con-
tinuously atu_=0. However,|W(u_)) still has predomi-
nantly | ¥ (1)) character nean_ = —u‘® and predominantly
| w(12)y character nean_=u®). With increasing, the tun-
neling barrier height35) decreases, initially by abotit The
barrier vanishes whetreaches(®™ = Ey/2 that is equivalent
to the above conditiof32), for E™

From the ground-state wave functig¥ (u_)) and its
charge distributiof ¥ (u_)|n;| ¥ (u_)) for E;>EL™ | near
the two potential minimat ue,o), one thus finds the electron
predominantly localized at site 1 when = —u‘® and pre-
dominantly at site 2 wheni_=+u'®, assuming agailC
>0 here and in the following. By contrast, at the potential
minimum u_=0 in the regimeE<E{™, the electron
charge is delocalized evenly between sites 1 and 2. Thus, at
the level of the zeroth-order adiabatic approximation, the
transition from the single-well potential cafg<ES™ to
the double-well cas&€p>EL™ is essentially a transition

The height of the zeroth-order potential barrier separating th&om a delocalized nondegenerate ground state<0) to a

two minima,

localized degenerate ground stata_E*=u'®). In the
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former case, the electron’s delocalization energy dominate¥hus, W, also lowers the criticalEp for the onset of polaron
and the electron wave function spreads out between the twiarmation. However, in the larght limit where the adiabatic
sites. In the latter case, the EP coupling dominates; the latticgpproximation is valid, that is, fofl<t (see below, these
spontaneously distorts so as to set up an attractive EP “paorrections are smaller than the zeroth-order re€@itsand
tential well” that binds and localizes the electron. The elec-(32) py factors of order Q/t)2(Ep/t)2. Providedt and Ep
tronic binding energy thus gained in turn stabilizes the locabe of comparable magnitude afidst (see below, W, does
lattice distortion. This self-localization mechanism is the es, qualitatively alter the basic structure of the lattice poten-
sence of polaron formation. .. tial Win either coupling-strength regime. HoweviY, can
Localizing the electron on either one of the two Sites iSp o, qualitatively important in suppressing certain nona-

energetically equivalent due to the reflection symmetry. . " . : , .
[(1.2)—(2,1)] of the underlying Hamiltonian. At the level ;r:ibr?g)((:t processes In lattice systems, as will be discussed in

of the zeroth-order adiabatic approximation, this symmetry i
broken in the twofold degenerate zeroth-order ground states

u_==+u®. The existence of twalegeneratdocal minima IV. VALIDITY AND LIMITATIONS

in Wy_ can thus be understood as a direct consequence of OF THE ADIABATIC APPROXIMATION

the symmetry breaking that accompanies the self-localization The basic criterion for the validity of the adiabatic ap-

transition. In the first-order adiabatic approximation, the lat- . ation is that the longest time scale of the electronic
tice Kinetic energy restores this symmetry by_ 'Ud”C'”g tun'motion should be short compared to the shortest time scale
ir;]eI'T%gﬁf?i?ﬂgg“’;ii?aige t\r'z)?lﬁgtz,?atgl ml?/\llmiht?#: ?J\)’éf the lattice motion or, equivalently, the lowest electronic
9 g Y . ; requency scale should be large compared to the highest lat-
de'g_enera'te zeroth-order states are admixed with equal pro ce frequency scale. In the two-site problem, the lowest elec-
abl'llltr?/evlvaetlt?ch;.tunnelin rocesses. within the multiple-well tronic frequency scale is the excitation energy between the
. g pre ” Uit electronic ground state¥ (u)) and the first excited state that
Born-Oppenhelmer potential, constitute the basic Iow-energ){/S at least 2 (at u_=0) or larger. The highest lattice fre-
mechanism whereby self-localized electrons can mov%uency scale is tr;e phonon ener@yand hence we expect
through thg lattice. At hlghe_r temperaturgs, thermally aCt'.'the adiabatic approximation to work, provided that
vated hopping over the barrier may dominate the polaronic k
charge transfet*#?this, again, can be described as a purely <2t 41)
lattice dynamical phenomenon. Thus, within the framework
of the first-order adiabatic approximation, polaron formation |, the polaron regim&p> E(Pcrit) the lattice(not the elec-
and polaron dynamics is fundamentally reduced toaproblerﬂon) motion acquires an additional, low-frequency scale,

of nonlinear latticedynamics. _ __given by the polaronic tunneling splittingt2 between the
We now turn to the first-order potential correction g.qyng state and first excited state in the double-well lattice
W, (u-) (29 in the two-site problem, shown for several hotential W(u). This tunneling energy scale is typically
values oft/Ep in Fig. 1(b). SinceWy(u), according to Ed. gmajier than or, at most, comparable to the bare phonon en-
(22), is controlled by theu gradient of the electron wave grqy scale), given the conditions where a polaronic double-
function | ¥ (u)), we should expect it to exhibit peaks wher- \ye|| forms in the first place. Hence, the basic criteri@)
ever|W(u)) varies most rapidly withu. In the two-site prob-  appjies in the polaronic regime just as well as in the delocal-
lem, this occurs ai_ =0, where| ¥ (u)) changes its charac- j;eq regime, regardless of the electron-phonon coupling
ter fr_om being predomlnantly _Iocallzed on site 1 to be'”gstrength. Criterion41) applies even in the strong-coupling
localized on site 2, as discussed above. For larg@egime(34) where 2, becomes orders of magnitude smaller
lu_|,|W(u_)) approaches a constant, eithg¥'V) or  thanq.
|w(2), henceW;_(u_)—0 for [u_|—c. In the polaron While the foregoing considerations are well knotfiit24
regime Ep> Eff”t), the primary effect oW, is to enhance we reemphasize them here because there has been some con-
the tunneling barrier separating the two potential minima. Infusion about this in the more recent literature on the two-site
addition,W; _(u_) will also tend to shift the two polaronic problem. In more recent work, it is sometimes assumed that
potential minima further apart, thus causing the tunnelinghe polaron tunneling splittingt3, rather than 2, repre-
barrier to become wider than in the zeroth-order potentiakents the lowest relevant electronic energy scale. Doing so,
W, . Both of thesew, effects tend to suppress the tunneling one then arrives at the much too restrictive validity criterion
rate through the barrier. Even thougt,(0) may be small
compared to the zeroth-order barrier heighy, (35), its ef- O <2tp. (42)
fect on the polaron tunneling rates can be quantitatively oif correct, this would imply that the polaron regimp

some importance, since tunneling rates are typically expo: . . . oo
nentially sensitive to changes in the tunneling barrier. >Ep™" cannot be treated in the adiabatic approximation,

In the delocalized regim&p< E,(fr“), the primary effect since typicallytp<Q even under_the most favorable condi-
of W, is to soften the harmonic restoring force constant!°NS: In the stror_wg-cpupllng regim@4), wheretp<2, the
K_=¢2 W_(0) by an amount adlapat|c approximation should break down completely ac-
u_ cording to Eq.(42).
P 1/ 02/ E.\ 2 The flaw in the foregoing argument is thatp2is of
Kio=—W,;_(u_=0)=— _< _) <_P) K<0. coursenot the lowest electronic energy scale, but rather rep-
2 8\t t resents an energy scale of the lattice motion, as discussed

(40 above. The relevant lowest electronic energy splitting, be-
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is noticeably worse than for the full adiabatic solution. The
agreement between the full adiabatic and the exact results is
all the more convincing in light of the fact that the tunneling
splitting is “exponentially sensitive” to small errors or
changes in the wave function inside the tunneling barrier.
Thus, our comparison of the tunneling splittings constitutes a
much more stringent test of the underlying approximations
than a comparison of, say, low-lying-state expectation values
or wave-function amplitudes. Other exact numerical results
for the two-site problem, are generally in equally good
agreement with the corresponding adiabatic solution, pro-
vided, that is, one exercises enough care to use the proper
adiabatic wave functionp), Eq. (24), in carrying out the

In(2t )

I 2 Adiabatic, W

-— - Adiabatic, W +W, comparison.
Exact . As expected from Eg41l), the agreement between adia-
-8 . ' : L N batic and exact results deteriorates at high phonon frequen-
8 10 12 14 16 18 20 : .
cies when() becomes comparable toAs a practical matter,
EP/Q even for()=2t, the agreement is still quite acceptable. For

applications to lattice systems, it is of interest to explore in
FIG. 2. Exact and adiabatic results for the tunneling energySOme detail how the adiabatic approximation actually breaks

splitting 2tp between the ground-state and the first-excited-statélown as one enters into the “anti-adiabatic” regime
electron-phonon eigenstate, plotted as a functioE@f(}, in the
2-site Holstein model with 1 electron, for=1 and several values of t<Q). (43
Ep, as indicated.

As a limiting case, we consider the ionic linti- 0, already
tween the electronic ground state and first excited sthte discussed above. Here, the Holstein-Hubbard problem can be
fixed lattice coordinate is at least 2 in the two-site model, trivially solved exactly’® Obviously there cannot be any

regardless of whethdfp is small or large. electron tunneling between the two sites and the exact po-
To illustrate this point, we have generated exact numerifaron tunneling splitting £ vanishes.
cal solutions of the two-site problem using the full Hamil- By contrast, in the simple adiabatic approximatigv

tonianH without any approximation, and compared them to=W,, W,_ approaches the double-parabolic potentid)
solutions of the first-order effective adiabatic effective for t— 0, which has a tunneling barrier of finite height and
Hamiltonian H,;=Hy+W, corresponding to the effective width. The simple adiabatic approximation would thus pre-
actionS,qfrom Eq.(23). For both the exact and the adiabatic dict a nonvanishing finite tunneling splitting 2>0 even for
problems, we have used a sufficiently fine discretization ot=0, a clearly unphysical result.
theu_ coordinate and a sufficiently large cutoff at lange If instead one uses the full adiabatic approximation, with
to ensure a numerical accuracy of better than 1% in th&v=W,+W,, the correct qualitative physical behavior of
calculated energy splittings over the entire parameter ranggt, is restored by th&V, term shown in Fig. (b): According
studied. In Fig. 2, we show the logarithm of the polaronto Eq.(29) the W, peak heightat fixedEp and(2) diverges
tunneling splitting 25, that is, the excitation energy from ast~2, while at the same time its peak width vanishes, but
the ground state to the first excited state of the full electrononly linearly int in the limit t—0. It is then easy to show
phonon system, as a function &p/Q) for t=1 and four that the transmission amplitude through g barrier van-
different EP couplingsEp=2.5,3, 4, and 8 that are well ishes, that is, the barrier becomes impenetrable in the limit
inside the polaronic regimeEp> Eff”t)). t—0 that forces 2,— 0 fort—0. Thus, as far as the tunnel-
In addition to the exact solution, we show two different ing splitting 2 is concerned, the full adiabatic approxima-
adiabatic solutions in Fig. 2, one obtained with the full adia-tion reproduces qualitatively the correct physical behavior
batic lattice potentiaW=W,+W,, the other using only the even in the extreme anti-adiabatic regime.
zeroth-order potentiaW=W,. These are being referred to  The actual failure of the full adiabatic approximation in
in the following as the “full” and as the “simple” adiabatic the t—0 limit is a more subtle problem. It consists of the
solutions, respectively. As expected from the Holstein-Langunphysical constraint being imposed on the dynamics of the
Firsov strong-coupling expansit**?°and from semiclassi- u_ coordinate by the impenetrability of th&; barrier. For
cal (WKB) arguments, the tunneling splitting at fixég and  t—0, theW, barrier forces the lattice wave functiat(u) in
t decreases exponentially with(1/ as indicated by a roughly Eq. (24) to vanish identically either to the righti( >0) or
linear dependence of Ini@) on 14} in Fig. 2. to the left (u_<O0) of the barrier. Thus, the amplitude for
Remarkably, the full adiabatic result agrees with the exacpropagation from an initial_<0 to a finalu_>0 (or re-
solution to better than 14% over a parameter regiont0.15versg vanishes in the full adiabatic approximatiort at0. In
<<0.% wherein 2p varies by more than nine orders of the exact solution of the=0 problem, this constraint does
magnitude, including the regime wherg-4s orders of mag- not exist; the lattice is free to propagate with some finite
nitude smaller thaif). The simple W=W,;) adiabatic solu- amplitude fromu_<0 tou_>0. In the exact=0 solution,
tion reproduces the qualitative features of th€ ldndEp  the lattice dynamics is governed either by the left or the right
dependence oft quite well, but the quantitative agreement parabolic well W) or W('2) corresponding respectively to
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the left-localized or to the right-localized electron statesW,[u(¢®)(s)] has local minima as=—3% ands=+1% that
|w Dy or | w(2) discussed in Sec. lll. The problem with must, by continuity, be separated st least one interven-
the adiabatic approximation is that the O electron ground ing maximum, i.e., by a tunneling barrier. The simplest sce-
state| W (u)) exhibits a level crossing and thus changes disnario, normally borne out in the numerical calculations dis-
continuously atu_=0, as discussed above. The adiabaticcussed below, is that there is only one barrier maximum, by
approximation, by construction, excludes transitions besymmetry located as=0. Thus, alongu‘9(s), W, has
tween, say, the electronic ground state and first excited statqualitatively the same structure ¥%,_(u_) described above
But this is just what happens at =0 in thet— 0-limit: If for the two-site problem.
the lattice coordinate crossas =0 from the left, say, under The first crucial point to note here is that the width of this
exact time evolution, the electron remains in its localizedtunneling barrier, that is, the Euclidean distance froffi to
state| ¥y, which is the ground state only far_<0, but ~ u in their N-dimensionalu space,
becomes the first excited state when>0. The adiabatic
approximation on the other hand forces the electron to re-  d(£,&)=|u®—u¥|<|u®|+[u®|=2|u'¥|=d., (46)
main in the ground state that changes discontinuously
u_=0, from | ¥ (D) to |w(12)),

In the two-site problem, the foregoing impenetrability

"’}E finite and bounded by an upper lindt, that is indepen-
dent of the spatial distandé— &|=|r|. Note thatd., is in-

: dependent of or ¢ due to lattice translational invariance.
constraint causes only a small error, of order exBe/Q), gy, g polaron configurations® andu(® are never fur-

in the low-lying lattice eigenstates and energies if the latticeiher apart from each other that, in u space, regardless of

oscillator zero-point amplitude is small compared to theh f hei id si d . |

double-well separation/2up, that is, if Q<Ep. However ow far apart t el centrol S|_tq’se_1n ¢ are in real Space.

the i trabilit tP" i ' trod P lit 't' The second important point is that the height of the
€ Impenetrability constraint may introduce a qualitative, o, o qer YW,) tunneling barrier alongi¢é)(s) is also

failure of the adiabatic approximation if applied to large SYS-pounded independently of lattice distandés- . To see

temsN— o0 and tunneling processes that transfer a polaron Mhis. note that the EP potenti@ly, acting on the electron is

a single step over large distances, as we will now discuss. S ' .
. S " attractive, i.e.Cu;<0, for anyu configuration along the path
Let us consider for simplicity the case of the Holstein u(€9(s) betweens=0 ands=1. Hence, the contribution to
model for j ingle electron in a large lattice with suffi- B S '
odel for just a single electro a large lattice with su Wy(u) from Het+He{u) is bounded from above by the

Eigfilzesdtrgp ggr;éosfi?grmsZypcgigo\Tv.evagr?to f:;?u%)??rl]aerggnts electron ground-state energy of the undistorted lattice. Also,
neling barrier for transferring the polaron in a single tunnel-by an ar.gument apalogous to Ee6), the elastic e(ngt)argy
contribution H, (u) is bounded from above byH(u'®).

ing step to a distant sité= &+, i.e., with|r|>a, wherea is )
the lattice constant. Both of these upper bounds are independeri efé|.

Letu®@=(u®, ... u)) denote that lattice configuration The foregoing considerations suggest that a mgnn‘old of

: T . tunneling trajectories exists, sufficiently close ué®(s),
which minimizesWy(u) and localizes the polaron around the which will all connectu® to u® through aW, barrier
“centroid site” £e{1, ... N}. Thatis,|u®)| and the corre- 0

whose height and width is bounded by upper limits indepen-
dent of |£— £|. Within the simple adiabatic approximation,
W=W,, one thus arrives at the unphysical result that the
polaron can tunnel in a singk¢instanton”) tunneling step
from any site to any site in the lattice with a tunneling
matrix elementp({— &) that doesnot go to zero for| — |

—oo, but rather
u@=u®, (44)

sponding electron charge density)(*) are maximal at

= ¢ and die out exponentially at large distan¢es &| from
the centroid. Likewise, let’® denote the lattice configura-
tion that localizes the polaron around sfteBy lattice trans-
lational invariance

if {=¢&+r. Notice that polaron formation breaks the transla- M_I'grlm|tp(g_§)|=tp°°>o' (47)
tional symmetry of the lattice in the zeroth-order adiabatic

approximation. As a consequent¥, exhibitsN degenerate The foregoing argument can be made formally more rigorous
local minima, corresponding to thé different, but transla- by employing instanton methods similar to those described
tionally equivalentu(®) configurations on arN-site lattice  in the next section for short-distance tunneling processes. We
with periodic boundary conditions. This is the lattice analogwill not engage in that exercise here. Suffice it to say that the
to the breaking of reflection symmetry in the two-site prob-simple adiabatic resu(@7) for the lattice is analogous to the

lem. above-described two-site result in the 0 limit: the simple
Let ut®(s) denote the linear path segment in the adiabatic approximation allows tunneling solely on the basis
N-dimensionalu space connecting(® to u?, i.e., of the W, electronic ground-statenergybarrier, regardless

of whether there is actually any electronizave-function
1 overlap between the initial and final configurations of the
§+S)U(o (45 tunneling process.

To account for wave-function overlap effects in long-
with se[—3,+ 3]. In the following discussion, we consider distance tunneling processes, thg term (22) has to be
Eq. (45) as a representative of low-action tunneling trajecto-included in the total potentiaV=W,+ W, . Let us consider
ries connectingu®® to u'¥. The s coordinate can thus be the evolution of the electronic ground-state wave function
regarded as the lattice analog to the tunneling coordinate |¥(u)) along the linear tunneling trajectony¥)(s) (45)
(25 in the two-site problem. Note in particular that between two centroid sitesandé with |{— &|>1p(u). Here

1
€)= = —
u'ss’(s) (2 s
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neling matrix elementsp({— &) are properly suppressed to
zero at large tunneling distances. Hence, the full adiabatic
approximation W=W,+W,; restores the correct long-
distance behavior, as far as the polaron tunneling matrix el-
ement is concerned.

However, just as in the anti-adiabatic limit of the two-site
problem, thew, term also imposes an unphysical constraint
on the lattice coordinates. In the present case, involving
long-distance tunneling on a lattice, this constraint acts to
couple the lattice displacement coordinates at arbitrarily
' : h ) large distances|/—¢|, thereby introducing unphysical
aroundl ={. As sis varied from—3 to +3, the EP well at i inite-range interactions between the lattice coordinates.
¢ becomes shallower and the EP well &deepens. As Thus, in long-distance tunneling processes, the precondi-
=0, the two wells become degenerate. Assuming large realions for the adiabatic approximation break down. However,
space tunneling distances—¢|, the electron wave-function  trom the foregoing discussion it is clear that the effective
overlap between these two wells is exponentiallysciion for the corresponding paths increases exponentially
small. Hence, the electron ground-state wave functionynq that the corresponding tunneling matrix element dies out

| »(u) denotes the exponential localization length'¥f(u))
for local lattice distortions comparable t69. As a simplest
scenario, let us assume that the wave functidiu)) re-
mains localized for alu alongu“9(s). This situation will
be realized at EP coupling strengtgswhich are sufficiently
large compared tcE(PC“t). The electronic ground-state prob-
lem can then be qualitatively described as follows:

The EP potentiaCu{*¥)(s), acting on the electron at sites

|, consists of two localized wellsC(%—s)u(® and C(3
+s)ul®, the former centered around site= ¢, the latter

|W[ud(s)]) will remain localized at site for mosts<0
until s gets very close te=0. Within a very small interval
arounds=0, |¥[u®?(s)]) will then switch over from being
localized aroundt to being localized around. In that nar-
row s region arounds=0, the electron wave function con-

exponentially with the tunneling distance. The simplest way
of dealing with such long-distance tunneling processes is
therefore to altogether neglect the corresponding tunneling
paths in the path integral. This is what we will do in the

following analysis. As far as the polaron tunneling dynamics

sists of the superposition of two almost nonoverlapping lo4s concerned, the short-distance processes will be dominant.

calized parts, one centered aroufidthe other around.
Since|W¥(u)) changes very rapidly as a function ofnear
u¢9(0), Wy (u) will exhibit a sharp peak along“9(s) that
increases the tunneling barriersast 0 and hence suppresses
the tunneling amplitude.

The relevant effective electronic matrix elemerts for
short-distance processes are of order of the first-neighbor
that is normally larger than or at least comparable to the
phonon energy scale in typical solid-state situations.dafe
therefore use the adiabatic approximation to accurately esti-

Formally, this problem can be treated by a tight-bindingmate the effective action for short-distance tunneling paths.
ansatz for the electron ground-state wave function:And it is only in this limited sense that the adiabatic approxi-

|W[utd(s)]) nears=0 is approximated by a superposition
of |¥(u®/2)) and |¥(u'9/2)), i.e. by the single-well
ground states of the two EP welCu(® and3Cu?, dis-
cussed above. As is varied nears=0, the response of
|[W[u9d(s)]) to the changing EP well depths is then gov-
erned by the effectivelectronichybridization overlap

1{—¢l
(48)

tei({— &) =(V(UD12)[HJ ¥ (uD/2))~t exp( -2
P,1/2

where |p1p=Ip(u¥/2) is the localization length of
| (ul®/2)). Within the tight-binding ansatz, the problem
then becomes analogous to the two-site problem intthe
—0 limit, with the tight-binding basis staté® (u'¥/2)) and

| (ul9/2)) replacing the two-site basis statgk(Y) and
|w(12)y respectivelyW;[ u¥)(s)] exhibits a sharply peaked
barrier ats=0, analogous to the—0 limit of the two-site
problem. TheW; barrier will be roughly of the form given
by Eq.(29), with u_ replaced byu_(s)=d(¢,£)s and witht
replaced byte({—¢). Thus, along witht.4({—¢&), the
transmission amplitude through thi¢; barrier and the effec-
tive polaron tunneling matrix elemeti(Z— &) will decrease
exponentially with the tunneling distan¢é— &|, analogous
to thet—0 limit in the two-site problem.

mationwill be used in the following.

V. INSTANTONS AND EFFECTIVE HAMILTONIAN

The problem of polaron formation in the 2D Holstdih-
and Holstein-Hubbard models has already been studied
extensively!?~1214|n the nearly-filled band regime, the
dopant-induced hole carriers in the AF spin background can
form polarons with much less EP coupling strength than is
required for a single electron in an empty band. TEE"
for forming a single-hole polaron in thé-filled system is
reduced by a factor of about 4-5, compared to a single-
electron polaron formation in the empty-band system. This
reduction inEE™ has been explained in terms of the hole
mass enhancement and self-localization effect in the AF spin
background of the nearly-filled Hubbard systen The ba-
sic idea here is that the coupling to the AF spin background
already provides some form of self-localization of the hole
relative to a self-induced local distortion of the AF spin
correlations:?’ This spin polaron effect is manifested in the
strongly reduced hole quasiparticle bandwidth, fromi
the noninteracting system te2J in Hubbard ortJ systems
near half filling. In the presence of EP coupling, this elec-
tronic bandwidth reduction permits the hole quasiparticle to

The long-distance polaron tunneling processes are in theecome self-trapped by a much weaker EP potential well;

anti-adiabatic regime, since the relevant effective electronikience the reduction i&

hybridization overlap matrix elementgy({— &) become
small compared to the phonon ener@yat large tunneling
distanced {— £| on large lattice size®N. The W, potential

" The fact that the polaron for-

mation thresholdES™>0 remains nonzero even in the
strongly correlated systems is dictated by the so-called
small-polaron dichotom§£ as discussed further in Sec. IX.

ensures, at least qualitatively, that the effective polaron tun- For a multihole system containing
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riers, such a tight-binding projection could cause severe

PEN—E n; (49 quantitative errors in the estimation of the magnitude of tun-
neling matrix elements. Also, as a practical matter, the accu-
. ) ) rate evaluation of Hamiltonian matrix elements with basis
doping-induced holes on a-site lattice, there a_re',;‘Q POS- fynctions defined on thAl-dimensionalu space can become
sible configurations for accommodating téocalized holes  qite difficult. Lastly, in the first-order projection approach,
on theN available sites. The lattice potenthl(u) is there- i is difficult to include the tunneling Berry phases irft.
fore expected to have up tdiX nearly degenerate local T avoid the foregoing difficulties, we have adopted an
minima, denoted by¢ in the following, corresponding to the approach that is based on a direct mapping of imaginary-time
(p) different centroid configurationsé=(¢;, ....£&).""  tunneling paths, rather than a mapping of Hamiltonian matrix
Here, &= (& 4 ,) denotes latticgcentroid site occupied elements. Formally, this is accomplished by the path-integral
by the ith hole. As noted above, each of these local-instanton method® 3! In this method, an “instantaneous”
minimum configurations breaks the translational symmetrypolaron hopping process— ¢ induced byHp between two
of the lattice at the level of the zeroth-order adiabatic appolaron centroid configurationg=(¢,, ....,&) and ¢
proximation. The symmetry is restored in the first-order adia= (¢, , . .. p) is identified with the(restricted path sum of
batic approximation by polaron tunneling processes betweejnstanton tunneling paths connectingto u¢ in u space. The
the differentu?. effective actionSp of the instantaneous hopping paths, so

At EP coupling strength& larger than, but sufficiently obtained, can then be immediately translated into matrix el-
close toEE™ , it is possible that some of thes( centroid  ements of the effective tunneling Hamiltonidhe. Since
configurationsé do not have corresponding stable local- only tunneling paths, but no basis states, enter into the map-
minimum configurationsi? in W(u). This may happen, for ping, the results do not depend on any particular choice of
example, in a two-hole systen{ 2), if one tries to accom-  tight-binding basis stateg, .
modate the two polarons at first-neighbor sitgsandé,, in As a specific starting point, we consider the trace of the
the presence of a first-neighbor Coulomb repulsign At resolvent operator at complex energigs
sufficiently strongV., the corresponding local minimum
ué=ylé.é2) beco_mes locally unstable, Whi_ch is signaled b_y THE—H) l=-— jwdﬂ eBETre AH. (50)
the smallest eigenvalue of the restoring force matrix 0
3°W/ du?| ¢ becoming negative. In the following, we will not
consider such situations, but rather restrict ourselves to p
rameter regions where all the local minimum configurations
u¢ are stable. Tr e‘BH=J Du(r)e” Sedu(], (51)

To establish the basic structure of the effective polaron u(g=u(
tunneling dynamics, we treat the path integral for the effecThe trace operation in Eq50) leads to periodic boundary
tive actionS,q (23) or its equivalent Hamiltoniamd .4 by a  conditions on the imaginary time intervied,8] in Eq. (51).
lattice dynamical many-body tight-binding approach. TheThese periodic boundary conditions in E§1) impose not
basic idea behind this approach is that an effective polaroonly the closed-path constrain7) =u(0), butalso the con-
tunneling HamiltoniarHp can be defined that operates in a dition that the initial and final electron wave functions must
“low-energy” subspace of nearly orthogonal tight-binding be the same, including their phase factors. That is, for the
basis state$¢,), labeled by the localized polaron centroid electron wave functions¥[u(7)]) entering intoS,q via Eq.
configurationsé. Each such basis state represents a lattic€19), the constrain{ W[u(g)]|¥[u(0)])=+1 must be im-
wave functiong,(u) that is assumed to be localized in  posed for all pathsi(7) integrated over in Eq(51). The
space around the corresponding local potential minimunatter requirement ensures that the Berry phase contribution
configurationu®. For exampleg(u) could be chosen as the to S,4in Eq. (51) is uniquely defined for every closed path
vibrational (“phonon™) ground state obtained in a harmonic u(7), independent of the choice of phase for each individual
approximation by expanding/(u) to quadratic order around electronic wave functionW[u(7)]) along such a path.
ué. By restricting the lattice Hilbert space to such a set ofQuantized eigenenergies can be found from Eif) by
basis stateg,, all vibrational excited states around the po- searching for the poles of the trace of the resolvent operator
laronic local minima are neglected. Thus, formally, our ap-on the realE axis.
proach can be regarded as a tight-binding approximation, The main contributions to the low-energy part of E50)
formulated for the quantum dynamics of the multiple-well arise from instanton path configurations, ilepaths that are
lattice potentialW(u) in the N-dimensional lattice configu- almost always close to one of the centroid configurations,
ration (u-) space. occasionally transfer from one to another centroid configu-

In the simplest tight-binding approach one would thenration by an almost instantaneous polaron hopping process,
simply estimate the matrix elementstdf by projecting the  and finally return to the initiall configuration at imaginary
adiabatic lattice HamiltoniarH,4 onto the corresponding time 3, in order to satisfy the closed-path constraint. Impor-
tight-binding low-energy subspace spanned by jl. In  tant closed-path tunneling processes for polaron states with
such a first-order projection approach, one neglects all efP=1 and 2 dopant-induced holes are shown in Fig. 3. Each
fects arising from virtual excitations out of the low-energy black circle represents an occupied polaron centroid site in
subspace. the initial configuration¢ of the hopping process. Arrows

Since tunneling matrix elements are exponentially sensiindicate the hopping processes transferring the initial con-
tive to small corrections in, for example, the tunneling bar-figuration ¢ into the final configuratior?. Thus, inu space

gyritten in the imaginary-time domain in path-integral form



1454 K. YONEMITSU, J. ZHONG, AND H.-B. SCHOTLER PRB 59

Q (B) ;
=) )
(b)
(A) (B) (O
AR
hd 2
=) )

®
) = ®) ~
i o

FIG. 3. () One-polaron andb) two-polaron closed tunneling
paths and their Berry phase factors. Black circles indicate the po-
laron locations for the initiali configuration of the path. The num-
bers on the two-polaron exchange pathghnindicate the order of ;
the single-polaron tunneling steps. tz(]a)

@@

each arrow corresponds to a set of instanton-type tunneling F!G. 4. Important single-polaron tunneling processes with ma-
paths that connects the two respective minimhend-point ~ rix elementstt” to the vth neighbor sites fota) P=1 and(b) P
configurationsué andu¢ and traverse th&V barrier separat- — 2 Polaron states on the 2D square lattice.
ing the two minima-! Note that, as discussed above, via such 2) 3) - :
tunneling paths, a holpolaron can tunnel in a single step MOSt comparable tt,il andt;” (to within 20-30%in the
between second-, third-, etc. neighbor sites even if the origic@Se ofP=1. Then, instanton path configurations are classi-
nal electron Hamiltonian (1) contains only a first neighbor fied according to the numbers of intrasublattice processgs:
{11 counts the number a® processes to the righty, thet{*)
First, we consider the case &= 1. For the time being, processes to the lefh,, the t® processes to the uppen,
we take into account only the second- and third-neighbothe t) processes to the lowen,, the t{?) processes to the
processes denoted by amplitudd® and t{¥in Fig. 4a.  upper-rightm, thet{?) processes to the lower-left, thet{?
Single-polaronintersublattice processes are strongly sup- processes to the lower-right, ang, thet{?) processes to the
pressed by the AF spin correlatioffsHence, the first- upper-left neighbors. Path integration over the corresponding
neighbor amplitudet!®) can be much smaller than or, at instanton paths givé% 3

. 1 )
Tr e,BH:e,BW(u(mm,l)) E f de glPx(2ny—2m,+n,—my+n,—m,)
oo m, M nytmyIngtmy!ingtm,!J 27

dpy . 2)_ 2 3)_.,3
v f 2py giPy(2ny=2my+ny=my=n, +m,) (g R i g )J(lz)K(lZ)’B)nu+mu+nv+mv(ef SR —i 6 )J(lS)K(lB)B)nX+mX+ny+my
T

dp, d _
= [ 52 S exit— BIW(U™™) + 2t cot py+ py) + COS p— py) 1+ 2t cog2p) +cos2py) 1. (52)

The effective hopping matrix elememg) are obtained as H(PV) is the corresponding Berry phase contribution. The as-

signment of a unique Berry phase faceor o to each such
t)=—J0KYe" Ry -6y (53)  open path segment requires more detailed symmetry consid-

erations and will be postponed until Sec. VI. The quantity
W(u(Mn.) js the absolute minimum lattice potential energy K(P”) in Eq. (53) represents the- 3 power of the fluctuation
obtained at a minimum configurationu(M"Y=u(¢) for  determinant for the instanton solution with the zero mode
P=1. Factorial factors such as,!, etc. are introduced to excluded divided by that for the static solutioru&t™™%), and
account for identical species of instantons. Theandp,  J{) is the Jacobian needed for a special treatment of the
integrals are introduced to enforce the imaginary-time peri-corresponding zero mode. They are defined as in Eqs
odic boundary condition. The quantigRy? is the single-  (10.13 and (10.14 of Ref. 29 for the periodic potential
instanton contribution to the real part of the action for theproblem. Substituting the result of the path integf) into
path segment of the corresponding tunneling prot{ééand the formula(50), we obtain the dispersion relation shown in
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the parentheses of éxpp{ . ..}] in Eq. (52). Note that the tunneling analysis. In the following, we restrict ourselves to
effective hopping matrix element is defined such that it isthe casesP=0, 1, and 2 that will allow us to extract the
positive if the corresponding path segment carries a noneffective one-polaron tunneling and two-polaron interaction
trivial (—1) Berry phase factor: the sign convention of our matrix elements.
polaron tunneling matrix element$) is opposite to that The low-lying tunneling eigenenergies identified by the
used in the original electron Hamiltonid). foregoing instanton path-integral methddnd their corre-
Next, we consider the case oP=2. Since self- sponding eigenstatesan be equivalently represented in
localization reduces substantially the polaron kinetic energyerms of an effective polaron tunneling Hamiltoniai,
scale, it is favorable for two polarons in an AF spin back-Where each polaron is represented as a _épfer-rr_uon.ﬂp Is
ground to be bound in a pair: the binding energy can eas”)t.hus defined to operate in an effective spifiermion Hilbert
be of the order of the effective polaron nearest-neighbor atsPace with the effective fermions occupying sitg=on the
traction, i.e., comparable to the AF spin exchange coupling 2D square lattice of the original EP Hamiltonian. A
(Ref. 33 in the Holsteintd model. As a first approximation, P-polaron centroid configurationé(, ... .&p) is mapped
we therefore restrict the path integration to include only first-onto the corresponding state &f site-localized fermions
neighbor pair configurationa(¢1-¢2) and the instanton tun- With minimum possible total spin, |.e.,_w|t5[0t=% (0) for
neling paths connecting them. Our numerical studies deodd (even P. The latter mapping condition reflects the fact
scribed below suggest that these first-neighbor configuratiori§at the absolute electron ground statégu)), numerically
represent thabsoluteminimum of W(u) for P=2. Other, calculated on finite c!usters, exhibit minimum total_ spin
more distant pair configurations witlf; — &,|>1 are either ~duantum number. Notice however that by representing the
represented by localV minima u(é1£2 of higher energy or Polaron as an effective spéj—fe_rmlon, we are actually in-
they do not form local minima iW(u) at all. We are thus clughng Iow-gngrgy spin eXC|tat|ons'|nto the effec't|ve Hamil-
limiting ourselves, for now, to the tunneling processg  tonian description. In order to derive the effective polaron
andt® between the degenerate, absolute-minimuicon- spin-spin mt_eractlons, our ad|aba_t|c path-_lntegral treat_ment
figur;tions as shown in Fig.(8). ' can be straightforwardly generalized to include restricted

The technigue used above =1 can be generalized in electron ground states in Hilbert space sectors of higher total

; . spin quantum numberS,,,=1. In this manner, the spii-
ast_ralghtforward manner to the present CBse2. Here, In fermion representation can be extended well beyond the
addition to the lattice translational degeneracy of the

minimumW u configurations, th@=2 system exhibits two- scope of our original adiabatic approximation that retains

: ; . only the (minimum-spin absolute electron ground state
fold internal degeneracy, corresponding to the two pOSSIb|?\I,(u)> In the following analysis, we limit ourselves to the
orientations of the first-neighbor polaron pair, along eitherabsolut.e ground state only Hené:e we are only studying the
the x or along they axis. Because of this twofold internal total spin-singlet pair state.in the=2 case. Using our nu-
degree of freedom, the instanton exponential function in the '

; . merical Berry phase results, we will show in Sec. VI that
gi&:}r]etﬁg;?l rgil:neesl;he form of the trace over:a2 matrix each single polaron in such a singlet pair behaves indeed as a

spin- fermion.
In generalizing the above first-neighbor approach, it is
_pn_ [ 9dPx dpy minzn[ 10 also straightforward to include intersublattice hopping pro-
Tre M= | 5 o5, Trexp = pWu™5) o cesses: the dimension of the matrix increases, the
k-independent term is no longer proportional to the unit ma-
trix, andt$" (more preciselyt(V, t¥ | andt{?) are de-
' fined as above. Then, the effective Hamiltonian describing
the polaron tunneling dynamics and effective polaron-
(54  polaron interactions can be written in the form

2ti¥cosp,  4t5'cos p,/2)cos p,/2)
A atPcog p,/2)cogp,/2)  2t5 cosp,

whereW(u(™"2)) denotes the absolute minimum lattice po-
tential energy foP=2, obtained au(m"?=y(1¢2) with ¢, Hp= >,
and &, denoting first-neighbor centroid sites. The tunneling 7o
matrix elements(P”) are expressed analogous to E53) in
- N . . _ t _ _

terms of the action contributions, fluctuation determinants, X (1=Ngj - )d],di (1= Ngi _ ») = > Venging;.
and Jacobians of the respective instanton path segments. The (D
two low-lying eigenenergies of the polaron pair at total mo- (55
mentum p=(py,py) are obtained by diagonalizing the + i ) _ )
22 matrix in exp—g{...}] of Eq. (54). T_hug,djg createTs a spig- fermion polaron with spinr at

The generalization of the foregoing path-integral ap-Site j, ng;=Z2,d;,d;,=0,1 andP=X;n4;=1,2. The hop-
proach toP>2 hole polaron states is in principle straight- Ping term is to include, appropriately, the amplitudeg (
forward, but becomes practically difficult to implement with + = Atijngd =t 172, 18, 1512 1§ 12 or t§) (with
increasing polaron numbe?. Analogous to Eq.54), the  appropriate sign according to the corresponding Berry phase
approach leads to a momentum integral over the trace of tactor for i—j tunneling processes shown in Fig. 4. Note
matrix exponential where the matrix dimension reflects théhere that the sign convention for the polaron tunneling am-
number of (nearly degenerate, translationally inequivalent pIitudest(P”) in Eq. (55) is opposite to that used in the under-
polaron centroid configurationg{, . . . ,&p) included in the lying electron Hamiltoniang8) and(9).

tij + Ek Atijkndk>
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The first-neighbor attractiodp in Eq. (55) is estimated as
Vp=2W(u(MnD) — w(u(min2) —yw(y(mn0) (56

where W(u(™M™P)) is the (absolut¢ minimum potential en-
ergy W(u) for theu configurationsu(M"P) =y(€1: - £p) that
minimize W(u) for P holes. ForP=2, our numerical calcu- ———
lations suggest that the absolute minimuyhd configuration |_
does indeed correspond to the first-neighbor pair. For pur- :
poses of estimatiny', numerically on small model clusters, : :
we have minimizedW, instead ofW=W,+W,, thus ne- P
glecting the effect ofV; on u(™™P)_In the physical param- FIG. 5. (a) Berry phase contributions from single-polaron first-
eter regime of interest)<t,Ep, theseW; corrections to  neighbor processes in the vicinity of a second, static poléstatk
u(MnP) are indeed small, of ordefX/t). The full potential  circle). Full and dashed bonds indicaté {) and (— 1) Berry phase
W=W,+W, was used to calculate&/(u(™"P)y, contributions, respectivelyb) Internal parity of second- and third-
To obtain order of magnitude estimates fgf , we have  neighbor polaron pairs is odd under reflection along the dashed line.
used both the dilute instanton-gas appro®cht as ex-
plained above, and a constrained lattice dynamics apptbach The origin of them(zl) term can be traced back to the
that is more straightforward and adopted in Sec. VIII. Thejnternal symmetry of W(u)): For the local minimuma/ u
two approaches have given similar results. In the latter apconfigurations of second- and third-neighbor polaron pairs,
proach, the lattice Schdinger equation corresponding®gy | W(u)) is odd under reflection along the dashed lines shown
is solved exactly foru constrained to the linear tunneling in Fig. 5b), i.e., along the pair axis for the second-neighbor
pathu‘¢(s) that is defined analogous to E@5) and con-  pair and perpendicular to the pair axis for the third-neighbor
nects the two energetically degenerate, minimidhpolaron  pair. Suppose, for example, that the first polaron hops from
end-pointu configurationsué and u¢ of the respective hop. (1,0) to (1,1) in a first step and froniL,1) to (0,1) in a second
The hopping matrix eIemerjt(P”)l is then estimated as one step with the second polaron staying fixed@0). These are
half of the ground-state—to—first-excited-state energy splitthe first two steps of pattb) (B) in Fig. 3. Note that the two

ting. steps generate the same final centroid configuration as a re-
flection along the dashg@,0-(1,1) line, shown in Fig. &).
VI. SYMMETRY OPERATIONS AND BERRY PHASES Because of this odd “internal” parity of¥ (u)) for the in-

termediatg'second-neighbor polaron pagonfiguration, one
Before going into numerical estimations of effective of the two first-neighbor hops must contribute an additional
model parameters, we need to settle the quasiparticle stfactor (—1). Assigning this ¢ 1) phase factor to one of the
tistics and the signs of effective polaron hopping pro-two first-neighbor steps in patfib) (B) of Fig. 3 is to some
cesses by calculating Berry phase factors. To calculatextent arbitrary. The pattern of dashed-line and full-line
exp(—ié[u(7)]) for tunneling pathsi() shown in Fig. 3, we bonds surrounding the static polaron in Figa)5represents
discretizer with at least 57 points per linear path segment one possible assignment that is consistent with all the closed-
and obtainW[u(7)]) of the Holsteintd model by the Lanc- path Berry phase results in Figit8. As a consequence of its
zos exact diagonalization method onMr4X 4 lattice with  odd internal parity, the second-neighbor polaron pair con-
periodic boundary conditions. The electron Hilbert space idiguration is actually allowed to contribute with finite ampli-
restricted to the sector of minimum total spi8<0,1/2,0 for  tude to polaron pair wave functions df2_,2 symmetry, in
P=0,1, 2, respectively which comprises the absolute spite of the fact that the second-neighbor pair axis points
ground statg W (u)) for u configurations near the locaV  along the nodal axis of the,2_,2 pair wave function.
minima. The results for all paths in Fig. 3 are summarized by Them(® andm(® terms can be regarded as due to strong
antiferromagnetic correlation. Suppose a polaron is initially
o[u(7)]=m(m?@+m®+miV), (57)  located at(0,0) and hops to(2,0), (1,1), and then back to
(0,0 along the patia (B) in Fig. 3. The electron initially
wherem(") is the number obth neighbor hops with=2, 3, |ocated at(2,0) hops to (0,0 and then to(1,1), while the
andm§" for P=2 denotes the number of first-neighbor hopselectron initially located af1,1) hops to(2,0). Thus, if one
indicated by the dashed bonds shown in Fi@) By the first  approximates the AF spin background by aeNstate, two
polaron in close proximity to the second, static polaron, in-electrons of like spin are exchanged. This produces a fermi-
dicated as a black circle. The effect of thél) term can be onic (—1) factor. More generally, when a closed path con-
illustrated, for example, by comparing the Berry phase facsists of an odd number of second- or third-neighbor hopping
torse™'? of the triangular path&) (A) and(b) (B) shown in  processes, an even number of electrons within a sublattice
Fig. 3. In both paths, a single polaron is taken around theare cyclically permuted, producing the-() factor within
triangle in three steps, consisting of two first-neighbor andhe Neel approximation to the AF spin background. In order
one second-neighbor transfer. For the one-polaron ¢ase, for this to occur, the AF spin correlation has to be strong, but
(A), the phase factor is{1), for the two-polaron caséh) it need not be long ranged. F&=1, the Berry phase rule
(B) it is (+1). Thus, the close proximity of the second, can be completely explained in this way.
static polaron in(b) (B) has altered the Berry phase of the For both P=1 and 2, §[u(7)] is given by a sum of
first polaron tunneling around a closed path. independent single-polaron hopping contributions and
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exp(—if[u(s)]) doesnot depend on whether or not the two @
polarons are being adiabatically exchanged in a given path : : : : : :
[Fig. 3(b)].3* Thus, for example, path®) (B) and(b) (C) in . 36 © =TC10) i @
Fig. 3 contain the same first- and second-neighbor hops and S oo
they have the same Berry phase. The two paths differ only in
that (b) (C) exchanges the two polarons, wherdas (B)
does not. Since the pair is a total spin singlet, this implies
that each single polaron in the pair behaves effectively as a
spin-1/2 fermion or as a spin-0 boson. Only the spin-1/2 : : : : : :
fermion representation is consistent with the half-odd-integer
total spin in oddP systems and, as discussed in the previous e e : T SR :
sections, it is the one we have adopted. Equatif rules : : : : : :
out the possibility of representing dopant-induced hole po- €——6 =120 i@
larons as spin-0 fermions or as spin-1/2 bosons. : : : : : :
To settle the signs of effective polaron hopping processes,
we need to define Berry phase factors for the corresponding
single-hop open-path segments. Let the initiatonfigura-
tion of such a single-hop path segment be denotedi®y R D
and the finalu configuration byu'¥. The assignment of a
Berry phase to such a path segment can be made unique by ... .
fixing the phase of the corresponding wave function Do S
|W(u9)) relative to that of W (ut¥)) in some unique man- €E——e=-RM i@
ner. Givenu'® and|¥ (u(®)), let |¥(N(u(9)) denote such S .
a final-state reference wave function. Also, [#t(e9(u(9)))
denote that ground-state wave functipbi(u(®)) that one
obtains by adiabatically evolvingV'(u)) along the tunneling
path segment, without discontinuity in phase, beginning with
| (u®)). The Berry phase of the path segment is then de-
fined as the phase difference betweh@d(u®))) and
|w(reD(y(9)), that is, as the phase of the wave-function over- oo o
lap (W0 (u©) | ¥ @y9y)), If, for example,u® andu®
are related by a lattice symmetry operation, we can choose ... ...
|w(eD(y(9)) as the ground-state wave functidi (u(?))) S S
generated by applying toF (u9)) the symmetry operation
which transformai(®) into u(?. If u® andu(® are related by
several different symmetry operations giving different
|weD(y(9)), we need to specify the referent® (u))),
i.e., which symmetry operation is chosen to generate the
reference| ¥ (u9)) from | (u¥)). There does not al-
ways exist such a symmetry operation to relgig(u(?)))
and| ¥ (u®)), e.g., the second- or third-neighbor pair and
the first-neighbor one. Then, we can arbitrarily choose the A SR : T

phase of|[W()(u®)). The Berry phase factor for the e

corresponding path is also arbitrary. Figur@)5is an ex- m == R(@m LA

ample. If we chose the different pha§e., the negativeof

|we)(u9)) for the secondthird)-neighbor pair, the signs 7

of all thet(zla) (t(zlb)) processes would be reversed. FIG. 6. (a) One-polaron andb) two-polaron open tunneling

For P=1, we first fix, arbitrarily, the phase ¢ﬂf(u(§))> paths and _their Berry p_h§1§e facto_rs. Blgck circles indicate the po-

for the centroid configuration £=[(0,0)]. All the laron locations for thg initiali configuration of the pathT_(a,b)

denotes the translation by vecton,b), R(¢) the rotation by

|we)(u9)) are then uniquely defined by either translation
or rotation operations. The Berry phase factorsRer1 are
summarized in Fig. @&). Here, the translationx(y)— (x ) ] ] .
+ay+b) is denoted byT(a,b), and the rotation X,y) same| P ®N(u®)). The first three lines of Fig. (8) give
(X cosh—ysing, xsing+ycosd) is denoted byR(4). exd-idP=+lexi-ioP]=—1lexi-ioP]=-1, and
The left-hand side showjal @)(u(9)). The right-hand side thus

shows the possible choices df(®)(u9)), generated

from the same|W(u®))) by the appropriate lattice sym- tV<o0, t¥>0, t¥>o0. (58
metry operations. Note that, for second- and third-neighbor

hops, both translation and rotation operations generate th®bviously, these results are consistent with relatiop.

angle ¢.
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For P=2, we first fix the phase df¥ (u(®)) for the cen-
troid configurationé=(¢4,£,)=[(0,0),(1,0). Rotating this (a)
|W(u)) by angle 7/2, we define thel¥(e)(u®)) for ¢
=(¢1,4,)=[(0,0),(0,1). The |¥eN(u)) for the other
first-neighbor pair configurationg are defined by applying .
translation operations to eith¢® (u¥))) or to its rotated Pl t?
versionR(#/2)| W (u(9))). The resulting Berry phase factors
for P=2 are summarized in Fig.(6). The first two lines
imply that exp—i62]=—1,exi—i69]=—1, and thus p=(0,0), (m,m) p=(,0)

3
_tl( )

5 3 .
p=(n/2,m/2) 2t|( )=t1( )

t2>0, t¥>0. (59)

The last two lines in Fig. ®) imply, by comparison to the
first two lines, that available rotations would generate the
same |V ®)(ul9))) as the translations. The first-neighbor
hopst{'® andt{' are positive or negative for the processes
indicated by the dashed and full bonds, respectively, of Fig.
5(a), as discussed above.

VIl. BERRY PHASES AND QUANTUM NUMBERS

Using the effective Hamiltoniar(55) with parameters
112, 13 18 (1) 1) ) (with signs determined
above, andVp, we can now calculate the low-energy eigen-
states for the®P=1 andP=2 polaron systems.

In the caseP? =1, the dispersion relation frofd is given
by

FIG. 7. Total momentum,p,) of the (8 P=1 and(b) P
=2 polaron ground state ¢, in at)-vst{?) phase diagram. Also
shown in (b) are the internal symmetries of the respective two-
polaron ground states.

=t(P3). As a consequence, the band minimum isat7/2),
and the eigenvalues of the inverse effective-mass tensor at

+cogpyx—py) ]+ 2t(13)[cos{ 2p,) +cog2p,)]. this point are
(60 (my Y, =8t +4tP=1223, 62)

€1(p) =2tV cosp,+ cospy ] + 2t P [ cog p, + p,)

As mentioned in Sec. V, on finite lattica§? is smaller than (myY), =8t — 4t = 4129, 63)

the second- and third-neighbtis for P=1. As the cluster

size increases, the overlap between the two minimtdm- where the subscript is for the (1,1) direction and¢ is for
wave functions connected by thg) process|¥(u®)) and  the (1-1) direction. If we include finite and negatit§"
|\If(u(§))> for a first-neighbor bond §,7), becomes small. (representing, e.g., thd—oo limit at finite, fixed hole den-
Then, the potential energW(u) would develop a higher sity, rather than at fixed hole numbBr=1), then the band
barrier for the first-neighbor hop, due W, (u), so thatt{)  minimum is shifted byt{® from (#/2,#/2) to some point
would continue to become smaller. Allowing for arbitrary (p,p) with p<<s/2 that would fall on the Fermi surface of
values oft{?) andt{® butt{*)=0, the one-polaron band mini- the noninteracting band model at corresponding filling.
mum is located at momentunp=(w/2,7/2) for |t(12)| For P=2, we first consider the tightly bound pair limit,
<2t at (m,0) for [tP)]>2t( andt(?>0, and at (0,0) Ve>Ity’], where we can approximate the polaron-pair
and (r, ) for |t{?]>2t{ andt{¥<0, as shown in Fig. ground state by including only nezarest-ne3|ghbor_ pair con-
7(a). For the physically relevant signs implied by the Berry figurations, thus retaining only thg” and tf* matrix ele-
phase factorg{? >0, the momentum of the one-polaron Ments ofHp. The pair dispersion relations are then given by
band minimum is thus at#/2,7/2) or (,0) which lies on +

)= (3)
the Fermi surface of the noninteracting nearest-neighboFZ(p) Vet t;7(cospy+cospy)

tight-binding band model at half filling. The one-polaron P py|2]¥2
bandwidth is given by + | (9% cosp,— cosp,)? +( 4t<22)cos§cos§y) } _
4P +8t® for o<tP<2t® (64)

B, (61

8t{? for 0<2t®<t?. Allowing for arbitrary values ot{?) andt$®), the pair wave
function in the nearest-neighbor pair approximation for

For the cluster geometries studied hetd=(\8x 8,  [t)|>t5 hasd,z_,>-wave symmetry it$¥>0, ands-wave
N=10x 10, and N=4x4) and with only nearest- symmetry ift$¥<0, and, in either case, total momentym
neighbor terms t,J) included in the original Hamiltonian =(0,0), as shown in Fig. (), at the band minimum. For

(1), certain “accidental” symmetries exist that caug®  [t{?)|<t$®, the pair ground states are multiply degenerate:
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the horizontal paifwith pair axis parallel to the axis) with cause the process of{,&,)=[(0,0),(1,0)—[(0,0),(1,1)
total momentump=(,p,) for arbitrary |p,|<= and the and the process 0f(0,0),(1,1)—[(0,0),(0,1), for ex-
vertical pair(with pair axis parallel to thg axi9) with total  ample, have opposite signs. Also, it is reasonable fot{fie
momentump=(py,m) for arbitrary [p,|< all have the term to favor thep,-wave state because the process of
same energy. The two-polaron bandwidth is given by (£1,€,)=[(0,0),(1,0)—[(0,0),(2,0)] and the process of
N o [(0,0),(2,0)—[(1,0),(2,0)], for example, have opposite
B,=maxe, (p)—mine, (p)=4/[ty”|—t5”].  (65) signs, as shown in Fig.(8. Once again we note that the
P P second-neighbor polaron pair configuration contributes to the
If we take account of first-, second-, and third-neighbor paipolaron-pair wave function af,2_,> symmetry.
configurations, including also the first-neighbor hopping
terms, t$'® and t{!®), in second-order perturbation theory,
2 2 VIll. EFFECTIVE HOPPING AND ATTRACTION
the initially degenerate energy alopg= (,py),
B B 3) We have seen how total momenta and internal symmetries
€ (m,py)=—Vp= 2157, (66) of few-hole polaron states are determined by the signs and
relative magnitudes of the effective polaron tunneling matrix

is lowered by . . . :
elements. In this section, we show numerical estimates of
p them with effective polaron nearest-neighbor attraction and
4 2t(zla)20052§y +t(21b)2 effective pair binding energy to see the energy scales of po-
Se; (m,py)=— - ) (67) laron dynamics. The relative energy scale of kinetic energy
Vpt+ 2t(2 ) to interaction strength is controlled by the phonon frequency

) 1a) _ in the original Hamiltoniar(1). It is noted again that we use

It is reasonable for th&'"® term to favorp,=0 because the 5 constrained lattice-dynamics approach and exactly solve
process of £;,£2)=[(0,0),(1,00—[(0,0),(1,1] and the e jattice Schidinger equation corresponding to the effec-
process 0f(0,0),(1,1)—[(0,1),(1,1)], for example, are in e action (23) for the lattice-displacement configurations
phase, as shown in Fig(®. The ground states are still dou- ¢onstrained to the linear tunneling path of the respective hop,
bly degenerate: the horizontal pair wii=(7,0) and the 55 described at the end of Sec. V. The effective lattice po-
vertical pair withp=(0,7), which would correspond tp;  tentials are based on Lanczos calculations on finite clusters
and py wave though they are total-spin singlésFor  \ith periodic boundary conditions. The numerical results
t§,t5>0 implied by the Berry phase factors, we thus getshould be regarded as very rough order-of-magnitude esti-
eitherdy2_2- Or py(,)-pairing symmetry with total momen- mates only. The nearest-neighbor attractignis calculated
tum p=(0,0) orp=(m,0)[(0,m)], respectively. according to formul&56). The pair binding energy is es-

The accidental symmetries for our finite-cluster geom-timated in the nearest-neighbor pair approximation, accord-
etries[in the absence of longer-range terms in the originaling to
Hamiltonian (1) studied herglead tot?=t5, which is
exactly on thed-p phase boundary whe, vanishes due to
a frustration effect? So, the energy, (p) is independent of
p. If we take account of first-, second-, and third-neighbor
pair configurations again, in second-order perturbatiowhere e;(p) and e, (p) are defined in Eq(60) (with t{")
theory, the initially degenerate energy on tep phase =0) and Eq.(64), respectively, measured relative to tRe
boundary, =0 ground-state energy, arplﬂ,m'”) are the respectivé&hus

different) momenta at the band minima discussed above.
€ (P2 -1 =~ Vp— 219, (68)  Note that the sign oA is so defined thah >0 signifies a net
. attraction,A<<0 repulsion.
is lowered by Figure §a) shows the logarithm of the dominant second-
and third-neighbor hopping amplitude§’ andt$) for P

f(p) 69  =L.2inthe Holsteirtd model on arN= /8% /8 cluster. As
Vpt 2t29 expected in a polaronic systethall t&) are suppressed,
roughly exponentially, with increasingp/{) and strongly
reduced compared to the bare electranitlowever, forEp
nearEC™ | thetl?) can become comparable to the phonon
energy scal€). ForP=2, the proximity of the second, static
1—cospy,cosp, polaron strongly enhances the amplitud&2 andt$®) rela-
2+ cosp,+ cosp,” (70 tive tot{ andt{®). It is worth noting that this effect occurs

. only in the presence of strong electron correlations where
Then thel grounfib state hak._y2 symmetry withp=(0,0)  pipolaron formation is prevented by the strong on-site Cou-
for V2[t§'®]>t5*")| and py,) wave withp=(m,0)[(0,m)]  |omb repulsion. By contrast, this effect never occurs in ordi-
otherwise. For th&l=4x4 HolsteintJ cluster with periodic  nary polaronic systems with the electron-phonon interaction
boundary conditions, an accidental symmetry leads tq, |arger than the local Coulomb repulsion. In the latter case
18] =t8")] and thusd,e_,2-pairing symmetry. It is rea- small bipolarons will forme that are much heavier than po-
sonable for the(zla) term to favor thed,2_,2-wave state be- larons. To generate the above-described delocalizétiod

A=26(pi")— &, (p3™), (70)

56£(p)|t(22):t(23)= -
with

f(p) = 4t5'¥2(2+ cosp,+ cosp,)

1b)2
+ 415
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2 cal properties of the relevant tunneling paths relative to cer-
B ] tain singular manifolds of the lattice action inspace.

Figure 8b) shows the nearest-neighbor attractiémand
the pair binding energy, where the latter quantity is given

by

A=Vp+2t2¥-8t>? (72)

] for t9=t) using Eq. (71). Since two self-localized
—Int,*), E =25 N ] nearest-neighbor holes mutually inhibit their delocalization,
UL P _ .. . 8 the t term in the original Hamiltoniaril) gives a repulsive
In(t, ™), B,=2.5 SO contribution toVp: in the parameter range shown in the fig-
1l = m(t;z’”), E =40 it ure, Vp<<0.342] (0.3184) is substantially reduced compared
1t O, B 240 1 to Vp(t=0)=1.00] (0.926)) on N= J8x /8 (10x \/10)
1 P N sites in thet— 0 limit. Compared to théJ model,Vp can be
'142 4 6 é BT larger or smaller: self-localization reduces the effective po-
laron hopping processes, giving an attractive contribution,
1/Q and it is more effective in the one-hole state than in the
b two-hole state, giving a repulsive contribution. The binding
(b) energy A is enhanced by the two-polaron hopping ampli-
i , e i tudest??, but it is smaller, in most of the parameter range
03 /——’/?’ ] shown in the figure, thaivp, due to the restricted hopping
- —_,-;:.—7-!--\'—————\——* —————— processes for the polaron pair and due to the non-negligible
L F' ] t(12'3) term for large(). In a more realistic theory, the possible
< ;,\f" / competition between polaron pairing and phase separation
w02t / . would need to be considered for finite density of holes.
> s - In order to see a finite-size effect, we have calculated the
"y Ve EE25 1 4 effective model parameters oN=/10x 10 sites (not
o1 _/' A EF25 ] shown to compare with those oN= 8% /8 sites above.
‘ ‘ = =V,E=40 We find no qualitative difference between them. In the pa-
----- A E=40] | rameter range shown in the figure, the valuestgﬁ are
il different by a factor of 2 at most, but these values are rough
oL— - vy order-of-magnitude estimates in any case. The valuegyof
2 4 6 8 10 for N=/10x \/10 are smaller by a factor of 0.8—0.9.
1/Q For the Holstein-Hubbard model, we find resulg. 9)
quite similar to those shown above. However, the values of
FIG. 8. (a) Logarithm of the effective polaron hopping ampli- V are only 30% of those in the Holsteid-model, which
tudest{” for P=1 and 2 holes and as second- and third-neighbor are reminiscent of the fact that the hole binding energy is
processes vs inverse phonon energ Iivith t&=t) due to  larger for thetd model than for the Hubbard model. Further-
accidental cluster symmetries(b) Effective polaron nearest- more, the values ot(22*3) are smaller than those of the
neighbor attraction/, and two-polaron binding energy vs 1A). HolsteintJ model for Q<0.2t, and the values of(12’3) are

Al refults are fort=13=0.8, with E;=C?/K=2.5 and 4.0, on larger by a factor of 1.6—3.7 in the parameter range shown in
anN=8 lattice with periodic boundary conditions. . S
the figure. All these results make the pair-binding energy
smaller in the Holstein-Hubbard model. For lar§e the
hence mobility enhancement effect, it is essential to keeppolaron pair becomes unbound, though our results are based
the two polarons spatially separated by strong enough on-siten the adiabatic approximation and the nearest-neighbor pair
Coulomb effects. approximation so that they are less reliable for lafhe
The accidental symmetries leading t'=t&) will be We now turn to the effects of second-neighbor electron
lifted on larger lattices and, more importantly, by inclusion hybridization and long-range Coulomb couplings that lift the
of longer-range couplings, such as second-neighbor hoppinaccidental finite-cluster degenerat{?)=t), and thus shift
t’, Eqg.(10), and extended Coulomb repulsidz, Eq.(11), the system off thel-p phase boundary fdP=2, already in
in the original EP Hamiltoniaril), as will be shown below. the absence of[(zla'lb) processes. The second-neighbor
Due to the exponential dependence of the delocalization maslectron-hopping term in the original Hamiltonigf) en-
trix elementst(p”) on the lattice potential parameters, suchhances the second-neighbor hoppté@, lowers the third-
additional couplings can substantially affect the magnitudeseighbor one!®, and thus favors thd,2_ ,2-wave symme-
of thet(P”) parameters, without necessarily altering the Berrytry if t' is positive by the definition in Sec. (Fig. 10, and
phase factors or the predominance of the second- and thirghe effects are opposite if is negative(Fig. 11). Note that,
neighbor hopping termst@¥>t{") and their two-polaron in the noninteracting tight-binding model, the positite
enhancementtf”>t{")). The Berry phase factors should be raises the energy gb=(w,0) state[thus the energy op
a robust feature of our model, since they reflect the topologi= (7/2,7/2) state is relatively lowerddind makes the Fermi
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FIG. 10. Logarithm of the effective polaron hopping amplitudes
t") for v as second-and third-neighbor processes vs inverse phonon
energy 1), with and without inclusion of next-nearest-neighbor
hoppingt’=+0.2, for t=1J=0.%, (@) Ep=2.5, and (b) Ep
=4.0t, on anN=28 lattice with periodic boundary conditions.

FIG. 9. (a) Logarithm of the effective polaron hopping ampli-
tudest for P=1 and 2 holes and as second- and third-neighbor
processes vs inverse phonon energ® Iwith t&=t5) due to
accidental cluster symmetries(b) Effective polaron nearest-
neighbor attraction/, and two-polaron binding energy vs 1A).
All results are fort=1,U=8t, with Ep.=2.5 and 4.@, on anN
=8 lattice with periodic boundary conditions.

Einstein phonon model with Holstein EP coupling, can be

surface convex. At' term that helps the second-neighbor considered. Such modifications include, for example, spa-
electr_on hopping also helps the second-neighbor polaroga”y extended EP coupling terms M ., Eq.(2), and dis-
hopping. persion in the bare phonon spectrum, which introduces spa-
The long-range repulsion term enhandé¥ more than tially extended elastic couplings intdy , Eq. (3). There is
t), so that it favors th@,(,,-wave symmetryFig. 12. This  no reason to believe that either modification will fundamen-
can be understood if we recall the second-order perturbatiotally alter our conclusions concernittig the basic conditions
theory with respect ta$**™/V,. The V¢ term raises the of polaron formation in the nedr-filled Hubbard ortJ elec-
energy of the intermediate second-neighbor pair favoring théron system(ii) Berry phases associated with the tunneling
dy2_y2-wave symmetry, compared to that of the intermediateof such polarons, andii) the qualitative parameter depen-
third-neighbor pair favoring the,,,-wave symmetry. Note dences of their effective polaron tunneling amplitudes dis-

that V¢ enhances both of thg? and t$®) processes. This cussed in the present section.

happens because the lattice distortion and thus the localiza- As far as polaron formation in dimensiods=2 is con-

tion potential is weakened byc. If V¢ is too strong, how- cerned, the polaron formation thresh(ﬂéc”t) will of course

ever, it may overcome the nearest-neighbor attraction and thdepend on the extended EP and elastic coupling parameters,
polaron pairing will then be suppressed altogether. This willbut it will remain finite for short-range extended couplings
be discussed further in the next section. by general scaling argumerfFor Frchlich-type long-range

Other modifications of our model, going beyond the basicEP couplings’ ES™ may be reduced, compared to the
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FIG. 12. Logarithm of the effective polaron hopping amplitudes

t§” for » as second- and third-neighbor processes vs inverse pha$” for » as second- and third-neighbor processes vs inverse pho-
non energy 12, with and without inclusion of next-nearest- non energy 1%, with and without inclusion of long-range repulsion
neighbor hopping’=—0.2t, for t=1J=0.5%, (a) Ep=2.%, and  V =1.Q, for t=1J=0.%, (a) Ep=2.%, and(b) Ep=4.0t, on an

(b) Ep=4.0t, on anN =38 lattice with periodic boundary conditions. N=8 lattice with periodic boundary conditions.

short-range case. The latter type of coupling could favor éHubbard system in which the localizing EP potential wells
spatially more extended “large” polaron formation, as dis- Cu; are centered around théourfold symmetri¢ Cu sites.
cussed further below. Most importantly, however, the basi®Qur Berry phase results mayot hold in polaronic systems
physical arguments for an AF spin-correlation-induced rewhere the localizing EP potential well and the self-localized
duction of EC™ | are quite independent of the structure of state forms, e.g., along a first neighbor Cu-Cu bond. Such
the phonon spectrum or the EP couplifgihe existence of “bond-localized” polaronic states are conceivable in EP
self-localized states has been discussed for other types afodels, such as the Su-Schrieffer-Heeger mét&where
phonon branché® and, in near-filled Hubbard electron the lattice displacement modulates, for example, the first-
systems, for other types of EP couplitg. neighbor electron intersite hybridization, rather than the elec-
Due to their topological analectronic nature, we also tron on-site energy.
believe that our Berry phase results are likely to be very Both spatially extended EP and spatially extended elastic
robust against model extensions. Recall here that the Bermgouplingscan have important effects on effective polaron-
phase, as given in Eq20), is a property of the electronic polaron interactions, that is, on thég term in Eq.(55). For
wave function only. Hence, the foregoing should be takerexample, introducing either a first-neighbor elastic coupling
with the proviso that the extensions of the model do notK’ or a first-neighbor EP couplinG’ into H,, Eq. (3), or
change the character or symmetry of the self-localized elednto Hc.p,, EQ. (2), respectively, will either increase or de-
tronic wave function. That is to say, our Berry phase resultErease the first-neighbor attractivip, depending on the sign
will remain valid for any polaronic state in the nepfilled of K'/K or C'/C, respectively.
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Similar effects are found in extended EP coupling modelsyidth become small compared to the pairing potenrial
involving either breathing or buckling modes of the oxygenHence tightly bound pairs will form, as described above,
atoms in the Cu@ planes’®*®~**The former involve the with a pair wave function extending only over 1-2 lattice
displacements of the planar O atoms parallel to their in-plangonstants. For large on the other hand, the polaron band-
Cu-0 bonds, the latter involves the planar O displacementgidths (B, andB,) can become comparable or larger than
perpendicular to the Cufplane. In the former, the simplest the pairing potential, thus leading to a BCS-like extended
Cu-O0 first-neighbor EP coupling causes an effective elecpair state, with a pair wave function extending over several/
tronic Cu—Cu first-neighbor repulsion, in the latter it causesmany lattice constants.

a first-neighbor attraction. In the tightly bound pair regime, the Bose condensation

The foregoing examples illustrate the general point thatr_ is controlled by the pair density,,; and the pair band-
EP coupling to several different phonon branches can lead t@idth B,, that is, roughly

subtle, competing effects when spatially extended pairing

interactions are being consider®dhis is very much in con- T~ XpaiB2. (73

trast to the conventional phonon-mediated on-sieave at-

traction where all phonon branches contribute attractivelywhereB; is the pair bandwidtti65) and

regardless of the details of the EP couplings or phonon

dispersiorf:* We caution, therefore, that one may not realis-

tically try to construct aphonon-mediated ,d_,2-pairing

theory based on a phonon model that selectively includes . . .

only the EP coupling to a single branch. Whether phononds the pair concentration, i.e., half_of the hole_concentramon

ultimately contribute to—or subtract from—tribwave (or ~ B2({}) and hencel; decreases with decreasifiy

other nons-wave pairing potentials in the cuprat€ss pres- In the BCS-like extended-pair regime, is controlled by

ently an open question that will require further study. Theth® pair binding energp that decreases with increasing de-

renormalization of both extended phonon-mediated and exfcalization energy and hence with increaslig As a con-

tended Coulomb interactions by the strongly correlated HubS€duence, there must exist, somewhere in the crossover re-

bard electron system will be a central issue in such futur@ime between the tightly bound pair and the B@Stended-

studies?6—48 pair) limits, an optimal phonon frequenc{, where the
With regards to the present paper, we emphasize that wansition temperaturd@({2) is maximized.Q), is roughly

are not proposing a particular microscopic pairing mecha-determined by the condition

nism. Rather, our primary purpose here is to explore the

consequences of the polaron tunneling matrix elements and Ba(o)~Vp, (75

Berry phases on the pairing staterovided thata first-

neighbor attractive pairing mechanism, of whatever micro

scopic origin, exists, i.e., provided th& in Eq. (55 is

attractive.

1 1
Xpair:§(1_<n>):§X (79

and the maximum possibl€, (as a function of(}), esti-
‘mated by extrapolation of Eq73) from the tightly bound
pair side, is of order

TCOETC(QO)prairBZ(QO)NXpairVPa (76)
IX. POLARON LIQUIDS

AND THE CUPRATE SUPERCONDUCTORS whereB,((2) is the polaron pair bandwidth, E¢65), as a
function of phonon frequenc@.

To the extent that the qualitative features of the above- One crucial, experimentally observable difference be-
discussed effective Hamiltoniaf®5) and the resulting tun-  tween the tightly bound and the extended pair condensate is
neling and pairing dynamics remain intact at finite hole dop-the relation between pair formation and superconducting
ing concentrations, the foregoing results have someransition: In the tightly bound pair regime, the pairs, and
potentially interesting consequences for the physical propemence the pairing gap in the excitation spectrum, can be
ties of the polaron liquid formed at finite polaron densities.preformed That is, the polaron pairs and the energy gap for
In the present section, we will speculate on some of thespair breaking exist already at temperatufes A that could
properties and compare them to experimental observations ife well aboveT ., provided thatA>T,. By contrast, in the
the cuprate highF, superconductors extended-pair BCS-like regime we expect the pair formation

If the above-discussed polaron-pair state remains stabl@ coincide with the superconducting transition, that is, the
and delocalized at finite hole doping, then formation of apairing gap should be observable only at temperatiirbs-
superconducting polaron-pair condensate can occur at loww T, and should vanish &k .
enough temperatures. The foregoing discussion has focused The existence of such an optimum phonon frequency im-
primarily on the tightly bound pair limit where such a con- plies thatT, exhibits a vanishing isotope exponemtwhen
densate would be formed via Bose condensation optee  ()=(,. To show this, we note that the isotopic mass depen-
existing polaron pairs. However, the qualitatid@ depen-  dence enters into the theory only via the phonon frequency
dences of the delocalization energi¢8 and of the pairing Q, if the electron-phonon Hamiltonian is parametrized, as in
potentialVp, shown in Fig. 8, suggest that with increasidlg Egs. (7) and (6), in terms of E; and Q, since electron-
(and fixed electronic parametet;s, andEp), such a con- phonon potential constant€) and harmonic restoring force
densate may exhibit a crossover from tightly bound pair to aonstantsK), and hencé, are of purely electronic origin,
BCS-like, extended-pair behavior: For smél| the delocal- i.e., do not depend on atomic/isotope masses. Usiig
ization matrix eIementéz”) and resulting polaron pair band- «M ~2, from Eq.(6), we obtain
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aln Tc‘ 14dIn Tc’ and th.e holes.will begin to mutually screen out eaph other’s
an M| =57 InQ| ) (77)  tunneling barriers. This effect can be clearly seen in compar-
el ing the 1- and 2-hole results in Fig. 8. FBr=2, the mere
proximity of the second, static polaron strongly enhances the
ﬁunneling matrix element of the first, moving polaron, hence
19)>1{") for v=2,3. Treated at the mean-field level, at finite
purely electronic model parameters, {, J, Ep, Up, €tC)  polaron density, this tunneling enhancement effect will cause
held constant. Th& . maximum at(}, also implies thatr is  the (mean-field averagetunneling matrix elements to in-
positive in the tightly bound pair regim@,>(), but nega-  crease with the hole doping concentration. Thus the effective
tive in the extended-pair regin@,<(. The vanishing ok polaron-pair bandwidtB,=B,({,x) becomes a strongly
at )=, does, howevemot imply that « is generically a increasing function of the hole doping concentration
small number. Quite to the contrary, because of the stfdng  According to the crossover criterioff5) it may then be
dependence of the polaron bandwidth parameters, we shoufsbssible to drive the polaron liquid from the tightly bound
expecta to attain quite substantial magnitudes, with|  pair into the extended-pair regime by changing either the
~0(1), as thesystem is tuned away from the optimal pho- phonon frequency) or the doping concentration if Vp is
non frequency, i.e., whefd # (. only weakly dependent ofd andx. Another way of stating

It is tempting to compare the foregoing features of athe same result is to say that the optimal phonon frequency
finite-density polaron liquid to the observed properties of the ;= ,(x), from Eq.(75), is a decreasing function of the
cuprates. The doping dependence of the superconducting apdle doping concentratior. The underdoped region corre-
normal-state properties of the cuprates is, in some respect§ponds to the tightly bound pre-existing-pair regime in this
very much reminiscent of a crossover from tightly boundpicture; the overdoped region is identified with the extended-
pair to BCS/extended-pair behavior: In the underdoped cupair BCS-like regime. The superconducting transition tem-
prates, there is now a substantial body of evidence suggesperatureT, as a function ofx reaches a maximum at an
ing that the superconducting gap is pre-existing, |n the formpptimal doping concentratioxy not too far from the concen-
of a “pseudogap,” at temperatures well aboVe.*® With  tration x,,, where Qo(xo)=0 and the isotope exponent
increasing hole doping concentration T, approaches a vanishes. Notice here that the poirg=xq(Q) [where
maximum, while the pseudogap aboVg s gradually sup-  T.(€,x) reaches its maximum as a functionoét fixed()]
pressed, and, in close proximity to the optimal doping conmeed not exactly coincide with the poixg [where the opti-
Centrationxo, the pseudogap abO\]—% vanishes. Well inside mal phonon frequenc@o(x) equa|s the actual phonon fre-
the overdoped regimex>xq, there is no detectable quency(].
pseudogap and rapidly decreases with increasing At sufficiently large hole doping the polaron-polaron

The isotope exponents in the underdoped cuprates are wave-function overlap and the mutual screening of the hole-
typically quite Iarge in magnitude, of order of the classical|ocalizing potential wellCu; may become so strong that the
BCS valueagcs=7; or larger. However, in contrast to con- holes become unbound, that i is, the polarons become unstable
ventional BCS-type phonon-mediated superconducters, towards forming free carriers. This finite-density polaron un-
can be very sensitive to changes in doping and other systeginding can be regarded as analogous to the Mott delocaliza-
properties such as impurity concentration and crystal struction transition in moderately doped semiconductors. The pri-
ture. With increasing hole-doping concentration, the ob-mary difference is that the Mott transition in semiconductors
served, usually positive oxygen isotope exponentde- involves the screening of localizing potential wells due to
creases and becomes very small, typicaf.05, at the static impurities whereas, in the present case, the localizing
optimal doping concentratior,.® It is presently not clear potential wells are due to local lattice distortions that are
whethera changes its sign fok>x,. Negativea values induced, via the EP coupling, by the polaronic holes them-
have been observed in copper isotope substitutions on lesglves. In the adiabatic potentdl(u), this unbinding will
than optimally doped cuprate materiafs. manifest itself in the(gradual or abruptdisappearance of

In comparing these experimental results to the foregoingocal minimum Conﬁgurationg@)_ Whether, in the thermo-
theoretical picture of a polaron liquid, it is important to note dynamic limit, this occurs as a sharp transition or as a con-
that, experimentally, thel, maximum and the surmised tinuous crossover is presently unclear and needs further
crossover from tightly bound pair to extended-pair BCS-likestudy!? The nature of the polaron unbinding and the charac-
behavior is observed as a function of doping concentration teristic concentration, where the unbinding occurs will also
whereas, in our above theoretical considerations, we havee influenced by the long-range Coulomb interactirand,
discussed the crossover as a function of phonon frequengy more general EP models, by the spatial range of the EP
Q). To see how such a crossover could arise in our model agteraction®”

a function of doping, we need to consider the doping depen- |f the optimal polaronic doping concentratiorg andx,
dence of the polaron delocalization matrix elemetits. are close to the polaron unbinding concentratign the po-

As indicated in Figs. 8—12, the polaron delocalization ma4aron unbinding will likely dominate the crossover into the
trix elements, and hence the polaron pair bandwiBlhare  extended pair regime: In this scenaria,&€xq,Xq), the
rapidly increasing functions of). At finite doping, these crossover from underdoping to overdoping takes the system
delocalization matrix elements will also become dependentlirectly from the tightly bound polaron-pair liquid into a
on the hole doping concentratior=1—(n) by the follow-  BCS-like superconductor of extended pairs of nonpolaronic
ing mechanism: As the polaron density increases, the locakarriers. The effective mass of the nonpolaronic carriers in
ized wave functions of nearby holes will begin to overlapthe overdoped regime is much less enhanced by the electron-

a=—

which vanishes at thd; maximum Q=Q,. The notation
..|es here means that the derivatives are to be taken with a
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phonon coupling and, more importantly, the mass enhancegsolaron model, there is still preformed pair formation above
ment is independent of the isotopic mass of the ions. The¢he superconductind . in the underdoped regime; and the
latter is suggested by the conventional weak-couplingcarrier bandwidth is still strongly reduced and dependent on
electron-phonon theory where the mass enhancement factimotope mass. Also, the possibility of a crossover to a BCS-
is given by (1+\,) and the Eliashberg parametey is in-  type free-carrier superconductor, as a function of doping, via
dependent of the isotope m&s¥.If the pairing attraction is  polaron unbinding, is retained in a large-polaron theory.
of predominantly electronidi.e., nonphonon origin, one  However the dependence of the bandwidth dhdon EP
will then obtain a very small isotope exponénfa|<1,  coupling strength&, and on phonon frequencid is only
throughout the overdoped regime>x, . algebraic, rather than exponential, and the overall magnitude

Thus, the overall magnitude af can serve as a distin- of the large-polaron bandwidths can become substantially
guishing feature between extended pairs of polaronic anthrger than in a small-polaron model, thus allowing for larger
nonpolaronic carriers in the overdoped regime. In the formefl.'s. The proposed large-polaron theories studied sd' far
scenario, already described abowgx) changes sign near have been based on phenomenological continuum models
optimal doping, butla| well inside the overdoped regime that of course cannot reproduce lattice-related features, such
can become as large as in the underdoped regime, reflectimg the location of band minima and pairing symmetries dis-
the fact that the underlying pair constituents are still single-cussed above for our 2D lattice model. It will therefore be of
hole polarons. By contrast, in the lattarnbound carrier  interest to extend our present work to lattice models with
scenario«| becomes small in the overdoped regime, with-longer-range EP couplings. Such future studies should ex-
out necessarily incurring a sign changean reflecting the  plore the possibility of large-polaron formation and the band
nonpolaronic nature of the pair constituents. Further experistructure and pair wave-function symmetry of large-polaron
mental studies of the isotope exponent in the overdoped ciairs.
prate systems would be desirable. Another critical problem in the above described polaron

The foregoing features of the underdoped polaron liquidmodels is the inclusion of long-range Coulomb effects.
model and its crossover into the overdoped regime exhibipough estimates based on a point charge model and mea-
strong similarities with the observed pairing symmetry andgred long-wavelength dielectric constdftsuggest that
doping dependences &, isotope exponent, and pseudogapy, /¢ in the cuprates could be as large as 2, if only the
in the cuprates. However, in its present form, the_ model a|3%lectronic contribution to the dielectric screening, that is,
suffers from several potential drawbacks _that arise from th%nly e.., is taken into account. If additional screening from
smaltpolaron character of the self-localized hole. Small- . o . .

phonons, i.e.gq, is included, the estimateéd/t is reduced

polaron formation necessarily implies bandwidBisandB, to 0.15-0.3. The formery/t~1— 2, would be sufficient to

tsr::itle(gnggt Sbheovsvﬁbiit?:r:tlzlI)é_lirzgegsth:r;;rr]\:engggg Z?ﬁ;ﬁgompletely suppress the polaron pairing attraction in a sys-
' i gs. 6=1z. AS d ' tem containing only two isolated holes, that is, in the limit of
polaron carriers may be easily localized by disorder and/or

i . . vanishing polaron density. The lattéf/t~0.15- 0.3, may
L?]Zgo:/?a?gﬁ n?:uilqci)trlrjlé)elr(;:cetrhaect(l)or:m?gfcisi )gsci ;%ngr){_ be overcome by the AF-mediated first-neighbor attraction,
not exceed so?ne traction 61 ‘\)Nith x0~021036 220 andQ) but the net attraction strength would still be substantially
<1000 K2 this upper limit on'I: is of orde} 50 iOO Kin the reduced byVc.*** The suppression of extended pairing
- ' L . - i states, such _,2 pairing, by the long-range part of the
cuprates and it is reached Hp just barely exceedES:”t). uch a2z pairing, by g gep

: : Coulomb interaction is a common problem in all extended
For substantially largeEp, B, and T, are rapidly(exponen-  nairing models that are currently under investigation. Recent
tially) suppressed witlEp. It is not clear from the experi-

: _ studies of the metalli¢in addition to insulating dielectrjc
mental data whether observed carrier mobilities, eﬁec“"escreening of the extended Coulomb potential at finite doping

masses, andi.'s in th_e _underdoped cuprates actual_ly exhibitdensit)ﬁ,w have suggested that the screened Coulomb poten-
such a strong sensitivity to changesHp and/or to disorder 5| hecomes substantially reduced, or even attractive, at dop-
or long-range Coulomb interactions. ing concentrationsx~0.1-0.2. However, the foregoing
.The foregoing limitations of the small-polaron system cang; gies are based on weak-coupling or diagrammatic ap-
ultimately be traced back to the short-range nature of thgroaches that do not include polaronic strong-EP effects. It

assumed Holstein EP coupling in our model. Scaling argutherefore remains to be seen whether metallic screening in a
ments show that, at the level of the zeroth-order ad'abat'?inite-density polaron liquid will be sufficient to “rescue”

approximation in spatial dimensiori3=2, short-range EP 1o AF-driven pairing attraction from the repulsive long-
models are subject to a dichotomy whereby single carriergange Coulomb interactions.

either form small polarons, Ep exceeds a certain threshold |t is also worth re-emphasizidgthe strong phonon con-
ES™>0, or they do not form polarons at all, iEs  tribution to the dielectric screening in the cuprates, as evi-
<EE™ .28 By contrast, in systems with additional longer- denced by the large measured dielectric constant ratio
range EP couplings, such as thé Ifiich model?®*"as well  ¢,/e,,=6.3"*" This phonon contribution, which acts to re-
as in 1D short-range EP modéfs}* it is possible to form  duce long-range Coulomb potentials, can be equivalently re-
large polarons at arbitrarily wedkp, i.e., with E(P”“):O. It garded as a long-range attraction, mediated by long-range
has been arguéfl that large-polaron and large-bipolaron (dipolan EP interactions. This long-range EP interaction is in
models can remedy some of the above-described deficienciéact a primary agent causin@i)polaron formation in the

of the small-polaron picture, while retaining most of the de-above-cited’ phenomenological large-polaron models. It is
sirable physical features described above. Thus, in a largdéherefore quite conceivable that, in a realistic model of the
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cuprates, both AFand EP-mediated attractions contribute to models on the 8-, 10-, and 16-site clusters, d@e ,2-wave
the overall pairing potential and that the EP contribution maystate is stable for two polarons. The second-neighbor hop-

even be the predominant one. ping Hy, favors thed,2_,2-wave pair fort’>0, while the
long-range Coulomb repulsiok ¢ favors the py-wave
X. SUMMARY pair.

) The strong on-site Hubbard-Coulomb repulsion plays a
In conclusion, we have developed a treatment of polaron.cig role in the formation of these pairing states. By keep-
tunneling dynamics on the basis of a path-integral formulay,g the electrons spatially separated and preventing on-site
tion of the adiabatic approximation. The adiabatic treatme”bipolaron formation. the Hubbard- interaction acts. effec-

of polaron tunneling has been tested by comparison to exag ely, to greatly enhance the polaron tunneling bandwidths

numerical results for a two-site Holstein system. The breakand, hence, their mobility, in the nearyfilled regime.

down of the adiabatic approach in the anti-adiabatic regime gq, 4 hypothetical superconducting polaron pair conden-

has been discussed and the resulting limitations of applicasae our results imply qualitative doping dependences of the
bility for long-range polaron tunneling processes in IattlceiSotope effectT., and pseudogap that are similar to those

models have been identified. Using a combination of pathghgeryed in the cuprates. Potential limitations of the present

integral, many-body tight-binding, and exact diagonalization,,jaron model, arising from the short-range nature of the
techniques, we have then explored the Berry phases and €l5s med EP coupling, have been pointed out. Further studies

_fectwtﬁ matrix e:ements for smglle- and_tvyo-polf?ron_ tunnely, include longer-range EP couplings, in combination with
Ing, the two-polaron quasiparticle statistics, effective tWo-gyianged Coulomb interactions, have been outlined.
polaron interactions, and polaron pairing states in the 2D

HolsteintJ and Holstein-Hubbard models near half filling.
The effect of second-neighbor electron hybridization and
long-range Coulomb repulsion has also been studied. Due to One of us(H.B.S) would like to thank D. Emin, J.P.
the AF spin correlations, single-polaron hopping is domi-Franck, K. Levin, and M. Norman for helpful discussions.
nated by intrasublattice second- and third-neighbor pro- This work was supported by Grant No. DMR-9215123 from
cesses. These processes are strongly enhanced by close pre National Science Foundation and a Grant-in-Aid for Sci-
imity of a second polaron. The Berry phases imply eitherentific Research on Priority Area “Nanoscale Magnetism
dy2_y2- OF pyy)-wave pair symmetries and effective spin- and Transport” from the Ministry of Education, Science,
1/2-fermion quasiparticle statistics of dopant-induced po-Sports and Culture, Japan. Computing support from UCNS
laron carriers. For the Holsteid and Holstein-Hubbard at the University of Georgia is gratefully acknowledged.
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