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Berry phases and pairing symmetry in Holstein-Hubbard polaron systems
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We study the tunneling dynamics of dopant-induced hole polarons that are self-localized by electron-phonon
coupling in a two-dimensional antiferromagnet. Our treatment is based on a path-integral formulation of the
adiabatic~Born-Oppenheimer! approximation, combined with many-body tight-binding, instanton, constrained
lattice dynamics, and many-body exact diagonalization techniques. The applicability and limitations of the
adiabatic approximation in polaron tunneling problems are discussed in detail and adiabatic results are com-
pared to exact numerical results for a two-site polaron problem. Our results are mainly based on the Holstein-
tJ and, for comparison, on the Holstein-Hubbard model. We also study the effects of second-neighbor hopping
and long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics is mapped onto an
effective low-energy Hamiltonian that takes the form of a fermion tight-binding model with occupancy-
dependent, predominantly second- and third-neighbor tunneling matrix elements, excluded double occupancy,
and effective intersite charge interactions. Antiferromagnetic spin correlations in the original many-electron
Hamiltonian are reflected by an attractive contribution to the first-neighbor charge interaction and by Berry
phase factors that determine the signs of effective polaron tunneling matrix elements. In the two-polaron case,
these phase factors lead to polaron-pair wave functions of eitherdx22y2-wave symmetry orp-wave symmetry
with zero and nonzero total pair momentum, respectively. Implications for the doping-dependent isotope effect,
pseudogap, andTc of a superconducting polaron-pair condensate are discussed and compared to observed
properties of the cuprate high-Tc materials.@S0163-1829~99!04602-0#
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I. INTRODUCTION

The symmetry of the superconducting order paramete
the cuprate high-Tc superconductors had been controvers1

before phase-sensitive experiments firmly established
dx22y2-wave pairing symmetry in YBa2Cu3O7, using tri-
crystal ring magnetometry,2 superconducting quantum
interference device interferometry3, and single-junction
modulation.4 Migdal-Eliashberg–type diagrammatic theori
find d-wave pairing to be favored by antiferromagnetic~AF!
spin-fluctuation exchange5 and s-wave pairing by the con-
ventional electron-phonon mechanism.5,6 There is indeed
strong experimental evidence for the importance ofboth AF
spin correlations7 and electron-phonon interactions8 in the
cuprates. However, when combined in the diagrammatic
proach, the two mechanisms are mutually destructive, s
d-wave pairing is strongly suppressed by phonons
s-wave pairing is suppressed by AF spin fluctuations, resp
tively. Also, the magnitude of the observed isotope effec
cuprate systems away from ‘‘optimal’’ doping9 points to-
wards an unusually strong electron-phonon effect that can
be accounted for in the diagrammatic approaches.6

Strong-coupling studies,10–13 going beyond the Migdal-
Eliashberg regime, suggest that the AF spin correlati
themselves can effectively enhance the electron-phonon
fect by lowering the electron-phonon coupling threshold
polaron formation, that is, the threshold for electro
phonon–induced self-localization14 of the dopant-induced
carriers in the CuO2 planes. In the present paper, we sho
how the tunneling dynamics of such self-localized holes
PRB 590163-1829/99/59~2!/1444~24!/$15.00
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an AF-correlated spin background may lead tod-wave and
other non-s-wave pairing states.

A Berry phase factor in finite systems with time-revers
symmetry has been relevant to the observation of half-o
integer quantum numbers in the spectrum of the N3
molecule15 to the cross section of the H1H2 reaction and its
isotope analogs16 and to the problem of integer vs half-odd
integer spin tunneling in anisotropic potentials.17 Contribu-
tions to the pair-binding energy in the C60 molecule have
also been discussed in terms of Berry phase arguments.18 In
the present case, the non-s-wave symmetry is caused by
(21) Berry phase factor, associated with predominan
second- and third-neighbor polaron tunneling processes
also determines the total momentum: the one-polaron gro
state has a momentum on the Fermi surface of the half-fi
tight-binding model on the square lattice. The dynamics
few hole polarons reflects the local AF spin correlations
many electrons through the Berry phase factor.

This paper is organized as follows: In Sec. II, we intr
duce the basic Holstein-Hubbard and Holstein-tJ model
Hamiltonians and their extensions to include seco
neighbor hopping or long-range Coulomb repulsion. We th
derive the effective action for the lattice degrees of freed
in the adiabatic approximation. In Sec. III, we illustrate t
basic physical principles and formal concepts of our ad
batic treatment of the polaron tunneling in the context o
simple two-site model. In Sec. IV, we discuss the conditio
under which the adiabatic approximation is valid, as well
its limitations when applied to polaronic systems on large
macroscopic lattice systems. In particular, we clear up so
1444 ©1999 The American Physical Society
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recent misunderstandings concerning the applicability of
adiabatic approach to polaronic systems. In Sec. V, we
an instanton approach to elucidate the basic structure o
low-energy tunneling dynamics of hole polarons in Holste
Hubbard or Holstein-tJ systems near half filling. We show
that the dynamics of such hole polarons is governed by
effective tight-binding Hamiltonian which includes secon
and third-neighbor hopping matrix elements and a fir
neighbor attraction. In Sec. VI, we discuss the Berry ph
factors and, with the help of lattice symmetry operations,
show how such phases can be properly assigned to each
ment of a closed tunneling path. The Berry phase factors
then interpreted in terms of quasiparticle statistics and in
nal symmetries of the many-electron wave functions. In S
VII, we analytically solve the effective model to show ho
the Berry phase factors determine the total momenta
internal symmetries of the few-hole-polaron wave functio
In Sec. VIII, we report numerical results for the effectiv
polaron hopping and effective pair-binding energy as fu
tions of the phonon frequency and electron-phonon coup
strength. In Sec. IX, we discuss the implications of our n
merical results for a possible superconducting pairing in
bility, the isotope effect, and the pseudogap in a hole pola
liquid at finite doping concentration in the nearly half-fille
Holstein-tJ and Holstein-Hubbard systems and compare
results to experimental observations in the cuprates. In
X, we summarize the present work. Part of the results p
sented in this paper were reported briefly in an unpublis
paper and proceedings.19

II. MODEL AND EFFECTIVE ACTION

We use mainly the Holstein-tJ model11,12 and occasion-
ally the Holstein-Hubbard model for comparison. Later,
also include second-neighbor electron hopping and/or lo
range electron-electron repulsion terms in the model. T
total Hamiltonian is of the general form

H5He1He-ph1Hph, ~1!

whereHe is the purely electronictJ or Hubbard model part
defined on a two-dimensional~2D! square lattice with lattice
sites j 51, . . . ,N and on-site electron occupation numbe
nj , as specified below.

He-ph5C(
j

ujnj ~2!

is the Holstein electron-phonon~EP! interaction, coupling
the local oscillator displacementuj to the electron on-site
occupationnj with an EP coupling constantC and

Hph5
K

2 (
j

uj
21

1

2M (
j

pj
2[HK1HM ~3!

describes the noninteracting Einstein phonon system, c
sisting of the bare harmonic lattice potentialHK , with restor-
ing force constantK, and of the lattice kinetic energyHM
with an atomic massM and conjugate momentapj[
2 i\]/]uj . If we rescale to dimensionless displacements a
conjugate momenta

ū j[uj /uP, p̄ j[2 i ]/]ū j , ~4!
e
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with the small polaron shift

uP[
C

K
, ~5!

thenHe-ph andHph can be completely parametrized in term
of only two characteristic energies, the bare Einstein pho
energy

V[\S K

M D 1/2

, ~6!

and the ionic-limit (t→0) small polaron binding energy

EP[
C2

K
. ~7!

All results in the following are therefore stated in terms
uP, V, andEP only.11,14

The tJ model is written as20

He52t (
^ i , j &,s

~cis
† cj s1H.c.!1J(

^ i , j &
S Si•Sj2

ninj

4 D ~8!

with first-neighbor electron hoppingt and AF exchange cou
pling J. Here,cis annihilates an electron with spins at site
i, nis5cis

† cis , ni5(snis , Si5
1
2 (a,bcia

† sabcib with s
[(sx ,sy ,sz) denoting the vector of Pauli spin matrice
The Hilbert space is restricted to states with no double oc
pancy at any sitej, i.e., nj50,1 only.

The Hubbard model is written as

He52t (
^ i , j &,s

~cis
† cj s1H.c.!1U(

i
ni↑ni↓ ~9!

with on-site repulsionU and no restrictions on the on-sit
occupancy, i.e.,nj50,1,2. In the following, we set\[1,
t[1 and use J50.5t or U58t in the tJ or Hubbard model,
respectively, unless stated otherwise.

In addition to the standardtJ and Hubbard electronic
model, we will also study the effects of additional, pote
tially important electronic terms, the second-neighbor ho
ping Ht8 , and the long-range Coulomb repulsionHLC .
Namely,

Ht852t8 (
$ i , j %,s

~cis
† cj s1H.c.!, ~10!

where$ i , j % denotes second-neighbor bonds andt8 is the cor-
responding second-neighbor matrix element. The long-ra
1/r Coulomb repulsion is

HLC5
1

2
VC (

iÞ j

ninj

ur i j u
, ~11!

where i and j are summed independently over all sites e
cluding i 5 j and r i j denotes the vector pointing fromi to j,
measured in units of the 2D lattice constanta[1. On a lat-
tice with periodic boundary conditions we make the defi
tion of ur i j u unique by requiringr i j to be a vector of the
shortest possible length connectingi to j, subject to all pos-
sible periodic boundary shifts. The matrix elementVC is thus
the Coulomb repulsion energy between two electrons at fi
neighbor distance.
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To study the tunneling dynamics of self-localized hole
we consider the path integrals for transition amplitudes
imaginary time in the Born-Oppenheimer~adiabatic! ap-
proximation. Following the standard Feynman-Trot
approach,21 we break up the Hamiltonian in the imaginar
time evolution operator

e2bH5 lim
L→`

~e2DtH0e2DtHM!L, ~12!

whereDt[b/L, HM is the lattice kinetic energy defined i
Eq. ~3! and the zeroth-order partH0[H2HM commutes
with all lattice displacement operatorsuj . At each time slice
tk[kDt, with k51, . . . ,L, we now insert a complete set o
electron-phonon basis statesuxu

(k)& that are chosen to be s
multaneous eigenstates ofH0 and of all uj . They can be
written in the form

uxu
~k!&5uC~k!~u!&3uFu&, ~13!

where uFu& is the lattice part anduC (k)(u)& the electronic
part of uxu

(k)&. Written in first-quantized notation, the lattic
part is simply

Fu~x!5d~u2x!5)
j

d~uj2xj ! ~14!

with lattice coordinate vectorsx[(x1 , . . . ,xN) and u
[(u1 , . . . ,uN). The electronic partuC (k)(u)& denotes the
kth electronic eigenstate of the zeroth-order adiabatic Ha
tonian

H0~u!5He1He-ph~u!1HK~u!, ~15!

at fixedu. That is,H0(u) is defined to act only on the elec
tronic degrees of freedom atfixed (c-number! lattice dis-
placement coordinatesu[(u1 . . . uN) and

H0~u!uC~k!~u!&5W0
~k!~u!uC~k!~u!&, ~16!

whereuC (k)(u)& and its eigenenergyW0
(k)(u) depend para-

metrically on the lattice displacementsu. The exact imagi-
nary time evolution underH can thus be represented by
path integral with a Euclidean action, written at finiteL as

S@u~t!,k~t!#5 (
k51

L F ~M /2!(
j

@uj~tk!2uj~tk21!#2

Dt

1DtW0
~kk!

@u~tk!#

2 ln^C~kk!@u~tk!#uC~kk21!@u~tk21!#&G .
~17!

The path integration is to be carried out both over the c
tinuous lattice coordinatesu(tk)[@u1(tk) . . . uN(tk)# and
over the discrete electronic quantum numberskk[k(tk).

In the zeroth-order adiabatic approximation, correspo
ing formally to theM→` limit, one neglects the imaginar
time evolution of u altogether and replacesuk by a
t-independent classical field. The first-order adiabatic
proximation restores thet dependence of the lattice coord
natesu, under the simplifying assumption that the electro
,
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follow the motion of the lattice adiabatically. That is, th
path integration is restricted to configurations, where, dur
t evolution, the electrons remain in the same eigenstate,
kk5kk21[k5const. Transitions between different ele
tronic eigenstateskkÞkk21 are neglected. Formally, this ap
proximation restores the leading-order 1/M corrections to the
lattice dynamics. At sufficiently low temperatures, one
stricts the path integral further to include only the electro
ground statek50. Suppressing the (k) superscript alto-
gether, one then arrives at the standard first-order adiab
~Born-Oppenheimer! approximation, with an effective Eu
clidean action

Sad@u~t!#5 (
k51

L FM

2 (
j

@uj~tk!2uj~tk21!#2

Dt

1DtW0@u~tk!#2 ln^C@u~tk!#uC@u~tk21!#&G .
~18!

Note thatSad depends explicitly only on theu coordinates of
the lattice. The first (M /2) term is the standard form of th
lattice kinetic energy for discretized imaginary time~finite
L). The electronic ground-state energyW0(u) plays the role
of a zeroth-order~in 1/M ) effective lattice potential energy
The last term, containing the logarithms of the electro
ground-state wave function overlaps at adjacent time sl
during t evolution, contains the Berry phase and 1/M cor-
rections to the potential energy, as we will now discuss.

In exp(2Sad@u(t)#), the overlap product

Q@u~t!#[)
k51

L

^C@u~tk!#uC@u~tk21!#& ~19!

exists and which contains the Berry phase factor,

exp~2 iu@u~t!#![Q@u~t!#/uQ@u~t!#u, ~20!

i.e., u@u(t)#52Im ln(Q@u(t)#). Due to time-reversal sym
metry, all uC@u(tk)#& have real amplitudes in an approp
ately chosen electron basis and hence the phase factor is
exp„2 iu @u(t)#…5sgn„Q@u(t)#…. Taking L→`, we can
also rewrite Re(lnQ@u(t)#)[lnuQ@u(t)#u in Sad@u(t)# as a
1/M correction to the effective lattice potential which th
becomes

W~u![W0~u!1W1~u!, ~21!

with W1 given by

W1~u!5
1

2M(
j

^]uj
C~u!u]uj

C~u!&. ~22!

Thus, the effective action forL→` becomes

Sad@u~t!#5 (
k51

L FM

2 (
j

@uj~tk!2uj~tk21!#2

Dt

1DtW@u~tk!#G1 iu@u~t!#. ~23!
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Equivalent results can be derived in the Hamiltonian
proach to the adiabatic approximation. The basic idea he
to restrict the full electron-lattice Hilbert space to an ‘‘adi
batic’’ subspace that is spanned by the set of zeroth-o
adiabatic electron-lattice eigenstatesuxu

(k)& defined above in
Eqs.~13!–~16! with k restricted to the electronic groundsta
k50. The adiabatic subspace thus consists of EP state
the general form

uf&5E dNu f~u!uCu
~0!&, ~24!

wheref(u) is an arbitrary~square-integrable! wave-function
amplitude that depends only on the lattice coordinatesu. The
basic approximation step is then to project the full EP Ham
tonian H onto the adiabatic subspace. In this manner o
arrives at a first-order effective HamiltonianHad that is math-
ematically equivalent to the first-order adiabatic Euclide
action Sad in Eq. ~23!, after L→`. Since the adiabatic EP
statesuf& can be expressed entirely in terms of their wav
function amplitudef(u), one can recastHad into the form of
an effective Hamiltonian acting only on the lattice coord
natesu in f(u), without explicit reference to the underlyin
electronic ground-state wave functionuCu

(0)& contained in
uf&. However, it is crucial to keep in mind the formal rel
tionship ~24! between the full adiabatic EP stateuf& and its
lattice wave-function amplitudef(u) if one wants to prop-
erly compare first-order adiabatic results to exact results,
tained by, e.g., numerically diagonalizing the full EP Ham
tonian on small model clusters.

In systems obeying standard harmonic lattice dynam
the zeroth-order Born-Oppenheimer ‘‘energy surfac
W0(u) exhibits one unique global minimum configuratio
u(min) which is, in terms of energy or in terms of configur
tional distance, well separated from other, if existent, lo
minima. In that case, the path integral is dominated by sm
amplitude ‘‘harmonic’’ fluctuations aroundu(min) and a de-
scription of the lattice dynamics in terms of renormaliz
harmonic oscillators, i.e., phonons, remains valid. Since
displacement excursions aroundu(min) are small, so are the
fluctuations in the electronic wave functionuC(u)&; hence
the small-amplitude~‘‘phonon’’ ! paths all haveu@u(t)#50
and Berry phase effects are negligible. Also, theu deriva-
tives of uC(u)& entering intoW1 are well behaved and th
mth order u derivatives of the overlap matrix elemen
^]uj

C(u)u]uj
C(u)& are typical of the order of inverse lattic

constants or inverse atomic distances raised to them
12)th power. TheW1 contribution to the harmonic restorin
force constants, for example, are thus smaller than
zeroth-orderW0 contributions by factors of order of th
fourth power of the lattice oscillator zero-point displaceme
amplitude over the lattice constant. Thus, the electronic o
lap factor effectsW1(u) andu@u(t)# can be altogether ne
glected.

By contrast, in polaronic systems the zeroth-order latt
potential W0 exhibits a large number of nearly degenera
local minima. The low-energy lattice dynamics is dominat
by tunneling processes between the local minima that
quires anharmonic large-amplitude excursions of the lo
displacement coordinatesuj and large local rearrangemen
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of the electronic wave functionuC(u)&.11 In that case elec-
tronic overlap effects arising from bothu@u(t)# andW1(u)
can become quite important.

III. TWO-SITE PROBLEM

The two-site version of the Holstein-Hubbard model~1!–
~3! ~Refs. 22–24! is a simple toy problem that retains som
essential physical features of the lattice polaron problem.
will use it here to elucidate the basic underlying physic
ideas and formal concepts of our adiabatic treatment a
also, to test the validity and illustrate some important limi
tions of the adiabatic approximation. We restrict ourselves
the single-electron case on two sites, with an electronic
tersite hybridizationt. The adiabatic electronic wave func
tion uC(u)& can be solved exactly by diagonalizingH0(u)
that reduces to a 232 matrix.

The two sites are labeled 1 and 2 with on-site oscilla
coordinatesu1 andu2 and on-site electron occupation num
bersn1 andn2 . With symmetrized coordinates

u65~u16u2!/A2, ~25!

W0 andW1 can be written as

W0~u![W01~u1!1W02~u2!, ~26!

where

W01~u1!5
K

2
u1

2 1
C

A2
u15F1

2S u1

uP
D 2

1
1

A2
S u1

uP
D GEP,

~27!

W02~u2!5
K

2
u2

2 2AC2u2
2

2
1t2

5F1

2
S u2

uP
D 2

2A1

2
S u2

uP
D 2

1S t

EP
D 2GEP,

~28!

and

W1~u![W12~u2!5
1

4

V2

EP

~ t/EP!2

@~u2 /uP!212~ t/EP!2#2
.

~29!

With the Berry phaseu@u(t)#[0, the problem is equivalen
to solving the Hamiltonian of a quantum particle of massM
in a two-dimensional potentialW(u)[W(u1 ,u2)5W0(u)
1W1(u). Because of Eqs.~26! and ~29! this dynamics is
separable when written in terms ofu1- andu2-coordinates.

Since u1 couples only to the total electron chargen1

[n11n2 ,W01 is just a harmonic potential with shifted equ
librium position

u1
~0!52uP/A2, ~30!

and the electron ground stateuC(u)&[uC(u2)&, and hence
W1 , do not depend onu1 .

Since u2 couples to the charge imbalancen2[n12n2
between the two sites, the shape ofW02 is renormalized by
the EP coupling andW1 depends onu2 . As shown in Fig.
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1~a!, W02 retains a single global minimum atu250, for
small EP, with a harmonic restoring force constant

K02[
]2

]u2
2

W02~u250!5S 12
EP

2t DK ~31!

that softens with increasingEP and changes sign whenEP
reaches a critical value

EP
~crit!52t. ~32!

For EP.EP
(crit) , W02 acquires two degenerate minima

u256u2
(0) , separated by a maximum atu250, with

u2
~0!5A12S 2t

EP
D 2 uP

A2
, ~33!

where uP5C/K is the polaron shift~5!. u2
(0) approaches

uP/A2 in the strong-coupling limit

EP@t. ~34!

The height of the zeroth-order potential barrier separating
two minima,

FIG. 1. Zeroth- and first-order contributionsW0 andW1 to the
effective adiabatic lattice potential in the 2-site Holstein model w
1 electron. In~a!, the electronic ground-state energyW0 /EP and the
first-excited-state energyW0

(1)/EP of the electronic Hamiltonian
H0(u) are shown as functions ofu2 /uP, atu150 for t/EP50, 0.1,
0.3, 0.5, and 0.7. In~b!, W13EP/V2 vs u2 /uP is shown atu1

50 for t/EP50.1, 0.3, 0.5, and 0.7.
e

DB0[W02~0!2W02~6u2
~0!!5S 1

2
2

t

EP
D 2

EP, ~35!

increases withEP and approachesEP/4 in the strong-
coupling limit ~34!.

The physical origin of the double-well potential can b
most easily understood starting from the ‘‘ionic’’ (t50)
limit of the model: Fort50, the two electronic eigenstates o
H0(u),

uC~ l1!&[un151, n250& ~36!

and

uC~ l2!&[un150, n251& ~37!

have the electron completely localized on sites 1 and 2,
spectively, with eigenenergies

W~ l1,2!~u2!5
K

2
~u26uP/A2!22

1

4
EP, ~38!

where the upper~lower! sign refers toW( l1) (W( l2)), as
shown by the two parabolic potential curves in Fig. 1~a!.
AssumingC.0, uC ( l1)& is the ground state foru2,0 and
uC ( l2)& for u2.0. At u250, the two parabolic eigenenerg
curvesW( l1)(u2) and W( l2)(u2) intersect, both states ar
degenerate, and the ground-state wave function changes
continuously as a function ofu2 . When the hybridizationt
is turned on, the two fully localized wave functionsuC ( l1)&
and uC ( l2)& become mixed, the electronic degeneracy atu2

50 is lifted, and a minimum excitation gap of 2t opens up
between the electronic ground state and first excited st
The sharp cusp atu250 in thet50 double-parabolic poten
tial function

W02~u2!u t505min@W~ l1!~u2!,W~ l2!~u2!#

5
K

2
~ uu2u2uP/A2!22

1

4
EP ~39!

@see Fig. 1~a!# is rounded by the finitet; as a function ofu2 ,
the ground-state wave functionuC(u2)& now changes con-
tinuously atu250. However,uC(u2)& still has predomi-
nantly uC ( l1)& character nearu252u2

(0) and predominantly
uC ( l2)& character nearu25u2

(0) . With increasingt, the tun-
neling barrier height~35! decreases, initially by aboutt. The
barrier vanishes whent reachest (crit)5EP/2 that is equivalent
to the above condition~32!, for EP

(crit) .
From the ground-state wave functionuC(u2)& and its

charge distribution̂C(u2)unj uC(u2)& for EP.EP
(crit) , near

the two potential minima6u2
(0) , one thus finds the electro

predominantly localized at site 1 whenu2>2u2
(0) and pre-

dominantly at site 2 whenu2>1u2
(0) , assuming againC

.0 here and in the following. By contrast, at the potent
minimum u250 in the regimeEP,EP

(crit) , the electron
charge is delocalized evenly between sites 1 and 2. Thu
the level of the zeroth-order adiabatic approximation,
transition from the single-well potential caseEP,EP

(crit) to
the double-well caseEP.EP

(crit) is essentially a transition
from a delocalized nondegenerate ground state (u250) to a
localized degenerate ground state (u256u2

(0)). In the
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former case, the electron’s delocalization energy domina
and the electron wave function spreads out between the
sites. In the latter case, the EP coupling dominates; the la
spontaneously distorts so as to set up an attractive EP ‘
tential well’’ that binds and localizes the electron. The ele
tronic binding energy thus gained in turn stabilizes the lo
lattice distortion. This self-localization mechanism is the
sence of polaron formation.

Localizing the electron on either one of the two sites
energetically equivalent due to the reflection symme
@(1,2)→(2,1)# of the underlying Hamiltonian. At the leve
of the zeroth-order adiabatic approximation, this symmetr
broken in the twofold degenerate zeroth-order ground st
u256u2

(0) . The existence of twodegeneratelocal minima
in W02 can thus be understood as a direct consequenc
the symmetry breaking that accompanies the self-localiza
transition. In the first-order adiabatic approximation, the l
tice kinetic energy restores this symmetry by inducing tu
neling processes between the two potential minima, thus
ing rise to a nondegenerate ground state in which the
degenerate zeroth-order states are admixed with equal p
ability weight.

The lattice tunneling processes, within the multiple-we
Born-Oppenheimer potential, constitute the basic low-ene
mechanism whereby self-localized electrons can m
through the lattice. At higher temperatures, thermally a
vated hopping over the barrier may dominate the polaro
charge transfer;14,22 this, again, can be described as a pur
lattice dynamical phenomenon. Thus, within the framew
of the first-order adiabatic approximation, polaron formati
and polaron dynamics is fundamentally reduced to a prob
of nonlinear latticedynamics.

We now turn to the first-order potential correctio
W12(u2) ~29! in the two-site problem, shown for sever
values oft/EP in Fig. 1~b!. SinceW1(u), according to Eq.
~22!, is controlled by theu gradient of the electron wav
function uC(u)&, we should expect it to exhibit peaks whe
everuC(u)& varies most rapidly withu. In the two-site prob-
lem, this occurs atu250, whereuC(u)& changes its charac
ter from being predominantly localized on site 1 to bei
localized on site 2, as discussed above. For la
uu2u, uC(u2)& approaches a constant, eitheruC ( l1)& or
uC ( l2)&, henceW12(u2)→0 for uu2u→`. In the polaron
regimeEP.EP

(crit) , the primary effect ofW1 is to enhance
the tunneling barrier separating the two potential minima
addition,W12(u2) will also tend to shift the two polaronic
potential minima further apart, thus causing the tunnel
barrier to become wider than in the zeroth-order poten
W0 . Both of theseW1 effects tend to suppress the tunneli
rate through the barrier. Even thoughW1(0) may be small
compared to the zeroth-order barrier heightDB0 ~35!, its ef-
fect on the polaron tunneling rates can be quantitatively
some importance, since tunneling rates are typically ex
nentially sensitive to changes in the tunneling barrier.

In the delocalized regimeEP,EP
(crit) , the primary effect

of W1 is to soften the harmonic restoring force consta
K2[]u2

2 W2(0) by an amount

K12[
]2

]u2
2

W12~u250!52
1

8S V

t D 2S EP

t D 2

K,0.

~40!
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Thus,W1 also lowers the criticalEP for the onset of polaron
formation. However, in the large-M limit where the adiabatic
approximation is valid, that is, forV!t ~see below!, these
corrections are smaller than the zeroth-order results~31! and
~32! by factors of order (V/t)2(EP/t)2. Providedt and EP
are of comparable magnitude andV&t ~see below!, W1 does
not qualitatively alter the basic structure of the lattice pote
tial W in either coupling-strength regime. However,W1 can
become qualitatively important in suppressing certain no
diabatic processes in lattice systems, as will be discusse
the next section.

IV. VALIDITY AND LIMITATIONS
OF THE ADIABATIC APPROXIMATION

The basic criterion for the validity of the adiabatic a
proximation is that the longest time scale of the electro
motion should be short compared to the shortest time s
of the lattice motion or, equivalently, the lowest electron
frequency scale should be large compared to the highest
tice frequency scale. In the two-site problem, the lowest e
tronic frequency scale is the excitation energy between
electronic ground stateuC(u)& and the first excited state tha
is at least 2t ~at u250) or larger. The highest lattice fre
quency scale is the phonon energyV and hence we expec
the adiabatic approximation to work, provided that

V!2t. ~41!

In the polaron regimeEP.EP
(crit) , the lattice~not the elec-

tron! motion acquires an additional, low-frequency sca
given by the polaronic tunneling splitting 2tP between the
ground state and first excited state in the double-well lat
potential W(u). This tunneling energy scale is typicall
smaller than or, at most, comparable to the bare phonon
ergy scaleV, given the conditions where a polaronic doubl
well forms in the first place. Hence, the basic criterion~41!
applies in the polaronic regime just as well as in the deloc
ized regime, regardless of the electron-phonon coup
strength. Criterion~41! applies even in the strong-couplin
regime~34! where 2tP becomes orders of magnitude small
thanV.

While the foregoing considerations are well known,14,22,24

we reemphasize them here because there has been som
fusion about this in the more recent literature on the two-s
problem. In more recent work, it is sometimes assumed
the polaron tunneling splitting 2tP , rather than 2t, repre-
sents the lowest relevant electronic energy scale. Doing
one then arrives at the much too restrictive validity criteri

V!2tP. ~42!

If correct, this would imply that the polaron regimeEP

.EP
(crit) cannot be treated in the adiabatic approximatio

since typicallytP&V even under the most favorable cond
tions. In the strong-coupling regime~34!, wheretP!V, the
adiabatic approximation should break down completely
cording to Eq.~42!.

The flaw in the foregoing argument is that 2tP is of
coursenot the lowest electronic energy scale, but rather re
resents an energy scale of the lattice motion, as discu
above. The relevant lowest electronic energy splitting,
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1450 PRB 59K. YONEMITSU, J. ZHONG, AND H.-B. SCHU¨ TTLER
tween the electronic ground state and first excited statat
fixed lattice coordinate uis at least 2t in the two-site model,
regardless of whetherEP is small or large.

To illustrate this point, we have generated exact num
cal solutions of the two-site problem using the full Ham
tonianH without any approximation, and compared them
solutions of the first-order effective adiabatic effecti
Hamiltonian Had[HM1W, corresponding to the effectiv
actionSad from Eq.~23!. For both the exact and the adiaba
problems, we have used a sufficiently fine discretization
the u2 coordinate and a sufficiently large cutoff at largeu2

to ensure a numerical accuracy of better than 1% in
calculated energy splittings over the entire parameter ra
studied. In Fig. 2, we show the logarithm of the polar
tunneling splitting 2tP , that is, the excitation energy from
the ground state to the first excited state of the full electr
phonon system, as a function ofEP/V for t[1 and four
different EP couplings,EP52.5, 3, 4, and 8 that are we
inside the polaronic regime (EP.EP

(crit)).
In addition to the exact solution, we show two differe

adiabatic solutions in Fig. 2, one obtained with the full ad
batic lattice potentialW[W01W1 , the other using only the
zeroth-order potential,W>W0 . These are being referred t
in the following as the ‘‘full’’ and as the ‘‘simple’’ adiabatic
solutions, respectively. As expected from the Holstein-La
Firsov strong-coupling expansion14,24,25and from semiclassi-
cal ~WKB! arguments, the tunneling splitting at fixedEP and
t decreases exponentially with 1/V, as indicated by a roughly
linear dependence of ln(2tP) on 1/V in Fig. 2.

Remarkably, the full adiabatic result agrees with the ex
solution to better than 14% over a parameter region 0.t
,V,0.5t wherein 2tP varies by more than nine orders o
magnitude, including the regime where 2tP is orders of mag-
nitude smaller thanV. The simple (W>W0) adiabatic solu-
tion reproduces the qualitative features of the 1/V and EP
dependence of 2tP quite well, but the quantitative agreeme

FIG. 2. Exact and adiabatic results for the tunneling ene
splitting 2tP between the ground-state and the first-excited-s
electron-phonon eigenstate, plotted as a function ofEP/V, in the
2-site Holstein model with 1 electron, fort51 and several values o
EP, as indicated.
i-

f

e
ge

-

-

-

ct
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is noticeably worse than for the full adiabatic solution. T
agreement between the full adiabatic and the exact resul
all the more convincing in light of the fact that the tunnelin
splitting is ‘‘exponentially sensitive’’ to small errors o
changes in the wave function inside the tunneling barr
Thus, our comparison of the tunneling splittings constitute
much more stringent test of the underlying approximatio
than a comparison of, say, low-lying-state expectation val
or wave-function amplitudes. Other exact numerical resu
for the two-site problem, are generally in equally go
agreement with the corresponding adiabatic solution, p
vided, that is, one exercises enough care to use the pr
adiabatic wave functionsuf&, Eq. ~24!, in carrying out the
comparison.

As expected from Eq.~41!, the agreement between adi
batic and exact results deteriorates at high phonon frequ
cies whenV becomes comparable tot. As a practical matter,
even forV>2t, the agreement is still quite acceptable. F
applications to lattice systems, it is of interest to explore
some detail how the adiabatic approximation actually bre
down as one enters into the ‘‘anti-adiabatic’’ regime

t!V. ~43!

As a limiting case, we consider the ionic limitt→0, already
discussed above. Here, the Holstein-Hubbard problem ca
trivially solved exactly.26 Obviously there cannot be an
electron tunneling between the two sites and the exact
laron tunneling splitting 2tP vanishes.

By contrast, in the simple adiabatic approximationW
>W0 , W02 approaches the double-parabolic potential~39!
for t→0, which has a tunneling barrier of finite height an
width. The simple adiabatic approximation would thus p
dict a nonvanishing finite tunneling splitting 2tP.0 even for
t50, a clearly unphysical result.

If instead one uses the full adiabatic approximation, w
W5W01W1 , the correct qualitative physical behavior o
2tP is restored by theW1 term shown in Fig. 1~b!: According
to Eq. ~29! theW1 peak height~at fixedEP andV) diverges
as t22, while at the same time its peak width vanishes, b
only linearly in t in the limit t→0. It is then easy to show
that the transmission amplitude through theW1 barrier van-
ishes, that is, the barrier becomes impenetrable in the l
t→0 that forces 2tP→0 for t→0. Thus, as far as the tunne
ing splitting 2tP is concerned, the full adiabatic approxim
tion reproduces qualitatively the correct physical behav
even in the extreme anti-adiabatic regime.

The actual failure of the full adiabatic approximation
the t→0 limit is a more subtle problem. It consists of th
unphysical constraint being imposed on the dynamics of
u2 coordinate by the impenetrability of theW1 barrier. For
t→0, theW1 barrier forces the lattice wave functionf(u) in
Eq. ~24! to vanish identically either to the right (u2.0) or
to the left (u2,0) of the barrier. Thus, the amplitude fo
propagation from an initialu2,0 to a finalu2.0 ~or re-
verse! vanishes in the full adiabatic approximation att50. In
the exact solution of thet50 problem, this constraint doe
not exist; the lattice is free to propagate with some fin
amplitude fromu2,0 to u2.0. In the exactt50 solution,
the lattice dynamics is governed either by the left or the ri
parabolic well,W( l1) or W( l2), corresponding respectively t
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the left-localized or to the right-localized electron stat
uC ( l1)& or uC ( l2)&, discussed in Sec. III. The problem wit
the adiabatic approximation is that thet50 electron ground
stateuC(u)& exhibits a level crossing and thus changes d
continuously atu250, as discussed above. The adiaba
approximation, by construction, excludes transitions
tween, say, the electronic ground state and first excited s
But this is just what happens atu250 in the t→0-limit: If
the lattice coordinate crossesu250 from the left, say, unde
exact time evolution, the electron remains in its localiz
stateuC ( l1)&, which is the ground state only foru2,0, but
becomes the first excited state whenu2.0. The adiabatic
approximation on the other hand forces the electron to
main in the ground state that changes discontinuously
u250, from uC ( l1)& to uC ( l2)&.

In the two-site problem, the foregoing impenetrabili
constraint causes only a small error, of order exp(2EP/V),
in the low-lying lattice eigenstates and energies if the latt
oscillator zero-point amplitude is small compared to t
double-well separationA2uP, that is, if V!EP. However,
the impenetrability constraint may introduce a qualitat
failure of the adiabatic approximation if applied to large sy
temsN→` and tunneling processes that transfer a polaro
a single step over large distances, as we will now discus

Let us consider for simplicity the case of the Holste
model for just a single electron in a large lattice with suf
ciently strongEP to form a polaron. Suppose the polaron
localized at some sitej, say, and we want to study the tun
neling barrier for transferring the polaron in a single tunn
ing step to a distant sitez5j1r , i.e., withur u@a, wherea is
the lattice constant.

Let u(j)[(u1
(j) , . . . ,uN

(j)) denote that lattice configuratio
which minimizesW0(u) and localizes the polaron around th
‘‘centroid site’’ jP$1, . . . ,N%. That is,uul

(j)u and the corre-
sponding electron charge density^nl&

(j) are maximal atl
5j and die out exponentially at large distancesu l 2ju from
the centroid. Likewise, letu(z) denote the lattice configura
tion that localizes the polaron around sitez. By lattice trans-
lational invariance

ul
~z!5ul 2r

~j! , ~44!

if z5j1r . Notice that polaron formation breaks the trans
tional symmetry of the lattice in the zeroth-order adiaba
approximation. As a consequence,W0 exhibitsN degenerate
local minima, corresponding to theN different, but transla-
tionally equivalentu(j) configurations on anN-site lattice
with periodic boundary conditions. This is the lattice anal
to the breaking of reflection symmetry in the two-site pro
lem.

Let u(zj)(s) denote the linear path segment in t
N-dimensionalu space connectingu(j) to u(z), i.e.,

u~zj!~s!5S 1

2
2sDu~j!1S 1

2
1sDu~z! ~45!

with sP@2 1
2 ,1 1

2 #. In the following discussion, we conside
Eq. ~45! as a representative of low-action tunneling trajec
ries connectingu(j) to u(z). The s coordinate can thus b
regarded as the lattice analog to theu2 tunneling coordinate
~25! in the two-site problem. Note in particular tha
,
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W0@u(zj)(s)# has local minima ats52 1
2 and s51 1

2 that
must, by continuity, be separated by~at least! one interven-
ing maximum, i.e., by a tunneling barrier. The simplest s
nario, normally borne out in the numerical calculations d
cussed below, is that there is only one barrier maximum,
symmetry located ats50. Thus, alongu(zj)(s), W0 has
qualitatively the same structure asW02(u2) described above
for the two-site problem.

The first crucial point to note here is that the width of th
tunneling barrier, that is, the Euclidean distance fromu(j) to
u(z) in their N-dimensionalu space,

d~z,j![uu~z!2u~j!u<uu~z!u1uu~j!u52uu~j!u[d` ~46!

is finite and bounded by an upper limitd` that is indepen-
dent of the spatial distanceuz2ju5ur u. Note thatd` is in-
dependent ofj or z due to lattice translational invariance
Thus two polaron configurationsu(j) andu(z) are never fur-
ther apart from each other thand` in u space, regardless o
how far apart their centroid sitesj andz are in real space.

The second important point is that the height of t
zeroth-order (W0) tunneling barrier alongu(zj)(s) is also
bounded independently of lattice distancesuz2ju. To see
this, note that the EP potentialCul acting on the electron is
attractive, i.e.,Cul,0, for anyu configuration along the path
u(zj)(s) betweens50 ands51. Hence, the contribution to
W0(u) from He1He-ph(u) is bounded from above by th
electron ground-state energy of the undistorted lattice. A
by an argument analogous to Eq.~46!, the elastic energy
contribution HK(u) is bounded from above by32 HK(u(j)).
Both of these upper bounds are independent ofuz2ju.

The foregoing considerations suggest that a manifold
tunneling trajectories exists, sufficiently close tou(zj)(s),
which will all connect u(j) to u(z) through aW0 barrier
whose height and width is bounded by upper limits indep
dent of uz2ju. Within the simple adiabatic approximation
W5W0 , one thus arrives at the unphysical result that
polaron can tunnel in a single~‘‘instanton’’! tunneling step
from any sitej to any sitez in the lattice with a tunneling
matrix elementtP(z2j) that doesnot go to zero foruz2ju
→`, but rather

lim
uz2ju→`

utP~z2j!u[tP`.0. ~47!

The foregoing argument can be made formally more rigor
by employing instanton methods similar to those describ
in the next section for short-distance tunneling processes.
will not engage in that exercise here. Suffice it to say that
simple adiabatic result~47! for the lattice is analogous to th
above-described two-site result in thet50 limit: the simple
adiabatic approximation allows tunneling solely on the ba
of the W0 electronic ground-stateenergybarrier, regardless
of whether there is actually any electronicwave-function
overlapbetween the initial and finalu configurations of the
tunneling process.

To account for wave-function overlap effects in lon
distance tunneling processes, theW1 term ~22! has to be
included in the total potentialW5W01W1 . Let us consider
the evolution of the electronic ground-state wave funct
uC(u)& along the linear tunneling trajectoryu(zj)(s) ~45!
between two centroid sitesz andj with uz2ju@ l P(u). Here
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1452 PRB 59K. YONEMITSU, J. ZHONG, AND H.-B. SCHU¨ TTLER
l P(u) denotes the exponential localization length ofuC(u)&
for local lattice distortions comparable tou(j). As a simplest
scenario, let us assume that the wave functionuC(u)& re-
mains localized for allu along u(zj)(s). This situation will
be realized at EP coupling strengthsEP which are sufficiently
large compared toEP

(crit) . The electronic ground-state prob
lem can then be qualitatively described as follows:

The EP potentialCul
(zj)(s), acting on the electron at site

l, consists of two localized wells,C( 1
2 2s)ul

(j) and C( 1
2

1s)ul
(z) , the former centered around sitel 5j, the latter

aroundl 5z. As s is varied from2 1
2 to 1 1

2 , the EP well at
j becomes shallower and the EP well atz deepens. Ats
50, the two wells become degenerate. Assuming large r
space tunneling distancesuz2ju, the electron wave-function
overlap between these two wells is exponentia
small. Hence, the electron ground-state wave funct
uC@u(zj)(s)#& will remain localized at sitej for most s,0
until s gets very close tos50. Within a very small interval
arounds50, uC@u(zj)(s)#& will then switch over from being
localized aroundj to being localized aroundz. In that nar-
row s region arounds50, the electron wave function con
sists of the superposition of two almost nonoverlapping
calized parts, one centered aroundj, the other aroundz.
Since uC(u)& changes very rapidly as a function ofu near
u(zj)(0), W1(u) will exhibit a sharp peak alongu(zj)(s) that
increases the tunneling barrier ats50 and hence suppresse
the tunneling amplitude.

Formally, this problem can be treated by a tight-bindi
ansatz for the electron ground-state wave functi
uC@u(zj)(s)#& nears50 is approximated by a superpositio
of uC(u(j)/2)& and uC(u(z)/2)&, i.e., by the single-well
ground states of the two EP wells12 Cul

(j) and 1
2 Cul

(z) , dis-
cussed above. Ass is varied nears50, the response o
uC@u(zj)(s)#& to the changing EP well depths is then go
erned by the effectiveelectronichybridization overlap

teff~z2j!5^C~u~j!/2!uHeuC~u~z!/2!&;t expS 22
uz2ju
l P, 1/2

D ,

~48!

where l P,1/2[ l P(u(j)/2) is the localization length o
uC(u(j)/2)&. Within the tight-binding ansatz, the proble
then becomes analogous to the two-site problem in tht
→0 limit, with the tight-binding basis statesuC(u(j)/2)& and
uC(u(z)/2)& replacing the two-site basis statesuC ( l1)& and
uC ( l2)&, respectively.W1@u(zj)(s)# exhibits a sharply peake
barrier ats50, analogous to thet→0 limit of the two-site
problem. TheW1 barrier will be roughly of the form given
by Eq.~29!, with u2 replaced byu2(s)[d(z,j)s and witht
replaced by teff(z2j). Thus, along with teff(z2j), the
transmission amplitude through theW1 barrier and the effec-
tive polaron tunneling matrix elementtP(z2j) will decrease
exponentially with the tunneling distanceuz2ju, analogous
to the t→0 limit in the two-site problem.

The long-distance polaron tunneling processes are in
anti-adiabatic regime, since the relevant effective electro
hybridization overlap matrix elementsteff(z2j) become
small compared to the phonon energyV at large tunneling
distancesuz2ju on large lattice sizesN. The W1 potential
ensures, at least qualitatively, that the effective polaron t
l-

n

-

:

he
ic

n-

neling matrix elementstP(z2j) are properly suppressed t
zero at large tunneling distances. Hence, the full adiab
approximation W5W01W1 restores the correct long
distance behavior, as far as the polaron tunneling matrix
ement is concerned.

However, just as in the anti-adiabatic limit of the two-si
problem, theW1 term also imposes an unphysical constra
on the lattice coordinates. In the present case, involv
long-distance tunneling on a lattice, this constraint acts
couple the lattice displacement coordinates at arbitra
large distancesuz2ju, thereby introducing unphysica
infinite-range interactions between the lattice coordinates

Thus, in long-distance tunneling processes, the preco
tions for the adiabatic approximation break down. Howev
from the foregoing discussion it is clear that the effecti
action for the corresponding paths increases exponent
and that the corresponding tunneling matrix element dies
exponentially with the tunneling distance. The simplest w
of dealing with such long-distance tunneling processes
therefore to altogether neglect the corresponding tunne
paths in the path integral. This is what we will do in th
following analysis. As far as the polaron tunneling dynam
is concerned, the short-distance processes will be domin
The relevant effective electronic matrix elementsteff for
short-distance processes are of order of the first-neighbt
that is normally larger than or at least comparable to
phonon energy scale in typical solid-state situations. Wecan
therefore use the adiabatic approximation to accurately e
mate the effective action for short-distance tunneling pa
And it is only in this limited sense that the adiabatic appro
mationwill be used in the following.

V. INSTANTONS AND EFFECTIVE HAMILTONIAN

The problem of polaron formation in the 2D Holstein-tJ
and Holstein-Hubbard models has already been stud
extensively.10–12,14 In the nearly 1

2 -filled band regime, the
dopant-induced hole carriers in the AF spin background
form polarons with much less EP coupling strength than
required for a single electron in an empty band. ThusEP

(crit)

for forming a single-hole polaron in the12 -filled system is
reduced by a factor of about 4–5, compared to a sing
electron polaron formation in the empty-band system. T
reduction inEP

(crit) has been explained in terms of the ho
mass enhancement and self-localization effect in the AF s
background of the nearly12 -filled Hubbard system.11 The ba-
sic idea here is that the coupling to the AF spin backgrou
already provides some form of self-localization of the ho
relative to a self-induced local distortion of the AF sp
correlations.11,27This spin polaron effect is manifested in th
strongly reduced hole quasiparticle bandwidth, from 8t in
the noninteracting system to;2J in Hubbard ortJ systems
near half filling. In the presence of EP coupling, this ele
tronic bandwidth reduction permits the hole quasiparticle
become self-trapped by a much weaker EP potential w
hence the reduction inEP

(crit) . The fact that the polaron for
mation thresholdEP

(crit).0 remains nonzero even in th
strongly correlated systems is dictated by the so-ca
small-polaron dichotomy,28 as discussed further in Sec. IX

For a multihole system containing
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P[N2(
j

nj ~49!

doping-induced holes on anN-site lattice, there are (P
N) pos-

sible configurations for accommodating theP localized holes
on theN available sites. The lattice potentialW(u) is there-
fore expected to have up to (P

N) nearly degenerate loca
minima, denoted byuj in the following, corresponding to the
(P

N) different centroid configurationsj[(j1 , . . . ,jP).11

Here, j i[(j i ,xj i ,y) denotes lattice~centroid! site occupied
by the i th hole. As noted above, each of these loc
minimum configurations breaks the translational symme
of the lattice at the level of the zeroth-order adiabatic
proximation. The symmetry is restored in the first-order ad
batic approximation by polaron tunneling processes betw
the differentuj.

At EP coupling strengthsEP larger than, but sufficiently
close toEP

(crit) , it is possible that some of the (P
N) centroid

configurationsj do not have corresponding stable loca
minimum configurationsuj in W(u). This may happen, for
example, in a two-hole system (P52), if one tries to accom-
modate the two polarons at first-neighbor sites,j1 andj2 , in
the presence of a first-neighbor Coulomb repulsionVC. At
sufficiently strongVC, the corresponding local minimum
uj[u(j1 ,j2) becomes locally unstable, which is signaled
the smallest eigenvalue of the restoring force ma
]2W/]u2uuj becoming negative. In the following, we will no
consider such situations, but rather restrict ourselves to
rameter regions where all the local minimum configuratio
uj are stable.

To establish the basic structure of the effective pola
tunneling dynamics, we treat the path integral for the eff
tive actionSad ~23! or its equivalent HamiltonianHad by a
lattice dynamical many-body tight-binding approach. T
basic idea behind this approach is that an effective pola
tunneling HamiltonianHP can be defined that operates in
‘‘low-energy’’ subspace of nearly orthogonal tight-bindin
basis statesufj&, labeled by the localized polaron centro
configurationsj. Each such basis state represents a lat
wave functionfj(u) that is assumed to be localized inu
space around the corresponding local potential minim
configurationuj. For example,fj(u) could be chosen as th
vibrational~‘‘phonon’’ ! ground state obtained in a harmon
approximation by expandingW(u) to quadratic order around
uj. By restricting the lattice Hilbert space to such a set
basis statesfj , all vibrational excited states around the p
laronic local minima are neglected. Thus, formally, our a
proach can be regarded as a tight-binding approximat
formulated for the quantum dynamics of the multiple-w
lattice potentialW(u) in the N-dimensional lattice configu
ration (u-! space.

In the simplest tight-binding approach one would th
simply estimate the matrix elements ofHP by projecting the
adiabatic lattice HamiltonianHad onto the corresponding
tight-binding low-energy subspace spanned by allfj . In
such a first-order projection approach, one neglects all
fects arising from virtual excitations out of the low-ener
subspace.

Since tunneling matrix elements are exponentially se
tive to small corrections in, for example, the tunneling b
-
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riers, such a tight-binding projection could cause sev
quantitative errors in the estimation of the magnitude of tu
neling matrix elements. Also, as a practical matter, the ac
rate evaluation of Hamiltonian matrix elements with ba
functions defined on theN-dimensionalu space can becom
quite difficult. Lastly, in the first-order projection approac
it is difficult to include the tunneling Berry phases intoHP.

To avoid the foregoing difficulties, we have adopted
approach that is based on a direct mapping of imaginary-t
tunneling paths, rather than a mapping of Hamiltonian ma
elements. Formally, this is accomplished by the path-integ
instanton method.29–31 In this method, an ‘‘instantaneous’
polaron hopping processj→z induced byHP between two
polaron centroid configurationsj[(j1 , . . . ,jP) and z
[(z1 , . . . ,zP) is identified with the~restricted! path sum of
instanton tunneling paths connectinguj to uz in u space. The
effective actionSP of the instantaneous hopping paths,
obtained, can then be immediately translated into matrix
ements of the effective tunneling HamiltonianHP. Since
only tunneling paths, but no basis states, enter into the m
ping, the results do not depend on any particular choice
tight-binding basis statesfj .

As a specific starting point, we consider the trace of
resolvent operator at complex energiesE,

Tr~E2H !2152E
0

`

db ebETr e2bH, ~50!

written in the imaginary-time domain in path-integral form

Tr e2bH5E
u~b!5u~0!

Du~t!e2Sad[u~t!] . ~51!

The trace operation in Eq.~50! leads to periodic boundary
conditions on the imaginary time interval@0,b# in Eq. ~51!.
These periodic boundary conditions in Eq.~51! impose not
only the closed-path constraintu(t)5u(0), butalso the con-
dition that the initial and final electron wave functions mu
be the same, including their phase factors. That is, for
electron wave functionsuC@u(t)#& entering intoSad via Eq.
~19!, the constraint̂ C@u(b)#uC@u(0)#&511 must be im-
posed for all pathsu(t) integrated over in Eq.~51!. The
latter requirement ensures that the Berry phase contribu
to Sad in Eq. ~51! is uniquely defined for every closed pa
u(t), independent of the choice of phase for each individ
electronic wave functionuC@u(t)#& along such a path
Quantized eigenenergies can be found from Eq.~50! by
searching for the poles of the trace of the resolvent oper
on the realE axis.

The main contributions to the low-energy part of Eq.~50!
arise from instanton path configurations, i.e.,u paths that are
almost always close to one of the centroid configuratio
occasionally transfer from one to another centroid confi
ration by an almost instantaneous polaron hopping proc
and finally return to the initialu configuration at imaginary
time b, in order to satisfy the closed-path constraint. Imp
tant closed-path tunneling processes for polaron states
P51 and 2 dopant-induced holes are shown in Fig. 3. E
black circle represents an occupied polaron centroid site
the initial configurationj of the hopping process. Arrow
indicate the hopping processes transferring the initial c
figuration j into the final configurationz. Thus, inu space
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each arrow corresponds to a set of instanton-type tunne
paths that connects the two respective minimum-W end-point
configurationsuj anduz and traverse theW barrier separat-
ing the two minima.11 Note that, as discussed above, via su
tunneling paths, a holepolaron can tunnel in a single ste
between second-, third-, etc. neighbor sites even if the or
nal electronHamiltonian ~1! contains only a first neighbo
t.11

First, we consider the case ofP51. For the time being,
we take into account only the second- and third-neigh
processes denoted by amplitudest1

(2) and t1
(3) in Fig. 4~a!.

Single-polaronintersublattice processes are strongly su
pressed by the AF spin correlations.32 Hence, the first-
neighbor amplitudet1

(1) can be much smaller than or, a

FIG. 3. ~a! One-polaron and~b! two-polaron closed tunneling
paths and their Berry phase factors. Black circles indicate the
laron locations for the initialu configuration of the path. The num
bers on the two-polaron exchange paths in~b! indicate the order of
the single-polaron tunneling steps.
gy
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ng
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most, comparable tot1
(2) and t1

(3) ~to within 20–30 %! in the
case ofP51. Then, instanton path configurations are clas
fied according to the numbers of intrasublattice processesnx

counts the number oft1
(3) processes to the right,mx the t1

(3)

processes to the left,ny the t1
(3) processes to the upper,my

the t1
(3) processes to the lower,nu the t1

(2) processes to the
upper-right,mu thet1

(2) processes to the lower-left,nv thet1
(2)

processes to the lower-right, andmv the t1
(2) processes to the

upper-left neighbors. Path integration over the correspond
instanton paths gives29–31

o-

FIG. 4. Important single-polaron tunneling processes with m
trix elementstP

(n) to thenth neighbor sites for~a! P51 and~b! P
52 polaron states on the 2D square lattice.
Tr e2bH5e2bW~u~min,1!! (
nx , . . . ,mv

1

nx!mx!ny!my!nu!mu!nv!mv! E dpx

2p
eipx~2nx22mx1nu2mu1nv2mv!

3E dpy

2p
eipy~2ny22my1nu2mu2nv1mv!~e2dR1

~2!
2 iu1

~2!
J1

~2!K1
~2!b!nu1mu1nv1mv~e2dR1

~3!
2 iu1

~3!
J1

~3!K1
~3!b!nx1mx1ny1my

5E dpx

2p

dpy

2p
exp@2b$W~u~min,1!!12t1

~2!@cos~px1py!1cos~px2py!#12t1
~3!@cos~2px!1cos~2py!#%#. ~52!
as-

sid-
ity

de

the
qs.

l

in
The effective hopping matrix elementstP
(n) are obtained as

tP
~n!52JP

~n!KP
~n!e2dRP

~n!
2 iuP

~n!
. ~53!

W(u(min,1)) is the absolute minimum lattice potential ener
obtained at a minimum-W configurationu(min,1)[u(j1) for
P51. Factorial factors such asnx!, etc. are introduced to
account for identical species of instantons. Thepx and py
integrals are introduced to enforce the imaginary-time p
odic boundary condition. The quantitydRP

(n) is the single-
instanton contribution to the real part of the action for t
path segment of the corresponding tunneling processtP

(n) and
i-

uP
(n) is the corresponding Berry phase contribution. The

signment of a unique Berry phase factore2 iuP
(n)

to each such
open path segment requires more detailed symmetry con
erations and will be postponed until Sec. VI. The quant
KP

(n) in Eq. ~53! represents the2 1
2 power of the fluctuation

determinant for the instanton solution with the zero mo
excluded divided by that for the static solution atu(min,1), and
JP

(n) is the Jacobian needed for a special treatment of
corresponding zero mode. They are defined as in E
~10.13! and ~10.14! of Ref. 29 for the periodic potentia
problem. Substituting the result of the path integral~52! into
the formula~50!, we obtain the dispersion relation shown
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the parentheses of exp@2b$ . . . %# in Eq. ~52!. Note that the
effective hopping matrix element is defined such that it
positive if the corresponding path segment carries a n
trivial ( 21) Berry phase factor: the sign convention of o
polaron tunneling matrix elementstP

(n) is opposite to that
used in the original electron Hamiltonian~1!.

Next, we consider the case ofP52. Since self-
localization reduces substantially the polaron kinetic ene
scale, it is favorable for two polarons in an AF spin bac
ground to be bound in a pair: the binding energy can ea
be of the order of the effective polaron nearest-neighbor
traction, i.e., comparable to the AF spin exchange couplinJ
~Ref. 33! in the Holstein-tJ model. As a first approximation
we therefore restrict the path integration to include only fir
neighbor pair configurationsu(j1 ,j2) and the instanton tun
neling paths connecting them. Our numerical studies
scribed below suggest that these first-neighbor configurat
represent theabsoluteminimum of W(u) for P52. Other,
more distant pair configurations withuj12j2u.1 are either
represented by localW minima u(j1j2) of higher energy or
they do not form local minima inW(u) at all. We are thus
limiting ourselves, for now, to the tunneling processest2

(2)

and t2
(3) between the degenerate, absolute-minimumu con-

figurations as shown in Fig. 4~b!.
The technique used above forP51 can be generalized in

a straightforward manner to the present caseP52. Here, in
addition to the lattice translational degeneracy of
minimum-W u configurations, theP52 system exhibits two-
fold internal degeneracy, corresponding to the two poss
orientations of the first-neighbor polaron pair, along eith
the x or along they axis. Because of this twofold interna
degree of freedom, the instanton exponential function in
path integral takes the form of the trace over a 232 matrix
exponential, namely,

Tr e2bH5E dpx

2p

dpy

2p
Tr expF2bW~u~min,2!!S 1 0

0 1D
2bS 2t2

~3!cospx 4t2
~2!cos~px/2!cos~py/2!

4t2
~2!cos~px/2!cos~py/2! 2t2

~3!cospy
D G ,

~54!

whereW(u(min,2)) denotes the absolute minimum lattice p
tential energy forP52, obtained atu(min,2)[u(j1j2) with j1
and j2 denoting first-neighbor centroid sites. The tunneli
matrix elementstP

(n) are expressed analogous to Eq.~53! in
terms of the action contributions, fluctuation determinan
and Jacobians of the respective instanton path segments
two low-lying eigenenergies of the polaron pair at total m
mentum p[(px ,py) are obtained by diagonalizing th
232 matrix in exp@2b$ . . .%# of Eq. ~54!.

The generalization of the foregoing path-integral a
proach toP.2 hole polaron states is in principle straigh
forward, but becomes practically difficult to implement wi
increasing polaron numberP. Analogous to Eq.~54!, the
approach leads to a momentum integral over the trace
matrix exponential where the matrix dimension reflects
number of ~nearly! degenerate, translationally inequivale
polaron centroid configurations (j1 , . . . ,jP) included in the
s
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tunneling analysis. In the following, we restrict ourselves
the casesP50, 1, and 2 that will allow us to extract th
effective one-polaron tunneling and two-polaron interact
matrix elements.

The low-lying tunneling eigenenergies identified by t
foregoing instanton path-integral method~and their corre-
sponding eigenstates! can be equivalently represented
terms of an effective polaron tunneling HamiltonianHP
where each polaron is represented as a spin-1

2 fermion.HP is
thus defined to operate in an effective spin-1

2 fermion Hilbert
space with the effective fermions occupying sitesj i on the
2D square lattice of the original EP Hamiltonian.
P-polaron centroid configuration (j1 , . . . ,jP) is mapped
onto the corresponding state ofP site-localized fermions
with minimum possible total spin, i.e., withStot5

1
2 ~0! for

odd ~even! P. The latter mapping condition reflects the fa
that the absolute electron ground statesuC(u)&, numerically
calculated on finite clusters, exhibit minimum total sp
quantum number. Notice however that by representing
polaron as an effective spin-1

2 fermion, we are actually in-
cluding low-energy spin excitations into the effective Ham
tonian description. In order to derive the effective polar
spin-spin interactions, our adiabatic path-integral treatm
can be straightforwardly generalized to include restric
electron ground states in Hilbert space sectors of higher t
spin quantum numbersStot>1. In this manner, the spin-1

2

fermion representation can be extended well beyond
scope of our original adiabatic approximation that reta
only the ~minimum-spin! absolute electron ground sta
uC(u)&. In the following analysis, we limit ourselves to th
absolute ground state only. Hence we are only studying
total spin-singlet pair state in theP52 case. Using our nu-
merical Berry phase results, we will show in Sec. VI th
each single polaron in such a singlet pair behaves indeed
spin-12 fermion.

In generalizing the above first-neighbor approach, it
also straightforward to include intersublattice hopping p
cesses: the dimension of the matrix increases,
k-independent term is no longer proportional to the unit m
trix, and tP

(1) ~more precisely,t1
(1) , t2

(1a) , and t2
(1b)) are de-

fined as above. Then, the effective Hamiltonian describ
the polaron tunneling dynamics and effective polaro
polaron interactions can be written in the form

HP5 (
iÞ j ,s

S t i j 1(
k

Dt i jkndkD
3~12nd j ,2s!dj s

† dis~12ndi,2s!2(
^ i , j &

VPndind j .

~55!

Thus, dj s
† creates a spin-1

2 fermion polaron with spins at
site j, nd j5(sdj s

† dj s50,1 and P5( jnd j51,2. The hop-
ping term is to include, appropriately, the amplitudes (t i j

1(kDt i jkndk)[t1
(1) , t1

(2) , t1
(3) , t2

(1a) , t2
(1b) , t2

(2) , or t2
(3) ~with

appropriate sign according to the corresponding Berry ph
factor! for i→ j tunneling processes shown in Fig. 4. No
here that the sign convention for the polaron tunneling a
plitudestP

(n) in Eq. ~55! is opposite to that used in the unde
lying electron Hamiltonians~8! and ~9!.
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The first-neighbor attractionVP in Eq. ~55! is estimated as

VP52W~u~min,1!!2W~u~min,2!!2W~u~min,0!!, ~56!

whereW(u(min,P)) is the ~absolute! minimum potential en-
ergyW(u) for theu configurationsu(min,P)[u(j1 , . . . ,jP) that
minimize W(u) for P holes. ForP52, our numerical calcu-
lations suggest that the absolute minimum-W u configuration
does indeed correspond to the first-neighbor pair. For p
poses of estimatingVP numerically on small model clusters
we have minimizedW0 instead ofW5W01W1 , thus ne-
glecting the effect ofW1 on u(min,P). In the physical param-
eter regime of interest,V!t,EP, theseW1 corrections to
u(min,P) are indeed small, of order (V/t)2. The full potential
W5W01W1 was used to calculateW(u(min,P)).

To obtain order of magnitude estimates fortP
(n) , we have

used both the dilute instanton-gas approach,29–31 as ex-
plained above, and a constrained lattice dynamics approa11

that is more straightforward and adopted in Sec. VIII. T
two approaches have given similar results. In the latter
proach, the lattice Schro¨dinger equation corresponding toSad
is solved exactly foru constrained to the linear tunnelin
pathu(zj)(s) that is defined analogous to Eq.~45! and con-
nects the two energetically degenerate, minimum-W polaron
end-pointu configurationsuj and uz of the respective hop
The hopping matrix elementutP

(n)u is then estimated as on
half of the ground-state—to—first-excited-state energy sp
ting.

VI. SYMMETRY OPERATIONS AND BERRY PHASES

Before going into numerical estimations of effectiv
model parameters, we need to settle the quasiparticle
tistics and the signs of effective polaron hopping p
cesses by calculating Berry phase factors. To calcu
exp(2iu @u(t)#) for tunneling pathsu(t) shown in Fig. 3, we
discretizet with at least 5t points per linear path segmen
and obtainuC@u(t)#& of the Holstein-tJ model by the Lanc-
zos exact diagonalization method on anN5434 lattice with
periodic boundary conditions. The electron Hilbert space
restricted to the sector of minimum total spin (S50,1/2,0 for
P50,1, 2, respectively!, which comprises the absolut
ground stateuC(u)& for u configurations near the localW
minima. The results for all paths in Fig. 3 are summarized

u@u~t!#5p~m~2!1m~3!1m2
~1!!, ~57!

wherem(n) is the number ofnth neighbor hops withn52, 3,
andm2

(1) for P52 denotes the number of first-neighbor ho
indicated by the dashed bonds shown in Fig. 5~a! by the first
polaron in close proximity to the second, static polaron,
dicated as a black circle. The effect of them2

(1) term can be
illustrated, for example, by comparing the Berry phase f
torse2 iu of the triangular paths~a! ~A! and~b! ~B! shown in
Fig. 3. In both paths, a single polaron is taken around
triangle in three steps, consisting of two first-neighbor a
one second-neighbor transfer. For the one-polaron case~a!
~A!, the phase factor is (21), for the two-polaron case~b!
~B! it is (11). Thus, the close proximity of the secon
static polaron in~b! ~B! has altered the Berry phase of th
first polaron tunneling around a closed path.
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The origin of them2
(1) term can be traced back to th

internal symmetry ofuC(u)&: For the local minimum-W u
configurations of second- and third-neighbor polaron pa
uC(u)& is odd under reflection along the dashed lines sho
in Fig. 5~b!, i.e., along the pair axis for the second-neighb
pair and perpendicular to the pair axis for the third-neighb
pair. Suppose, for example, that the first polaron hops fr
~1,0! to ~1,1! in a first step and from~1,1! to ~0,1! in a second
step with the second polaron staying fixed at~0,0!. These are
the first two steps of path~b! ~B! in Fig. 3. Note that the two
steps generate the same final centroid configuration as a
flection along the dashed~0,0!-~1,1! line, shown in Fig. 5~b!.
Because of this odd ‘‘internal’’ parity ofuC(u)& for the in-
termediate~second-neighbor polaron pair! configuration, one
of the two first-neighbor hops must contribute an additio
factor (21). Assigning this (21) phase factor to one of th
two first-neighbor steps in path~b! ~B! of Fig. 3 is to some
extent arbitrary. The pattern of dashed-line and full-li
bonds surrounding the static polaron in Fig. 5~a! represents
one possible assignment that is consistent with all the clos
path Berry phase results in Fig. 3~b!. As a consequence of it
odd internal parity, the second-neighbor polaron pair c
figuration is actually allowed to contribute with finite ampl
tude to polaron pair wave functions ofdx22y2 symmetry, in
spite of the fact that the second-neighbor pair axis po
along the nodal axis of thedx22y2 pair wave function.

Them(2) andm(3) terms can be regarded as due to stro
antiferromagnetic correlation. Suppose a polaron is initia
located at~0,0! and hops to~2,0!, ~1,1!, and then back to
~0,0! along the path~a! ~B! in Fig. 3. The electron initially
located at~2,0! hops to ~0,0! and then to~1,1!, while the
electron initially located at~1,1! hops to~2,0!. Thus, if one
approximates the AF spin background by a Ne´el state, two
electrons of like spin are exchanged. This produces a fer
onic (21) factor. More generally, when a closed path co
sists of an odd number of second- or third-neighbor hopp
processes, an even number of electrons within a subla
are cyclically permuted, producing the (21) factor within
the Néel approximation to the AF spin background. In ord
for this to occur, the AF spin correlation has to be strong,
it need not be long ranged. ForP51, the Berry phase rule
can be completely explained in this way.

For both P51 and 2, u@u(t)# is given by a sum of
independent single-polaron hopping contributions a

FIG. 5. ~a! Berry phase contributions from single-polaron firs
neighbor processes in the vicinity of a second, static polaron~black
circle!. Full and dashed bonds indicate (11) and (21) Berry phase
contributions, respectively.~b! Internal parity of second- and third
neighbor polaron pairs is odd under reflection along the dashed
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exp(2iu @u(t)#) doesnot depend on whether or not the tw
polarons are being adiabatically exchanged in a given p
@Fig. 3~b!#.34 Thus, for example, paths~b! ~B! and~b! ~C! in
Fig. 3 contain the same first- and second-neighbor hops
they have the same Berry phase. The two paths differ onl
that ~b! ~C! exchanges the two polarons, whereas~b! ~B!
does not. Since the pair is a total spin singlet, this imp
that each single polaron in the pair behaves effectively a
spin-1/2 fermion or as a spin-0 boson. Only the spin-
fermion representation is consistent with the half-odd-inte
total spin in odd-P systems and, as discussed in the previo
sections, it is the one we have adopted. Equation~57! rules
out the possibility of representing dopant-induced hole
larons as spin-0 fermions or as spin-1/2 bosons.

To settle the signs of effective polaron hopping process
we need to define Berry phase factors for the correspon
single-hop open-path segments. Let the initialu configura-
tion of such a single-hop path segment be denoted byu(j)

and the finalu configuration byu(z). The assignment of a
Berry phase to such a path segment can be made uniqu
fixing the phase of the corresponding wave functi
uC(u(z))& relative to that ofuC(u(j))& in some unique man
ner. Givenu(j) and uC(u(j))&, let uC (ref)(u(z))& denote such
a final-state reference wave function. Also, letuC (ad)(u(z))&
denote that ground-state wave functionuC(u(z))& that one
obtains by adiabatically evolvinguC(u)& along the tunneling
path segment, without discontinuity in phase, beginning w
uC(u(j))&. The Berry phase of the path segment is then
fined as the phase difference betweenuC (ad)(u(z))& and
uC (ref)(u(z))&, that is, as the phase of the wave-function ov
lap ^C (ref)(u(z))uC (ad)(u(z))&. If, for example,u(j) and u(z)

are related by a lattice symmetry operation, we can cho
uC (ref)(u(z))& as the ground-state wave functionuC(u(z))&
generated by applying touC(u(j))& the symmetry operation
which transformsu(j) into u(z). If u(j) andu(z) are related by
several different symmetry operations giving differe
uC (ref)(u(z))&, we need to specify the referenceuC(u(z))&,
i.e., which symmetry operation is chosen to generate
reference uC(u(z))& from uC(u(j))&. There does not al-
ways exist such a symmetry operation to relateuC(u(z))&
and uC(u(j))&, e.g., the second- or third-neighbor pair a
the first-neighbor one. Then, we can arbitrarily choose
phase of uC (ref)(u(z))&. The Berry phase factor for th
corresponding path is also arbitrary. Figure 5~a! is an ex-
ample. If we chose the different phase~i.e., the negative! of
uC (ref)(u(z))& for the second~third!-neighbor pair, the signs
of all the t2

(1a) (t2
(1b)) processes would be reversed.

For P51, we first fix, arbitrarily, the phase ofuC(u(j))&
for the centroid configuration j5@(0,0)#. All the
uC (ref)(u(z))& are then uniquely defined by either translati
or rotation operations. The Berry phase factors forP51 are
summarized in Fig. 6~a!. Here, the translation (x,y)→(x
1a,y1b) is denoted byT(a,b), and the rotation (x,y)
→(x cosf2y sinf,xsinf1y cosf) is denoted byR(f).
The left-hand side showsuC (ad)(u(z))&. The right-hand side
shows the possible choices ofuC (ref)(u(z))&, generated
from the sameuC(u(j))& by the appropriate lattice sym
metry operations. Note that, for second- and third-neigh
hops, both translation and rotation operations generate
th

nd
in

s
a

2
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s

-

s,
ng

by

h
-

-

se

t

e

e

r
he

sameuC (ref)(u(z))&. The first three lines of Fig. 6~a! give
exp@2iu 1

(1)#511,exp@2iu 1
(2)#521,exp@2iu 1

(3)#521, and
thus

t1
~1!,0, t1

~2!.0, t1
~3!.0. ~58!

Obviously, these results are consistent with relation~57!.

FIG. 6. ~a! One-polaron and~b! two-polaron open tunneling
paths and their Berry phase factors. Black circles indicate the
laron locations for the initialu configuration of the path.T(a,b)
denotes the translation by vector (a,b), R(f) the rotation by
anglef.
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For P52, we first fix the phase ofuC(u(j))& for the cen-
troid configurationj[(j1 ,j2)5@(0,0),(1,0)#. Rotating this
uC(u)& by angle p/2, we define theuC (ref)(u(z))& for z
[(z1 ,z2)5@(0,0),(0,1)#. The uC (ref)(u(z))& for the other
first-neighbor pair configurationsz are defined by applying
translation operations to eitheruC(u(j))& or to its rotated
versionR(p/2)uC(u(j))&. The resulting Berry phase factor
for P52 are summarized in Fig. 6~b!. The first two lines
imply that exp@2iu 2

(2)#521,exp@2iu 2
(3)#521, and thus

t2
~2!.0, t2

~3!.0. ~59!

The last two lines in Fig. 6~b! imply, by comparison to the
first two lines, that available rotations would generate
same uC (ref)(u(z))& as the translations. The first-neighb
hopst2

(1a) andt2
(1b) are positive or negative for the process

indicated by the dashed and full bonds, respectively, of F
5~a!, as discussed above.

VII. BERRY PHASES AND QUANTUM NUMBERS

Using the effective Hamiltonian~55! with parameters
t1
(1) , t1

(2) , t1
(3) , t2

(1a) , t2
(1b) , t2

(2) , t2
(3) ~with signs determined

above!, andVP, we can now calculate the low-energy eige
states for theP51 andP52 polaron systems.

In the caseP51, the dispersion relation fromHP is given
by

e1~p!52t1
~1!@cospx1cospy#12t1

~2!@cos~px1py!

1cos~px2py!#12t1
~3!@cos~2px!1cos~2py!#.

~60!

As mentioned in Sec. V, on finite lattices,t1
(1) is smaller than

the second- and third-neighbort ’s for P51. As the cluster
size increases, the overlap between the two minimumW
wave functions connected by thet1

(1) process,uC(u(j))& and
uC(u(z))& for a first-neighbor bond (j,z), becomes small
Then, the potential energyW(u) would develop a higher
barrier for the first-neighbor hop, due toW1(u), so thatt1

(1)

would continue to become smaller. Allowing for arbitra
values oft1

(2) andt1
(3) but t1

(1)50, the one-polaron band mini
mum is located at momentump5(p/2,p/2) for ut1

(2)u
,2t1

(3) , at (p,0) for ut1
(2)u.2t1

(3) and t1
(2).0, and at (0,0)

and (p,p) for ut1
(2)u.2t1

(3) and t1
(2),0, as shown in Fig.

7~a!. For the physically relevant signs implied by the Ber
phase factors,t1

(2) ,t1
(3).0, the momentum of the one-polaro

band minimum is thus at (p/2,p/2) or (p,0) which lies on
the Fermi surface of the noninteracting nearest-neigh
tight-binding band model at half filling. The one-polaro
bandwidth is given by

B15H 4t1
~2!18t1

~3! for 0,t1
~2!,2t1

~3!

8t1
~2! for 0,2t1

~3!,t1
~2! .

~61!

For the cluster geometries studied here (N5A83A8,
N5A103A10, and N5434) and with only nearest
neighbor terms (t,J) included in the original Hamiltonian
~1!, certain ‘‘accidental’’ symmetries exist that causetP

(2)
e

.

-

or

5tP
(3) . As a consequence, the band minimum is at (p/2,p/2),

and the eigenvalues of the inverse effective-mass tenso
this point are

~m1
21!r58t1

~3!14t1
~2!512t1

~2,3!, ~62!

~m1
21!f58t1

~3!24t1
~2!54t1

~2,3!, ~63!

where the subscriptr is for the ~1,1! direction andf is for
the (1,21) direction. If we include finite and negativet1

(1)

~representing, e.g., theN→` limit at finite, fixed hole den-
sity, rather than at fixed hole numberP51), then the band
minimum is shifted byt1

(1) from (p/2,p/2) to some point
(p,p) with p,p/2 that would fall on the Fermi surface o
the noninteracting band model at corresponding filling.

For P52, we first consider the tightly bound pair limi
VP@ut2

(n)u, where we can approximate the polaron-p
ground state by including only nearest-neighbor pair c
figurations, thus retaining only thet2

(2) and t2
(3) matrix ele-

ments ofHP. The pair dispersion relations are then given

e2
6~p!52VP1t2

~3!~cospx1cospy!

6F t2
~3!2~cospx2cospy!21S 4t2

~2!cos
px

2
cos

py

2 D 2G1/2

.

~64!

Allowing for arbitrary values oft2
(2) and t2

(3) , the pair wave
function in the nearest-neighbor pair approximation
ut2

(2)u.t2
(3) hasdx22y2-wave symmetry ift2

(2).0, ands-wave
symmetry if t2

(2),0, and, in either case, total momentump
5(0,0), as shown in Fig. 7~b!, at the band minimum. Fo
ut2

(2)u,t2
(3) , the pair ground states are multiply degenera

FIG. 7. Total momentum (px ,py) of the ~a! P51 and ~b! P
52 polaron ground state ofHP in a tP

(3)-vs-tP
(2) phase diagram. Also

shown in ~b! are the internal symmetries of the respective tw
polaron ground states.
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the horizontal pair~with pair axis parallel to thex axis! with
total momentump5(p,py) for arbitrary upyu<p and the
vertical pair~with pair axis parallel to they axis! with total
momentump5(px ,p) for arbitrary upxu<p all have the
same energy. The two-polaron bandwidth is given by

B2[max
p

e2
2~p!2min

p
e2

2~p!54uut2
~2!u2t2

~3!u. ~65!

If we take account of first-, second-, and third-neighbor p
configurations, including also the first-neighbor hoppi
terms, t2

(1a) and t2
(1b) , in second-order perturbation theor

the initially degenerate energy alongp5(p,py),

e2
2~p,py!52VP22t2

~3!, ~66!

is lowered by

de2
2~p,py!52

4S 2t2
~1a!2cos2

py

2
1t2

~1b!2D
VP12t2

~3!
. ~67!

It is reasonable for thet2
(1a) term to favorpy50 because the

process of (j1 ,j2)5@(0,0),(1,0)#→@(0,0),(1,1)# and the
process of@(0,0),(1,1)#→@(0,1),(1,1)#, for example, are in
phase, as shown in Fig. 5~a!. The ground states are still dou
bly degenerate: the horizontal pair withp5(p,0) and the
vertical pair withp5(0,p), which would correspond topx
and py wave though they are total-spin singlets.35 For
t2
(2) ,t2

(3).0 implied by the Berry phase factors, we thus g
eitherdx22y2- or px(y)-pairing symmetry with total momen
tum p5(0,0) orp5(p,0) @(0,p)#, respectively.

The accidental symmetries for our finite-cluster geo
etries @in the absence of longer-range terms in the origi
Hamiltonian ~1! studied here# lead to t2

(2)5t2
(3) , which is

exactly on thed-p phase boundary whereB2 vanishes due to
a frustration effect.32 So, the energye2

2(p) is independent of
p. If we take account of first-, second-, and third-neighb
pair configurations again, in second-order perturbat
theory, the initially degenerate energy on thed-p phase
boundary,

e2
2~p!u t

2
~2!5t

2
~3!52VP22t2

~2,3!, ~68!

is lowered by

de2
2~p!u t

2
~2!5t

2
~3!52

f ~p!

VP12t2
~2,3!

~69!

with

f ~p!54t2
~1a!2~21cospx1cospy!

14t2
~1b!2 12cospxcospy

21cospx1cospy
. ~70!

Then the ground state hasdx22y2 symmetry withp5(0,0)
for A2ut2

(1a)u.ut2
(1b)u and px(y) wave with p5(p,0) @(0,p)#

otherwise. For theN5434 Holstein-tJ cluster with periodic
boundary conditions, an accidental symmetry leads
ut2

(1a)u5ut2
(1b)u and thusdx22y2-pairing symmetry. It is rea-

sonable for thet2
(1a) term to favor thedx22y2-wave state be-
ir

t

-
l

r
n

o

cause the process of (j1 ,j2)5@(0,0),(1,0)#→@(0,0),(1,1)#
and the process of@(0,0),(1,1)#→@(0,0),(0,1)#, for ex-
ample, have opposite signs. Also, it is reasonable for thet2

(1b)

term to favor thepx-wave state because the process
(j1 ,j2)5@(0,0),(1,0)#→@(0,0),(2,0)# and the process o
@(0,0),(2,0)#→@(1,0),(2,0)#, for example, have opposit
signs, as shown in Fig. 5~a!. Once again we note that th
second-neighbor polaron pair configuration contributes to
polaron-pair wave function ofdx22y2 symmetry.

VIII. EFFECTIVE HOPPING AND ATTRACTION

We have seen how total momenta and internal symmet
of few-hole polaron states are determined by the signs
relative magnitudes of the effective polaron tunneling mat
elements. In this section, we show numerical estimates
them with effective polaron nearest-neighbor attraction a
effective pair binding energy to see the energy scales of
laron dynamics. The relative energy scale of kinetic ene
to interaction strength is controlled by the phonon frequen
in the original Hamiltonian~1!. It is noted again that we us
a constrained lattice-dynamics approach and exactly s
the lattice Schro¨dinger equation corresponding to the effe
tive action ~23! for the lattice-displacement configuration
constrained to the linear tunneling path of the respective h
as described at the end of Sec. V. The effective lattice
tentials are based on Lanczos calculations on finite clus
with periodic boundary conditions. The numerical resu
should be regarded as very rough order-of-magnitude e
mates only. The nearest-neighbor attractionVP is calculated
according to formula~56!. The pair binding energyD is es-
timated in the nearest-neighbor pair approximation, acco
ing to

D52e1~p1
~min!!2e2

2~p2
~min!!, ~71!

where e1(p) and e2
2(p) are defined in Eq.~60! ~with t1

(1)

50) and Eq.~64!, respectively, measured relative to theP
50 ground-state energy, andpP

(min) are the respective~thus
different! momenta at the band minima discussed abo
Note that the sign ofD is so defined thatD.0 signifies a net
attraction,D,0 repulsion.

Figure 8~a! shows the logarithm of the dominant secon
and third-neighbor hopping amplitudestP

(2) and tP
(3) for P

51,2 in the Holstein-tJ model on anN5A83A8 cluster. As
expected in a polaronic system,14 all tP

(n) are suppressed
roughly exponentially, with increasingEP/V and strongly
reduced compared to the bare electronict. However, forEP

nearEP
(crit) , the tP

(n) can become comparable to the phon
energy scaleV. For P52, the proximity of the second, stati
polaron strongly enhances the amplitudest2

(2) and t2
(3) rela-

tive to t1
(2) and t1

(3) . It is worth noting that this effect occur
only in the presence of strong electron correlations wh
bipolaron formation is prevented by the strong on-site C
lomb repulsion. By contrast, this effect never occurs in or
nary polaronic systems with the electron-phonon interact
EP larger than the local Coulomb repulsion. In the latter ca
small bipolarons will form36 that are much heavier than po
larons. To generate the above-described delocalization~and
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hence mobility! enhancement effect, it is essential to ke
the two polarons spatially separated by strong enough on
Coulomb effects.

The accidental symmetries leading totP
(2)5tP

(3) will be
lifted on larger lattices and, more importantly, by inclusi
of longer-range couplings, such as second-neighbor hop
t8, Eq. ~10!, and extended Coulomb repulsionVC, Eq. ~11!,
in the original EP Hamiltonian~1!, as will be shown below.
Due to the exponential dependence of the delocalization
trix elementstP

(n) on the lattice potential parameters, su
additional couplings can substantially affect the magnitu
of the tP

(n) parameters, without necessarily altering the Be
phase factors or the predominance of the second- and t
neighbor hopping terms (tP

(2,3).tP
(1)) and their two-polaron

enhancement (t2
(n).t1

(n)). The Berry phase factors should b
a robust feature of our model, since they reflect the topolo

FIG. 8. ~a! Logarithm of the effective polaron hopping ampl
tudestP

(n) for P51 and 2 holes andn as second- and third-neighbo
processes vs inverse phonon energy 1/V ~with tP

(2)5tP
(3) due to

accidental cluster symmetries!. ~b! Effective polaron nearest
neighbor attractionVP and two-polaron binding energyD vs 1/V.
All results are fort[1,J50.5t, with EP[C2/K52.5t and 4.0t, on
an N58 lattice with periodic boundary conditions.
ite

ng

a-

s
y
d-

i-

cal properties of the relevant tunneling paths relative to c
tain singular manifolds of the lattice action inu space.

Figure 8~b! shows the nearest-neighbor attractionVP and
the pair binding energyD, where the latter quantity is given
by

D5VP12t2
~2,3!28t1

~2,3! ~72!

for tP
(2)5tP

(3) , using Eq. ~71!. Since two self-localized
nearest-neighbor holes mutually inhibit their delocalizatio
the t term in the original Hamiltonian~1! gives a repulsive
contribution toVP: in the parameter range shown in the fi
ure, VP,0.342J (0.316J) is substantially reduced compare
to VP(t50)51.00J (0.926J) on N5A83A8 (A103A10)
sites in thet→0 limit. Compared to thetJ model,VP can be
larger or smaller: self-localization reduces the effective p
laron hopping processes, giving an attractive contributi
and it is more effective in the one-hole state than in
two-hole state, giving a repulsive contribution. The bindi
energyD is enhanced by the two-polaron hopping amp
tudest2

(2,3), but it is smaller, in most of the parameter ran
shown in the figure, thanVP due to the restricted hoppin
processes for the polaron pair and due to the non-neglig
t1
(2,3) term for largeV. In a more realistic theory, the possib

competition between polaron pairing and phase separati33

would need to be considered for finite density of holes.
In order to see a finite-size effect, we have calculated

effective model parameters onN5A103A10 sites ~not
shown! to compare with those onN5A83A8 sites above.
We find no qualitative difference between them. In the p
rameter range shown in the figure, the values oftP

(n) are
different by a factor of 2 at most, but these values are rou
order-of-magnitude estimates in any case. The values oVP

for N5A103A10 are smaller by a factor of 0.8–0.9.
For the Holstein-Hubbard model, we find results~Fig. 9!

quite similar to those shown above. However, the values
VP are only 30% of those in the Holstein-tJ model, which
are reminiscent of the fact that the hole binding energy
larger for thetJ model than for the Hubbard model. Furthe
more, the values oft2

(2,3) are smaller than those of th
Holstein-tJ model for V,0.2t, and the values oft1

(2,3) are
larger by a factor of 1.6–3.7 in the parameter range show
the figure. All these results make the pair-binding ene
smaller in the Holstein-Hubbard model. For largeV, the
polaron pair becomes unbound, though our results are b
on the adiabatic approximation and the nearest-neighbor
approximation so that they are less reliable for largeV.

We now turn to the effects of second-neighbor electr
hybridization and long-range Coulomb couplings that lift t
accidental finite-cluster degeneracy,tP

(2)5tP
(3) , and thus shift

the system off thed-p phase boundary forP52, already in
the absence oft2

(1a,1b) processes. The second-neighb
electron-hopping term in the original Hamiltonian~1! en-
hances the second-neighbor hoppingt2

(2) , lowers the third-
neighbor onet2

(3) , and thus favors thedx22y2-wave symme-
try if t8 is positive by the definition in Sec. II~Fig. 10!, and
the effects are opposite ift8 is negative~Fig. 11!. Note that,
in the noninteracting tight-binding model, the positivet8
raises the energy ofp5(p,0) state@thus the energy ofp
5(p/2,p/2) state is relatively lowered# and makes the Ferm
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surface convex. At8 term that helps the second-neighb
electron hopping also helps the second-neighbor pola
hopping.

The long-range repulsion term enhancest2
(3) more than

t2
(2) , so that it favors thepx(y)-wave symmetry~Fig. 12!. This

can be understood if we recall the second-order perturba
theory with respect tot2

(1a,1b)/VP. The VC term raises the
energy of the intermediate second-neighbor pair favoring
dx22y2-wave symmetry, compared to that of the intermedi
third-neighbor pair favoring thepx(y)-wave symmetry. Note
that VC enhances both of thet2

(2) and t2
(3) processes. This

happens because the lattice distortion and thus the loca
tion potential is weakened byVC. If VC is too strong, how-
ever, it may overcome the nearest-neighbor attraction and
polaron pairing will then be suppressed altogether. This w
be discussed further in the next section.

Other modifications of our model, going beyond the ba

FIG. 9. ~a! Logarithm of the effective polaron hopping ampl
tudestP

(n) for P51 and 2 holes andn as second- and third-neighbo
processes vs inverse phonon energy 1/V ~with tP

(2)5tP
(3) due to

accidental cluster symmetries!. ~b! Effective polaron nearest
neighbor attractionVP and two-polaron binding energyD vs 1/V.
All results are fort[1,U58t, with EP52.5t and 4.0t, on anN
58 lattice with periodic boundary conditions.
n

n

e
e

a-

he
ll

c

Einstein phonon model with Holstein EP coupling, can
considered. Such modifications include, for example, s
tially extended EP coupling terms inHe-ph, Eq. ~2!, and dis-
persion in the bare phonon spectrum, which introduces s
tially extended elastic couplings intoHK , Eq. ~3!. There is
no reason to believe that either modification will fundame
tally alter our conclusions concerning~i! the basic conditions
of polaron formation in the near-1

2 -filled Hubbard ortJ elec-
tron system,~ii ! Berry phases associated with the tunneli
of such polarons, and~iii ! the qualitative parameter depen
dences of their effective polaron tunneling amplitudes d
cussed in the present section.

As far as polaron formation in dimensionsd>2 is con-
cerned, the polaron formation thresholdEP

(crit) will of course
depend on the extended EP and elastic coupling parame
but it will remain finite for short-range extended couplin
by general scaling arguments.28 For Fröhlich-type long-range
EP couplings,37 EP

(crit) may be reduced, compared to th

FIG. 10. Logarithm of the effective polaron hopping amplitud
t2
(n) for n as second-and third-neighbor processes vs inverse pho

energy 1/V, with and without inclusion of next-nearest-neighb
hopping t8510.2t, for t[1,J50.5t, ~a! EP52.5t, and ~b! EP

54.0t, on anN58 lattice with periodic boundary conditions.
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short-range case. The latter type of coupling could favo
spatially more extended ‘‘large’’ polaron formation, as d
cussed further below. Most importantly, however, the ba
physical arguments for an AF spin-correlation-induced
duction of EP

(crit) , are quite independent of the structure
the phonon spectrum or the EP coupling.11 The existence of
self-localized states has been discussed for other type
phonon branches38 and, in near-12 -filled Hubbard electron
systems, for other types of EP coupling.11

Due to their topological andelectronic nature, we also
believe that our Berry phase results are likely to be v
robust against model extensions. Recall here that the B
phase, as given in Eq.~20!, is a property of the electronic
wave function only. Hence, the foregoing should be tak
with the proviso that the extensions of the model do
change the character or symmetry of the self-localized e
tronic wave function. That is to say, our Berry phase res
will remain valid for any polaronic state in the near-1

2 -filled

FIG. 11. Logarithm of the effective polaron hopping amplitud
t2
(n) for n as second- and third-neighbor processes vs inverse

non energy 1/V, with and without inclusion of next-neares
neighbor hoppingt8520.2t, for t[1,J50.5t, ~a! EP52.5t, and
~b! EP54.0t, on anN58 lattice with periodic boundary conditions
a

ic
-

f

of

y
ry

n
t
c-
s

Hubbard system in which the localizing EP potential we
Cuj are centered around the~fourfold symmetric! Cu sites.
Our Berry phase results maynot hold in polaronic systems
where the localizing EP potential well and the self-localiz
state forms, e.g., along a first neighbor Cu-Cu bond. S
‘‘bond-localized’’ polaronic states are conceivable in E
models, such as the Su-Schrieffer-Heeger model,24,39 where
the lattice displacement modulates, for example, the fi
neighbor electron intersite hybridization, rather than the el
tron on-site energy.

Both spatially extended EP and spatially extended ela
couplingscan have important effects on effective polaro
polaron interactions, that is, on theVP term in Eq.~55!. For
example, introducing either a first-neighbor elastic coupl
K8 or a first-neighbor EP couplingC8 into Hph, Eq. ~3!, or
into He-ph, Eq. ~2!, respectively, will either increase or de
crease the first-neighbor attractionVP, depending on the sign
of K8/K or C8/C, respectively.

o-
FIG. 12. Logarithm of the effective polaron hopping amplitud

t2
(n) for n as second- and third-neighbor processes vs inverse

non energy 1/V, with and without inclusion of long-range repulsio
VC51.0t, for t[1,J50.5t, ~a! EP52.5t, and ~b! EP54.0t, on an
N58 lattice with periodic boundary conditions.
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Similar effects are found in extended EP coupling mod
involving either breathing or buckling modes of the oxyg
atoms in the CuO2 planes.26,40–43 The former involve the
displacements of the planar O atoms parallel to their in-pl
Cu–O bonds, the latter involves the planar O displaceme
perpendicular to the CuO2 plane. In the former, the simples
Cu–O first-neighbor EP coupling causes an effective e
tronic Cu–Cu first-neighbor repulsion, in the latter it caus
a first-neighbor attraction.

The foregoing examples illustrate the general point t
EP coupling to several different phonon branches can lea
subtle, competing effects when spatially extended pair
interactions are being considered.6 This is very much in con-
trast to the conventional phonon-mediated on-sites-wave at-
traction where all phonon branches contribute attractive
regardless of the details of the EP couplings or phon
dispersion.44 We caution, therefore, that one may not real
tically try to construct aphonon-mediated dx22y2-pairing
theory based on a phonon model that selectively inclu
only the EP coupling to a single branch. Whether phon
ultimately contribute to—or subtract from—thed-wave ~or
other non-s-wave! pairing potentials in the cuprates45 is pres-
ently an open question that will require further study. T
renormalization of both extended phonon-mediated and
tended Coulomb interactions by the strongly correlated H
bard electron system will be a central issue in such fut
studies.46–48

With regards to the present paper, we emphasize tha
are not proposing a particular microscopic pairing mech
nism. Rather, our primary purpose here is to explore
consequences of the polaron tunneling matrix elements
Berry phases on the pairing state,provided that a first-
neighbor attractive pairing mechanism, of whatever mic
scopic origin, exists, i.e., provided thatVP in Eq. ~55! is
attractive.

IX. POLARON LIQUIDS
AND THE CUPRATE SUPERCONDUCTORS

To the extent that the qualitative features of the abo
discussed effective Hamiltonian~55! and the resulting tun-
neling and pairing dynamics remain intact at finite hole do
ing concentrations, the foregoing results have so
potentially interesting consequences for the physical pro
ties of the polaron liquid formed at finite polaron densitie
In the present section, we will speculate on some of th
properties and compare them to experimental observation
the cuprate high-Tc superconductors.19

If the above-discussed polaron-pair state remains st
and delocalized at finite hole doping, then formation o
superconducting polaron-pair condensate can occur at
enough temperatures. The foregoing discussion has foc
primarily on the tightly bound pair limit where such a co
densate would be formed via Bose condensation of thepre-
existing polaron pairs. However, the qualitativeV depen-
dences of the delocalization energiestP

(n) and of the pairing
potentialVP, shown in Fig. 8, suggest that with increasingV
~and fixed electronic parameterst, J, and EP), such a con-
densate may exhibit a crossover from tightly bound pair t
BCS-like, extended-pair behavior: For smallV, the delocal-
ization matrix elementst2

(n) and resulting polaron pair band
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width become small compared to the pairing potentialVP.
Hence tightly bound pairs will form, as described abov
with a pair wave function extending only over 1-2 lattic
constants. For largeV on the other hand, the polaron ban
widths (B1 and B2) can become comparable or larger th
the pairing potential, thus leading to a BCS-like extend
pair state, with a pair wave function extending over seve
many lattice constants.

In the tightly bound pair regime, the Bose condensat
Tc is controlled by the pair densityxpair and the pair band-
width B2 , that is, roughly

Tc;xpairB2 , ~73!

whereB2 is the pair bandwidth~65! and

xpair5
1

2
~12^n&!5

1

2
x ~74!

is the pair concentration, i.e., half of the hole concentrationx.
B2(V) and henceTc decreases with decreasingV.

In the BCS-like extended-pair regime,Tc is controlled by
the pair binding energyD that decreases with increasing d
localization energy and hence with increasingV. As a con-
sequence, there must exist, somewhere in the crossove
gime between the tightly bound pair and the BCS~extended-
pair! limits, an optimal phonon frequencyV0 where the
transition temperatureTc(V) is maximized.V0 is roughly
determined by the condition

B2~V0!;VP, ~75!

and the maximum possibleTc ~as a function ofV), esti-
mated by extrapolation of Eq.~73! from the tightly bound
pair side, is of order

Tc0[Tc~V0!;xpairB2~V0!;xpairVP, ~76!

whereB2(V) is the polaron pair bandwidth, Eq.~65!, as a
function of phonon frequencyV.

One crucial, experimentally observable difference b
tween the tightly bound and the extended pair condensa
the relation between pair formation and superconduct
transition: In the tightly bound pair regime, the pairs, a
hence the pairing gapD in the excitation spectrum, can b
preformed. That is, the polaron pairs and the energy gap
pair breaking exist already at temperaturesT;D that could
be well aboveTc , provided thatD@Tc . By contrast, in the
extended-pair BCS-like regime we expect the pair format
to coincide with the superconducting transition, that is,
pairing gap should be observable only at temperaturesT be-
low Tc and should vanish atTc .

The existence of such an optimum phonon frequency
plies thatTc exhibits a vanishing isotope exponenta when
V5V0 . To show this, we note that the isotopic mass dep
dence enters into the theory only via the phonon freque
V, if the electron-phonon Hamiltonian is parametrized, as
Eqs. ~7! and ~6!, in terms of EP and V, since electron-
phonon potential constants~C! and harmonic restoring force
constants (K), and henceEP, are of purely electronic origin
i.e., do not depend on atomic/isotope masses. UsingV
}M 21/2, from Eq. ~6!, we obtain
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a[2
] ln Tc

] ln MU
el

5
1

2

] ln Tc

] ln VU
el

, ~77!

which vanishes at theTc maximum V5V0. The notation
. . . uel here means that the derivatives are to be taken with

purely electronic model parameters (t, U, J, EP, uP, etc.!
held constant. TheTc maximum atV0 also implies thata is
positive in the tightly bound pair regimeV0.V, but nega-
tive in the extended-pair regimeV0,V. The vanishing ofa
at V5V0 does, however,not imply that a is generically a
small number. Quite to the contrary, because of the stronV
dependence of the polaron bandwidth parameters, we sh
expect a to attain quite substantial magnitudes, withuau
;O(1), as thesystem is tuned away from the optimal ph
non frequency, i.e., whenVÞV0 .

It is tempting to compare the foregoing features of
finite-density polaron liquid to the observed properties of
cuprates. The doping dependence of the superconducting
normal-state properties of the cuprates is, in some resp
very much reminiscent of a crossover from tightly bou
pair to BCS/extended-pair behavior: In the underdoped
prates, there is now a substantial body of evidence sugg
ing that the superconducting gap is pre-existing, in the fo
of a ‘‘pseudogap,’’ at temperatures well aboveTc .49 With
increasing hole doping concentrationx, Tc approaches a
maximum, while the pseudogap aboveTc is gradually sup-
pressed, and, in close proximity to the optimal doping c
centrationx0 , the pseudogap aboveTc vanishes. Well inside
the overdoped regimex.x0 , there is no detectable
pseudogap andTc rapidly decreases with increasingx.

The isotope exponentsa in the underdoped cuprates a
typically quite large in magnitude, of order of the classic
BCS valueaBCS5

1
2 or larger. However, in contrast to con

ventional BCS-type phonon-mediated superconductorsa
can be very sensitive to changes in doping and other sys
properties such as impurity concentration and crystal st
ture. With increasing hole-doping concentration, the o
served, usually positive oxygen isotope exponenta de-
creases and becomes very small, typically,0.05, at the
optimal doping concentrationx0 .9 It is presently not clear
whethera changes its sign forx.x0 . Negativea values
have been observed in copper isotope substitutions on
than optimally doped cuprate materials.50

In comparing these experimental results to the forego
theoretical picture of a polaron liquid, it is important to no
that, experimentally, theTc maximum and the surmise
crossover from tightly bound pair to extended-pair BCS-l
behavior is observed as a function of doping concentratiox,
whereas, in our above theoretical considerations, we h
discussed the crossover as a function of phonon freque
V. To see how such a crossover could arise in our mode
a function of doping, we need to consider the doping dep
dence of the polaron delocalization matrix elementstP

(n) .
As indicated in Figs. 8–12, the polaron delocalization m

trix elements, and hence the polaron pair bandwidthB2 are
rapidly increasing functions ofV. At finite doping, these
delocalization matrix elements will also become depend
on the hole doping concentrationx512^n& by the follow-
ing mechanism: As the polaron density increases, the lo
ized wave functions of nearby holes will begin to overl
ll
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and the holes will begin to mutually screen out each othe
tunneling barriers. This effect can be clearly seen in comp
ing the 1- and 2-hole results in Fig. 8. ForP52, the mere
proximity of the second, static polaron strongly enhances
tunneling matrix element of the first, moving polaron, hen
t2
(n).t1

(n) for n52,3. Treated at the mean-field level, at fini
polaron density, this tunneling enhancement effect will ca
the ~mean-field average! tunneling matrix elements to in
crease with the hole doping concentration. Thus the effec
polaron-pair bandwidthB25B2(V,x) becomes a strongly
increasing function of the hole doping concentrationx.

According to the crossover criterion~75! it may then be
possible to drive the polaron liquid from the tightly boun
pair into the extended-pair regime by changing either
phonon frequencyV or the doping concentrationx, if VP is
only weakly dependent onV andx. Another way of stating
the same result is to say that the optimal phonon freque
V05V0(x), from Eq. ~75!, is a decreasing function of th
hole doping concentrationx. The underdoped region corre
sponds to the tightly bound pre-existing-pair regime in t
picture; the overdoped region is identified with the extend
pair BCS-like regime. The superconducting transition te
peratureTc as a function ofx reaches a maximum at a
optimal doping concentrationx0 not too far from the concen
tration xV , where V0(xV)5V and the isotope exponen
vanishes. Notice here that the pointx05x0(V) @where
Tc(V,x) reaches its maximum as a function ofx at fixedV]
need not exactly coincide with the pointxV @where the opti-
mal phonon frequencyV0(x) equals the actual phonon fre
quencyV].

At sufficiently large hole doping the polaron-polaro
wave-function overlap and the mutual screening of the ho
localizing potential wellsCuj may become so strong that th
holes become unbound, that is, the polarons become uns
towards forming free carriers. This finite-density polaron u
binding can be regarded as analogous to the Mott deloca
tion transition in moderately doped semiconductors. The
mary difference is that the Mott transition in semiconducto
involves the screening of localizing potential wells due
static impurities whereas, in the present case, the localiz
potential wells are due to local lattice distortions that a
induced, via the EP coupling, by the polaronic holes the
selves. In the adiabatic potentialW(u), this unbinding will
manifest itself in the~gradual or abrupt! disappearance o
local minimum configurationsu(j). Whether, in the thermo-
dynamic limit, this occurs as a sharp transition or as a c
tinuous crossover is presently unclear and needs fur
study.12 The nature of the polaron unbinding and the char
teristic concentrationxu where the unbinding occurs will als
be influenced by the long-range Coulomb interactionVC and,
in more general EP models, by the spatial range of the
interaction.37

If the optimal polaronic doping concentrationsx0 andxV

are close to the polaron unbinding concentrationxu , the po-
laron unbinding will likely dominate the crossover into th
extended pair regime: In this scenario (xu>x0 ,xV), the
crossover from underdoping to overdoping takes the sys
directly from the tightly bound polaron-pair liquid into
BCS-like superconductor of extended pairs of nonpolaro
carriers. The effective mass of the nonpolaronic carriers
the overdoped regime is much less enhanced by the elec
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phonon coupling and, more importantly, the mass enhan
ment is independent of the isotopic mass of the ions. T
latter is suggested by the conventional weak-coupl
electron-phonon theory where the mass enhancement fa
is given by (11lz) and the Eliashberg parameterlz is in-
dependent of the isotope mass.6,44 If the pairing attraction is
of predominantly electronic~i.e., nonphonon! origin, one
will then obtain a very small isotope exponent,6 uau!1,
throughout the overdoped regimex.xu .

Thus, the overall magnitude ofa can serve as a distin
guishing feature between extended pairs of polaronic
nonpolaronic carriers in the overdoped regime. In the form
scenario, already described above,a(x) changes sign nea
optimal doping, butuau well inside the overdoped regim
can become as large as in the underdoped regime, refle
the fact that the underlying pair constituents are still sing
hole polarons. By contrast, in the latter~unbound carrier!
scenario,uau becomes small in the overdoped regime, wi
out necessarily incurring a sign change ina, reflecting the
nonpolaronic nature of the pair constituents. Further exp
mental studies of the isotope exponent in the overdoped
prate systems would be desirable.

The foregoing features of the underdoped polaron liq
model and its crossover into the overdoped regime exh
strong similarities with the observed pairing symmetry a
doping dependences ofTc , isotope exponent, and pseudog
in the cuprates. However, in its present form, the model a
suffers from several potential drawbacks that arise from
small-polaron character of the self-localized hole. Sma
polaron formation necessarily implies bandwidthsB1 andB2
that cannot be substantially larger than the phonon ene
scaleV, as shown in Figs. 8–12. As a consequence, sm
polaron carriers may be easily localized by disorder and
long-range Coulomb interaction effects. Also, by Eq.~76!,
the overall magnitude of the optimalTc0; 1

2 xB2& 1
2 xV can-

not exceed some fraction ofV. With x;0.1020.20 andV
&1000 K,8 this upper limit onTc is of order 50–100 K in the
cuprates and it is reached ifEP just barely exceedsEP

(crit) .
For substantially largerEP, B2 andTc are rapidly~exponen-
tially! suppressed withEP. It is not clear from the experi-
mental data whether observed carrier mobilities, effect
masses, andTc’s in the underdoped cuprates actually exhi
such a strong sensitivity to changes inEP and/or to disorder
or long-range Coulomb interactions.

The foregoing limitations of the small-polaron system c
ultimately be traced back to the short-range nature of
assumed Holstein EP coupling in our model. Scaling ar
ments show that, at the level of the zeroth-order adiab
approximation in spatial dimensionsD>2, short-range EP
models are subject to a dichotomy whereby single carr
either form small polarons, ifEP exceeds a certain thresho
EP

(crit).0, or they do not form polarons at all, ifEP

,EP
(crit) .28 By contrast, in systems with additional longe

range EP couplings, such as the Fro¨hlich model,28,37 as well
as in 1D short-range EP models,38,51 it is possible to form
large polarons at arbitrarily weakEP, i.e., with EP

(crit)50. It
has been argued37 that large-polaron and large-bipolaro
models can remedy some of the above-described deficien
of the small-polaron picture, while retaining most of the d
sirable physical features described above. Thus, in a la
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polaron model, there is still preformed pair formation abo
the superconductingTc in the underdoped regime; and th
carrier bandwidth is still strongly reduced and dependent
isotope mass. Also, the possibility of a crossover to a BC
type free-carrier superconductor, as a function of doping,
polaron unbinding, is retained in a large-polaron theo
However the dependence of the bandwidth andTc on EP
coupling strengthsEP and on phonon frequenciesV is only
algebraic, rather than exponential, and the overall magnit
of the large-polaron bandwidths can become substanti
larger than in a small-polaron model, thus allowing for larg
Tc’s. The proposed large-polaron theories studied so f37

have been based on phenomenological continuum mo
that of course cannot reproduce lattice-related features, s
as the location of band minima and pairing symmetries d
cussed above for our 2D lattice model. It will therefore be
interest to extend our present work to lattice models w
longer-range EP couplings. Such future studies should
plore the possibility of large-polaron formation and the ba
structure and pair wave-function symmetry of large-polar
pairs.

Another critical problem in the above described polar
models is the inclusion of long-range Coulomb effec
Rough estimates based on a point charge model and m
sured long-wavelength dielectric constants47 suggest that
VC/t in the cuprates could be as large as 122, if only the
electronic contribution to the dielectric screening, that
only e` , is taken into account. If additional screening fro
phonons, i.e.,e0 , is included, the estimatedVC/t is reduced
to 0.1520.3. The former,VC/t;122, would be sufficient to
completely suppress the polaron pairing attraction in a s
tem containing only two isolated holes, that is, in the limit
vanishing polaron density. The latter,VC/t;0.1520.3, may
be overcome by the AF-mediated first-neighbor attracti
but the net attraction strength would still be substantia
reduced byVC.33,52 The suppression of extended pairin
states, such asdx22y2 pairing, by the long-range part of th
Coulomb interaction is a common problem in all extend
pairing models that are currently under investigation. Rec
studies of the metallic~in addition to insulating dielectric!
screening of the extended Coulomb potential at finite dop
density47,48have suggested that the screened Coulomb po
tial becomes substantially reduced, or even attractive, at d
ing concentrationsx;0.120.2. However, the foregoing
studies are based on weak-coupling or diagrammatic
proaches that do not include polaronic strong-EP effects
therefore remains to be seen whether metallic screening
finite-density polaron liquid will be sufficient to ‘‘rescue’
the AF-driven pairing attraction from the repulsive lon
range Coulomb interactions.

It is also worth re-emphasizing37 the strong phonon con
tribution to the dielectric screening in the cuprates, as e
denced by the large measured dielectric constant r
e0 /e`*6.37,47 This phonon contribution, which acts to re
duce long-range Coulomb potentials, can be equivalently
garded as a long-range attraction, mediated by long-ra
~dipolar! EP interactions. This long-range EP interaction is
fact a primary agent causing~bi!polaron formation in the
above-cited37 phenomenological large-polaron models. It
therefore quite conceivable that, in a realistic model of
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cuprates, both AF-andEP-mediated attractions contribute
the overall pairing potential and that the EP contribution m
even be the predominant one.

X. SUMMARY

In conclusion, we have developed a treatment of pola
tunneling dynamics on the basis of a path-integral formu
tion of the adiabatic approximation. The adiabatic treatm
of polaron tunneling has been tested by comparison to e
numerical results for a two-site Holstein system. The bre
down of the adiabatic approach in the anti-adiabatic reg
has been discussed and the resulting limitations of app
bility for long-range polaron tunneling processes in latt
models have been identified. Using a combination of pa
integral, many-body tight-binding, and exact diagonalizat
techniques, we have then explored the Berry phases an
fective matrix elements for single- and two-polaron tunn
ing, the two-polaron quasiparticle statistics, effective tw
polaron interactions, and polaron pairing states in the
Holstein-tJ and Holstein-Hubbard models near half fillin
The effect of second-neighbor electron hybridization a
long-range Coulomb repulsion has also been studied. Du
the AF spin correlations, single-polaron hopping is dom
nated by intrasublattice second- and third-neighbor pro
cesses. These processes are strongly enhanced by close
imity of a second polaron. The Berry phases imply eith
dx22y2- or px(y)-wave pair symmetries and effective spi
1/2-fermion quasiparticle statistics of dopant-induced
laron carriers. For the Holstein-tJ and Holstein-Hubbard
A
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models on the 8-, 10-, and 16-site clusters, thedx22y2-wave
state is stable for two polarons. The second-neighbor h
ping Ht8 favors thedx22y2-wave pair for t8.0, while the
long-range Coulomb repulsionHLC favors thepx(y)-wave
pair.

The strong on-site Hubbard-U Coulomb repulsion plays a
crucial role in the formation of these pairing states. By kee
ing the electrons spatially separated and preventing on
bipolaron formation, the Hubbard-U interaction acts, effec-
tively, to greatly enhance the polaron tunneling bandwid
and, hence, their mobility, in the nearly12 -filled regime.

For a hypothetical superconducting polaron pair cond
sate, our results imply qualitative doping dependences of
isotope effect,Tc , and pseudogap that are similar to tho
observed in the cuprates. Potential limitations of the pres
polaron model, arising from the short-range nature of
assumed EP coupling, have been pointed out. Further stu
to include longer-range EP couplings, in combination w
extended Coulomb interactions, have been outlined.
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