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Sine-Gordon low-energy effective theory for copper benzoate
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Specific heat data for the quasi-one-dimensional quantum magnet copper benzoate
[Cu(GDsCOO0),-3D,0] is analyzed in the framework of an effective low-energy description in terms of a
sine-Gordon theory.S0163-18209)07521-9

[. INTRODUCTION temperatures of 0.1-0.3 K the interchain coupling in copper
benzoate supposedly is very smdhe exchange is approxi-
Quasi-one-dimensional quantum magnets have been a forately 18 K. We therefore will neglect it in the present
cus of intense theoretical and experimental interest for a longvork.
time. Most of the work is based on and centers around the In Ref. 22 it was proposed that copper benzoate is de-
spin-1/2 Heisenberg mod&l. scribed by the Hamiltonian
Starting with Bethe’s seminal wofka host of exact re-
sults have been obtained for ground state prope?rt'raag- .. , .
netic  susceptibility, thermodynamic&® excitation Howe=2 IS-Si1-gueHS +ugh(-1)'S, (2
spectrunt;® and correlation function%.*? From the point of '
view of standard spin wave theory, which is highly successyhere H>h, g is the effective Landeg factor andJ
ful for “three dimensional” materials, the findings of the _4 57 me\2° Here the induced staggered fidds a func-
these investigations were ra_ther unqsual. Over the past thirty,,  of the known (staggerell g tensof® and the
years a number of anisotropic materials have been found thej,y a10shinskii-Moriya(DM) interaction in copper benzoate,
constitute excellent realizations of the one-dimensionat, "\ hich unfortunately only scant information is available.
Heisenberg modef, e.g., KCufj, SpCuQ; C$CUCl or £ direction and magnitude of the DM interaction are given,

QuPzN, and. many theoreticallpredictions havg been cong aiculated as follow& The g tensor in thea”,b,c” basis
firmed experlr_nentally. Qne main fo_cus of attention was th€these denote the three principal axes of the exchange
spectrum, which comprises of an incoheré¢ito particle interactior) is given by®

scattering continuum of elementary excitations, the so-called
spinons’ These can be visualized in terms of ferromagnetic

+
“domain walls” and are strikingly different from the usual 2115 =0.0190  0.0906

spin waves. In particular spinons are believed to have frac- g=| £0.0190 2.059 *+0.0495]. (3)
tional (semionig¢ exclusion statistics’ The low-energy ef- 0.0906 +0.0495 2.316
fective theory of the spin-1/2 chain is simply a free massless
bosor?1>:4° The + correspond to the two inequivalent sites and indicate
1 that application of a uniform field induces a staggered one.
= E(a/*q))z' (1) The corresponding contribution to the Hamiltonian is
Hmagn: QabtgH aSb- (4)

It has been known for some time that copper benzoate is

another realization of a quasi-105=1/2 Heisenberg

antiferromagnet’ However, its response to a magnetic field

has been found to be unusdktructural anisotropy leads to

to generation of small staggered fields in and perpendicular HDM:E (—1)1'[3-(§-><§-+1) (5)

to the direction of the applied field. Early specific heat j AR

measurements showed behavior incompatible with theoret-

ical results for a simple Heisenberg chain. where|D|<J and the direction ob is thought to be close to
In a series of recent experimeffts' the behavior of cop-  the a” axis. The DM interaction is eliminated by a rotation

per benzoate in a magnetic field was investigated in gregf, spin space around thed  axis by an angle a

detail. Neutron scattering experimetitestablished the exis- = + (arctanD/J)/2 on even/odd sites. This induces a very

tence of field-dependent incommensurate low energy mode§ma” exchange anisotropy which is negligible, and a stag-
The incommensurability was found to be consistent with thiqered field '

one predicted by the exact solution of the Heisenberg mod
in a magnetic field. However, the system exhibited an unex- g

pected excitation gap induced by the applied field. As no Hon=— IxD/J)- —1)ig 6
evidence for ordering was found in the experiments down to oA ZMB( ) 21: (=D'S;. ©

The staggered DM interaction is
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where we used thdD|/J<1. Combining the two contribu-
tions (6) and(4) we obtain the total induced staggered field.
For example, a uniform field applied along thé axis in-
duces a staggered field along theb axis of magnitude
(0.019-2.11D /2J)H.

The low energy effective theory of E(R) is obtained by

Abelian bosonization and is given by a sine-Gordon model

with Lagrangian density

1
L E((?#CD)ZJr)\(h)cos(,B@). (7)

Here ® is the dual field and the coupling depends on the
value of the applied uniform field. The coefficiexth) can

at present not be calculated exactly. The reason is that the
amplitudes of the bosonized expressions of lattice spin op-

erators forH>0 are not knowrin the absence of a magnetic
field they have been determined very recently in Refs. 1
24, and 25. For later convenience we define the coupling

BZ
- 877—,82.

3 8

The sine-Gordon theory7), for all its apparent simplicity,
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FIG. 1. Coupling constan®?/2s in the MM as a function of the
applied magnetic field||b.

6’I'he mass spectrum as a function of magnetic field for copper

benzoate was explicitly determined in Ref. 29.

Exact predictions of the low-energy effective theddy
for the spectrurff and the dynamical structure factdwere
found to be consistent with neutron scattering experiments
for applied fields along thbk axis. It is interesting to note that
the sine-Gordon solitons and breathers are fundamentally

has fascinated physicists for decades. It is of interest as adfifferent from the spinons of the spin-1/2 chain.

integrable classical nonlinear differential equation featuring

In Ref. 21 precise measurements of the low-temperature

soliton solutions. On the quantum level it has been one of thepecific heat were presented and analyzed in terms of several
cornerstones of nonperturbative quantum field theory witimoninteracting one-dimensional bosons of the same mass. On
many exciting features such as quantum solitons, topologicahe other hand, the spectrum of the sine-Gordon model in the
charge or regularization dependence in the nonperturbativeslevant region of couplings features five interacting modes
regime?® Most importantly the quantum sine-Gordon model with different masséS (soliton, antisoliton and three breath-
is exactly solvabl& and many physically important quanti- ers.
ties can be calculated. In particular, the spectrum is known to In the present work we analyze the specific heat data of
consist of a soliton-antisoliton doublet of madgsand their  Ref. 21 in the framework of the sine-Gordon theory. A very
bound states which are called “breathers.” important input in the low-energy effective Lagrangiéf

The soliton mass gap can in principle be calculated are the values of the coupling and the spin velocity. In
exacthf® in terms of 8 and A for a given short-distance a “minimal” model (MM) they are calculated from the exact

normalization of correlation functions. Howevarjs known
only for the case of vanishing uniform fieltl=0 (see

Bethe ansatz solution of the Heisenbéty X chain in an
applied magnetic fieléh.® In Appendix A we summarize the

abovg. A simple analysis based on the results of Refs. 28¢corresponding relevant Bethe ansatz results.

16, and 25 yields for this casge., one takes to staggered
field into account, but bosonizes ldt=0)

This procedure appears to be reasonable as long as the
induced fieldh is very small so that its effects g8 anduv
are negligible. The results are shown in Figs. 1 and 2, respec-

,. 2re [ rm [ = 2/3< h)2’3 v
~ T - .
Jar(23)| T4 N g27)32 I
h 2/3
~ 0 15 F
W 0
where we have neglected logarithmic corrections. This is in 52 1.0
good agreement with the numerical analysis of the lattice
Hamiltonian(2) for H=0, which give&?
05t
h 2/3 h 1/6
M/J~ 1.85( j) Iogj (10 ” | |
0.0 10.0 20.0 30.0

In addition to soliton and antisoliton there qB¢] (here[ ]

. . . magnetic field (Tesla
is the integer paytbreathers with masses 9 ( )

FIG. 2. Spin velocity in the MM as a function of the applied

M, =2Msinnmél2; n=1,...[1/£]. (11)  field H||b.
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tively. At very high fields gugH~2J we approach the whereB=(kgT) ,M is the soliton mass and
incommensurate-commensurate transition to the saturated
ferromagnetic stat8and the spin velocity thus tends to zero. *dw cog2w b/ 7)sinl(w(£—1))
An alternative scenario is to consider the spin velocity Go 9):J 5 sinh( . (19
: . . 0 wé)cosiw)
and/or the coupling3 as a phenomenological parameters in
the sine-Gordon theory7). The rationale behind such an
approach is that the known presence of the DM interaction as
well as possible exchange anisotropies will lead to deviations M w
in the values of these quantities as compared to the MM f(,B):—B—ijf d@sinh(g+in")In[1+e 7],
predictions. o (16)
A simple calculation shows that the effect of the DM

interaction ong anduvs is negligible. Adding an exchange  As we are interested in the attractive regime 47 we
anisotropy have

The free energy density is given by

Hae= —JAY, SIS, 0<A<1 (12) 0<y'<mél2. (17
. Note that the free energy does not depend on the valug of
to the Hamiltonian(2) first induces a change in the spin as long as it is chosen in the intenal7). The set(14) of two
velocity entering the effective Lagrangidd) and secondly coupled nonlinear integral equations is solved by iteration.
generates the second harmonic of the SG interaction, i.e., tflor B— o the first iterations can be calculated analytically
effective low-energy theory becontés and the corresponding contributions to the free energy are
seen to be of the form

1
L=5(3,2)*+X\ cogO)+u cog240). (13 oM & (—1)"+t

Here we have assumed thitis much smaller than the mag- HB)~- Br &L n Ka(nmg)
netic energy scalgugH. The couplingu mainly depends M
A (th dh ic al t ted at -l
on A (the second harmonic also gets generated at one-loop B _1K1(M13)Jr o (18)

level by the cog30 interaction. In the regime of couplings B
B we are interested in, the second harmonic is a relevant _ _ _ ,
operator(in the RG sensealthough it is of course much less WhereM1=2M sin(@¢/2) is the mass of the first breather

relevant than cog®. This means that we can safely neglecta‘nd K.l is. a modif_ied Be;sel_function. The first term is the
the second harmonignless\<u We will return to this contribution of soliton-antisoliton scattering states to the free

point below. Physically the effect of E¢12) is the follow- ]?n(-:r%y, V\:Eere%s :Eet seconr?l ternt1h|s ]:[he co?{[nbu?or_l t(')f thfe
ing: if no uniform field is applied, the system remains criti- Irst brea Ier._ 50 berms Tar\1/e € .g”‘.‘ c arfa%erlhs Ic o
cal. The spin velocity and the critical exponents are change assive relativistic bosons. The contributions of the heavier

slightly. If a uniform field is applied perpendicular to the reathers are found in higher orders of the iterative proce-

direction of the anisotropy, a spectral gap forms, even if nodu.re :rfnployid ifn solving Eq14). The specific heat is ob-
staggered field is generated. tained from the free energy

. 9°f
Il. SINE-GORDON THERMODYNAMICS coT (B) . 19

2
The thermodynamics of the sine-Gordon model is most a
efficiently studied? via the recently developed thermal Bethe at jow temperatures it is found to be of the form
ansatz approach, which circumvents problems associated

with solving the infinite number of coupled nonlinear inte- (el kKeT 3/KkeaT\2
. . B B B
gral equations that emerge in the standard approach based on C~ 2 —| 1+ M +Z(M_)
the string hypothesi$ (note that the coupling constaptin a=1 y2mvsg @ @
our problem is a continously varying quantity and no trun- 312
cation to a finite number of coupled equations is possilile X “) exp(—M ,/kgT), (20)
was shown in Ref. 32 that the free energy of the sine-Gordon keT

model can be expressed in terms of the solution of a 5in9|§'vhereMa are given by Eq(11). In order to compare theo-
nonlinear integral equation for the complex quantitf/s) retical predictions based on the SGM with the specific heat
(we set the spin velocity to 1 for simplicity data of Ref. 21 we need the free energy at “intermediate”
i ; . temperatures and thus have to resort to a numerical solution
0)=—IiM Bsinh(6+i
e(6) psinft 7) of Eq. (14) by iteration.
a f_xdﬁ Go(0=07)In(+exi —2(6")]) Ill. SPECIFIC HEAT IN COPPER BENZOATE
o _ _ Let us now investigate the question how well the theoret-
+f do'Go(6—0"+2in")In(1+exd —(0)]), ical predictions based on an effective sine-Gordon theory
- agree with the specific heat data of Ref. 21. As was pointed
(14  outin Ref. 21, at very low temperatures a nuclear contribu-
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FIG. 3. Specific heat as a function of temperature for fields of FIG. 5. Specific heat as a function of temperature for fields of
H=1T andH=2.5T applied along the” axis. H=3.5T andH=7 T applied along the” axis. The spin velocity
is taken to be 8% smaller than in the MM.
tion to the specific heat is present. In the following analysis
we neglect this contribution, but note that by taking it into

account we can achieve excellent agreement of the SG r%'q. (21) for all three independent orientations of the applied

sults with the data at low temperatues. . o -~
We now analyze the specific heat data of Ref. 21 as fol]‘|eld by fitting the SGM predictions to the data, we can cal-

lows: we calculate the specific heat in the framework of theculate what the direction and magnitude Dfhas to be in
MM using the soliton gap as a free parameter, which is the[ﬁ)rder to reprOduce these results. Below we follow this line of
fixed by fitting the calculated specific heat to the data. Thigargument.

procedure yields the dependence of the gap on the applied

field M(H), which has to be consistent with E4.0) and the

Reversing the logié? if we determine the coefficienttin

dependence di andH, which follows from Eqs(4) and(6). A. Magnetic field along c” axis
In ordgr to keep things simple we ignore the logarithmic gy magnetic fields along the’ axis we find excellent
correction ancH dependence of in Eqg. (10) so that agreement of the data with the “minimal” model discussed
above. This is shown for some valueshdiin Figs. 3 and 4.
M(H)~cH??, (21) As explained above, the presence of an exchange anisot-

ropy would change the spin velocity. Assuming to be

Here the coefficient depends on the orientation of the ap- eight percent smaller than in the MM we still obtain good

i e e S g o O T st ot o i
need to know the precise magnitude as well as orientation gfourse changed as weds is shown in Fig. 5.

the DM interaction as is clear from E6). Unfortunately In order to check which scenario fot is in better agree-
this information is presently not available. From consider-ment with experiment the values for the soliton masses ob-
ations based on the crystal structeis expected to lie in tained by fitting to the data have to be compared with Eq.
thea”—c” plane and and is thought to be roughly of mag—(lo)'

nitude D/J~0.1.

0.0 05 10 B. Magnetic field alongb axis

For magnetic fields along the axis the agreement of the
MM prediction with the data is less impressive. As is clear
from Figs. 6 and 7 the MM systematically underestimates the
measured specific heat in the temperature regibn
~0.8—-1 K although there is still fair agreement of the MM
with experiment.

A much improved fit to the data is obtained if the spin
velocities in the effective SGM are changed by 8% as com-
o1 L H=7T | pared to the MM. This is shown in Figs. 8 and 9.

In order to check the compatibility of the fitted values for
the soliton gapM(H) with Eq. (21) we plot Mg (H) as a

0.0 CORREERS function ofH in Fig. 10. For simplicity we only consider the
00 TO('i) 10 results calculated on the basis of the MM. We find good
agreement for applied fields along theand ¢” axes. The

FIG. 4. Specific heat as a function of temperature for fields oflogarithmic corrections(10) to the gap may improve the
H=3.5T andH=7 T applied along the" axis. agreement, but nee@inavailabl¢ information on the DM
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FIG. 6. Specific heat as a function of temperature for fields FIG. 8. Specific heat for fields applied along thaxis. The spin
applied along thé axis. velocity is taken to be 8% smaller than in the MM.

interaction as input. The ratio of mass gaps for fields appliedions other than the staggered field would dominate the phys-
along theb andc” axes is found to be ics. For example, if an exchange anisotrdftg) was present
in copper benzoate, the low-energy effective theory would be
Agr/Ap=~1.43/0.65-2.2. (22) given by Eq.(13) with u>\. As a first approximation we
then can ignore thacosB® term and study the remaining
(repulsive SGM. In the framework of this scenario we ob-
tain a rather reasonable fit to the data as is shown in Fig. 11.

For fields applied along tha” axis it is impossible to e ;
obtain agreement of the MM predictions with the data. HOWThe expected mass gap is difficult to estimate, because as we

can we understand this fact? The DM interaction is expecteﬁ: Lelz(sjyarrneenlilr?c?vsg t2§| coiﬁffltc;:gnt;blsne:;z b(;szmﬁgogegiz
to lie in thea”—c” plane, so that we can write y 9

field 162%24A crude estimate can be obtained by approximat-
ing the coefficents in the presence of a uniform field by the
ones forH=0. The gaps obtained by fitting the data are

gfound to be consistent with a rather small anisotropy
A/JZ0.05 in this approximation. We note in passing that the
zero-field specific heat found4h

C. Magnetic field alonga” axis

[3 = Daéa//+ DCéC” . (23)

For H=He, the net induced staggered field is directe
along theb axis and is of magnitude

h=(0.019-2.119D /2J)H. (24
) _ C(T)=0.681)RkgT/J, (25

Clearly this would be very small iD./J~0.02. We note
that such a value oD . together with the gap ratid.»/A,  actually corresponds to an anisotropy of the typ@) with
~2.2 implies thatD,/J~0.12. Note that this is consistent A/J~0.06.
with the expectation thdd/J~0.1 and a direction d close In order to work out a more quantitative theory for the
to thea” axis. a”-axis specific heat data the full two-frequency sine-Gordon

In this case the Coup”ng(h) in Eq (7) would become theory would need to be analyzed, which is pOSSibIe in a

very small and there would be a regime in which perturbaerturbative framework> We hope to address this point in
the future. The(non) existence of the mechanism described

0.0
0.0
T 04
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FIG. 7. Specific heat as a function of temperature for fields
applied along thé axis.

FIG. 9. Specific heat for fields applied along thexis. The spin

velocity is taken to be 8% smaller than in the MM.
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3 02 APPENDIX A: THE HEISENBERG CHAIN IN A FIELD
We summarize some relevant resuffisr derivations see
Ref. 15 for the anisotropic Heisenberg model in a magnetic
0'00.0 20 40 6.0 8.0 field
H (Tesla)
_ S . & _ zZoZ Z
FIG. 10. Gap of the soliton fdd|/c” andH| b. The fits are to the Hxxz= 4‘]§n: Sn-Sh+1t(A=1)§:S,,1—2hS,
simple scaling lawM o< (H/J)?" as described in the text. (A1)

) o _ _ where —1<A=cosy<1 andJ>0. The customary form of
above could in principle be checked by inelastic Neutronhe Hamiltonian is obtained by performing the unitary trans-
scattering withH| e, : if the physics is indeed dominated by formation
interactions other than the induced staggered field, the spec- . .
trum will be very different from the one observed in Ref. 21. Si—Sh, Sy~ (-1)sy. (A2)

In particular, if exchange anisotropy is the relevant mechanat |ow energies(Al) is described by a free massless boson
nism and the effective low-energy theory is thus given by(l) compactified on a ring of radiu® i.e., ® and ®

Eq. (13 with A~0, then no coherent one-particle excitations 1 2 7R are identified. The dual fiel fulfils © =0+ 1/R

are present. The dynamical structure factor at wave numbgkee e.g., Ref. 36 The following bosonization rules can be
r is then dominated by an incoherent soliton-antisoliton conyerived along the lines of, e.g., Ref. 38 —[J(x)

tinuum. +n(x)], x=na,, wherea, is the lattice spacing and

a
IV. CONCLUSIONS Jzzgoﬁxq’(X%

We have analyzed specific heat data for copper benzoate

in the framework of a sine-Gordon low-energy effective

theory. For uniform magnetic fields applied along thend B _ (2w

¢ axes we find good agreement of the theory with the spe- - ﬁexp(—|,8®(x))sm(7<b(x)—25x),

cific heat data. Tha” axis data cannot be understood by the

same theory that applies for theandc” axes. We argue that nN*(x)=A,cogBO(X)), nY(X)=A, sin(BO(x)),

the staggered field induced by the DM interaction essentially

cancels the field induced by the staggegeténsor forH||e,» 2
so that a new mechanism is responsible for generating the B

B
ap. We propose that exchange anisotropy might be respon-
gibil)e. brop g Py mig P Here 8=2xR and the coefficients\, , are known only in

the absence of a magnetic fiéft?* The standard structure in
terms of uniform and staggered magnetization operators is
obtained by performing the unitary transformati@®). We
note that the often neglected first termlih is actually more
important than the second: as a matter of fact,Hoer O it
yields the leading contribution to transverse correlations at
wave numbers of Eq. (A1).15%8 For =2, i.e., the
SU(2) invariant chain in zero field, the second term is simply
the sum of left and right S(2) currents. The first contribu-
tion to J* corresponds to a particle-hole excitation with spin
1 relative to the ground stafsee(11.5.3) and(XVI111.1.16) of
Ref. 15 and foH =0 can be derived by carefully taking the
continuum limit of the Jordan-Wigner lattice fermiotts-®
For H+#0 we expectd(6x) on general grounds to be of the
form consix cos(2%). EquationgA3) are used to derive the
continuum form of the perturbatiol2) (note that both
FIG. 11. Specific heat foH|a”. The theoretical curve is ob- Smooth and staggered components of the spin operators con-
tained by assuming an exchange anisotropy as explained in the tettibute for 8= \2).

(—1D)"I* =i A(Sx)expli BO(X))ayd O (X)

nz(x)=—(—1)“Azsin< (D(x)—Z&x). (A3)

0.40
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The constanB and spin velocity ¢ are determined by, In order to determine g and 8 we solve Eq.(A4) numeri-
Jandh of the lattice model as follows. The dressed energy cally, which is easily done to very high precision as the
momentump and “charge” Z of an elementary spinon are equations are linear. The results are shown in Figs. 1 and 2.
given in terms of the solutions of the linear integral equa-Finally, we note that correlation functions at small finite tem-
tions peratures can be calculated as in Ref.(4€e also Ref. 40
We only must remember to shift the momentum hy 6
away from 7 for the longitudinal correlation function and
use the correlation exponent as calculated above from the
Bethe ansatz. For example the transverse dynamical suscep-
tibility at small momentumwhich corresponds to momen-
tum 7 in the customary form of the Heisenberg Hamiltonian,
which is related to Eq(A1l) by the unitary transformation
(A2)] is given by

4Jsirty
cosh2 +cosy’

Ad
8()\)_f_A£K()\_M)8(,U«)=2h
N
p(k)=27Tf0 dup(u),

2siny
27 cosh 2 +cosy]’

Ad
p()\)_f AﬁK()\_M)P(M):

2 _ 2
A du xi(w,q)“TMZ/Z”B(ﬁ_—i vl B_)
ZM)= | 5 KN=p)Z(p)=1, (A4) 87 A4xT e
) BZ L wtugQ :82
whereK(\) = 2sin 2y/(cosha —cos 2y). HereA is the rapid- XB g—l AT ’1_E , (A8)

ity corresponding to the Fermi momentum and is fixed by the

condition
whereB(x,y) is the beta function and is close to zero. The

longitudinal susceptibility is dominated by the gapless modes
at w+£246. It is the sum of two terms

e(+=A)=0. (A5)

The spin velocity is then given by the derivative of the
spinon energy with respect to the momentum at the Fermi

surface 0
—2t2mplp| T @7 UM T
_9e(N) _de(M)/a\| (A8) X\\(“”Q)“Zt T B<232 '""anT 22
PTapN |, 2w |,
) ) T | wtvQ, T
Finally, 8 and § are given by X B<2_,32_| ?.1— E) , (A9)
J ™ A
=—,0=%~— d : A7
F=7 2 WI—A wplp) (A7) whereQ,=q— 7+ 024.
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