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Sine-Gordon low-energy effective theory for copper benzoate
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Specific heat data for the quasi-one-dimensional quantum magnet copper benzoate
@Cu(C6D5COO)2•3D2O# is analyzed in the framework of an effective low-energy description in terms of a
sine-Gordon theory.@S0163-1829~99!07521-9#
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I. INTRODUCTION

Quasi-one-dimensional quantum magnets have been
cus of intense theoretical and experimental interest for a l
time. Most of the work is based on and centers around
spin-1/2 Heisenberg model.1

Starting with Bethe’s seminal work2 a host of exact re-
sults have been obtained for ground state properties,3 mag-
netic susceptibility,4 thermodynamics,5,6 excitation
spectrum,7,8 and correlation functions.9–12 From the point of
view of standard spin wave theory, which is highly succe
ful for ‘‘three dimensional’’ materials, the findings of th
these investigations were rather unusual. Over the past t
years a number of anisotropic materials have been found
constitute excellent realizations of the one-dimensio
Heisenberg model,13 e.g., KCuF3 , Sr2CuO3, Cs2CuCl4 or
CuPzN, and many theoretical predictions have been c
firmed experimentally. One main focus of attention was
spectrum, which comprises of an incoherent~two particle!
scattering continuum of elementary excitations, the so-ca
spinons.7 These can be visualized in terms of ferromagne
‘‘domain walls’’ and are strikingly different from the usua
spin waves. In particular spinons are believed to have fr
tional ~semionic! exclusion statistics.14 The low-energy ef-
fective theory of the spin-1/2 chain is simply a free massl
boson9,15,16

L5
1

2
~]mF!2. ~1!

It has been known for some time that copper benzoat
another realization of a quasi-1DS51/2 Heisenberg
antiferromagnet.17 However, its response to a magnetic fie
has been found to be unusual:18 structural anisotropy leads t
to generation of small staggered fields in and perpendic
to the direction of the applied field. Early specific he
measurements19 showed behavior incompatible with theore
ical results for a simple Heisenberg chain.

In a series of recent experiments20,21 the behavior of cop-
per benzoate in a magnetic field was investigated in g
detail. Neutron scattering experiments21 established the exis
tence of field-dependent incommensurate low energy mo
The incommensurability was found to be consistent with
one predicted by the exact solution of the Heisenberg mo
in a magnetic field. However, the system exhibited an un
pected excitation gap induced by the applied field. As
evidence for ordering was found in the experiments down
PRB 590163-1829/99/59~22!/14376~8!/$15.00
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temperatures of 0.1–0.3 K the interchain coupling in cop
benzoate supposedly is very small~the exchange is approxi
mately 18 K!. We therefore will neglect it in the presen
work.

In Ref. 22 it was proposed that copper benzoate is
scribed by the Hamiltonian

HCuB5(
i

JSW i•SW i 112gmBHSi
z1mBh~21! iSi

x , ~2!

where H@h, g is the effective Lande´ g factor and J
51.57 meV.20 Here the induced staggered fieldh is a func-
tion of the known ~staggered! g tensor18 and the
Dzyaloshinskii-Moriya~DM! interaction in copper benzoate
for which unfortunately only scant information is availabl
If direction and magnitude of the DM interaction are givenh
is calculated as follows.22 The g tensor in thea9,b,c9 basis
~these denote the three principal axes of the excha
interaction23! is given by18

g5S 2.115 60.0190 0.0906

60.0190 2.059 60.0495

0.0906 60.0495 2.316
D . ~3!

The 6 correspond to the two inequivalent sites and indic
that application of a uniform field induces a staggered o
The corresponding contribution to the Hamiltonian is

Hmagn5gabmBHaSb. ~4!

The staggered DM interaction is

HDM5(
j

~21! jDW •~SW j3SW j 11!, ~5!

whereuDW u!J and the direction ofDW is thought to be close to
the a9 axis. The DM interaction is eliminated by a rotatio
in spin space around theDW axis by an angle a
56(arctanD/J)/2 on even/odd sites. This induces a ve
small exchange anisotropy which is negligible, and a st
gered field

HOA5
g

2
mB~HW 3DW /J!•(

j
~21! jSW j , ~6!
14 376 ©1999 The American Physical Society
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PRB 59 14 377SINE-GORDON LOW-ENERGY EFFECTIVE THEORY FOR . . .
where we used thatuDW u/J!1. Combining the two contribu-
tions ~6! and~4! we obtain the total induced staggered fie
For example, a uniform field applied along thea9 axis in-
duces a staggered fieldh along theb axis of magnitude
(0.01922.115Dc/2J)H.

The low energy effective theory of Eq.~2! is obtained by
Abelian bosonization and is given by a sine-Gordon mo
with Lagrangian density22

L5
1

2
~]mF!21l~h!cos~bQ!. ~7!

HereQ is the dual field and the couplingb depends on the
value of the applied uniform field. The coefficientl(h) can
at present not be calculated exactly. The reason is that
amplitudes of the bosonized expressions of lattice spin
erators forH.0 are not known~in the absence of a magnet
field they have been determined very recently in Refs.
24, and 25!. For later convenience we define the coupling

j5
b2

8p2b2
. ~8!

The sine-Gordon theory~7!, for all its apparent simplicity,
has fascinated physicists for decades. It is of interest a
integrable classical nonlinear differential equation featur
soliton solutions. On the quantum level it has been one of
cornerstones of nonperturbative quantum field theory w
many exciting features such as quantum solitons, topolog
charge or regularization dependence in the nonperturba
regime.26 Most importantly the quantum sine-Gordon mod
is exactly solvable27 and many physically important quant
ties can be calculated. In particular, the spectrum is know
consist of a soliton-antisoliton doublet of massM and their
bound states which are called ‘‘breathers.’’

The soliton mass gapM can in principle be calculated
exactly28 in terms of b and l for a given short-distance
normalization of correlation functions. However,l is known
only for the case of vanishing uniform fieldH50 ~see
above!. A simple analysis based on the results of Refs.
16, and 25 yields for this case~i.e., one takes to staggere
field into account, but bosonizes atH50)

M /J'
2G~1/6!

ApG~2/3!
Fp

G~3/4!

G~1/4!
A p

4~2p!3/2G 2/3S h

JD 2/3

'1.8S h

JD 2/3

, ~9!

where we have neglected logarithmic corrections. This is
good agreement with the numerical analysis of the lat
Hamiltonian~2! for H50, which gives22

M /J'1.85S h

JD 2/3U log
h

JU
1/6

. ~10!

In addition to soliton and antisoliton there are@1/j# ~here@ #
is the integer part! breathers with masses

Mn52Msin npj/2; n51, . . . ,@1/j#. ~11!
.
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The mass spectrum as a function of magnetic field for cop
benzoate was explicitly determined in Ref. 29.

Exact predictions of the low-energy effective theory~7!
for the spectrum22 and the dynamical structure factor29 were
found to be consistent with neutron scattering experime
for applied fields along theb axis. It is interesting to note tha
the sine-Gordon solitons and breathers are fundamen
different from the spinons of the spin-1/2 chain.

In Ref. 21 precise measurements of the low-tempera
specific heat were presented and analyzed in terms of se
noninteracting one-dimensional bosons of the same mass
the other hand, the spectrum of the sine-Gordon model in
relevant region of couplings features five interacting mod
with different masses29 ~soliton, antisoliton and three breath
ers!.

In the present work we analyze the specific heat data
Ref. 21 in the framework of the sine-Gordon theory. A ve
important input in the low-energy effective Lagrangian~7!
are the values of the couplingb and the spin velocityvs . In
a ‘‘minimal’’ model ~MM ! they are calculated from the exa
Bethe ansatz solution of the HeisenbergXXX chain in an
applied magnetic fieldH.15 In Appendix A we summarize the
corresponding relevant Bethe ansatz results.

This procedure appears to be reasonable as long as
induced fieldh is very small so that its effects onb andvs
are negligible. The results are shown in Figs. 1 and 2, resp

FIG. 1. Coupling constantb2/2p in the MM as a function of the
applied magnetic fieldHib.

FIG. 2. Spin velocity in the MM as a function of the applie
field Hib.
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14 378 PRB 59FABIAN H. L. EßLER
tively. At very high fields gmBH'2J we approach the
incommensurate-commensurate transition to the satur
ferromagnetic state30 and the spin velocity thus tends to zer

An alternative scenario is to consider the spin veloc
and/or the couplingb as a phenomenological parameters
the sine-Gordon theory~7!. The rationale behind such a
approach is that the known presence of the DM interaction
well as possible exchange anisotropies will lead to deviati
in the values of these quantities as compared to the M
predictions.

A simple calculation shows that the effect of the D
interaction onb and vs is negligible. Adding an exchang
anisotropy

Hanis52JD(
j

Sj
xSj 11

x , 0,D!1 ~12!

to the Hamiltonian~2! first induces a change in the sp
velocity entering the effective Lagrangian~7! and secondly
generates the second harmonic of the SG interaction, i.e.
effective low-energy theory becomes31

L5
1

2
~]mF!21l cos~bQ!1m cos~2bQ!. ~13!

Here we have assumed thatD is much smaller than the mag
netic energy scalegmBH. The couplingm mainly depends
on D ~the second harmonic also gets generated at one-
level by the cosbQ interaction!. In the regime of couplings
b we are interested in, the second harmonic is a relev
operator~in the RG sense!, although it is of course much les
relevant than cosbQ. This means that we can safely negle
the second harmonic,unlessl!m We will return to this
point below. Physically the effect of Eq.~12! is the follow-
ing: if no uniform field is applied, the system remains cri
cal. The spin velocity and the critical exponents are chan
slightly. If a uniform field is applied perpendicular to th
direction of the anisotropy, a spectral gap forms, even if
staggered field is generated.

II. SINE-GORDON THERMODYNAMICS

The thermodynamics of the sine-Gordon model is m
efficiently studied32 via the recently developed thermal Beth
ansatz approach,33 which circumvents problems associat
with solving the infinite number of coupled nonlinear int
gral equations that emerge in the standard approach base
the string hypothesis34 ~note that the coupling constantb in
our problem is a continously varying quantity and no tru
cation to a finite number of coupled equations is possible!. It
was shown in Ref. 32 that the free energy of the sine-Gor
model can be expressed in terms of the solution of a sin
nonlinear integral equation for the complex quantity«(u)
~we set the spin velocity to 1 for simplicity!

«~u!52 iM bsinh~u1 ih8!

2E
2`

`

du8G0~u2u8!ln„11exp@2«~u8!#…

1E
2`

`

du8G0~u2u812ih8!ln„11exp@2 «̄~u8!#…,

~14!
ed
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whereb5(kBT)21,M is the soliton mass and

G0~u!5E
0

`dv

p2

cos~2vu/p!sinh„v~j21!…

sinh~vj!cosh~v!
. ~15!

The free energy density is given by

f ~b!52
M

bp
ImE

2`

`

du sinh~u1 ih8!ln@11e2«(u)#.

~16!

As we are interested in the attractive regimeg,4p we
have

0,h8,pj/2. ~17!

Note that the free energy does not depend on the value oh8
as long as it is chosen in the interval~17!. The set~14! of two
coupled nonlinear integral equations is solved by iterati
For b→` the first iterations can be calculated analytica
and the corresponding contributions to the free energy
seen to be of the form

f ~b!;2
2M

bp (
n51

`
~21!n11

n
K1~nmb!

2
M1

bp
K1~M1b!1•••, ~18!

where M152M sin(pj/2) is the mass of the first breathe
and K1 is a modified Bessel function. The first term is th
contribution of soliton-antisoliton scattering states to the f
energy, whereas the second term is the contribution of
first breather. Both terms have the form characteristic
massive relativistic bosons. The contributions of the heav
breathers are found in higher orders of the iterative pro
dure employed in solving Eq.~14!. The specific heat is ob
tained from the free energy

C5T
]2f ~b!

]T2
. ~19!

At low temperatures it is found to be of the form

C; (
a51

[1/j]
kB

A2pvs
F11

kBT

Ma
1

3

4 S kBT

Ma
D 2G

3S Ma

kBTD 3/2

exp~2Ma /kBT!, ~20!

whereMa are given by Eq.~11!. In order to compare theo
retical predictions based on the SGM with the specific h
data of Ref. 21 we need the free energy at ‘‘intermediat
temperatures and thus have to resort to a numerical solu
of Eq. ~14! by iteration.

III. SPECIFIC HEAT IN COPPER BENZOATE

Let us now investigate the question how well the theor
ical predictions based on an effective sine-Gordon the
agree with the specific heat data of Ref. 21. As was poin
out in Ref. 21, at very low temperatures a nuclear contri
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tion to the specific heat is present. In the following analy
we neglect this contribution, but note that by taking it in
account we can achieve excellent agreement of the SG
sults with the data at low temperatues.

We now analyze the specific heat data of Ref. 21 as
lows: we calculate the specific heat in the framework of
MM using the soliton gap as a free parameter, which is th
fixed by fitting the calculated specific heat to the data. T
procedure yields the dependence of the gap on the app
field M (H), which has to be consistent with Eq.~10! and the
dependence ofh andH, which follows from Eqs.~4! and~6!.
In order to keep things simple we ignore the logarithm
correction andH dependence ofb in Eq. ~10! so that

M ~H !'cH2/3. ~21!

Here the coefficientc depends on the orientation of the a
plied field and the direction and magnitude of the DM inte
action as explained above. In order to calculatec, we would
need to know the precise magnitude as well as orientatio
the DM interaction as is clear from Eq.~6!. Unfortunately
this information is presently not available. From consid
ations based on the crystal structureDW is expected to lie in
the a92c9 plane and and is thought to be roughly of ma
nitudeD/J;0.1.

FIG. 3. Specific heat as a function of temperature for fields
H51T andH52.5T applied along thec9 axis.

FIG. 4. Specific heat as a function of temperature for fields
H53.5 T andH57 T applied along thec9 axis.
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Reversing the logic,22 if we determine the coefficientc in
Eq. ~21! for all three independent orientations of the appli
field by fitting the SGM predictions to the data, we can c

culate what the direction and magnitude ofDW has to be in
order to reproduce these results. Below we follow this line
argument.

A. Magnetic field along c9 axis

For magnetic fields along thec9 axis we find excellent
agreement of the data with the ‘‘minimal’’ model discuss
above. This is shown for some values ofH in Figs. 3 and 4.

As explained above, the presence of an exchange an
ropy would change the spin velocity. Assumingvs to be
eight percent smaller than in the MM we still obtain goo
agreement with the data~note that the soliton mass is o
course changed as well! as is shown in Fig. 5.

In order to check which scenario forvs is in better agree-
ment with experiment the values for the soliton masses
tained by fitting to the data have to be compared with E
~10!.

B. Magnetic field alongb axis

For magnetic fields along theb axis the agreement of th
MM prediction with the data is less impressive. As is cle
from Figs. 6 and 7 the MM systematically underestimates
measured specific heat in the temperature regionT
'0.8–1 K although there is still fair agreement of the M
with experiment.

A much improved fit to the data is obtained if the sp
velocities in the effective SGM are changed by 8% as co
pared to the MM. This is shown in Figs. 8 and 9.

In order to check the compatibility of the fitted values f
the soliton gapM fit(H) with Eq. ~21! we plot M fit(H) as a
function ofH in Fig. 10. For simplicity we only consider th
results calculated on the basis of the MM. We find go
agreement for applied fields along theb and c9 axes. The
logarithmic corrections~10! to the gap may improve the
agreement, but need~unavailable! information on the DM

f

f

FIG. 5. Specific heat as a function of temperature for fields
H53.5 T andH57 T applied along thec9 axis. The spin velocity
is taken to be 8% smaller than in the MM.



lie

ow
te

ed

t

ba

ys-

be

g
-
11.

s we
or-
ctic
at-
the
re
py
he

e
on

a
n
ed

ld

ld

14 380 PRB 59FABIAN H. L. EßLER
interaction as input. The ratio of mass gaps for fields app
along theb andc9 axes is found to be

Dc9 /Db'1.43/0.6552.2. ~22!

C. Magnetic field alonga9 axis

For fields applied along thea9 axis it is impossible to
obtain agreement of the MM predictions with the data. H
can we understand this fact? The DM interaction is expec
to lie in thea92c9 plane, so that we can write

DW 5DaeWa91DceW c9 . ~23!

For HW 5HeWa9 the net induced staggered field is direct
along theb axis and is of magnitude

h5~0.01922.115Dc/2J!H. ~24!

Clearly this would be very small ifDc /J'0.02. We note
that such a value ofDc together with the gap ratioDc9 /Db
'2.2 implies thatDa /J'0.12. Note that this is consisten
with the expectation thatD/J'0.1 and a direction ofDW close
to thea9 axis.

In this case the couplingl(h) in Eq. ~7! would become
very small and there would be a regime in which pertur

FIG. 6. Specific heat as a function of temperature for fie
applied along theb axis.

FIG. 7. Specific heat as a function of temperature for fie
applied along theb axis.
d

d

-

tions other than the staggered field would dominate the ph
ics. For example, if an exchange anisotropy~12! was present
in copper benzoate, the low-energy effective theory would
given by Eq.~13! with m@l. As a first approximation we
then can ignore thelcosbQ term and study the remainin
~repulsive! SGM. In the framework of this scenario we ob
tain a rather reasonable fit to the data as is shown in Fig.
The expected mass gap is difficult to estimate, because a
already mentioned the coefficients in the bosonization f
mulas are known only in the absence of a magne
field.16,25,24A crude estimate can be obtained by approxim
ing the coefficents in the presence of a uniform field by
ones forH50. The gaps obtained by fitting the data a
found to be consistent with a rather small anisotro
D/J'

,0.05 in this approximation. We note in passing that t
zero-field specific heat found in21

C~T!50.68~1!RkBT/J, ~25!

actually corresponds to an anisotropy of the type~12! with
D/J'0.06.

In order to work out a more quantitative theory for th
a9-axis specific heat data the full two-frequency sine-Gord
theory would need to be analyzed, which is possible in
perturbative framework.35 We hope to address this point i
the future. The~non! existence of the mechanism describ

s

s

FIG. 8. Specific heat for fields applied along theb axis. The spin
velocity is taken to be 8% smaller than in the MM.

FIG. 9. Specific heat for fields applied along theb axis. The spin
velocity is taken to be 8% smaller than in the MM.
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above could in principle be checked by inelastic Neutr

scattering withHW ieWa9 : if the physics is indeed dominated b
interactions other than the induced staggered field, the s
trum will be very different from the one observed in Ref. 2
In particular, if exchange anisotropy is the relevant mec
nism and the effective low-energy theory is thus given
Eq. ~13! with l'0, then no coherent one-particle excitatio
are present. The dynamical structure factor at wave num
p is then dominated by an incoherent soliton-antisoliton c
tinuum.

IV. CONCLUSIONS

We have analyzed specific heat data for copper benz
in the framework of a sine-Gordon low-energy effecti
theory. For uniform magnetic fields applied along theb and
c9 axes we find good agreement of the theory with the s
cific heat data. Thea9 axis data cannot be understood by t
same theory that applies for theb andc9 axes. We argue tha
the staggered field induced by the DM interaction essenti

cancels the field induced by the staggeredg tensor forHW ieWa9
so that a new mechanism is responsible for generating
gap. We propose that exchange anisotropy might be res
sible.

FIG. 10. Gap of the soliton forHic9 andHib. The fits are to the
simple scaling lawM}(H/J)2/3 as described in the text.

FIG. 11. Specific heat forHia9. The theoretical curve is ob
tained by assuming an exchange anisotropy as explained in the
n
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APPENDIX A: THE HEISENBERG CHAIN IN A FIELD

We summarize some relevant results~for derivations see
Ref. 15! for the anisotropic Heisenberg model in a magne
field

HXXZ524J(
n

SW n•SW n111~D21!Sn
zSn11

z 22hSz,

~A1!

where21<D5cosg,1 andJ.0. The customary form of
the Hamiltonian is obtained by performing the unitary tran
formation

Sn
z→Sn

z , Sn
6→~21!nSn

6 . ~A2!

At low energies~A1! is described by a free massless bos
~1! compactified on a ring of radiusR, i.e., F and F
12pR are identified. The dual fieldQ fulfils Q5Q11/R
~see e.g., Ref. 36!. The following bosonization rules can b
derived along the lines of, e.g., Ref. 37:SW n→@JW (x)
1nW (x)#, x5na0, wherea0 is the lattice spacing and

Jz5
a0

b
]xF~x!,

~21!nJ15 iA~dx!exp„ibQ~x!…a0]xQ~x!

2
b

2p
exp„2 ibQ~x!…sinS 2p

b
F~x!22dxD ,

nx~x!5L'cos„bQ~x!…, ny~x!5L' sin~bQ~x!!,

nz~x!52~21!nLz sinS 2p

b
F~x!22dxD . ~A3!

Here b52pR and the coefficientsL',z are known only in
the absence of a magnetic field.16,24The standard structure in
terms of uniform and staggered magnetization operator
obtained by performing the unitary transformation~A2!. We
note that the often neglected first term inJ1 is actually more
important than the second: as a matter of fact, forH50 it
yields the leading contribution to transverse correlations
wave numberp of Eq. ~A1!.16,38 For b5A2p, i.e., the
SU~2! invariant chain in zero field, the second term is simp
the sum of left and right SU~2! currents. The first contribu-
tion to J1 corresponds to a particle-hole excitation with sp
1 relative to the ground state@see~II.5.3! and~XVIII.1.16! of
Ref. 15 and forH50 can be derived by carefully taking th
continuum limit of the Jordan-Wigner lattice fermions.39,16

For HÞ0 we expectA(dx) on general grounds to be of th
form const3cos(2dx). Equations~A3! are used to derive the
continuum form of the perturbation~12! ~note that both
smooth and staggered components of the spin operators
tribute for b5A2p).xt.
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14 382 PRB 59FABIAN H. L. EßLER
The constantb and spin velocityvs are determined byD,
J andh of the lattice model as follows. The dressed energy«,
momentump and ‘‘charge’’ Z of an elementary spinon ar
given in terms of the solutions of the linear integral equ
tions

«~l!2E
2A

A dm

2p
K~l2m!«~m!52h2

4Jsin2g

cosh 2l1cosg
,

p~l!52pE
0

l

dmr~m!,

r~l!2E
2A

A dm

2p
K~l2m!r~m!5

2sing

2p@cosh 2l1cosg#
,

Z~l!2E
2A

A dm

2p
K~l2m!Z~m!51, ~A4!

whereK(l)52sin 2g/(coshl2cos 2g). HereA is the rapid-
ity corresponding to the Fermi momentum and is fixed by
condition

«~6A!50. ~A5!

The spin velocity is then given by the derivative of th
spinon energy with respect to the momentum at the Fe
surface

vs5
]e~l!

]p~l!
U

l5A

5
]e~l!/]l

2pr~l!
U

l5A

. ~A6!

Finally, b andd are given by

b5
Ap

Z
,d5

p

2
2pE

2A

A

dmr~m!. ~A7!
. B

l.
-

e

i

In order to determinevs and b we solve Eq.~A4! numeri-
cally, which is easily done to very high precision as t
equations are linear. The results are shown in Figs. 1 an
Finally, we note that correlation functions at small finite tem
peratures can be calculated as in Ref. 10~see also Ref. 40!.
We only must remember to shift the momentum by62d
away from p for the longitudinal correlation function an
use the correlation exponent as calculated above from
Bethe ansatz. For example the transverse dynamical sus
tibility at small momentum@which corresponds to momen
tum p in the customary form of the Heisenberg Hamiltonia
which is related to Eq.~A1! by the unitary transformation
~A2!# is given by

x'~v,q!}T221b2/2pBS b2

8p
2 i

v2vsq

4pT
,12

b2

4p D
3BS b2

8p
2 i

v1vsq

4pT
,12

b2

4p D , ~A8!

whereB(x,y) is the beta function andq is close to zero. The
longitudinal susceptibility is dominated by the gapless mo
at p62d. It is the sum of two terms

x i~v,q!} (
s56

T2212p/b2
BS p

2b2
2 i

v2vsQs

4pT
,12

p

b2D
3BS p

2b2
2 i

v1vsQs

4pT
,12

p

b2D , ~A9!

whereQs5q2p1s2d.
K.
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6A. Klümper, Eur. Phys. J. B5, 677 ~1998!.
7L.D. Faddeev and L. Takhtajan, J. Sov. Math.24, 241 ~1984!.
8G. Müller, H. Thomas, H. Beck, and J.C. Bonner, Phys. Rev

24, 1429~1981!.
9A. Luther and I. Peschel, Phys. Rev. B9, 2911~1974!; 12, 3908

~1975!.
10H.J. Schulz, Phys. Rev. B34, 6372~1986!.
11A.H. Bougourzi, M. Couture, and M. Kacir, Phys. Rev. B54, 12

669 ~1996!; A. Abada, A.H. Bougourzi, and B. Si-Lakhal, Nuc
Phys. B497, 733 ~1997!.

12B.M. McCoy, J.H.H. Perk, and R.E. Shrock, Nucl. Phys. B220,
35 ~1983!; G. Müller and R.E. Shrock, Phys. Rev. Lett.51, 219
~1983!; Phys. Rev. B29, 288 ~1984!.
13M. Steiner, J. Villain, and C.G. Windsor, Adv. Phys.25, 87

~1976!; S.K. Satija, J.D. Axe, G. Shirane, H. Yoshizawa, and
Hirakawa, Phys. Rev. B21, 2001 ~1980!; D.A. Tennant, S.E.
Nagler, S. Welz, G. Shirane, and K. Yamada,ibid. 52, 13 381
~1995!; D.A. Tennant, R. Cowley, S.E. Nagler, and A.M. Tsv
lik, ibid. 52, 13 368~1995!; H. Yoshizawa, G. Shirane, H. Shiba
and K. Hirakawa,ibid. 28, 3904 ~1983!; R. Coldea, D.A. Ten-
nant, R.A. Cowley, D.F. McMorrow, B. Dorner, and Z. Tylc
zynski, Phys. Rev. Lett.79, 151 ~1997!; T. Ami, M.K. Craw-
ford, R.L. Harlow, Z.R. Wang, D.C. Johnston, Q. Huang, a
R.W. Erwin, Phys. Rev. B51, 5994~1995!; P.R. Hammar, M.B.
Stone, Daniel H. Reich, C. Broholm, P.J. Gibson, M.M. Tur
bull, C.P. Landee, and M. Oshikawa,ibid. 59, 1008~1999!.

14F.D.M. Haldane, Phys. Rev. Lett.66, 1529 ~1991!; 67, 937
~1991!; there is a huge literature on fractional statistics in th
context, further references can be found in Y.S. Wu,ibid. 73,
922 ~1994!; P. Bouwknegt, A.W.W. Ludwig, and K. Schouten
Phys. Lett. B338, 448~1994!; 359, 304~1995!; R. Kedem, T.R.
Klassen, B.M. McCoy, and E. Melzer,ibid. 307, 68 ~1993!; S.
Dasmahapatra, R. Kedem, T.R. Klassen, B.M. McCoy, and
Melzer, Int. J. Mod. Phys. B7, 3617 ~1993!; F.H.L.



e
e,

g

y

G

ys
e

p

es

u
.

.
,

ns.
nal

,

rm
m-

PRB 59 14 383SINE-GORDON LOW-ENERGY EFFECTIVE THEORY FOR . . .
Eßler, Phys. Rev. B51, 13 357~1995!.
15V. E. Korepin, A. G. Izergin, and N. M. Bogoliubov,Quantum

Inverse Scattering Method, Correlation Functions and Alg
braic Bethe Ansatz~Cambridge University Press, Cambridg
England, 1993!.

16S. Lukyanov, Nucl. Phys. B522, 533 ~1998!.
17M. Date, H. Yamazaki, M. Motokawa, and S. Tazawa, Pro

Theor. Phys. Suppl.46, 194 ~1970!.
18K. Oshima, K. Okuda, and M. Date, J. Phys. Soc. Jpn.41, 475

~1976!; 44, 757 ~1978!.
19K. Takeda, Y. Yoshino, K. Matsumoto, and T. Haseda, J. Ph

Soc. Jpn.49, 162 ~1980!.
20D.C. Dender, D. Davidovic´, D.H. Reich, C. Broholm, K. Lef-

mann, and G. Aeppli, Phys. Rev. B53, 2583~1996!.
21D.C. Dender, P.R. Hammar, D.H. Reich, C. Broholm, and

Aeppli, Phys. Rev. Lett.79, 1750~1997!.
22M. Oshikawa and I. Affleck, Phys. Rev. Lett.79, 2883~1997!.
23The definition of the principal axes goes back to the ESR anal

of Ref. 17. The corresponding exchange anisotropies are
pected to be small@in fact too small to give rise to the ga
induced by the applied field~Ref. 22!#, so that the isotropic
Hamiltonian~2! is a natural starting point for theoretical studi
of the field-induced gap.

24S. Lukyanov, Phys. Rev. B59, 11 163~1999!.
25I. Affleck, J. Phys. A31, 4573~1998!.
26S. Coleman, Phys. Rev. D11, 2088~1975!; S. Mandelstam,ibid.

11, 3026 ~1975!; R.F. Dashen, B. Hasslacher, and A. Neve
ibid. 11, 3424 ~1975!; L.D. Faddeev and V.E. Korepin, Phys
Rep., Phys. Lett.42C, 1 ~1978!; V.E. Korepin, Commun. Math.
Phys. 76, 165 ~1980!; A.G. Izergin and V.E. Korepin, Lett.
Math. Phys.5, 199 ~1981!; N.M. Bogoliubov, Theor. Math.
Phys.51, 540 ~1982!; V.O. Tarasov, L.A. Takhtajan, and L.D
Faddeev,ibid. 57, 1059~1984!; G.I. Japaridze, A.A. Nersesyan
-

.

s.

.

is
x-

,

and P.B. Wiegmann, Nucl. Phys. B230, 511 ~1984!; B.M. Mc-
Coy and T.T. Wu, Phys. Lett.87B, 50 ~1979!; C. Destri and T.
Segalini, Nucl. Phys. B455, 759 ~1995!.

27A. Luther, Phys. Rev. B14, 2153 ~1976!; A.B. Zamolodchikov
and Al.B. Zamolodchikov, Ann. Phys.~N.Y.! 120, 253 ~1979!;
H. Bergknoff and H. Thacker, Phys. Rev. D19, 3666 ~1979!;
V.E. Korepin, Theor. Math. Phys.41, 169 ~1979!.

28Al.B. Zamolodchikov, Int. J. Mod. Phys. A10, 1125~1995!.
29F.H.L. Eßler and A.M. Tsvelik, Phys. Rev. B57, 10 592~1998!.
30G.I. Dzhaparidze and A.A. Nersesyan, Pis’ma Zh. E´ ksp. Teor.

Fiz. 27, 356~1978! @JETP Lett.27, 334~1978!#; V.L. Pokrovsky
and A.L. Talapov, Phys. Rev. Lett.42, 65 ~1979!.

31We set the velocity equal to one in order to simplify all equatio
The velocity dependence is easily restored by dimensio
analysis.

32C. Destri and H.J. de Vega, Nucl. Phys. B438, 413 ~1995!.
33M. Suzuki, Phys. Rev. B31, 2957~1985!; T. Koma, Prog. Theor.

Phys.78, 1213 ~1987!; M. Takahashi, Phys. Rev. B43, 5788
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