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Microscopic spin-phonon coupling constants in CuGeO3
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Using random-phase approximation results, mean-field theory, and refined data for the polarization vectors
we determine the coupling constants of the four Peierls-active phonon modes to the spin chains. We then
derive the values of the coupling of the spin system to the linear ionic displacements, the bond lengths and the
angles between bonds. Our values are consistent with microscopic theories and various experimental results.
We discuss the applicability of static approaches to the spin-phonon coupling. Thec-axis anomaly of the
thermal expansion is explained. We give the values of the coupling constants in an effective one-dimensional
Hamiltonian.@S0163-1829~99!07921-7#
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I. INTRODUCTION

With the discovery of the first inorganic spin-Peierls co
pound CuGeO3,1 it has become possible to investigate t
physics of the spin-Peierls transition in quasi-on
dimensional spin chains with high precision. As a con
quence, it has attracted much attention both in experim
and theory. Yet, for a long time the absence of a soft pho
mode2,3 has been puzzling, since the behavior was belie
not to be consistent with the standard approach to s
Peierls transitions by Cross and Fisher.4 The frequencies of
the Peierls-active phonon modes being of the order of
magnetic exchange,5 it has been argued that the Cross a
Fisher approach is not applicable because of the nonadi
city of the phonons.6 Only recently we were able to show7

that the random-phase-approximation~RPA! approach by
Cross and Fisher indeed is consistent with the hardenin
the Peierls-active phonon modes.5

It is now tempting to combine the RPA results with th
detailed data on the phonons acquired by Bradenet al.5

Treating the lattice with the standard harmonic theory a
including the spin-phonon coupling mean-field like, we c
culate the microscopic coupling constants between the la
and the spin chains. It is then possible to predict the effec
structural changes on the spin system, namely the antife
magnetic exchangeJ. The latter has been subject to vario
experimental8–10 and theoretical studies.11–17

The microscopic three-dimensional~3D! Hamiltonian we
have to consider consists of three parts:

H5Hs1Hp1Hsp . ~1!

The Heisenberg spin Hamiltonian

Hs5J(
l

Sl•Sl1 ẑ1J2(
l

Sl•Sl12ẑ ~2!
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with the exchange integralsJ and J2 between nearest
neighbor~NN! and next-nearest-neighbor~NNN! Cu d orbit-
als, respectively.

Further we distinguish the phonon part

Hp5(
n

n,a

~pn,n
a !2

2mn
1 (

n,n8
n,n8,a,a8

Fn,n8,n,n8
a,a8 r n,n

a r n8,n8
a8 , ~3!

describing the lattice vibrations in the harmonic approxim
tion, wherer n,n5(r n,n

x ,r n,n
y ,r n,n

z ) are the deviations from the
ionic equilibrium positions.

Finally the spin-phonon coupling term reads

Hsp5(
l

DJl,l1 ẑSl•Sl1 ẑ1(
l

DJl,l12ẑSl•Sl12ẑ . ~4!

The energy scaleDJl,l1 ẑ is a function of the variation of the
magnetic exchange integral with the atomic displaceme
gl,n

a 5]J/]r l,n
a to be discussed in Sec. III. The NNN term

DJl,l12ẑ is a function of]J2 /]r l,n
a .

The indices used aren5(nx ,ny ,nz)PZ 3 running over all
unit cells of the three-dimensional crystal, the Cu-site ind
l5( l x ,l y ,l z)PZ 3 ~two Cu sites per unit cell!, and the unit
vectors x̂5(1,0,0), ŷ5(0,1,0), andẑ5(0,0,1) to nearest-
neighbor unit cells in the corresponding direction. The ind
n labels the 10 atoms within a unit cell as shown in Fig
and aP$x,y,z% is the vectorial component of the indexe
quantity in the respective three-dimensional space.

In Sec. II we briefly summarize the diagonalization of t
phonon Hamiltonian~3! followed by the discussion of the
symmetry of the four Peierls-active phonon modes, includ
refined data for their polarization vectors. Using these sy
metries we transform in Sec. III the microscopic spin-phon
coupling Hamiltonian~4! to normal coordinates in reciproca
space. This procedure yields relations between the diffe
linear, angular, and normal mode coupling constants. Us
RPA results and mean-field theory in Sec. V we obtain n
14 356 ©1999 The American Physical Society
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merical values for the normal mode coupling consta
which then can be converted to the real-space coupling c
stants. The resulting dependence of the magnetic exch
on static distortion of the lattice is discussed in Sec. VII a
compared with values from the literature. Finally we deri
an effective one-dimensional model to give coupling co
stants consistent with frequently applied theoretical
proaches. The consistency of the different results givesa
posteriori justification of the mean-field approach.

II. PEIERLS-ACTIVE PHONON MODES

In the standard treatment of harmonic lattice dynam
the initial problem of 3•N•Nion degrees of freedom (N num-
ber of unit cells,Nion number of ions in the unit cell! is
transformed into reciprocal space by a Fourier transform
tion, where N wave vectors fulfill the periodic boundar
condition.18 For any fixed wave vector one obtains
3•Nion-dimensional problem which may be diagonalized,
sulting in a set of 3•Nion eigenmodes labeled byl
P$1, . . . ,3Nion%. For, that purpose, the displacement a
momentum operators are decomposed into eigenmode
tributions introducing normal coordinatesQ and conjugated
momentaP:

r n,n5
1

AN
(

q
eiqRn(

l

en~l,q!

Amn

Ql,q , ~5!

pn,n5
1

AN
(

q
eiqRn(

l
en~l,q!AmnPl,q . ~6!

FIG. 1. Projection of the unit cell of CuGeO3 on thex-y plane.
The oxygen atoms are distinguished into O~1!, O~2a!, and O~2b!,
the atoms of the second formula unit are labeled with a prime. E
unit cell contains two Cu chains in thez direction ~the positivez
direction is into the plane!. The broken lines show the reduced un
cell introduced in Sec. III.n is the index for the whole cells,l
indexes the reduced cells.
s
n-
ge

d

-
-

,

-

-

n-

The vectorsRn designate the coordinates of the unit-cell o
gins.mn is the mass of thenth atom anden are polarization
vectors. Note that we use a nonstandard definition forRn and
en(l,q) which will simplify the interpretation of the polar
ization vectors at high symmetry points in the Brillouin zon
Further transformation to boson creation and annihilation
erator representation via

Ql,q5A \

2Vl,q
~bl,2q

† 1bl,q!, ~7!

FIG. 2. Geometry of theT2
1 eigenmodes as given by the pola

ization patterns in Table I. The shaded areas are the C4

plaquettes which form the Cu chains in thez direction. The Cu
atoms are in the center of each plaquette, the corners are forme
O~2! ions. The O~1! atoms are represented by the open circles w
the Ge ions in between them.~Compare with thex-y projection
given in Fig. 1.! Note that the O~2! elongations are in thex-y plane,
the ~small! Cu displacements are along thez axis, while the Ge
displacements are alongy.
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Pl,q5 iA\Vl,q

2
~bl,2q

† 2bl,q!, ~8!

yields the Hamiltonian usually used in the theoretical tre
ment of the lattice vibrations

Hp5(
q,l

\Vl,qS bl,q
† bl,q1

1

2D . ~9!

With the experimentally determined phonon modesVl,q
and shell-model calculations, it is possible to determine
components of the polarization vectorsen(l,q).5 At the
wave vector of the Peierls instabilityq05(p/a,0,p/c), four
of the 30 modes correspond to the irreducible representa
with the symmetry of the lattice distortion in the spin-Peie
phase,T2

1 in the notation of Ref. 19.a54.8 Å, b58.5 Å,
andc52.9 Å are the lengths of the unit cell in thex, y, and
z direction, respectively.

Adapting the lattice-dynamical model presented in Ref
a special effort was made for the description of the sp
Peierls relevant modes by the introduction of additional fo
constants; details of the lattice-dynamical study will be giv
elsewhere.20 The T2

1 modes are characterized by displac
ments of the Cu ions alongc, of the O~2! sites alonga andb,
and of the Ge ions alongb. The polarization pattern of the
four modes as obtained by the shell model are represente
Fig. 2 and given together with their frequencies in Table
The highestT2

1 mode corresponds to a Ge-O bond stretch
vibration thereby explaining its elevated frequency. T
threeT2

1 modes at lower energies posses a common elem
which consists of the rotation of the O~2!-O~2! edges of the
CuO4 plaquettes in thex-y plane around thec axis. However,
only for the lowest mode does this twisting of the CuO2
ribbons describe the main character of the polarization
tern. The modes at 11 and at 6.5 THz show, in addition
modulation of the lengths of the O~2!-O~2! edges and a Cu
shift parallelc. For the 11 THz mode the displacements
the Cu ions modulate the O~2!-Cu bond distance. The 6.
THz mode is characterized by a strong modulation of
Cu-O~2!-Cu bond angle~see Fig. 2! which is essential for the
magnetic interaction.

For later use we define the matrixM with the elements
given byen

a(l,q0)/Amn extracted from Table I:

TABLE I. Frequencies and polarization of the Peierls-activeT2
1

phonon modes at room temperature. The global prefactor is g
by u25(8.2660.02)310226 kg. The notation isen

z(l,q0)[en
z(l).

l 1 2 3 4

Vl /(2p) 3.12 THz 6.53 THz 11.1 THz 24.6 THz

ueCu
z (l)/AmCu 0.0095 20.4790 0.7412 20.0888

ueGe
y (l)/AmGe 20.4330 20.5325 20.3698 20.2605

ueO(2b)
x (l)/AmO(2) 20.6212 0.6581 0.3382 20.7932

ueO(2b)
y (l)/AmO(2) 20.8620 0.1339 0.2021 0.8723
t-
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M5S 0.03 21.67 2.58 20.31

21.51 21.85 21.29 20.91

22.16 2.29 1.18 22.76

23.00 0.47 0.70 3.04

D 1012

Akg
. ~10!

The static distortion in the spin-Peierls phase atT54 K also
has been determined.15 We define a corresponding four
dimensional vector:

^r &T54 K5S ^r Cu
z &

^r Ge
y &

^r O(2b)
x &

^r O(2b)
y &

D 51022S 0.57

0.08

20.95

20.65

D Å . ~11!

III. SPIN-PHONON COUPLING TERM

In the spin-phonon coupling term~4! we focus on the NN
part for reasons that will become obvious at the end of
section. We include the relevant displacements of the i
directly involved in the Cu-Cu superexchange path determ
ing J and only those coupling constants where the ions a
ally show displacements in the Peierls-active modes. T
apex ‘‘O~1!’’ atoms are not displaced by those modes at
appropriate wave vectorq0. We have to consider two coppe
ions in adjacent unit cells along thec direction, two germa-
nium sites, and two oxygen atoms surrounding a Cu-
bond. The notation introduced is shown in Fig. 1, the tw
O~2! oxygen atoms per formula unit are denoted O~2a! and
O~2b!. There are two formula units per unit cell which w
distinguish by a prime.

The relevant coupling constants for the linear atom
elongations are shown in Table II. The effective spin-phon
coupling Hamiltonian is

n
TABLE II. Definition of the coupling constants for linear atomi

elongations. The two Cu chains running through each unit cell
distinguished by a prime~see Fig. 1!. J8 is the magnetic coupling
constant along the Cu8 chains.

gCu
z 5

]J

]r Cu,n
z

52
]J

]r Cu,n1 ẑ
z 5

]J8

]r Cu8,n
z

gGe
y 5

]J

]r Ge,n
y

52
]J

]r Ge8,n2 ŷ
y 52

]J8

]r Ge,n
y

gO(2a)
x,y 5

]J8

]r O(2a),n
x,y

52
]J8

]r O(2a)8,n
x,x 52

]J8

]r O(2a)8,n2 ŷ
x,y

gO(2b)
x,y 5

]J

]r O(2b),n
x,y

52
]J

]r O(2b)8,n
x,y 52

]J

]r O(2b)8,n2 ŷ
x,y
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Hsp
NN5(

n
@gCu

z ~r Cu,n
z 2r Cu,n1 ẑ

z
!2gGe

y ~r Ge8,n2 ŷ
y

2r Ge,n
y !2gO(2b)

x ~r O(2b)8,n2 ŷ
x

2r O(2b),n
x !

2gO(2b)
y ~r O(2b)8,n2 ŷ

y
2r O(2b),n

y !#Sn•Sn1 ẑ 1(
n

@gCu
z ~r Cu8,n

z
2r Cu8,n1 ẑ

z
!2gGe

y ~r Ge,n
y 2r Ge8,n

y
!1gO(2a)

x ~r O(2a),n
x 2r O(2a)8,n

x
!

1gO(2a)
y ~r O(2a),n

y 2r O(2a)8,n
y

!# Sn8•Sn1 ẑ
8 . ~12!
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u

ft:

he
se

a
rls

th
to
h
in

-

pi

to
via

ap-

ns

-
ge
-
h
on-

n-
tri-

ry

s

re-

en
The two sums correspond to the two Cu chains runn
through each unit cell.

The symmetry of the Hamiltonian~12! allows for some
simplifications. First of all we use the equivalence of co
pling to the O~2a! and O~2b! displacements~see Fig. 1!:

gO(2)
x 5gO(2b)

x 5gO(2a)
x , ~13!

gO(2)
y 5gO(2b)

y 52gO(2a)
y . ~14!

From the symmetry of theT2
1 modes~see Fig. 2! we see that

the O~2!-y components are in phase, i.e.,r O(2a),n
y 5r O(2b),n

y

5r O(2),n
y , while thex components exhibit an antiphase shi

2r O(2a),n
x 5r O(2b),n

x 5r O(2),n
x .

As indicated in Fig. 1 we then cut the unit cell along t
y axis in half separating the ions labeled ‘‘prime’’ from tho
without a label.

r n8,n
a →2r n,n1 ŷ/2

a , ~15!

Sn8•Sn1 ẑ
8 →Sn1 ŷ/2•Sn1 ŷ/21 ẑ . ~16!

The change of sign of the coordinates accounts for the
tiphase elongation of the two types of ions in the Peie
active modes at the wave vector of the instabilityq5q0
5(p/a,0,p/c). Resummationn→ l over all the new cells,
i.e., twice as many with a new cell lengthb/2 in they direc-
tion, yields

Hsp
NN5(

l
@gCu

z ~r Cu,l
z 2r Cu,l1 ẑ

z
!1gGe

y ~r Ge,l2 ŷ
y

1r Ge,l
y !

1gO(2)
x ~r O(2),l2 ŷ

x
1r O(2),l

x !

1gO(2)
y ~r O(2),l2 ŷ

y
1r O(2),l

y !#eip l y Sl•Sl1 ẑ . ~17!

The overall change of sign in the first sum with respect to
second in Eq.~12! has been incorporated in the phase fac
eip l y. This change of sign translates into the antiphase s
of the spin-Peierls ordering between neighboring Cu cha
in the y direction.

Now we substitute the displacementsr n,l
a with theq-space

normal coordinates~5!. For clarity we introduce the abbre
viation

S2qª(
l

eiqRleip l ySl•Sl1 ẑ ~18!

for the Fourier transform of the nearest-neighbor spin-s
correlation operator:
g

-

n-
-

e
r
ift
s

n

Hsp
NN5

1

AN
(

q
S2q(

l
A2Vl,q

\
gl~q!Ql,q . ~19!

Here the effective normal mode coupling constant

A2Vl,q

\
gl~q!ª~12eiqzc!gCu

z
eCu

z ~l,q!

AmCu

1~e2 iqyb/211!

3S gGe
y

eGe
y ~l,q!

AmGe

1gO(2)
x

eO(2)
x ~l,q!

AmO(2)

1gO(2)
y

eO(2)
y ~l,q!

AmO(2)
D ~20!

was introduced.21

The next step is to transform the normal coordinates
boson creation and annihilation operator representation
Eq. ~7!:

Hsp
NN5

1

AN
(

q
S2q(

l
gl~q!~bl,2q

† 1bl,q!. ~21!

This is the representation usually used in theoretical
proaches to spin-phonon coupling.7 Since the polarization
vectors are known forq0 ~Table I!, Eq. ~20! defines the re-
lation between the coupling to the linear atomic deviatio
gn

a ~Table II! and the normal mode coupling constantsgl(q).
The NNN exchange termJ2Sl•Sl12ẑ leads to a magneto

elastic coupling equivalent to the one for the NN exchan
shown in Eq.~17!. Including all ionic linear elongations con
tributing to the Cu-O~2!-O~2!-Cu NNN superexchange pat
the prefactors in the resulting reciprocal-space coupling c
stants — compare Eq.~20! — then are (12e2iqzc) for the Cu
part and (11eiqzc) for the other ions. The coupling of theJ2
term vanishes at the wave vector of the instabilityq5q0
5(p/a,0,p/c) and does thus not directly influence the tra
sition. Within the present work we can disregard this con
bution.

IV. COUPLING TO BOND ANGLES AND LENGTHS

The two lower Peierls-active modes essentially va
the angles hk5/ @Cu-O~2k!-Cu# and dk

5/@O(2k)8-O~2k!-Ge#. Together with the bond length
dCu

k 5Cu-O(2k )̄ and dGe
k 5Ge-O(2k )̄ they represent the

natural set of coordinates of the lattice vibrations in the ir
ducible group of theT2

1 modes. The indexkP$a,a8,b,b8%
was introduced to label the position on the different oxyg
atoms in the unit cell.
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Introducing the variableukP$hk,dk,dCu
k ,dGe

k % we can
write

DJl,l1 ẑ5(
$u%

]J

]un
k

Dun
k5(

$u%
gu(

n

]un
k

]r n,n
a

r n,n
a . ~22!

Here we defined the coupling constantsgu5(]J)/(]un
k),

which are independent ofk. For reasons of translational in
variance we can drop the unit-cell indexn. The linear coef-
ficients of the Taylor expansions (]uk)/(]r n

a) at different
positionsk in the unit cell all yield the same numerical co
efficients but with varying signs. The absolute values of
coefficients are given in Table III.

Considering all the relevant bonds and angles and u
the decomposition~22! we can set up a spin-phonon Ham
tonian similar to Eq.~12! in the previous section. By a
simple comparison of the coefficients we obtain the trans
mation matrix between the angular and bond-length coup
constants and the linear atomic deviation coupling consta

S gCu
z

gGe
y

gO(2)
x

gO(2)
y

D
5S 20.22

p

Å
0 21.52 0

0 20.11
p

Å
0 0.82

0.21
p

Å
0.29

p

Å
21.08 0.57

20.14
p

Å
0.32

p

Å
0.72 20.82

D S gh

gd

gCu
d

gGe
d

D .

~23!

Together with Eq.~20! we now can determine all couplin
constants if any four of the them are known.

TABLE III. Linear coefficients of the expansion of the angle
and bond lengths as a function of the linear atomic elongations
defined in Eq. ~22!. The variables kP$a,a8,b,b8% and uk

P$hk,dk,dCu
k ,dGe

k % are introduced in the text. The last line hold
the experimental equilibrium angles and bond lengths~Ref. 15!
@uk5u01Duk, Duk is defined in Eq.~22!#.

u h d dCu dGe

u]uk/]r Cu
z u 0.11

p

Å
0 0.76 0

u]uk/]r Ge
y u 0 0.11

p

Å
0 0.82

u]uk/]r O(2)
x u 0.21

p

Å
0.29

p

Å
0.54 0.57

u]uk/]r O(2)
y u 0.14

p

Å
0.32

p

Å
0.36 0.82

u0 0.55p 0.89p 1.93 Å 1.73 Å
e

g

r-
g
ts:

V. NORMAL MODE COUPLING CONSTANTS

We now numerically determine the four normal mo
coupling constants. We have shown the RPA approach
Cross and Fisher4 for the Hamiltonian

H5J(
l

Sl•Sl1 ẑ1J2(
l

Sl•Sl12ẑ

1(
q,l

\Vl,qS bl,q
† bl,q1

1

2D
1

1

AN
(

q
S2q(

l
gl~q!~bl,2q

† 1bl,q! ~24!

to satisfactorily describe the dynamics of the Peierls-ac
phonon modes.7 It consists of the Heisenberg chain~2!, the
harmonic phonon part~9!, and the spin-phonon couplin
term ~21! all discussed above. We have given an express
for the critical temperature of the spin-Peierls transitio7

which we generalize to the four Peierls-active modes
have to consider herein (Vl,q0

[Vl , gl(q0)[gl):21

kBTSP5S 2g1
2

\V1
1

2g2
2

\V2
1

2g3
2

\V3
1

2g4
2

\V4
Dx0 . ~25!

The factor x0'0.5 is a contribution of the static spin
polarization function at the appropriate wave vector.
value is controversial and we have adopted a mean of
proposed values. Please refer to the discussion in Sec. IX
the details.

A. Ginzburg criterion

The Ginzburg criterion gives an estimate of the tempe
ture range of the critical region in which fluctuations su
press the applicability of mean-field approaches~or RPA!. It
is obtained through comparing the theoretical correction
Gaussian fluctuations to the specific heat

Cp2Cp,05
abc

16p

TSP
2

~T2TSP!
2

kB

jajbjc
~26!

with the experimental jump in the specific heat at t
transition.22 The correlation lengthsja , jb , andjc along the
respective crystallographic axes can be obtained from fit
the diffuse x-ray data from Schoeffelet al.23

ja'0.50a@~T2TSP!/TSP#
2 1/3,

jb'0.65b@~T2TSP!/TSP#
2 1/3,

jc'3.06c@~T2TSP!/TSP#
2 1/3.

The specific-heat jump has been determined by Lasjauniaet
al.24 to be DCexp50.73kB at TSP per unit-cell volume. Re-
quiring Cp2Cp,0!DCexp we find the Ginzburg criterion to
be

~T2TSP!@0.03TSP50.4 K. ~27!

In accordance with the mean-field approach to the susce
bility by Klümperet al.25 we conclude that beyond a regio
of 3–4 K aroundTSP the mean-field theory is reliable.

as
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B. Mean-field approach

The transition temperature given for CuGeO3 with 14.1
K, one parameter is fixed through Eq.~25!. As we shall
discuss now, the others can be estimated from the pola
tion vectors of the Peierls-active phonon modes and the s
distortion in the dimerized phase at 4 K also given by Braden
et al.15 For the fixed wave vector of the Peierls instabilityq0
we can derive from expressions~5! and ~7! a relation be-
tween a static lattice distortion̂r n

a& and the expectation val
ues of the displacement of the eigenmodes out of the
monic equilibrium^bl,q0

&:

^r n
a&5

^r q0 ,n
a &

AN
5(

l

en
a~l,q0!

ANmn
A 2\

Vl,q0

^bl,q0
&. ~28!

Introducing the canonical transformation

b̃l,q5bl,q1
1

AN

gl~q!

\Vl,q
Sq ~29!

for the Bose annihilation and creation operatorsbl,q , where
Sq was defined by Eq.~18!, the Hamiltonian~24! decouples
into

H5J(
l

Sl•Sl1 ẑ2
1

N (
lq

ugl~q!u2

\Vl,q
S2qSq

1(
q,l

\Vl,qS b̃l,q
† b̃l,q1

1

2D . ~30!

The operatorsb̃l,q do not satisfy Bose commutation relation
and since@S2q ,b̃l,q#2Þ0 the solution of this Hamiltonian is
not at all evident. But in a mean-field-like approach we c
assumê b̃l,q&50 so that from Eq.~29! follows

^bl,q&52
1

AN

gl~q!

\Vl,q
^Sq& . ~31!

TABLE IV. Normal mode coupling constants for the fou
Peierls-active phonon modes atq0, determined by Eq.~32!.

g1 /kB g2 /kB g3 /kB g4 /kB

215 K 58 K 230 K 212 K

TABLE V. Coupling constants for the linear atomic displac
ments calculated via Eq.~34! using the values forgl from Table
IV.

gCu
z /kB gGe

y /kB gO(2)
x /kB gO(2)

y /kB

2890 K/Å 2110 K/Å 400 K/Å 291 K/Å
a-
tic

r-

n

The mean-field ansatz is reasonable here, since we are i
ested in temperatures of 4 K which is far from the critical
region and the dimerization is as good as saturated.2

C. Values

With Eq. ~28! and ~31! we are left with a set of linear
equations. The values of the frequenciesVl are given in
Table I, the polarization vectorsen

a(l,q0) enter via the ma-
trix M defined in Eq.~10!, and^r &T54 K is given in Eq.~11!:

^r &T54 K52
^Sq0

&

N
A2

\
MS g1 /AV1

3

g2 /AV2
3

g3 /AV3
3

g4 /AV4
3

D . ~32!

The solution of the equations gives the coupling constant
a function ofN/^Sq0

&. The latter is then determined by th

critical temperatureTSP514.1 K via Eq.~25!:

^Sq0
&

N
5

1

N (
l

~21! l x1 l y1 l z^Sl•Sl1 ẑ&50.59. ~33!

For a spin-1/2 system with two Cu chains per unit cell w
have^Sq0

&/N<0.75 where 0.75 is reached in the fully dime

ized state. In the uniform Heisenberg case^Sq0
&/N50.

In Table IV we show the calculated coupling constants
the spin system to the Peierls-active eigenmodes of the
tice at the wave vector of the instabilityq0. The signs are
such that all contributions in the spin-phonon coupling te
in the Hamiltonian~24! are negative when the phonon mod
are macroscopically occupied as determined via Eq.~28! in
Sec. VII A. The mode atV2 /(2p)56.5 THz is dominant,
by its symmetry it essentially varies the anglesh. This will
be reflected in the corresponding coupling constant discus
below.

Note that the influence on the transition temperature
the lowestV1 /(2p)53.1 THz mode is as important as th
of V3 /(2p)511 THz, because of the frequencies in t
denominator of Eq.~25!.

VI. MICROSCOPIC COUPLING CONSTANTS

The numerical values of the normal mode coupling co
stants thus given, the microscopic coupling constants ca
determined. Using the matrix~10! we rewrite expression~20!
for q5q0 as

TABLE VI. Coupling constants for the angles and bond leng
calculated via Eq.~23! using the values forgn

a from Table V.

gh /kB gd /kB gCu
d /kB gGe

d /kB

15 K/deg 1.5 K/deg 180 K/Å 296 K/Å
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TABLE VII. Variation of J with the variation of the angles. Note that in our notation there are two an
hk and two anglesdk contributing each to the Cu-Cu superexchange path~see Fig. 1!.

Method ~Reference! ]J

J]hk

]J

J]dk

Harm. theory and mean field~this paper! 10%
1

deg
1%

1

deg

Microscopic superexchange~Ref. 14! >8%
1

deg
>0.3%

1

deg

Microscopic superexchange~Ref. 15! 22%
1

deg
0.6%

1

deg

Pressure vs. magnetostriction~Ref. 17! ;5%
1

deg
;0.5%

1

deg
n
ng
V

-
e

-

b

s
p-

-
du

u

a

the
ma

n-

the
m-
.
p-

di-
ce

in-
-
eld

ing
on
-

-

th

-

the
MTS gCu
z

gGe
y

gO(2)
x

gO(2)
y

D 5
1

A2\ S g1AV1

g2AV2

g3AV3

g4AV4

D , ~34!

and compute the coupling to the linear atomic elongatio
Then we calculate the angular and bond length coupli
using Eq.~23!. The resulting values are given in Tables
and VI, respectively.

The results allow for some immediate conclusions:
~i! The coupling toh, i.e., gh , is the dominant contribu-

tion.
~ii ! The signs of the coupling constants are correct,J in-

creases with increasing angles and decreasing O~2!-Ge bond
length. The positive value ofgCu

d indicates that the ferromag
netic exchange is weakened more than the antiferromagn
exchange when stretching the O~2!-Cu bond. This is consis
tent with the net ferromagnetic exchange of the O~2!-Cu
plaquettes without the germanium side group predicted
Geertsma and Khomskii.14

~iii ! Variation of the coupling constants showsg1 to
couple mainly to the anglesd, g2 to h, andg3 andg4 to be
almost entirely bond stretching.5 While the results forgh and
gd are robust under variation of the parameters, the value
gCu

d and gGe
d are less fixed within the accuracy of our a

proach.
~iv! From magnetostriction data Bu¨chner et al.17 expect

the influence of the Cu-O~2!-Cu angleh on the magnetic
exchange to be of the order of 2]J/(J]hk)'10% per de-
gree, and for the O~2!-O~2!-Ge angle their value is
2]J/(J]dk)'1%. ForJ/kB5150 K we obtain about twice
the values~see Table VII!.

~v! ComparinggGe
d and gGe

y shows the effect of the ger
manium elongation on the magnetic exchange to be
mainly to the stretching of the O~2!-Ge bond. The contribu-
tion of the Ge side group to the magnetic exchange sho
depend on the O~2!-O~2!-Ge angle asJside;cosd. Therefore,
the angledk'160°50.89p being close top, the angular
dependency ofJ on d is quite small in spite of the large
entire side-group effect, which is of similar magnitude
that of the CuO4 plaquette elongation.14,15
s.
s

tic

y

of

e

ld

s

~vi! Two groups analyzed the structural dependence of
superexchange within similar microscopic models. Geerts
and Khomskii14 obtained J/kB5135 K and found
2]Jgeo/(J]hk)'16% and 2]Jgeo/(J]dk)'0.6% per de-
gree. These values only accout for the ‘‘geometrical’’ co
tribution and are thus lower bounds. Bradenet al.15 found
J/kB5160 K and gave 2]J/(J]hk)'44% and
2]J/(J]dk)'1.1% per degree. The agreement between
microscopic models is affected by the choice of the para
eters and the number of orbitals taken into consideration

A summary of the values obtained in the different a
proaches is given in Table VII.

VII. STATIC DISTORTION

The microscopic coupling constants given, we can
rectly calculate the effect of static distortions of the latti
geometry on the magnetic exchange.

A. Dimerization

Using the static displacements of the ions in the sp
Peierls~SP! phase atT54 K,15 one may calculate the alter
nation of the magnetic exchange usually used in mean-fi
approaches to the spin-phonon coupling, i.e.,

HMF5J(
l z

@11~21! l zdJ#Sl z
•Sl z11 . ~35!

This is achieved by substituting in the spin-phonon coupl
term ~17! the atomic displacements by their expectati
valuesr n,l

a →(21)l z1 l x^r n
a&T54 K and comparing the result

ing ^Hsp
NN&T54 K with Eq. ~35!. Equivalently one can calcu

late ^Hsp
NN&T54 K by using the static angular and bond leng

deviations15 yielding the same results.
We find dJJ/kB517 K or dJ'0.11 (J/kB5150 K). By

solving the system of linear equations defined by Eq.~28! for
q5q0, the expectation valueŝbl&/AN have been deter
mined to be 0.061,20.11, 0.034, and 0.006 forl51, 2, 3,
and 4, respectively. The elastic energy per unit cell of
spin-Peierls distortion atT;4 K then is given by
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^Hp&
N kB

5(
l

\Vl

N kB
^bl&255K. ~36!

This energy loss has to be compensated by the spin sys
Considering that the maximum gain of magnetic energy
reached in the fully dimerized case with 0.375dJJ per Cu
ion, we find a lower boundary for the dimerization ofdJ
.0.044. Including a NNN term in Eq.~35! with J2 /J
50.241 as studied by Chitraet al.13 using a density matrix
renormalization group~DMRG! approach we find dJ
>0.078.

Our result is within a factor of 2 of the values obtained
using ]J/]h and ]J/]d obtained from the magnetostrictio
results17 and from the microscopic models.14,15 All other
published estimates of the dimerization result from an an
sis of the magnetic excitation spectra observed by inela
neutron or Raman scattering. Most of these estimates
based on the static dimerized Hamiltonian~35! ~Refs. 11,12!
and yield dimerization values much smaller than the o
reported here~see Table VIII!. Augier and Poilblanc26 as
well as Welleinet al.27 extend the static model by couplin
to dynamical phonons which reduces the magnetic gap
lowering the effective lattice distortion acting on the sp
system.17 The derivation of their model and the significan
of the phonon dynamics are more closely discussed in S
VIII. Introducing interchain coupling may further suppre
the spin gap.28 For an extensive discussion see Ref. 16.

All methods incorporate more or less crude approxim
tions to the real physical situation leaving the question of
true value ofdJ unanswered. Our lower boundary should
rather reliable though. The values obtained in the differ
approaches are given in Table VIII for comparison.

B. Pressure

Bräuningeret al.29 and Bradenet al.20 have investigated
the pressure dependence of the angles and bond lengt
CuGeO3 under hydrostatic pressure. The linearity of t
pressure dependence is reasonable for pressures,2 GPa.
The values for the pressure gradients obtained from Ref
are shown in Table IX.

Regarding the partial derivative of the exchange integ
]Ju /]p5(]J/]u)(]u/]p) we find immediately the pressur
gradients of the different angular and bond length contri
tions toJ as given in Table IX.

Considering all four contributions, we obtain the tot
variation of the antiferromagnetic exchange:

]J

]p
52

]Jh

]p
12

]Jd

]p
12

]JGe

]p
14

]JCu

]p
529

kBK

GPa
. ~37!

TABLE VIII. Exchange alternation inJ@11(21)l zdJ#.

Method ~Reference! dJ

Harmonic theory and mean field~This paper! 0.11
Macroscopic occupation ofT2

1 modes~This paper! .0.04
Microscopic superexchange~Refs. 14,15! 0.07 to 0.2
Dynamic phonons and experimental gap~Ref. 17! ;0.05
Static phonons and experimental gap~Refs. 11,12! 0.01 to 0.03
Coupled chains~Ref. 16! 0.01 to 0.12
m.
s

-
ic
re

e

y

c.

-
e

t

in

0

l

-

l

For J/kB5150 K this value corresponds to]J/(J]p)'
26% per GPa. The pressure dependency of the magn
susceptibility is directly related to the magnetostriction.
value of 2]x/(x]p);]J/(J]p)'28% per GPa was ob
tained after averaging the uni-axial components.8,30 Taka-
hashiet al.9 have measured the pressure dependence of
Curie constantC by fitting a Curie-Weiss law to the high
temperature tail of the magnetic susceptibility. AssumingC
;1/J one can estimate a value of about]J/(J]p)'27%
per GPa. Nishi and co-workers10 compared fits to the disper
sion of the lowest triplet excitations at different pressur
They assume the ratio between the exchangeJ and next-
nearest-neighbor exchangeJ2 with a value ofJ2 /J'0.25
which does alter under pressure, and found]J/(J]p)'
210% per GPa. In contrast to that Fabriciuset al.30 found
that J2 does not alter under pressure. Then the result fr
Nishi’s analysis is corrected to]J/(J]p)'28% per GPa. A
summary of the values is given in Table X showing th
consistency.

C. Thermal expansion and spontaneous strain

In a harmonic lattice the coefficients of linear therm
expansiona5(]L)/(L]T)p vanish. HereL is the length of
the crystal in a given spatial direction. Anharmonic contrib
tions result in temperature-dependent phonon frequen
which in turn yield finite values fora. The coefficient of
thermal expansion is linked to the specific heat via the~tem-
perature dependent! Grüneisen parameter. This implies in th
limiting casesT→0:a;T3 andT@QD :a;constant, where
QD is the Debye temperature.31

The thermal expansion in CuGeO3 can be attributed to
two effects: the usual anharmonic behavior described ab
and anomalies due to the spin-phonon coupling.32,33 The co-
efficient of linear thermal expansion of thec axis in CuGeO3
has a negative sign betweenTSP andT;200 K. The expan-
sion of thec axis enlargesJ via the angleh. The spin system
then gains energy when the temperature is lowered toT;J
by driving the anomaly.34 A rough quantitative estimation
can be extracted from the analysis of the temperature de
dence of the herein considered bond lengths and angles g
by Bradenet al.32 Their temperature dependence betwe
295 K and 20 K is close to linear and presented in Table
Summing up the different contributions equivalently to E
~37! yields ]J/(J]T)'22.6% per 250 K (J/kB5150 K).
This effect is a superposition of the normal thermal exp
sion with positive]Jnorm/(J]T) and the anomalous effect a

TABLE IX. Linear pressure gradients of angles and bo
lengths from experimental data in Ref. 20~top! and the resulting
theoretical pressure gradients]Ju /]p5(]J/]u)(]u/]p) ~bottom!.
The values for]J/]u are given in Table VI.

u h d dCu dGe

]uk

]p
20.16

deg

GPa
21.3

deg

GPa
20.0012

Å

GPa
20.0033

Å

GPa

]Ju

]p
22.5

kBK

GPa
21.9

kBK

GPa
20.22

kBK

GPa
0.32

kBK

GPa
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low temperature which can be estimated by]Jan/(J]T)
<2]Jh /(J]T)524.1% per 250 K.

As the crystal undergoes the SP transition spontane
strain appears along all three orthorhombic directions.35,33

The strain couples differentT2
1 modes36 and gives a correc

tion to Eq.~32! which we now show to be unimportant. Th
elastic energy per unit cell related to the spontaneous s
at T;4 K can be estimated from the elastic constants. T
diagonal elastic constants were taken from the ultraso
study by Poirieret al.,37 and off-diagonal terms were calcu
lated with the lattice-dynamical model20 as shown in Table
XII using standard notation.31 With the values for the strain
e i given by Winkelmannet al.33 we find

Estrain

kB
5

a•b•c

2kB
(

i , j 51,2,3
e iCi j e j5731024 K. ~38!

Note that the strain componentse45e55e6 vanish, since the
orthorhombicity is conserved. The elastic energy involved
the strain is four orders of magnitude smaller than the ela
energy of the dimerization given in Eq.~36!.

Note that the components of the spontaneous strain33 have
the opposite sign compared with the anomalies of the th
mal expansion5 discussed above. The spontaneous strain m
thus be interpreted as a relaxation of the latter when the
system changes its character at the spin-Peierls transi
The relaxation is of the order of 1%.

TABLE X. Variation of J with pressure.

Method ~Reference!

]J

J]p

Harmonic theory and mean field~this
paper!

26%
1

GPa

Susceptibility via magnetostriction~Ref. 8! 28%
1

GPa

Curie-Weiss fit to the susceptibility~Ref.
9!

27%
1

GPa

Fit to the triplet dispersion~Ref. 10! 28 to 210%
1

GPa

TABLE XI. Experimental linear temperature gradients of ang
and bond lengths from Ref. 32~top! and the resulting theoretica
contributions to the temperature dependence ofJ ~bottom! between
20 and 295 K.

u h d dCu dGe

]uk

]T
20.2

deg
250 K

0.6
deg

250 K
0.0002

Å
250 K

20.002
Å

250 K

]Ju

]T
23.1

kBK
250 K

0.9
kBK

250 K
0.04

kBK
250 K

0.2
kBK

250 K
us

in
e
d

n
ic

r-
y
in
n.

VIII. COUPLING CONSTANTS FOR REAL-SPACE
NORMAL COORDINATES

In order to obtain real-space expressions we use the F
rier representation of the Bose operators

bl,q5
1

AN
(

l
e2 iqRlbl,l . ~39!

For simplicity we neglect the wave-vector dependence of
frequencies Vl5Vl,q0

and of the polarization vector

en
a(l)5en

a(l,q0). The coupling constantsgl(q0) in Eq. ~20!
then are divided into

A2Vl

\
gl

Cu5gCu
z

eCu
z ~l!

AmCu

, ~40!

A2Vl

\
gl

loc5gGe
y

eGe
y ~l!

AmGe

1gO(2)
x

eO(2)
x ~l!

AmO(2)

1gO(2)
y

eO(2)
y ~l!

AmO(2)

.

~41!

Transforming the Hamiltonian~24! via Eq.~39! we obtain in
real space

H r5(
l,l

\VlS bl,l
† bl,l1

1

2D1J(
l

Sl•Sl11

1(
l,l

~21! l y@gl
Cu~bl,l

† 1bl,l2bl,l1 ẑ
†

2bl,l1 ẑ!

1gl
loc~bl,l

† 1bl,l1bl,l1 ŷ
†

1bl,l1 ŷ!#Sl•Sl1 ẑ . ~42!

The coupling constants are given in Table XIII. This res
implies that the oxygen and germanium displacements ar
the same importance for the spin-phonon coupling as
copper elongation.

Motivated by the symmetry of the Peierls-active phon
modes an effective onedimensional model can be obta
by restricting the sum to a single chain. The Fourier tra
form of the one-dimensional model derived from Eq.~42!
shows the differentq dependences (q[qz) of the copper and
the local term.

TABLE XII. Experimental uniaxial elastic constants from Re
37 ~top! and the theoretical elastic constants obtained from the s
model ~bottom!.

C11 C22 C33 C12 C13 C23

Expt. (1011 dyn/cm2) 7.4 2.1 33.2
Theory (1011 dyn/cm2) 8.2 5.0 34.6 3.0 4.0 2.2

TABLE XIII. Coupling constants to real-space normal mod
obtained from Eqs.~40! and ~41!.

l 1 2 3 4

gl
Cu/kB 20.5 K 17 K 220 K 1.6 K

gl
loc/kB 27.2 K 12 K 4.8 K 27.5 K
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H1D5(
l,q

\VlS bl,q
† bl,2q1

1

2D1J(
l z

Sl z
•Sl z11

1(
l,q

gl1D~q!

AN
~bl,2q

† 1bl,q!(
l z

eiqRl zSl z
•Sl z11 .

~43!

Here we defined the 1D coupling constant

gl1D~q!5~12eiqc!gl
Cu12gl

loc . ~44!

Several studies26,27,6,34have been carried out using rea
space Hamiltonians in the form of Eq.~42! reduced to a
one-dimensional model. Usually a single-mode Hamiltoni
only keeping the local term is considered, i.e., in their no
tion 2g1

loc[g, while the other coupling constants are set
zero. Consideringg2

Cu, g2
loc , andg1

loc being of the same orde
of magnitude, this simplification should only yield qualit
tive results.

Yet, these treatments include the dynamics of
phonons. The significance of the latter can be estimated f
the size of the zero-point motion of the ions. Without t
negligible contribution from the macroscopic occupati
~Sec. VII A! the fluctuations of theT2

1 modes atT50 can be
obtained from Eq.~5! using the approximation of dispersion
less phonons introduced above:

^~r n
a! 2̄&5

1

N (
n

^~r nn
a !2&T505(

l
S en

a~l!

Amn
D 2

\

2Vl
.

~45!

The resulting values areA^(r n
a) 2̄&50.029, 0.035, 0.048, an

0.053 Å for r n
a5r Cu

z , r Ge
y , r O(2)

x , and r O(2)
y , respectively.

They are consistent with the values of the total zero-po
fluctuations obtained from the shell model and the neutr
scattering experiments presented in Ref. 32. The zero-p
fluctuations are thus a factor of 5 to 10 larger than the st
distortions as given in Eq.~11!.

On the other hand, the Ginzburg criterion discussed
Sec. V A and the consistency of our results with experim
tal ones justify our mean-field approach. In accordance w
that, Klümper et al.25 show that a variety of physical quan
tities can be obtained correctly in a mean-field picture. I
beyond the scope of this paper but certainly an interes
question addressed to future studies which quantities are
sitive to the zero-point fluctuations and why.

IX. DISCUSSION OF x0

The approach by Cross and Fisher4,7 gave a value ofx0
'0.26. This value is independent ofJ because of the scal
invariance atqc5p/c. The scaling hypothesis is applicab
close to the critical point of the spin chain, i.e., in the lim
T→0. Recent DMRG results obtained by Klu¨mperet al.25,38
,
-

e
m

t
-

int
ic

n
-
h

s
g
n-

show a strong temperature dependence ofx0(T/J). For J2
50 andJ5120 K they foundx0(TSP/J)'0.28. ForJ2 /J
50.241 andJ5150 K the parameter attainsx0(TSP/J)
'0.56, whereas forJ2 /J50.35 andJ5160 K they found
x0(TSP/J)'1.

The exact value ofJ2 in CuGeO3 has not yet been deter
mined. Fits to the susceptibility forT.TSP indicate an over-
critical J2,11,30 but fits to the four-spinon continuum seen b
Raman scattering39 indicate an undercriticalJ2. In favor of
an undercriticalJ2 is also the small binding energy of th
singlet bound state forT,TSP, as seen by Raman
experiments.40 Interchain coupling will reduce the value o
x0 because of an enhancement of the antiferromagn
correlations.28

As can be seen from Eq.~25! our coupling constants scal
as gl;Ax0

21. From the above results follows 1,Ax0
21

,1.9 and we adapt the mean value ofx050.5 for our cal-
culations. This value is close to the result forJ2 /J50.241.
Within the accuracy of our approach we can useJ5150 K
as given by Castillaet al.12 The choice ofx0 is justified a
posteriori by the agreement of the results in the literatu
Also note that including a NNN term withJ2 /J50.24 in Eq.
~35! with dJ50.1 and using exact diagonalization gives
value of ( l z

(21)l z^Sl z
•Sl z11&/N50.57 per two Cu ions in

agreement with the value given in Eq.~33!.
Applying hydrostatic pressure the transition temperat

grows at a rate of 4.8 K/GPa.9 In our approachTSP is given
by Eq. ~25! and depends on the coupling constantsgl , the
frequenciesVl , and the factorx0. The coupling constants
gl in turn depend on the linear derivatives of the magne
exchangegn

a and the polarization vectors, as given in E
~20!. In a harmonic lattice the phonon frequencies and po
ization vectors are independent of pressure. It seems
unlikely that the Peierls-active modes exhibit extremely la
negative Gru¨neisen parameters which would be needed
order to describe the increase ofTSP upon pressure via the
pressure dependence of the phonon frequencies. The li
coupling constantsgn

a also are independent of pressure, a

since the lattice distortions are rather small,29,20 we do not
expect higher-order contributions to play a crucial role. W
must thus conclude the value ofx0 to be strongly pressure
dependent.

Together with the pressure dependence ofJ2 /J discussed
by Fabriciuset al.,30 this may explain the shift ofTSP.38

When introducing interchain coupling, prefactors and t
functional dependence of the spin-spin correlation funct
are also altered.41 The compressibility of the crystal is large
in the b direction so that the alternation of the intercha
coupling under pressure is another possible origin of
pressure dependence ofx0 andTSP.

X. SUMMARY

In this paper we have given a detailed analysis of
microscopic magnetoelastic coupling in CuGeO3 which may
be easily transferred to other systems. The comparison
several theoretical and experimental approaches yields a
isfactory consistency. Numbers have been given in Table
for the angular dependence of the magnetic exchange
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Table VIII for the dimerization, and in Table X for the pre
sure dependence of the magnetic exchange. The quantit
agreement of course is limited by the uncertainties wit
experiments and theoretical techniques. Coupling const
for effective one-dimensional real-space model Hamiltoni
accessible to numerical studies are given in Table XIII. W
have discussed the applicability of static models~Secs. VII A
and VIII!, and we were able to explain qualitatively th
c-axis anomaly of the thermal expansion~Sec. VII C!.
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