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Using random-phase approximation results, mean-field theory, and refined data for the polarization vectors
we determine the coupling constants of the four Peierls-active phonon modes to the spin chains. We then
derive the values of the coupling of the spin system to the linear ionic displacements, the bond lengths and the
angles between bonds. Our values are consistent with microscopic theories and various experimental results.
We discuss the applicability of static approaches to the spin-phonon couplingc-akis anomaly of the
thermal expansion is explained. We give the values of the coupling constants in an effective one-dimensional
Hamiltonian.[S0163-18209)07921-1

[. INTRODUCTION with the exchange integral§ and J, between nearest-
neighbor(NN) and next-nearest-neighb@NN) Cu d orbit-
With the discovery of the first inorganic spin-Peierls com- als, respectively.

pound CuGe@! it has become possible to investigate the Further we distinguish the phonon part
physics of the spin-Peierls transition in quasi-one-
dimensional spin chains with high precision. As a conse- (p )2
guence, it has attracted much attention both in experiment HpZE .y
and theory. Yet, for a long time the absence of a soft phonon n
modée~ has been puzzling, since the behavior was believed

not to be consistent with the standard approach to spingescribing the lattice vibrations in the harmonic approxima-
Peierls transitions by Cross and Fishéfhe frequencies of ion wherer,, ,=(r*,,r¥ _rZ ) are the deviations from the

nv nvenw

the Pei(_erls-active p_honon modes being of the order of thg),i- equilibrium positions.
magnetic exchan_grblt has b_een argued that the Cross a}nd Finally the spin-phonon coupling term reads
Fisher approach is not applicable because of the nonadiaba-
city of the phonon$.0Only recently we were able to shéw
that the random-phase-approximatiORPA) approach by _ e Q - Q. .
Cross and Fisher indeed is consistent with the hardening of Hsp_2| AdS S'“+2| Ad2S Sz 4
the Peierls-active phonon modes. ] ] o

It is now tempting to combine the RPA results with the The energy scalaJ, . is a function of the variation of the
detailed data on the phonons acquired by Braeeal’ magnetic exchange mtegral Wl_th the atomic displacements
Treating the lattice with the standard harmonic theory andi,,=?dJ/dr}’, to be discussed in Sec. lll. The NNN term
including the spin-phonon coupling mean-field like, we cal-AJy 12 is a function ofdJd,/arf’, .
culate the microscopic coupling constants between the lattice The indices used are= (n,,n, ,n,) € Z° running over all
and the spin chains. It is then possible to predict the effect ofinit cells of the three-dimensional crystal, the Cu-site index
structural changes on the spin system, namely the antiferrd=(lx,ly.l,) e 23 (two Cu sites per unit cell and the unit
magnetic exchangé The latter has been subject to variousvectorsﬁz(l,o,o), §/=(O,1,0), and2=(0,0,1) to nearest-
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experimeptérlo ar}d theoret.ical st.udie@.‘17 - neighbor unit cells in the corresponding direction. The index
The microscopic three-dimension@D) Hamiltonian we  y |abels the 10 atoms within a unit cell as shown in Fig. 1
have to consider consists of three parts: and ae{x,y,z} is the vectorial component of the indexed

quantity in the respective three-dimensional space.
In Sec. Il we briefly summarize the diagonalization of the
H=Hg+Hp+Hg,. (1)  phonon Hamiltonian3) followed by the discussion of the
symmetry of the four Peierls-active phonon modes, including
refined data for their polarization vectors. Using these sym-
metries we transform in Sec. 1l the microscopic spin-phonon
coupling Hamiltonian4) to normal coordinates in reciprocal
space. This procedure yields relations between the different
_ Q- . . linear, angular, and normal mode coupling constants. Using
Hs le S S+Z+J22| S Sz @ RPA results and mean-field theory in Sec. V we obtain nu-

The Heisenberg spin Hamiltonian
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FIG. 1. Projection of the unit cell of CuGg@n thex-y plane. %4\1/\ 93

The oxygen atoms are distinguished int¢1) O(2a), and G2b),

the atoms of the second formula unit are labeled with a prime. Each
unit cell contains two Cu chains in thedirection (the positivez T 11.1Thz
direction is into the plane The broken lines show the reduced unit ‘7’

cell introduced in Sec. llin is the index for the whole celld, 4
indexes the reduced cells.
merical values for the normal mode coupling constants

Q,

which then can be converted to the real-space coupling con-
stants. The resulting dependence of the magnetic exchange
on static distortion of the lattice is discussed in Sec. VIl and (L 6.53THz

compared with values from the literature. Finally we derive s
an effective one-dimensional model to give coupling con- I N
stants consistent with frequently applied theoretical ap- 9
proaches. The consistency of the different results givas a
posteriorijustification of the mean-field approach.
Q1
X ( 2
z T N
Il. PEIERLS-ACTIVE PHONON MODES i A ITH
. V4
In the standard treatment of harmonic lattice dynamics, y
the initial problem of 3N Njo, degrees of freedomN num- FIG. 2. Geometry of thd; eigenmodes as given by the polar-

ber of unit cells,Njo, number of ions in the unit callis  jzation patterns in” Table 1. The shaded areas are the ,CuO
transformed into reciprocal space by a Fourier transformapjaquettes which form the Cu chains in thedirection. The Cu
tion, whereN wave vectors fulfill the periodic boundary atoms are in the center of each plaquette, the corners are formed by
condition’® For any fixed wave vector one obtains a 0(2) ions. The @1) atoms are represented by the open circles with
3- Njon-dimensional problem which may be diagonalized, re-the Ge ions in between theniCompare with thex-y projection
sulting in a set of 3N,,, eigenmodes labeled bw given in Fig. 1) Note that the @) elongations are in the-y plane,
e{l,...,Nj,}. For, that purpose, the displacement andthe (smal) Cu displacements are along tkeaxis, while the Ge
momentum operators are decomposed into eigenmode coflisplacements are along

tributions introducing normal coordinat€¥ and conjugated

momentaP:
The vectorsRR, designate the coordinates of the unit-cell ori-
gins.m, is the mass of theth atom ande, are polarization
1 e(\.Q) vectors. Note that we use a nonstandard definitiorRfpand
M, =— 2, eldRn> AQ)\ . (5)  €/(\,q) which will simplify the interpretation of the polar-
’ \/N q Aoym, ’ ization vectors at high symmetry points in the Brillouin zone.
Further transformation to boson creation and annihilation op-
erator representation via
ST RS 6 0,q)\mP ®) Qro= \5o—(b] g+ by W
pn,v \/N 3 = »(AQ viNQ" N,qT ZQ)\'q N,—q \,g/0



14 358 RALPH WERNER, CLAUDIUS GROS, AND MARKUS BRADEN PRB 59

TABLE I. Frequencies and polarization of the Peierls-acfije TABLE Il. Definition of the coupling constants for linear atomic
phonon modes at room temperature. The global prefactor is givealongations. The two Cu chains running through each unit cell are
by u?=(8.26+0.02)x 10" 2% kg. The notation i®*(\,qo)=€%(\).  distinguished by a primésee Fig. 1L J’ is the magnetic coupling
constant along the Cuwchains.

A 1 2 3 4
. aJ dJ AN
O, /(2m) 3.12THz 6.53THz 11.1 THz 24.6 THz Jdeu™ oz =- or? A=arz
Cun Cun+z Cu’,n
ueZCu()\)/\/mCu 0.0095 —-0.4790 0.7412 —0.0888
ueée()\)/\/mGe —0.4330 —0.5325 —-0.3698 —0.2605 y 0J ad AN
ueé(Zb)()\)/\/mo(z) —0.6212 0.6581 0.3382 —0.7932 9Ge= ‘9rée,n_ mée’ n79_ ‘9rée,n
ueé(Zb)()\)/ VMo  — 0.8620 0.1339 0.2021 0.8723 '
AN AN aJ’
gé(yZa): =T T xx = X
Q ﬁré(yZa)n &rd(za)’,n &ro’(yZa)’,n—Q
. gt
Py =i b, _,—byq), 8
N 5 (Px-q~Pra) ® 9d 9J 4J
Xy — — —
doizn)™

X,y Xy Xy .
I S(2b)n I 5(2by n I o2by n—3

yields the Hamiltonian usually used in the theoretical treat
ment of the lattice vibrations

0.03 —1.67 2.58 —0.31
1

-151 —1.85 —129 —0.91|1012
Hp=2 hﬂm(b{,qu,ﬁ 5). ©) M= 107 . (10
ar -216 229 118 -2.76| kg

—3.00 0.47 0.70 3.0

With the experimentally determined phonon modgs,

and shell-model calculations, it is possible to determine the L . , .
components of the polarization vectoes(\,q).® At the The static distortion in the spin-Peierls phasé& at4 K also

wave vector of the Peierls instability=(/a,0,/c), four ~ has been determinéd.We define a corresponding four-
of the 30 modes correspond to the irreducible representaticfimensional vector:

with the symmetry of the lattice distortion in the spin-Peierls

phase T, in the notation of Ref. 19a=4.8 A, b=8.5 A,

andc=2.9 A are the lengths of the unit cell in the y, and (rew 0.5
z direction, respectively. (rL)
Adapting the lattice-dynamical model presented in Ref. 5, ) _ < —10°2 0.08 A (11)
a special effort was made for the description of the spin- (Dr-a « (ro(20) -0.95)
Peierls relevant modes by the introduction of additional force y
<r0(2b)> —0.65

constants; details of the lattice-dynamical study will be given

elsewheré® The T, modes are characterized by displace-

ments of the Cu ions along of the 2) sites alonga andb,

and of the Ge ions along. The polarization pattern of the

four modes as obtained by the shell model are represented in IIl. SPIN-PHONON COUPLING TERM

Fig. 2 and given together with their frequencies in Table I. |, the spin-phonon coupling terd) we focus on the NN
The highesf, mode corresponds to a Ge-O bond stretchingsart for reasons that will become obvious at the end of the
vibration thereby explaining its elevated frequency. Thesection. We include the relevant displacements of the ions
threeT, modes at lower energies posses a common elemewirectly involved in the Cu-Cu superexchange path determin-
which consists of the rotation of the(8)-O(2) edges of the ing J and only those coupling constants where the ions actu-
CuQ, plaquettes in the&-y plane around the axis. However, ally show displacements in the Peierls-active modes. The
only for the lowest mode does this twisting of the GUO apex “O(1)” atoms are not displaced by those modes at the
ribbons describe the main character of the polarization patappropriate wave vectay,. We have to consider two copper
tern. The modes at 11 and at 6.5 THz show, in addition, dons in adjacent unit cells along thedirection, two germa-
modulation of the lengths of the(@-O(2) edges and a Cu nium sites, and two oxygen atoms surrounding a Cu-Cu
shift parallelc. For the 11 THz mode the displacements ofbond. The notation introduced is shown in Fig. 1, the two
the Cu ions modulate the (&-Cu bond distance. The 6.5 O(2) oxygen atoms per formula unit are denote®& and
THz mode is characterized by a strong modulation of theD(2b). There are two formula units per unit cell which we
Cu-O(2)-Cu bond anglésee Fig. 2which is essential for the distinguish by a prime.
magnetic interaction. The relevant coupling constants for the linear atomic
For later use we define the mati with the elements elongations are shown in Table II. The effective spin-phonon
given bye®(\,qo)/Vm, extracted from Table I: coupling Hamiltonian is
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HIp'= 2 [08u(rEun™ " Cunss) ~ 9T Ger g~ T en) ~ 9001 oizny -y FO0)0)
sp = ded Cu,n Cun+z Jad Ge' ,n—y Gen gO(Zb) O(2bY ,n—y O(2b)h

y R z z y X
- g%(ZD)(rO(Zb)’,n—)A/_ r%(zb),n)]Sﬁ' S’Hrz + ; [géu(rcu"n_ ch',n+£) - gée(rée,n_ rGe/’n) + gXO(za)(r)é(Za)n_ ro(za)r,n)

+g>cl)(2a)(r}(l)(23)n_ré(Za)f,n)] S”].Sr/1+2' (12
|
The two sums correspond to the two Cu chains running 1 20
through each unit cell. HIN=—= 2> S X ﬁx‘qg)\(q)Qm. (19
The symmetry of the Hamiltoniafl2) allows for some YN G A

simplifications. First of all we use the equivalence of cou-pyere the effective normal mode coupling constant
pling to the 238 and Q2b) displacementssee Fig. L

ZQ)\ q inZ eZCu()\iq) igY
V- =(1-e90)gE ——+ (e 1P2+1
90(2= 9020~ 90(2): (13 f 9a(a):=( )9c, Imey ( )
95(2= 9520~ ~ 90(2a)- (14 y esdNa) | €p(\a)
. . X geef + go(z)?
From the symmetry of th&, modes(see Fig. 2we see that Mge Mo(2)

the O2)-y components are in phase, i.€%2an="b(2b)n & (00)

=r%» n» While thex components exhibit an antiphase shift: +qt. 0@ 4 (20)
x( )n X X 90(2)

~Toayn=o@wyn="o@)n- VMo(2)

As indicated in Fig. 1 we then cut the unit cell along the
y axis in half separating the ions labeled “prime” from those
without a label.

was introduced’
The next step is to transform the normal coordinates to
boson creation and annihilation operator representation via

a a Eq (7)
rv’,n_>_rv,n+§//2’ (15)
1
Sh Sh 53— Sht iz Shegiass- (16) HsNr'J\‘:\/_N % S0 G(@(b] g+byg). (2D

The change of sign of the coordinates accounts for the anfhis is the representation usually used in theoretical ap-
tiphase elongation of the two types of ions in the Peierlsproaches to spin-phonon coupligSince the polarization
active modes at the wave vector of the instabilify g,  vectors are known fog, (Table )), Eq. (20) defines the re-
=(m/a,0,mw/c). Resummatiom—| over all the new cells, |ation between the coupling to the linear atomic deviations
i.e., twice as many with a new cell lengltti2 in they direc- g4 (Table 1)) and the normal mode coupling constagt$q).

tion, yields The NNN exchange terrd,S- S ; leads to a magneto-
elastic coupling equivalent to the one for the NN exchange

NN_ z y H | . . . . . . )

H _§|: [gZCu(réu,l_rCu,|+i)+g)ée(r(3e,|7§/+rée,l) shown in Eq(17). Including all ionic linear elongations con

tributing to the Cu-@2)-O(2)-Cu NNN superexchange path
< « « the prefactors in the resulting reciprocal-space coupling con-
+90@("o(2)1-5F Fo@.) stants — compare E¢20) — then are (- e%9°) for the Cu
y (Y 4y ir, . q - part and (1 e'9°) for the other ions. The coupling of the
90 lo,-j+ o187 S-S (17 term vanishes at the wave vector of the instabitity: qo
The overall change of sign in the first sum with respect to the= (7/a,0,7/c) and does thus not directly influence the tran-
second in Eq(12) has been incorporated in the phase factorsition. Within the present work we can disregard this contri-
e'™y. This change of sign translates into the antiphase shifbution.
of the spin-Peierls ordering between neighboring Cu chains
in they direction. IV. COUPLING TO BOND ANGLES AND LENGTHS
Now we substitute the displacemenfs with the g-space
normal coordinates$5). For clarity we introduce the abbre-
viation

The two lower Peierls-active modes essentially vary
the angles 7n“=2 [Cu-O(2k)-Cu] and 5"
=/ [0O(2k)'-0O(2k)-Ge]. Together with the bond lengths
S dé,=Cu-0O(2«) and di.=Ge-O(2) they represent the

qu‘zzf‘ el ™S S (18 ngtjural set of coordina?gs of the lattice vibrations in the irre-
ducible group of thel; modes. The index {a,a’,b,b’}
for the Fourier transform of the nearest-neighbor spin-spirwas introduced to label the position on the different oxygen
correlation operator: atoms in the unit cell.
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TABLE Ill. Linear coefficients of the expansion of the angles V. NORMAL MODE COUPLING CONSTANTS
and bond lengths as a function of the linear atomic elongations, as . .
defined in Eq.(22). The variablesxe{a,a’,b,b’} and 6% We now numerically determine the four normal mode

e {7*,5%d%,,d5) are introduced in the text. The last line holds COUPling constants. We have shown the RPA approach by
the experimental equilibrium angles and bond lengtRsf. 15  Cross and Fishérfor the Hamiltonian
[60%=0y+ A", A9~ is defined in Eq(22)].

H=JEI s-stZEI S Sz

0 ] o dey dee
l96%1arZ,| ™ 0 0.76 0 t 1

ul 0114 + 2 7y ol b) oy gt 5

a. o
|06l orLd 0 0112 0 0.82
A + =353 g@b]_gtbg (29
0610z 021" o029 054 0.57 YN G AR SR ma T T
A A . : . : : .

[00%13r G 2| T - 0.36 0.82 to satisfactorily describe the dynamics of the Peierls-active

0(2) 0'14X O'SZK ' ' phonon modes$.It consists of the Heisenberg chai), the

harmonic phonon part9), and the spin-phonon coupling
term (21) all discussed above. We have given an expression
for the critical temperature of the spin-Peierls transttion
which we generalize to the four Peierls-active modes we

o 0.557 0.89 7 1.93 A 1.73 A

Introducing the variabled” e{ 7", 6“,dg,.dé4 we can : ; _ .21
write u have to consider hereir(X, q =, , 9\(do)=09,):
297 295 297 20;
EA| a0 keTsp= + Xo- (25)
A‘JI,|+2=2 —KAegzz gﬁz _anrg,n' (22) hQ]_ hQZ hQ3 ﬁQ4
{9} 96, 0 v The factor xo~0.5 is a contribution of the static spin-

i ) B polarization function at the appropriate wave vector. Its
Here we defined the coupling constargs=(dJ)/(96;),  value is controversial and we have adopted a mean of the

which are independent of. For reasons of translational in- proposed values. Please refer to the discussion in Sec. IX for
variance we can drop the unit-cell index The linear coef-  the details.

ficients of the Taylor expansions?§“)/(dr%) at different

positions« in the unit cell all yield the same numerical co- A. Ginzburg criterion
efficients but with varying signs. The absolute values of the . o ) .
coefficients are given in Table III. The Ginzburg criterion gives an estimate of the tempera-

Considering all the relevant bonds and angles and usinfj!"® range of the critical region in which fluctuations sup-
the decompositiori22) we can set up a spin-phonon Hamil- Press the applicability of mean-field approackesRPA). It
tonian similar to Eq.(12) in the previous section. By a is obtained through comparing the theoretical correction of
simple comparison of the coefficients we obtain the transfor&aussian fluctuations to the specific heat
mation matrix between the angular and bond-length coupling

2
constants and the linear atomic deviation coupling constants: _ _a_bc Tsp Ks
Cp—Cpo= 5 (26)
167 (T—Tgp)? adbée
z
9cu with the experimental jump in the specific heat at the
o¥e transitio_n?2 The correlation lengthg,, &,, andé along the
X respective crystallographic axes can be obtained from fits to
Yo(2) the diffuse x-ray data from Schoeffet al?®
9t _
0@ _ £a~0.50[(T—Tsp)/Tepl ™ %,
-022 - O —1.52 0
A £p~0.6B[ (T—Tsp/Tspl ™ 13,
g _
0 ~0.11 AZ 0 0.82 g” £:~3.06c[ (T~ Tsp/ T~ 2.
19
= d |- The specific-heat jump has been determined by Lasjaetias
021 T 029 T _108 os57] |9 al.?* to be ACe,,=0.7%g at Tsp per unit-cell volume. Re-
A A 0l quiring C,— C, 0<ACq,, we find the Ginzburg criterion to
- - be
-0.14 x 0.32 x 0.72 -0.82
(T—Tgp>0.03Tg=0.4 K. (27
(23)

In accordance with the mean-field approach to the suscepti-
Together with Eq(20) we now can determine all coupling bility by Klimperet al?® we conclude that beyond a region
constants if any four of the them are known. of 3—4 K aroundT p the mean-field theory is reliable.
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TABLE IV. Normal mode coupling constants for the four TABLE VI. Coupling constants for the angles and bond lengths

Peierls-active phonon modes @, determined by Eq(32). calculated via Eq(23) using the values fog; from Table V.
01/Kg g2/kg g3/kg 94/kg g,/Kg 9s/Ks gdCu/kB gdGJkB
-15 K 58 K -30 K -12 K 15 K/deg 1.5 K/deg 180 K/A —96 K/A

B. Mean-field approach

The mean-field ansatz is reasonable here, since we are inter-
ested in temperatured ¢ K which is far from the critical
é(_egion and the dimerization is as good as saturated.

The transition temperature given for CuGg®@ith 14.1
K, one parameter is fixed through ER5). As we shall
discuss now, the others can be estimated from the polariz
tion vectors of the Peierls-active phonon modes and the static
distortion in the dimerized phasé4K also given by Braden C. Values
et al® For the fixed wave vector of the Peierls instabilify With Eq. (28) and (31) we are left with a set of linear
we can derive from expressiorS) and (7) a relation be- equations. The values of the frequencids are given in
tween a static lattice distortiofrJ) and the expectation val- Taple I, the polarization vectoms’(\,q,) enter via the ma-

ues of the displacement of the eigenmodes out of the halrix M defined in Eq(10), and(r)1_, « is given in Eq.(11):
monic equilibrium(b, 4 ):

91/\/Q_§

(ffq’o,) €)(\,0o) 2h (Sy) 3
oy % 5 & (byo). (28 % 2| 92V
<rp> \/N ; \/N_m,, Qk,qo\ )\,q0> (28 <r>-|-:4 K:_TO\/%M 93/\/9—33 . (32

94/\/9—34

Introducing the canonical transformation

The solution of the equations gives the coupling constants as

E b 4 1 9,(q) 29 a function ofN/(SqO). The latter is then determined by the
MM N QY g critical temperaturd sp=14.1 K via Eq.(25):

for the Bose annihilation and creation operatoys,, where (S 1
S, was defined by Eq(18), the Hamiltonian(24) decouples =N EI (—1)*hy*l(g.5.5)=0.59. (33
into

) For a spin-1/2 system with two Cu chains per unit cell we

H=J> S-S,;— i > gx(q)l ¢S have(S%)/NsO.?S where 0.75 is reached in the fully dimer-
z
N alyq ! ized state. In the uniform Heisenberg c4$g )/N=0.

In Table IV we show the calculated coupling constants of
(30) the spin system to the Peierls-active eigenmodes of the lat-
tice at the wave vector of the instability,. The signs are
such that all contributions in the spin-phonon coupling term
in the Hamiltonian(24) are negative when the phonon modes
The operator®, ,q do not satisfy Bose commutation relations ¢ macroscopically occupied as determined via (28) in
and smce{S_q,m ¢l— # 0 the solution of this Hamiltonian is  Sec. VII A. The mode af),/(27)=6.5 THz is dominant,
not at all evident. But in a mean-field-like approach we carby its symmetry it essentially varies the anglesThis will

1
=
+% mm( bl brat 5]

assume(Bm)zo so that from Eq(29) follows be reflected in the corresponding coupling constant discussed
below.
Note that the influence on the transition temperature of
0,(0) the lowest(), /(27)=3.1 THz mode is as important as that
(byg=——F N Ay (Sy) - (31 of Q3/(27)=11 THz, because of the frequencies in the

denominator of Eq(25).

TABLE V. Coupling constants for the linear atomic displace-
ments calculated via Eq34) using the values fog, from Table

V. VI. MICROSCOPIC COUPLING CONSTANTS

2 Y K X Yk The numerical values of the normal mode coupling con-
gedKe ged K goey ke Yo' e stants thus given, the microscopic coupling constants can be
—890 K/A ~110 K/A 400 K/A —-91 K/IA determined. Using the matri0) we rewrite expressio(20)

for g=qq as
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TABLE VII. Variation of J with the variation of the angles. Note that in our notation there are two angles
7 and two angles” contributing each to the Cu-Cu superexchange gsdle Fig. L

Method (Referencg 2 2
Jon* EK
o 1 1
Harm. theory and mean fielghis papey 10% oo 1% e
€g €g
Microscopic superexchand®&ef. 14 =>8% di =0.3% di
eg eg
Microscopic superexchang®ef. 19 220, di 0.6% di
€g €g
Pressure vs. magnetostrictioRef. 17 ~50 1 ~0.5% 1
deg ' deg
o2 01 /Ql (vi) Two groups analyze_d the_structurgl dependence of the
Cu superexchange within similar microscopic models. Geertsma
| gk 1 | 92v€ and Khomskit* obtained J/kg=135 K and found
g | 2k 9:vQ5 |- B4 203460/ (J97)~16% and DJges/(J36%)~0.6% per de-
o) . gree. These values only accout for the “geometrical” con-
9b2) 9aV s tribution and are thus lower bounds. Bradeinal'® found

J/kg=160 K and gave 2J/(Jin)=~44% and

and compute the coupling to the linear atomic elongations2J/(Jd6*)~1.1% per degree. The agreement between the
Then we calculate the angular and bond length coupling8hicroscopic models is affected by the choice of the param-
using Eq.(23). The resulting values are given in Tables V eters and the number of orbitals taken into consideration.

and VI, respectively. A summary of the values obtained in the different ap-
The results allow for some immediate conclusions: proaches is given in Table VII.
(i) The coupling toz, i.e.,g,, is the dominant contribu-

tion.
(ii) The signs of the coupling constants are corrdat- Vil STATIC DISTORTION

creases with increasing angles and decreasif@Ge bond The microscopic coupling constants given, we can di-
length. The positive value a2, indicates that the ferromag- rectly calculate the effect of static distortions of the lattice
netic exchange is weakened more than the antiferromagnetgeometry on the magnetic exchange.

exchange when stretching th€2p-Cu bond. This is consis-
tent with the net ferromagnetic exchange of th€)aCu
plaquettes without the germanium side group predicted by
Geertsma and Khomskif. Using the static displacements of the ions in the spin-

(iii) Variation of the coupling constants showgs to  Peierls(SP phase af =4 K,!® one may calculate the alter-
couple mainly to the angles8, g, to », andg; andg, to be  nation of the magnetic exchange usually used in mean-field
almost entirely bond stretchirtgWhile the results fog, and  approaches to the spin-phonon coupling, i.e.,

0, are robust under variation of the parameters, the values of
0d, and g, are less fixed within the accuracy of our ap-
proach. Hue=32 [1+(~1)'255]S, - S 11 (35

(iv) From magnetostriction data Bhneret all’ expect Iz ‘£
the influence of the Cu-@)-Cu angle on the magnetic
exchange to be of the order 062/ (Jd%*)~10% per de- This is achieved by substituting in the spin-phonon coupling
gree, and for the @)-O(2)-Ge angle their value is term (17) the atomic displacements by their expectation
203/(J96)~1%. Ford/kg=150 K we obtain about twice valuesr§’|—>(—1)'z+'X(rj>T:4 k and comparing the result-
the valueg(see Table VI).

(v) Comparingg‘ée and g, shows the effect of the ger- NN _ _
manium elongation on the magnetic exchange to be duldt®(Hsp)T-4 « by using the static angular and bond length
mainly to the stretching of the @)-Ge bond. The contribu- deviations® yielding the same results.
tion of the Ge side group to the magnetic exchange should We find §;J/kg=17 K or §;~0.11 (J/kg=150 K). By
depend on the @)-O(2)-Ge angle ad 4~ cosd. Therefore,  solving the system of linear equations defined by @28) for
the angles*~160°=0.897 being close tom, the angular g=qo, the expectation valueéb,)/\/N have been deter-
dependency ofl on § is quite small in spite of the large mined to be 0.061-0.11, 0.034, and 0.006 fovr=1, 2, 3,
entire side-group effect, which is of similar magnitude asand 4, respectively. The elastic energy per unit cell of the
that of the CuQ plaquette elongatioff-*° spin-Peierls distortion afl~4 K then is given by

A. Dimerization

ing (H))r—4 « with Eq. (35). Equivalently one can calcu-
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TABLE VIII. Exchange alternation id[ 1+ (—1)'26;]. TABLE IX. Linear pressure gradients of angles and bond
lengths from experimental data in Ref. 2@p) and the resulting
Method (Referencg 5 theoretical pressure gradients,/dp=(4J/36)(56/9p) (bottom).
- i i The values forwJd/ 96 are given in Table VI.
Harmonic theory and mean field@his papey 0.11
Macroscopic occupation of, modes(This papey ~ >0.04 0 7 S dey dee
Microscopic superexchand®efs. 14,15 0.07 t0 0.2
' ' ~ LA de de A
Dyngmlc phonons and experlmental gdtef. 17 0.05 Y o016 deg 13 deg 00012 _0.0033-~
Static phonons and experimental gégefs. 11,12 0.01 to 0.03 ap GPa GPa GPa GPa
Coupled chaingRef. 16 0.01 to 0.12 AP kgK kgK kgK kgK
— 25— -19— -022_— 0.32 —
ap GPa GPa GPa GPa
(Hp) < 04
=2, —(b,)?>=5K. 36
N kB 2}\: N kB< }\> ( )

For J/kg=150 K this value corresponds @)/ (Jdp)=~
This energy loss has to be compensated by the spin system.go4 per GPa. The pressure dependency of the magnetic
Considering that the maximum gain of magnetic energy igysceptibility is directly related to the magnetostriction. A
reached in the fully dimerized case with 0.3%3 per Cu | 4 ,e of — axI(xp)~ 3dI(Idp)~—8% per GPa was ob-
lon, we find a lower boundary for the dimerization 6§  (jineq after averaging the uni-axial componéiits Taka-
>0.044. IncIud|_ng a NNN terr?s n _Eq(35) W'Fh ‘]2/‘]_ hashiet al? have measured the pressure dependence of the
=0.241 as studied by Chitret al. using a density matrix ¢ yje constanC by fitting a Curie-Weiss law to the high-
renormalization group(DMRG) approach we findd;  temperature tail of the magnetic susceptibility. Assumihg

=0.078. L _ ~1/J one can estimate a value of abailt/(Jop)~—7%
Our result is within a factor of 2 of the values obtained by per GPa. Nishi and co-workéfscompared fits to the disper-

using 9J/dn and 4J/95 obtained from the magnetostriction gjon of the lowest triplet excitations at different pressures.
results” and from the microscopic modef$™ All other  They assume the ratio between the exchadgend next-
published estimates of the dimerization result from an analynearest-neighbor exchange with a value ofJ,/J~0.25

sis of the magnetic excitation spectra observed by inelastighich does alter under pressure, and fount (Jop)~
neutron or Raman scattering. Most of these estimates are 1094 per GPa. In contrast to that Fabricietsal° found
based on the static dimerized Hamiltoni@3) (Refs. 11,12 thatJ, does not alter under pressure. Then the result from
and yield dimerization values much smaller than the oneyishi's analysis is corrected @l/(JJp)~ — 8% per GPa. A

reported herdsee Table VII). Augier and Poilblar® 8 symmary of the values is given in Table X showing their
well as Welleinet al”" extend the static model by coupling consistency.

to dynamical phonons which reduces the magnetic gap by

lowering the effective lattice distortion acting on the spin

systemt’ The derivation of their model and the significance C. Thermal expansion and spontaneous strain
of the phonon dynamics are more closely discussed in Sec.
VIII. Introducing interchain coupling may further suppress
the spin gap® For an extensive discussion see Ref. 16.

In a harmonic lattice the coefficients of linear thermal
expansiona=(dL)/(LdT), vanish. HereL is the length of
All methods incorporate more or less crude approxima-t-he crystal in_a given spatial direction. Anharmonic contribu_-
tions to the real physical situation leaving the question of th tions result in temperature-dependent phonon frequencies
Swhich in turn yield finite values forw. The coefficient of
true valug 0fd, unanswered. Our lower poundary ShO.UId be hermal expansion is linked to the specific heat via(tken-
rather reliable tho_ugh._The values obtained in the d'ﬁerenéerature dependerGrineisen parameter. This implies in the
approaches are given in Table VIl for comparison. limiting casesT—0:a~T3 andT> 0, : a~ constant, where
Oy is the Debye temperaturé.
The thermal expansion in CuGgQ@an be attributed to
Brauningeret al?® and Braderet al?° have investigated two effects: the usual anharmonic behavior described above
the pressure dependence of the angles and bond lengthsand anomalies due to the spin-phonon coupffig. The co-
CuGeQ under hydrostatic pressure. The linearity of theefficient of linear thermal expansion of theaxis in CuGeQ
pressure dependence is reasonable for pressuBsGPa. has a negative sign betweg&gsandT~200 K. The expan-
The values for the pressure gradients obtained from Ref. 28ion of thec axis enlargesd via the anglen. The spin system
are shown in Table IX. then gains energy when the temperature is lowereti~+d
Regarding the partial derivative of the exchange integraby driving the anomaly* A rough quantitative estimation
dJylap=(0J136)(96/p) we find immediately the pressure can be extracted from the analysis of the temperature depen-
gradients of the different angular and bond length contribudence of the herein considered bond lengths and angles given

B. Pressure

tions toJ as given in Table IX. by Bradenet al3? Their temperature dependence between

Considering all four contributions, we obtain the total 295 K and 20 K is close to linear and presented in Table XI.

variation of the antiferromagnetic exchange: Summing up the different contributions equivalently to Eq.
(37) yields 9J/(JdT)~—2.6% per 250 K J/kg=150 K).

o _ddy s _ddee  Icu kgK This effect is a superposition of the normal thermal expan-

(37

ap 2% ap  “op p ~ GPa sion with positivedJ,om/(J4T) and the anomalous effect at
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TABLE X. Variation of J with pressure. TABLE XIl. Experimental uniaxial elastic constants from Ref.
37 (top) and the theoretical elastic constants obtained from the shell
EX model (bottom).
Method (Reference Jop
Cii Cp Csz Cpp Cy3 Cyps

1
Harmonic theory and mean fielthis —6% 5, Expt. (10* dyn/cnf) 7.4 2.1 332
papej a Theory (16 dyn/cn?) 8.2 5.0 34.6 3.0 40 22

1
Susceptibility via magnetostrictiofRef. 8 —8% Gp

a VIIl. COUPLING CONSTANTS FOR REAL-SPACE

1
Curie-Weiss fit to the susceptibilitiRef. —7% GPe NORMAL COORDINATES
9) In order to obtain real-space expressions we use the Fou-

) ) ) ] 1 rier representation of the Bose operators

Fit to the triplet dispersioriRef. 10 -8 to —10% —

GPa

1 )
b, .=— > e '%Rip, . 39
g WZ N (39

low temperature which can be estimated BYa/(JJT) For simplicity we neglect the wave-vector dependence of the

<29J,/(JoT)=—4.1% per 250 K. = frequencies 2, =Q, , and of the polarization vectors
As the crystal undergoes the SP transition spontaneous o

strain appears along all three orthorhombic directirs. €,(A) =¢,(X,qo). The coupling constang, (do) in Eq. (20
) 7 n 5 . then are divided into

The strain couples differerft; modes® and gives a correc-

tion to Eq.(32) which we now show to be unimportant. The ,

elastic energy per unit cell related to the spontaneous strain } IZQA Cu_ 2 ecu(N)

f

atT~4 K can be estimated from the elastic constants. The = Geu Jmey | 49
diagonal elastic cong;ants were taken from the ultrasound

study by P0|r|eret_al.,_ and fo-dlagonal terms were calcu- 2_m ooy eld\) ) eé(z)()\) , E%(z)(?\)
lated with the lattice-dynamical mod@las shown in Table 9= g%e +9502) +gbp)———"
XlI using standard notatioft With the values for the strain h Vmee VMo(2) VMo(z)

€ given by Winkelmanret al3 we find (42)

Transforming the Hamiltoniat4) via Eq.(39) we obtain in

real space
Estrain_ a-b-c

Cie=7X10% K.
kB T i’jgz’se,c”e, 7X10°% K. (39

1
Hi=2 ﬁm( bl b+ 5| +92 8
Note that the strain componenis= e5= €4 vanish, since the Cu it T
orthorhombicity is conserved. The elastic energy involved in + ; (= DMYgRUb) 1+ by 1= by 5= by 2
the strain is four orders of magnitude smaller than the elastic ’
energy of the dimerization given in E¢B6). +g°%(b] | +by 1 +b T on)]S Sz (42)

Note that the components of the spontaneous Strhave
the opposite sign compared with the anomalies of the therfhe coupling constants are given in Table XIIl. This result
mal expansiondiscussed above. The spontaneous strain maimplies that the oxygen and germanium displacements are of
thus be interpreted as a relaxation of the latter when the spithe same importance for the spin-phonon coupling as the
system changes its character at the spin-Peierls transitionopper elongation.
The relaxation is of the order of 1%. Motivated by the symmetry of the Peierls-active phonon
modes an effective onedimensional model can be obtained

TABLE XI. Experimental linear temperature gradients of anglesby restricting the §um tq a single chaln._ The Fourier trans-
and bond lengths from Ref. 32op) and the resulting theoretical 0'M ©Of the one-dimensional model gerlved from €42)
contributions to the temperature dependencé @ottom between ~ Shows the differeng dependencesy=q°) of the copper and

20 and 295 K. the local term.

0 7 ) dey dge TABLE XIIl. Coupling constants to real-space normal modes
obtained from Eqgs(40) and (41).

i 0.2 _deg 0.6 _deg 0.0002 —A 0.002 —A

aT © 250K T 250K 250K 250K\ 1 2 3 4

4J kgK kgK kgK kgK Uk -05K 17 K -20 K 16K

20 3158 09550 0042 0.2 5 Oy ks

aT 250K 250K 250K 250K gy 'kg —-72K 12 K 48 K -75 K
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show a strong temperature dependenceg{fT/J). For J,
+32 S, S,+1 =0 andJ=120 K they foundy(Tgp/J)~0.28. ForJd,/J
'z =0.241 andJ=150 K the parameter attaingq(Tgp/J)
~0.56, whereas fod,/J=0.35 andJ=160 K they found
T igR < . xo(Tgp/J)~1.
(b"’fq+b)"q)|22 e, S, 0ThSe exact value ofl, in CuGeQ has not yet been deter-
mined. Fits to the susceptibility for> Tgp indicate an over-
(43 critical J,,*2*%but fits to the four-spinon continuum seen by
Raman scatteririg indicate an undercritical,. In favor of
an undercriticall, is also the small binding energy of the
singlet bound state forT<Tgp, as seen by Raman
Gran(Q) = (1—ei9¢)gCu+ Zg'{’c. (44) experiment$? Interchain coupling will reduce the value of _
Xo because of an enhancement of the antiferromagnetic
correlations?®
Several studi€§?"%3*have been carried out using real- As can be seen from E(5) our coupling constants scale
space Hamiltonians in the form of E42) reduced to a asdy~+xo *. From the above results follows<lyx, *
one-dimensional model. Usually a single-mode Hamiltonian;<1.9 and we adapt the mean valuegf=0.5 for our cal-
only keeping the local term is considered, i.e., in their notaculations. This value is close to the result fiy/J=0.241.
tion 2g°=g, while the other coupling constants are set toWithin the accuracy of our approach we can Use150 K
zero. ConsideringS", g\, andg!* being of the same order @S given by Castillet al.'? The choice ofy, is justifieda
of magnitude, this simplification should only yield qualita- POSteriori by the agreement of the results in the literature.
tive results. Also note that including a NNN term with, /J=0.24 in Eq.
Yet, these treatments include the dynamics of thel35) with §,=0.1 and using exact diagonalization gives a
phonons. The significance of the latter can be estimated frot@lue of £, (—=1)'%(S -§_,1)/N=0.57 per two Cu ions in
the size of the zero-point motion of the ions. Without theagreement with the value given in E@3).
negligible contribution from the macroscopic occupation Applying hydrostatic pressure the transition temperature
(Sec. VII A) the fluctuations of th&, modes al=0 canbe grows at a rate of 4.8 K/GP4n our approacil spis given
obtained from Eq(5) using the approximation of dispersion- by Eq. (25 and depends on the coupling constagys the
less phonons introduced above: frequencied}, , and the factory,. The coupling constants
g, in turn depend on the linear derivatives of the magnetic
exchangeg; and the polarization vectors, as given in Eq.

1
_ T
Hyp= % ﬁm< bl ¢br—a* 5

gx10(d)
+;q N

Here we defined the 1D coupling constant

o1 ) es(\) 2 h (20). In a harmonic lattice the phonon frequencies and polar-
(9= > (e >T=O:; | 20, ization vectors are independent of pressure. It seems very
A m, r 45 unlikely that the Peierls-active modes exhibit extremely large

negative Graeisen parameters which would be needed in
order to describe the increase D§p upon pressure via the
pressure dependence of the phonon frequencies. The linear
coupling constantg? also are independent of pressure, and

since the lattice distortions are rather sniaf® we do not
expect higher-order contributions to play a crucial role. We
ust thus conclude the value gf, to be strongly pressure
ependent.
Together with the pressure dependencdgf] discussed

On the other hand, the Ginzburg criterion discussed i y Fab_riciuset _al"so_ this may expla_in the shift offp.>®
Sec. V A and the consistency of our results with experimen- her_1 introducing interchain cogplmg, prefacto_rs and t_he
tal ones justify our mean-field approach. In accordance Witﬁunctlonal dependence of the Spin-spin correlatlo_n function
that, Klimperet al2® show that a variety of physical quan- are also alltere_ﬁl. The compressibility of_the crystal is Iarge;t
tities can be obtained correctly in a mean-field picture. It is" thg b direction so that Fhe alternation qf the !nFercham
beyond the scope of this paper but certainly an interestin%Oupllng under pressure is another possible origin of the
question addressed to future studies which quantities are seRressure dependence pf and Tsp.
sitive to the zero-point fluctuations and why.

The resulting values arg {(r%)?)=0.029, 0.035, 0.048, and
0.053 A forry=rg,, re row), andrh,,, respectively.
They are consistent with the values of the total zero-poin
fluctuations obtained from the shell model and the neutron
scattering experiments presented in Ref. 32. The zero-poi
fluctuations are thus a factor of 5 to 10 larger than the stati
distortions as given in Eq11).

X. SUMMARY

IX. DISCUSSION OF
Xo In this paper we have given a detailed analysis of the

The approach by Cross and Fishegave a value ofy, microscopic magnetoelastic coupling in CuGefhich may
~0.26. This value is independent dfbecause of the scale be easily transferred to other systems. The comparison of
invariance am.=w/c. The scaling hypothesis is applicable several theoretical and experimental approaches yields a sat-
close to the critical point of the spin chain, i.e., in the limit isfactory consistency. Numbers have been given in Table VII
T—0. Recent DMRG results obtained by Kiperet al?®>3  for the angular dependence of the magnetic exchange, in
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