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Universal relaxational dynamics near two-dimensional quantum critical points

Subir Sachdev
Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120

~Received 4 November 1998!

We describe the nonzero temperature (T), low frequency (v) dynamics of the order parameter near quantum
critical points in two spatial dimensions (d), with a special focus on the regime\v!kBT. For the case of a
‘‘relativistic,’’ O( n)-symmetric, bosonic quantum field theory we show that, for smalle532d, the dynamics
is described by an effective classical model ofwaveswith a quartic interaction. We provide analytical and
numerical analyses of the classical wave model directly ind52. We describe the crossover from the finite
frequency, ‘‘amplitude fluctuation,’’ gapped quasiparticle mode in the quantum paramagnet~or Mott insulator!,
to the zero frequency ‘‘phase’’ (n>2) or ‘‘domain wall’’ (n51) relaxation mode near the ordered state. For
static properties, we show how a surprising, duality-like transformation allows an exact treatment of the
strong-coupling limit for alln. For n52, we compute the universalT dependence of the superfluid density
below the Kosterlitz-Thouless temperature, and discuss implications for the high temperature superconductors.
For n53, our computations of the dynamic structure factor relate to neutron scattering experiments on
La1.85Sr0.15Cu O4, and to light scattering experiments on double layer quantum Hall systems. We expect that
closely related effective classical wave models will apply also to other quantum critical points ind52.
Although computations in appendixes do rely upon technical results on thee-expansion of quantum critical
points obtained in earlier papers, the physical discussion in the body of the paper is self-contained, and can be
read without consulting these earlier works.@S0163-1829~99!03821-7#
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I. INTRODUCTION

A number of recent experiments have probed the lo
wavelength, low frequency, nonzero temperature~T! dynam-
ics of the order parameter associated with aT50 quantum
critical point in a two spatial dimensions (d). These experi-
ments include the following.

~i! Neutron scattering measurements have mapped ou
T, wave vector, and frequency dependence of the dyna
spin structure factor in La22xSrxCuO4 for x'0.15.1 The
measurements over an order of magnitude inT, and over
three orders of magnitude in the static susceptibility, are c
sistent with the presence of a nearby quantum critical p
to an insulating ordered state with incommensurate spin
charge order~‘‘stripes’’ 2!.

~ii ! Double layer quantum Hall systems at filling fact
n52 exhibit ground states with different types of magne
order.3 Recent light scattering experiments4 have probed the
fluctuation of the magnetic order parameter in the vicinity
the quantum transitions between the states.

~iii ! Microwave measurements5 of the magnetic penetra
tion depth of high temperature superconductors with a nu
ber of differentTc’s show that the superfluid stiffness sati
fies the scaling relation

rs~T!

rs~0!
5CrS T

Tc
D , ~1.1!

whereCr is an apparently universal function. This is pr
cisely the behavior expected in the vicinity of a quantu
critical point whereTc→0,6 such as a superfluid-insulato
transition. In this paper, we shall provide an explicit comp
tation of the universal scaling functionCr in a model sys-
tem. We believe our approach and strategy can be gen
PRB 590163-1829/99/59~21!/14054~20!/$15.00
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ized to models which include some of the additional phys
contained in recent discussions7–10 of the T dependence of
the superfluid density in the high temperature supercond
ors.

Motivated by these disparate experimental systems,
paper will present an analysis of the long-wavelength, n
zero temperature order-parameter dynamics in the vicinity
the simplest, interacting quantum critical point ind52: that
of a ‘‘relativistic,’’ n-component, bosonic fieldfa , a
51 . . .n. However, our ideas and approach are expecte
be far more general, as we shall discuss further in Sec.
The O(n)-symmetric quantum partition function for the fiel
fa is given by ~in units with \5kB51 which we use
throughout!

ZQ5E Dfa~x,t!expS 2E ddxE
0

1/T

dtLQD
LQ5

1

2 F 1

c2
~]tfa!21~¹xfa!21~r c1r !fa

2 G1
u

4!
~fa

2 !2.

~1.2!

Herex is thed-dimensional spatial coordinate,t is imaginary
time, c is a velocity, andr c , r, andu are coupling constants
The coefficient of thefa

2 term ~the ‘‘mass’’ term! has been
written asr 1r c for convenience; we will choose the value
r c so that the quantum critical point is precisely atr 50. So
theT50 ground state has spontaneous ‘‘magnetic’’ order
r ,0 with ^fa&Þ0, and is a quantum paramagnet with com
plete O(n) symmetry preserved forr .0. The quartic non-
linearity proportional tou is relevant about the Gaussia
fixed point (u50) for d,3, and is responsible for producin
14 054 ©1999 The American Physical Society
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a nontrivial quantum critical theory with interacting excit
tions. Higher-order nonlinearities are irrelevant about t
quantum critical point.

In addition to being an important and instructive to
model of an interacting quantum critical point ind52, the
field theory~1.2! also has direct applications to experimen
systems. We will briefly note these now, and discuss th
further in Sec. IV. Forn52, ZQ describes the transition
between superfluid and Mott-insulating states of an inter
ing boson model:f11 if2 is the superfluid order paramete
and the quantum paramagnet is a Mott insulator. Forn53,
fa plays the role of a magnetic order parameter measu
the amplitude of the incommensurate, collinear spin den
wave in the experiments of Ref. 1. Then53 case also de
scribes the quantum Hall experiments of Ref. 4, wherefa
now measures the difference in the magnetization of the
layers.

An important tool in the analysis ofZQ is the e expan-
sion, where

e532d. ~1.3!

The structure of thee expansion for theT.0 properties of
ZQ has already been extensively discussed in two prev
papers, hereafter referred to as I~Ref. 6! and II.11 We will
now summarize the main results of these papers, and
turn to a description of the specific purpose of this pap
Although the present paper builds upon on these ea
works, an attempt has been made to make all of the phys
discussion in the body of the paper self-contained; ear
technical results are used in the appendixes. Some phy
results from I are summarized in the caption of Fig. 1, wh
shall form the basis of our subsequent discussion.

In I, the properties of the phase diagram in Fig. 1 we
analyzed in an expansion ine. In particular, detailede ex-
pansion results were obtained for the dynamic susceptib

x~k,vn![
1

nE0

1/T

dtE ddx

3 (
a51

n

^fa~x,t!fa~0,0!&e2 i (kx2vnt),

~1.4!

where k is the wave vector,vn the imaginary frequency
throughout we will use the symbolvn to refer to imaginary
frequencies, while the use ofv will imply the expression has
been analytically continued to real frequencies. It was fou
in I that for thestatic susceptibility

x~k![x~k,vn50!, ~1.5!

an expansion in powers ofAe held over all regions of the
phase diagram of Fig. 1, apart from a small window in t
immediate vicinity of the line of finite temperature pha
transitions~in this window, the problem reduces to one
classical critical phenomena, and this shall not be of inte
to us here!. So in a sense, the static theory was wea
coupled for smalle, and this allowed for a satisfactory the
oretical treatment of the crossovers inx(k). A completely
different situation held for the dynamic properties, and
particular for the spectral density Imx(k,v): the e expan-
s
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sion was found to fail badly, and led to unphysical results
small k andv. In particular, in region A, this failure in the
computation of the dynamic properties appeared for w
vectors smaller thanck;AeT and frequencies smaller tha
v;AeT. In thee expansion, the low frequency spectral de
sity is given by an integral over the phase space for the de
of excitations into multiple excitations at lower energy; ho
ever it does not self-consistently include damping in the
final states, and this leads to unphysical results. In ot
words, determination of the values of Imx(k,v), for smallk
andv requires solution of a strong coupling problem,even
for smalle, and is dominated by the relaxation of excitatio
with energies of order or smaller thanAeT. Similar results
hold also for the expansion in 1/n.12,13 It is this strong cou-

FIG. 1. Phase diagram of the theoryZQ for d52, n51,2 as a
function of the temperatureT and tuning parameterr. The quantum
critical point is atT50, r 50. The most important crossovers a
represented by the dashed lines, and these occur atT;ur uzn, where
the dynamic exponentz51, andn is the correlation length expo
nent of the (d11)-dimensional classical ferromagnet; these cro
overs divide the phase diagrams into regions A, B, and C. Regio
is the high temperature of the continuum theoryZQ , with the T
→` limit takenafter the short distance cutoff has been sent to z
to obtain the continuum limit; its properties are described by pl
ing the r 50 scale-invariant critical theory at nonzero temperatu
There are two lowT regions, B, C, on either side ofr 50. The
ground state forr .0 is a quantum paramagnet~or a Mott insulator,
depending upon the physical system! with an energy gap; the dy
namics in lowT region C is described by a model of a dilute gas
thermally excitedquasiclassical particles, and this shall not be dis-
cussed in this paper. The ground state forr ,0 has long range orde
with ^fa&Þ0 and the lowT properties above it are described by
model ofquasiclassical wavesfor n>2 ~for n51 a separate mode
of quasiclassical particles applies!. There is a line of finite tempera
ture phase transitions,T5Tc(r ), within region B at which the long-
range order disappears; this is denoted by the full line. ThisT.0
transition is of the Kosterlitz-Thouless type forn52, and in the
universality class of the two-dimensional classical Ising model
n51. The phase diagram forn>3 differs only in that there is no
line of T.0 phase transitions in region B, i.e.,Tc(r )50, and long-
range order is present only forT50, r ,0. The present paper use
the e532d expansion to develop a theory for the low frequen
(v,T), long distance dynamics in region A directly ind52 for all
n, using a model ofquasiclassical waves~our model also contains
the initial crossovers asT is lowered into regions B or C!. In con-
trast, transport of the conserved O(n>2) charge in region A was
discussed in II for smalle; it was dominated by excitations with
energy«k;T, and described by particles obeying a quantum tra
port equation.
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pling problem which will be addressed in this paper.
Although, as just discussed, the results of I for static pr

erties were adequately computed at low orders in thee ex-
pansion, even they had significant qualitative weaknes
when extrapolated to the physically interesting case oe
51, d52, apart from also not being quantitatively very a
curate. In particular, we know that the line of nonzero te
perature phase transitions in Fig. 1 is not present forn>3,
i.e., Tc(r )50 for these cases. In contrast, leading ordee
expansion results of I have aTc(r ).0 for all n. Further-
more, forn52, there should be a jump in the value of th
superfluid density atTc in d52, and clearly, this also doe
not appear at any order in thee expansion. We shall addres
all of these problems in this paper, along with the dynami
problem indicated above. We will do this by an exact tre
ment of certain thermal fluctuationsdirectly in d52, while
the remaining quantum and thermal effects~for which the
cased52 plays no special role! are treated by a low ordere
expansion. We shall claim that this hybrid approach lead
a more quantitatively accurate determination of both st
and dynamic properties in the high temperature~or quantum
critical! region A of Fig. 1. Our approach will lead to
computation of the scaling functionCr , in Eq. ~1.1!, con-
taining the universal jump in the superfluid density atTc .

Before turning to a discussion of our strategy in solvi
the strong-coupling dynamical problem, let us also revi
the results of II. This paper examined transport of the c
served charge associated with the continuous O(n) symme-
try of ZQ , for n>2 ande small. TheT andr dependence o
the conductivity was examined using a perturbative exp
sion in e, especially in region A. It was found that for sma
e, the most important current carrying states were boso
particle excitations with energy«k;T, and momentumk
;T/c ~contrast this with the typical energy of orderAeT
which dominates relaxation of the order parameter, as
cussed above, and in I!. The damping and scattering of th
current carrying states with«k;T was adequately compute
by thee expansion of I, as they were out of the region ofk,v
space where the weak-coupling expansion broke down. A
because«k was not much smaller thanT, the occupation
number of these bosonic modes could not be approxim
by the classical equipartition value,T/«k , but required the
full function 1/(e«k /T21) for quantized Bose particles. Th
transport of charge by these particles was analyzed by
solution of a quantum Boltzmann equation in II. All th
analysis of II was systematic in powers ofe, and included
only the leading nontrivial terms. The present paper will d
velop a strong-coupling approach ind52, but it will be ap-
plied only to the low frequency order parameter dynami
the transport properties of this approach will be examined
a future publication.

We are now ready to outline the strategy of this paper.
will begin in Sec. I A by recalling the approach of I for th
computation of static properties ine expansion. We shal
show that a straightforward modification of this approa
allows an exact treatment of the most singular thermal fl
tuations in directly ind52, allowing us to obtain results
which have all the correct qualitative features for all valu
of n, and are also believed to be quantitatively accurate.
low frequency dynamic properties will then be considered
Sec. I B.
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A. Statics

The main idea of I was to analyzeZQ in two steps. In the
first, all modesfa(k,vn) with a nonzero frequency,vnÞ0
were integrated out in a naivee expansion. This produced a
effective action for thefa(k,vn50) modes, which was sub
sequently analyzed by more sophisticated techniques.
first step here will be identical to that in I; so we define

Fa~x![TE
0

1/T

dtfa~x,t!. ~1.6!

After integrating out the modes with a nonzerovn , the ef-
fective action forFa(x) takes the form

Z5E DFa~x!expS 2
1

TE ddxLD ,

L5
1

2
@~¹xFa!21R̃Fa

2 #1
U

4!
~Fa

2 !2. ~1.7!

The values of the coupling constantsR̃ and U will be dis-
cussed shortly. We are treating the consequences of the
zero vn modes at the one loop level, and at this order
coefficient of the spatial gradient term does not get renorm
ized. This approximation means that effects associated w
wave function renormalization and the quantum critical e
ponenth have been neglected: this is quite reasonable, ah
takes rather small values at the 211-dimensional quantum
critical point. Also, these two loop effects were considered
length in I, and were found to be quite unimportant.

We note in passing thatZ in Eq. ~1.7! is designed to apply
as a model ofZQ in Eq. ~1.2! in region A of Fig. 1. It also
contains the initial crossovers into regions B and C, but th
are some subtleties asT→0 in regions B and C. As we sha
see in Appendix B, the limitsT→0 ande→0 do not com-
mute: the leading physics for very smallT can be properly
captured, but there are some subleading effects which are
accounted for in an approach based on thee expansion.
These caveats also apply to the dynamics to be discusse
Sec. I B.

For our remaining discussion, it is crucial to understa
the properties ofZ as a continuum, classical field theory
its own right. Our strategy here will be obtain the univers
properties of this continuum theorydirectly in d52. Actu-
ally Eq. ~1.7! does not define the theoryZ completely, as
some short distance regularization is needed to remove
ultraviolet divergences.A priori, it might seem that there is
no arbitrariness in choosing the short distance regularizat
as it is uniquely provided by the underlying quantum theo
ZQ . However, as will become clear now, it is actually po
sible to choose a ‘‘virtual’’ short distance regularization ofZ
at our convenience, provided we properly match cert
renormalized couplings with those obtained from the tr
quantum regularization due toZQ ; we will work with a
‘‘virtual’’ lattice regularization ofZ here. So, what are the
short distance singularities ofZ? From standard field theo
retic computations,14 it is known that ford,3, the modelZ
has onlyone ultraviolet divergence coming from the ‘‘tad
pole’’ graph shown in Fig. 2~there are some additional d
vergences, associated with composite operators, which
pear when two or more field operators approach each othe
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space: we will not be concerned with these here—howe
these are important in a consideration of transport proper
and will be discussed in a future paper!. So all short scale
dependence can be removed simply by defining a renorm
ized couplingR related to the bare couplingR̃ by

R̃5R2TUS n12

6 D E1/a ddk

~2p!d

1

k21R
. ~1.8!

Here the expression 1/(k21R) should be read as a schema
for the low momentum behavior of the propagator. At high
momenta of order 1/a ~for lattice regularization, we will
choosea to be the lattice spacing!, the propagator can have
rather different momentum dependence and this has to
accounted for in computing the integral in Eq.~1.8!. Also
notice that we have performed the subtraction with a pro
gator carrying the renormalized ‘‘mass’’R. For d.2, this is
not crucial and we can equally well define the subtract
with a massless propagator 1/k2: this procedure was followed
in I, and has the advantage of leading to a simple lin
relation betweenR̃ andR. Here, we are interested in workin
directly in d52, and then such a massless subtraction wo
lead to an infrared divergence. So we are forced to perfo
the subtraction as in Eq.~1.8!. Indeed ind52, Eq. ~1.8!
evaluates to

R̃5R2TUS n12

24p D ln~C/Ra2!, d52, ~1.9!

where C is a regularization dependent, nonuniversal co
stant. This clearly shows that it is not possible to setR50 in
the subtraction term. We also note an important property
Eqs. ~1.8! and ~1.9! which is special tod52. Clearly, we
have assumed above thatR.0. However, Eq.~1.9! shows
that the bare massR̃ ranges from2` to 1` asR increases
from 0 to `. So it is no restriction to consider only positiv
values ofR, as that allows us to scan the bare mass inZ over
all possible negative and positive values@this is not true for
d.2 as the reader can easily check from Eq.~1.8!: then we
do need values ofR,0, while defining the renormalization
with a massless propagator, to access all values ofR̃]. In
particular, as we will show, we will be able to access bo
the magnetically ordered and disordered phases ofZ for R
.0 in d52. We can also interpret Eq.~1.9! in a renormal-
ization group sense as defining the scale-dependent effe
massR̃ at a length scalea, in a theory with a fixed, positive
R: so even in a theory withR.0, it is possible to have a
significant window of length scale, where the sca
dependent massR̃ is less than zero. We will see in Secs.

FIG. 2. ‘‘Tadpole’’ graph containing the only ultraviolet singu
larity of Z.
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and IV that this interpretation is very helpful in understan
ing the origin of ‘‘pseudogap’’ physics in the quantum crit
cal region.

After short distance dependencies have been remove
the simple renormalization in Eq.~1.9!, all correlators ofZ
are expected to be finite in the limita→0, and are universa
functions of the renormalized couplingsR and U. Actually,
instead of working withR andU, we shall find it more con-
venient to useR, and the dimensionlessGinzburg parameter,
G, defined by

G[
TU

R(42d)/2
, ~1.10!

as our two independent couplings; the ratioG gives an esti-
mate of the strength of the non-linear fluctuations about
mean-field plus Gaussian fluctuation treatment ofZ. So, pro-
vided we express everything in terms ofR andG ~and notR̃
and U), the properties ofZ are regularization independen
and universal functions ofR andG.

At this point, the correct approach towards computing
static properties of the underlying quantum problemZQ
should be quite clear.

~i! First, we compute the values of the effective couplin
R andG, defined in Eqs.~1.7!, ~1.8!, and~1.10!, by integrat-
ing out the nonzerovn modes in Eq.~1.2!. This is carried out
by an extension of the approach developed in I, and
results are presented in Appendix B. In the most interes
high T region A of Fig. 1, these couplings take the followin
values to leading order ine:

R5eS n12

n18D 2p2~T/c!2

3
,

G5Ae
48pA3

A2~n12!~n18!
. ~1.11!

As one moves out of the region A, these couplings beco
smooth, monotonic, and universal functions ofr /T1/zn. In
particular,G obeys the simple scaling form

G5CGS C1

r

T1/znD , ~1.12!

whereCG is a universal function, andC1 is a nonuniversal
scale which can be eliminated if the argument ofCG is re-
lated to the actualT50 energy gap or spin stiffness~as
discussed in I and Appendix B!. As one moves in Fig. 1 from
region C to A to B, the argument ofCG decreases uniformly
from 1` to 2`, while the value ofG increases monotoni
cally and analytically. The value ofFG(0) is given in Eq.
~1.11!. Similar results hold forR, which decreases monoton
cally from region C to A to B. In the body of this paper, w
shall regardR andG as known functions ofr and T which
can be looked up in Appendix B and I.

~ii ! Then, we studyZ directly in d52. We do this mostly
with our own convenient choice of a~virtual! lattice regular-
ization, but we will be careful to express all physical r
sponse functions in terms ofR andG after using Eq.~1.8!;
we will explicitly show that our results become independe
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of a, for small a, when this is done. Finally, for these cou
plings R and G, we use theZQ imposed values given in
Appendix B and Eq.~1.11!, to determine the true physica
response functions. The values ofR andG vary nontrivially
as a function ofr andT, and the final results then contain th
crossovers between the different regions of Fig. 1.

Simple, engineering dimensional analysis shows that
static susceptibility ofZ, and therefore also ofZQ , has the
form ~as shown in I!

Tx~k!5
1

n (
a51

n

^Fa~k!Fa~2k!&5
T

R
CS k

R1/2
,GD ,

~1.13!

whereC( k̄,G) is a universal function of its two argument
One of our primary tasks here shall be the computation
this universal function directly ind52. For smallG, this can
be done in naive perturbation theory; as is clear from
~1.11! such a perturbation theory is applicable in region
for smalle, asG;Ae. However, ind52 ande51, the value
of G in Eq. ~1.11! is not particularly small, and the resultin
perturbation theory for the static susceptibility is not quan
tatively reliable. We shall present the results of straightf
ward numerical simulations carried out on a small works
tion, which give a reasonably accurate determination of
universal functionC in d52, except whenG is extremely
large. Somewhat remarkably, precisely ind52, we shall
also be able to make exact statements in the strong coup
limit G→` through a duality-like transformation, and th
will provide a useful supplement to the numerical results.
summary, by a combination of weak-coupling perturbat
theory, an exact strong-coupling ‘‘duality’’ mapping, and n
merical simulations, we shall obtain fairly complete know
edge ofC directly in d52.

In d52, for the casesn51,2, there are critical valuesG
5Gc whereZ exhibits phase transitions~in the universality
classes ofd52 classical Ising and Kosterlitz-Thouless r
spectively!, which appear as singularities of the functionC
at G5Gc . The values ofGc will be determined numerically
~for n51, Gc was obtained in Ref. 15!. ForZQ , these phase
transitions, of course, reflect those along theT.0 full line
within region B in Fig. 1.

An important property characterizing the low temperatu
phase ford52, n52, andG.Gc is the spin stiffness,rs(T).
Simple dimensional arguments similar to those leading
Eq. ~1.13! now show that its temperature dependence ob

rs~T!5TC̃r~G!, ~1.14!

whereC̃r is a universal scaling function; it is closely relate
to the experimentally measurableCr in Eq. ~1.1!, and this
will be discussed in Sec. IV. Clearly,C̃r vanishes forG
,Gc .

B. Dynamics

As we have emphasized in I and II, the dynamical pro
erties of region A of Fig. 1 ind52 are especially interestin
because they are characterized by a phase coherence
and an inelastic scattering time, which are both univer
numbers timesT. Consequently, thermal and quantum flu
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tuations play equal roles in the dynamical theory; this regi
of dynamics was dubbedquantum relaxationalin Ref. 13.
Here we argue that for the case wheree is small, and for the
long wavelength relaxational dynamics of the order para
eteronly, it is possible to disentangle the quantum and cl
sical thermal effects. The central reason for this is that
predominant modes contributing to the relaxation of the
der parameter fluctuations at long wavelengths have an
ergy of order

cAR;AeT, ~1.15!

from Eq. ~1.11!. It must be emphasized that these mod
carry negligible amounts of current, and the transport pr
erties continue to be dominated by excitations with energy
orderT even for smalle, as we have discussed in II. As th
energy in Eq.~1.15! is parametrically smaller thanT, the
occupation number of the typical order-parameter modes

1

ecAR/T21
'

T

cAR
;

1

Ae
@1. ~1.16!

The second term above is the classical equipartition va
So we can conclude that there is an effective classicalnon-
linear wave modelwhich describes the long wavelength r
laxation of thefa fluctuations. Quantum effects then appe
only in determining the coupling constants of this effecti
classical dynamics.

So what is the classical wave model describing the rel
ation of the order parameter modes? To leading order ine,
the required model can be deduced immediately from so
simple general arguments. First, we have the important c
straint that the equal time correlations must be identica
those implied byZ in Eq. ~1.7!. Second, to endow theFa
field with an equation of motion, we clearly need to intr
duce a conjugate momentum variablePa . The kinetic en-
ergy associated with this momentum is clearly given by
time derivative term inLQ in Eq. ~1.2!. Furthermore, we
know that the coefficient of this gradient term is not reno
malized at ordere when the high frequency modes are int
grated out. So we assert that the required dynamical mod
specified by the following partition function over a classic
phase space

ZC5E DFa~x!DPa~x!expS 2
H
T D ,

H5E ddxH 1

2
@c2Pa

21~¹xFa!21R̃Fa
2 #1

U

4!
~Fa

2 !2J .

~1.17!
Notice that we can perform the Gaussian integral overPa
exactly, and we are left then with the original coordina
space in Eq.~1.7!: this is the usual situation in classical st
tistical mechanics, where momenta decouple from the st
analysis. To complete the specification of the classical
namical model, we need to supplement Eq.~1.17! with equa-
tions of motion. These are obtained simply be replacing
quantum commutators associated with classical Pois
brackets. So we have

$Fa~x!,Pb~x8!%P.B.5dabd~x2x8!. ~1.18!
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The deterministic, real time equations of motion are then
Hamilton-Jacobi equations of the HamiltonianH, and they
are given by

]Fa

]t
5$Fa~x!,H%P.B.5c2Pa ~1.19!

and

]Pa

]t
5$Pa~x!,H%P.B.5¹x

2Fa2R̃Fa2
U

6
~Fb

2 !Fa .

~1.20!

Equations~1.17!, ~1.19!, and ~1.20! define the central dy-
namical nonlinear wave model of interest in this paper. W
are interested in the correlations of the fieldFa at unequal
times, averaged over the set of initial conditions specified
Eq. ~1.17!. Notice all the thermal ‘‘noise’’ arises only in th
random set of initial conditions. The subsequent time evo
tion obeys Hamiltonian dynamics, is completely determin
tic, and precisely conserves energy, momentum, and t
O(n) charge. This should be contrasted with the class
dynamical models studied in the theory of dynamic critic
phenomena,16,17where there are statistical noise terms and
explicit damping coefficient in the equations of motion.

The dynamical model above has been defined in the c
tinuum, and so we need to consider the nature of its s
distance singularities. Our primary assertion is that ford
,3, the only short distance singularities are those alrea
present in the equal time correlations analyzed in Sec.
These were removed by the simple renormalization in
~1.8!, and we maintain this is also sufficient to define t
continuum limit of the unequal time correlations. These
sertions rely on our experience with the structure of the p
turbation theory inG presented in I, and on the consisten
of the numerical data we shall present with the scaling str
ture we describe below.

Assuming that introducingR as in Eq.~1.8! allows to take
the limit a→0, we can deduce the scaling form of unequ
time correlations by simple dimensional arguments. We
fine the dynamic structure factor,S(k,v) by

S~k,v!5
1

nE2`

`

dtE ddx (
a51

n

^Fa~x,t !Fa~0,0!&e2 i (kx2vt).

~1.21!

Notice that, unlike Eq.~1.4!, this involves an integral ove
real time,t. Comparing with the equal time correlator in E
~1.13!, we clearly have the relation

Tx~k!5E
2`

` dv

~2p!
S~k,v!. ~1.22!

However, what is the relationship betweenS(k,v) and the
physically appropriate quantum dynamic susceptibi
x(k,v) obtained by analytically continuing Eq.~1.4!? By
analogy with Eq.~1.21! we can define the physical, quantu
dynamic structure factor

SQ~k,v!5
1

nE2`

`

dtE ddx (
a51

n

^fa~x,t !fa~0,0!&e2 i (kx2vt),

~1.23!
e

e

y

-
-
tal
al
l
n

n-
rt

y
.
.

-
r-

c-

l
-

where it is understood the time evolution is now due to
quantum Hamiltonian implied byZQ , and so is the therma
average. This structure factor obeys an exact fluctuation
sipation relation tox(k,v) defined in Eq.~1.4!:

SQ~k,v!5
2

12e2v/T
Im x~k,v!. ~1.24!

We can relate the dynamic structure factorsSQ and S only
under the conditions that the dominant spectral weight
excitations is at an energy smaller thanT. As argued earlier,
this is the case here by Eq.~1.15! for e small. Assuming this
condition we haveS(k,v)'SQ(k,v) and

S~k,v!'
2T

v
Im x~k,v!. ~1.25!

Finally, we can write down the scaling form obeyed b
S(k,v); from the arguments of the previous paragraph, a
simple engineering dimensional considerations as in
~1.13!, we obtain

S~k,v!5
Tx~k!

cR1/2
CScS k

AR
,

v

cAR
,GD , ~1.26!

whereCSc( k̄,v̄,G) is a dimensional universal function is a
even function ofv̄. The prefactor of Eq.~1.26! has been
chosen to ensure that this function has a constant inte
over frequency

E
2`

` dv̄

2p
CSc~ k̄,v̄,G!51, ~1.27!

as follows immediately from Eq.~1.22!, or from Eq.~1.25!
after use of the Kramers-Kronig representation ofx(k) in
terms of Imx(k,v). We will obtain information on the struc
ture of CSc for d52 in Sec. III. We shall be especiall
interested in thev→0 limit of S(k,v) which describes the
long time correlations of the order parameterFa ; this limit
is not accessible in perturbation theory even for smallG, as
was shown in I.

The outline of the remainder of the paper is as follow
We will present details of our analysis of the static propert
of Z in Sec. II. The main achievements of this section are
a technical and quantitative nature, and there are no qua
tively new physical results; some readers may wish to s
this section and go directly to Sec. III. In Sec. III we wi
present our numerical results on the long time dynamics
the modelZC . A synthesis of our results in the context of i
experimental implications will then appear in Sec. IV. Som
technical details, including a summary of needed res
from I and II are presented in the Appendixes.

II. STATICS IN TWO DIMENSIONS

This section will examine the classical model~1.7! di-
rectly in d52. We will obtain essentially complete informa
tion on the static susceptibility,x(k), by a combination of
weak coupling~Sec. II A!, strong coupling~Sec. II B!, and
numerical methods~Sec. II C!. The exact duality-like trans-
formation will be described in Sec. II B.



h

lin

i
m

ed

is
a

e

at
he

s
d
ifi

l
ap

ts

ef-

Eq.
r-

d,
er
on

g

f

a

’
ad

ical

for

14 060 PRB 59SUBIR SACHDEV
A. Weak coupling

For smallG, we can perform a familiar Feynman grap
expansion in the quartic coupling inZ. At orderG 2 we ob-
tain atk50

x21~0!5RF12S n12

18 D J~1,1,1!G 21O~G 3!G , ~2.1!

whereJ(1,1,1) is a number defined in Eq.~C19!, and Eq.
~2.1! is clearly consistent with the scaling form~1.13!. The
order G 2 correction starts becoming important forG'15,
which then is roughly where the crossover to strong coup
occurs.

The spatial correlations ofF decay exponentially on a
scale of order 1/AR. Neglecting the orderG 2 corrections, we
get from a Fourier transform of the 1/(k21R) propagator at
large uxu

1

n (
a51

n

^Fa~x!Fa~0!&5
T

A8puxu/j
e2uxu/j, ~2.2!

where the correlation lengthj is

j5
1

AR
@11O~G 2!#. ~2.3!

B. Strong coupling

We will now consider correlators ofZ in the limit G
→`. Quite remarkably, exact information can be obtained
this limit too. The key is an ingenious proposal made so
time ago by Chang18 for the n51 Ising case, but which
appears to have been forgotten since. Chang propos
strong-to-weak coupling mapping forn51, which has the
flavor to a duality transformation. Here we will review h
mapping, and show that closely related methods can be
plied to all n.

The argument begins by noting that in the limitR→0, the
bare massR̃ in Eq. ~1.8! tends to2`. So at short scales, th
effective potential controlling the fluctuations ofuFau will
have a negative curvature at the origin and a minimum
nonzero value ofuFau. This suggests that we renormalize t
theory with anegativerenormalized coefficient of theFa

2

term. So we replace Eq.~1.8! by

R̃52
RD

2
2TUS n12

6 D E1/a d2k

~2p!2

1

k21RD

, ~2.4!

where we have introduced a new renormalized ‘‘dual’’ ma
RD.0; the factor of 1/2 in the first term on the right-han
side is for future convenience, and has no particular sign
cance. While both Eqs.~2.4! and ~1.8! have a nonuniversa
cutoff dependence in their momentum integral, this dis
pears when we combine them to eliminateR̃ and obtain

R1
RD

2
5TUS n12

24p D ln
RD

R
. ~2.5!

This equation can be solved to yieldRD.0 as a function of
U and R. As we will discuss shortly, such a solution exis
only for R small enough.
g

n
e

a

p-

a

s

-

-

Assuming the existence of a solution~2.5! for RD , we
now have a new renormalized theory in which the local
fective potential forFa fluctuations has the form

2
RD

4
Fa

21
U

4
~Fa

2 !21 . . . , ~2.6!

where the ellipses represent counterterms arising from
~2.4! which will cancel the cutoff dependencies order by o
der in U. So if this renormalized theory is weakly couple
uFau will fluctuate around a nonzero mean value of ord
A3RD /U. But is this the case? Clearly, this depends up
the value of a ‘‘dual’’ dimensionless coupling,GD , which is
the analog of Eq.~1.10!

GD5
TU

RD
. ~2.7!

What is the value ofGD? This can be obtained by combinin
Eqs.~2.5!, ~1.10! and ~2.7! into the dimensionless equation

1

G1
1

2GD
5S n12

24p D ln
G
GD

~2.8!

which can be solved to yieldGD as a function ofG. A plot of
GD versusG is shown in Fig. 3. A straightforward analysis o
Eq. ~2.8! shows that there is no real solution forGD for G
,54.2756 for n51, for G,40.7069 for n52, and G
,32.5655 forn53. ForG larger than these values, there is
solution for GD which decreases monotonically from
(GD)max512p/(n12) asG increases, and asG→` it obeys

GD'
12p

~n12!

1

ln G . ~2.9!

So GD is small asG becomes very large, and this ‘‘dual’
problem is therefore in a weak coupling limit, as we h
hoped.

We have so far been expressing all universal phys
properties of Eq.~1.7! in terms ofG and R. However, for
largeG, it is clear that we can freely trade these couplings
GD andRD : we defineGD from Eq. ~2.8! and relateRD and
R by the relationship

RDGD5RG, ~2.10!

FIG. 3. The ‘‘dual’’ dimensionless couplingGD as a function of
G for n51 ~full line!, n52 ~dashed line!, andn53 ~dotted line!.
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obtained by comparing Eqs.~1.10! and~2.7!. We will mainly
useRD andGD as our independent couplings in the rema
der of this subsection.

It now remains to do a weak coupling analysis in pow
of GD . This is straightforward forn51, but the cases with
continuous symmetry,n>2, have to be treated with som
care. All of these analyses have been discussed in Appe
C, and we will present the final results for different value
n in the following subsections.

1. n51

For n51, we have from Eq.~C5! for large uxu

^Fa~x!Fa~0!&5N0
21

T

A8puxu/j
e2uxu/j, ~2.11!

where the correlation length

j5
1

ARD

, ~2.12!

and the spontaneous magnetization was computed in
~C8!:

N05A3T

GD
F12

5GD
2

12
J~1,1,1!1O~GD

3 !G . ~2.13!

The numerical constantJ(1,1,1) also appeared in Eq.~2.1!,
and its value is given in Eq.~C19!. So the correlator ap
proachesN0

2 exponentially on the scalej. In momentum
space, the static susceptibility has the form

x~k!5
N0

2

T
~2p!2d2~k!1

1

k21RD

, ~2.14!

which is of the form~1.13!. The presence of the delta func
tion indicates true long-range order which breaks theF
→2F symmetry for smallGD ~largeG).

2. n52

For n52, from Eq.~C9! and the arguments below it, w
can conclude that foruxu@1/ARD, there is a power-law de
cay in the order parameter correlator

(
a51

n

^Fa~x!Fa~0!&5
3T

GD
S 11

~ ln 22g!

6p
GD1O~GD

2 ! D
3@ uxuARD#2h, ~2.15!

where g is Euler’s constant, and the continuously varyi
exponent,h, is related tors(T), the exact renormalized spi
stiffness towardsO(2) rotations, by

h5
T

2prs~T!
. ~2.16!

We computedrs(T) in Appendix C 2 in a perturbation
theory inGD and found

rs~T!

T
5

3

GD
2
GD

36
1O~GD

2 !, ~2.17!
-

s

ix
f

q.

which is consistent with the scaling form~1.14!. The power-
law decay in Eq.~2.15! corresponds to a quasi-long-rang
XY order in the two-component planar order parame
(F1 ,F2). In momentum space, the quasi-long-range or
implies a power-law singularity in the static susceptibility
k50:

x~k!5
3G~12h/2!

p2hG~h/2!

1

GDRD
h/2k22h

, ~2.18!

which is consistent with the scaling form~1.13!.

3. n>3

For n>3, no long-range or quasi-long-range order is po
sible. Correlations always decay exponentially at sufficien
long scales, but the correlation length does become v
large in the strong coupling limit. We conclude from th
analysis in Sec. C 3 that the ultimate long-distance deca
the correlation function has the form

(
a51

n

^Fa~x!Fa~0!&5C1

T

GD
GD

(n21)/(n22)e
2uxu/j

Auxu/j
,

~2.19!

whereC1 is a universal number, and the correlation length
given by

j5
1

ARD

GS n21

n22D Fe~n22!GD

48p G1/(n22)

expS 6p

~n22!GD
D .

~2.20!

The static susceptibility can be deduced from the results
Refs. 19 and 13, and is given by

x~k!5C2S GD

3 D 1/(n22)

j2f ~kj! ~2.21!

for small k, whereC2 is a universal number@C2'1.06 for
N53 ~Ref. 20!#, f is a smooth scaling function considered
Refs. 19 and 13 withf (0)51. Notice that, unlike the case
n51,2, there is no singularity inx(k) at k50 for smallGD
~largeG); insteadx(0) becomes exponentially large (;j2),
has an exponentially small width (;1/j) in momentum
space, but remains a smooth function ofk.

C. Numerical results

We now have an understanding of the properties ofZ
both in the limitsG→0 andG→` in d52. For smallG, we
have the result~2.2! and ~2.3! showing theFa correlations
decay exponentially in space due to the fluctuations ofn Fa
modes aboutFa50, while Eq. ~2.1! shows that the static
susceptibilityx(0);1/R. For largeG we have the results fo
the static susceptibility in Eqs.~2.14!, ~2.18!, and~2.21!. We
will examine the manner in which the system interpola
between these limits in the following subsections.

1. n51

The delta function in Eq.~2.14! indicates the presence o
long-range order for sufficiently largeG. This delta function
is expected first appears at a critical valueG5Gc by a phase
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transition in the universality class of thed52 classical Ising
model. The value ofGc was determined numerically in
recent Monte Carlo simulation in Ref. 15, which found

Gc561.44. ~2.22!

2. n52

The quasi-long-range order implied by Eqs.~2.15! and
~2.18! is expected to be present forG.Gc , and to vanish at
Gc by a Kosterlitz-Thouless transition. The low temperatu
phase is characterized by the spin stiffness which obeys
scaling form in Eq.~1.14!. The behavior of the scaling func
tion C̃r for largeG ~small GD) was obtained earlier in Eq
~2.17!. We expect that

C̃r~G,Gc!50, ~2.23!

while precisely atGc its takes the value specified by th
Nelson-Kosterlitz jump

C̃r~G5Gc!5
2

p
. ~2.24!

We performed Monte Carlo simulations to obtain mo
information on the functional form ofC̃r and the value of
Gc . We discretized Eq.~1.7! on a square lattice of spacinga,
and used anL3L lattice with periodic boundary conditions
The Monte Carlo sweeps consisted of two alternating ste
First we updated both the amplitude and phase of (F1
1 iF2) on each site by a heat bath algorithm.21 Then we
applied the Wolff cluster algorithm22 to rotate the phase o
sites on clusters by a random angle. As we are intereste
fairly large values ofG, whereC̃r is nonzero in the thermo
dynamic limit, it is more appropriate to use the dual co
plings,GD andRD in testing for the appearance of the co
tinuum limit. In particular, we needRDa2!1, and we used
values around RDa2'0.04; this was found to yield
a-independent susceptibilities, as we will display more e
plicitly in our discussion of then53 case.

Our numerical results forrs(T) are shown in Fig. 4. The
stiffness was measured by evaluating the expectation v
of the appropriate current-current correlation function i
plied by the Kubo formula. The results are presented by p
ting „rs(T)/T…/(3/GD) versusGD/3, and we will now discuss
the reason for this choice. From Eq.~2.17! and our discus-
sion in Appendix B we see thatGD vanishes linearly asT
→0, and that

lim
T→0

GD~T!

T
5

3

rs~0!
, ~2.25!

where we have now emphasized thatGD is a function ofT, as
was also noted in the scaling form~1.12!; this relationship
guarantees that vertical coordinate in Fig. 4 becomes unit
GD→0. Further, if we approximate theT dependence ofGD
by GD(T)'3T/rs(0) ~this relationship isnot exactly true!,
then the vertical axis in Fig. 4 becomesrs(T)/rs(0), while
the horizontal axis isT/rs(0).

Notice that for smallGD , the results forrs(T) are ap-
proximately independent ofL, while they become stronglyL
dependent aroundGD'3, as would be expected in the vicin
e
he

s.

in

-

-

ue
-
t-

as

ity of the Nelson-Kosterlitz jump, which is present only
the infiniteL limit. We can make quite a precise estimate
the position of this jump by fitting23 the L dependence ofrs
to the following theoretically predicted24 finite-size scaling
form:

rs~T!

T
5

2A

p S 11
1

2 ln~L/L0! D . ~2.26!

A andL0 are free parameters, determined by optimizing
fit. The best fit values ofA are shown in Fig. 5. The value o

FIG. 4. Numerical results for„rs(T)/T…/(GD/3) as a function of
GD/3. We used a square lattice ofL3L sites with periodic boundary
conditions and lattice spacinga. The lattice sizes used wereL
564 ~stars!, L5128~pluses!, andL5256 (3’s!. The dashed line is
the locus of points where the Nelson-Kosterlitz jump~2.24! is
obeyed. The full line is the result of the smallGD expansion in Eq.
~2.17!. The filled circle indicates the position of the Kosterlitz
Thouless transition determined by the extrapolation toL5` limit
using the method described in the text and in Fig. 5. In the appr
mation in which we assume that theT dependence ofGD is given by
its leading value asT→0, GD'3T/rs(0), thescale on the horizon-
tal axis becomesT/rs(0), while that on the vertical axis become
rs(T)/rs(0).

FIG. 5. Values of the coefficientA in Eq. ~2.26! determined by
fitting theL dependence of the measuredrs(T)/T to Eq.~2.26!. We
fit the value ofA to a linear function ofGD , and the point where the
line has the valueA51 ~indicated by the dotted lines! determines
the position of the Kosterlitz-Thouless transition.
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GD at whichA51 determines the position of the Kosterlit
Thouless transition, and in this manner we determine

GDc52.747. ~2.27!

Finally, using Eq.~2.8! we get

Gc5102. ~2.28!

3. n53

There is now no phase transition as a functionG, and the
susceptibility exhibits a smooth crossover from the we
coupling form~2.1! to the strong-coupling limit~2.21!. We
obtained numerical results forx(0) at intermediate values o
G, and the results are shown in Fig. 6. A range of values oL
andRa2 were used, and the excellent collapse of these m
surements in Fig. 6 indicates that we are studyingL in Eq.
~1.7! in the continuum and infinite volume limits. The wea
coupling prediction of Eq.~2.1! is also shown, and this is
seen to work only for very small values ofG.

III. DYNAMICS IN TWO DIMENSIONS

Finally, we turn to the central problem of dynamic corr
lations. We generated initial conditions forFa as described
in Sec. II C, for Pa by the simple independent Gaussi
distributions specified by Eq.~1.17!, and then integrated th
equations of motion~1.19! and ~1.20! by a fourth-order
predictor-corrector algorithm. Correlations ofFa at unequal
times were then measured, and in this manner we obta
the correlation function*d2x^Fa(x,t)Fa(0,0)&. The results
are shown in Figs. 7–9 forn51, 2, and 3 respectively, for a
series of values ofG. The values ofG were chosen to be
around the quantum critical value~1.11! evaluated directly in
e51. Also in Fig. 9, we show results for different values
Ra2, and their independence on this parameter is evide
that we are measuring the universal values in the continu
limit.

There is a simple, and important, trend in the dynami
correlations with increasingG. For smallG, the k50 corre-

FIG. 6. Scaling plot of the static susceptibilityx(0) for n53 as
function of G. The dashed line indicates the prediction of wea
coupling expansion in Eq.~2.1!.
-

a-

ed

ce
m

l

lations show a clear damped oscillation in time. These os
lations representamplitude fluctuationsin Fa about a mini-
mum in the effective potential atFa50. The damping of the
oscillations increases with increasingG, until the oscillations
disappear entirely forG large enough.

The Fourier transform of the data in Figs. 7–9 to fr
quency directly gives us the dynamic structure factor, a
the scaling functionCSc defined in Eq.~1.26!. The results
for this are shown in Figs. 10–12 forn51, 2, and 3, re-
spectively. Notice thatS(0,0) is clearly always nonzero
Consequently, by the fluctuation-dissipation theorem, E
~1.24! or ~1.25!, Im x(0,v);v for smallv. The perturbative
computations in I did not obey this simple and important lo
frequency limit, and so this sickness has been cured by
present nonperturbative, but numerical, computation.

The smallG regime of amplitude fluctuations discusse
above in the time domain, translates now into a peak
S(0,v) at finite frequency of order;cAR. As G is reduced,
we move out of the highT region A in Fig. 1, and into low
T region C on the quantum paramagnetic side. This fin
frequency, amplitude fluctuation peak connects smoot
with a sharp peak associated with a quasiparticle excita
of the quantum paramagnet. Of course, once we are re

-

FIG. 7. The dynamic structure factor in the time doma
S(k,t)5*dv/(2p)S(k,v)e2 ivt, for n51 and with G
525, 30, 35, 40.

FIG. 8. As in Fig. 7, but forn52 and withG520, 30, 40.
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C, the amplitude and width of the peak can no longer
computed by the present quasiclassicalwavedescription, and
we need an approach which treats the excitedparticlesqua-
siclassically.

Now consider the opposite trend of increasingG towards
the low T region B on the magnetically ordered side. AsG
increases, the peak broadens and eventually, the maxim
moves down to zero frequency. Forn>2, it is natural to
interpret this dominance of low frequency relaxation as d
to ‘‘phase’’ or ‘‘angular’’ fluctuations ofFa along the con-
tour of zero energy deformations at a fixed nonzerouFau. Of
course the fully renormalized effective potential necess
has a minimum atFa50 because this is a region withou
long range order; nevertheless, there must be a signifi
intermediate length scale over which the local effective
tential has a minimum at a nonzero value ofuFau, and the
predominant fluctuations ofFa are angular. This can also b
seen from the relation~1.9!: crudely, we can imagine varying
a at fixed R to determine the effective massR̃ on a length
scalea—we see that for largeG, there is a significant scal

FIG. 10. The Fourier transform of Fig. 7 to frequencies, wh

yields the scaling functionCSc(0,v̄,G) in Eq. ~1.26!, where v̄
5v/cAR. Results are forn51 andG525, 30, 35, 40.

FIG. 9. As in Fig. 7 but forn53 and G520, 25, 30. ForG
520, 30 we used two different values ofRa2 (Ra250.03, 0.04 for
G520, andRa250.04, 0.08 forG530) and these are indicated b
the presence of both dashed and full lines for these cases. The
agreement between the dashed and full lines is evidence that w
measuring the universal values in the continuum limit.
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over which R̃ is negative, which prefers a locally nonze
value of ufau, and allows for low-energy phase fluctuation

We can understand the nature of the dynamics in the li
G→` by arguments analogous to those made for the sta
We will restrict our attention here ton53, and other cases
are similar. We saw in Sec. II B 3 that the statics were
scribed by thed52 O(3) nonlinears model. In a similar
manner we can argue that the dynamics will be given by
dynamical extension of this model considered by T
et al.,20 and the three-argument universal scaling funct
CSc in Eq. ~1.26! will collapse to the two-argument universa
scaling functions of Tycet al. in the limit G→`. This col-
lapse is similar to the transformation of Eqs.~1.13! to ~2.21!
in the same limit for the statics. Consistent with the interp
tation in the previous paragraph, the description of theG
→` limit of the dynamics given by the model of Tycet al.
is described by a model in whichufau is constrained to have
a fixed length. Further the results of Tycet al. show a large
v50 peak inS(0,v),20 which is consistent with the trend
observed here with increasingG.

The above description of the origin of the low frequen
relaxation in the continuum highT region A due to angular
fluctuations infa clearly relies on the existence of a co
tinuous symmetry forn>2. However, closely related argu
ments can also be made forn51 by appealing to the low-
energy mode arising from the motion of domain wa
between ordered regions with opposite orientations.

FIG. 11. As in Fig. 10 but forn52 andG520, 30, 40.

FIG. 12. As in Fig. 10 but forn53 andG520, 25, 30. As in
Fig. 9, there are two data sets forG520, 30 ~indicated by the
dashed and full lines!, corresponding to two different values ofRa2.
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We have implicitly assumed above that ‘‘amplitude’’ an
‘‘angular’’ fluctuations are mutually exclusive phenomen
but this is clearly not true in principle. Even in a region wi
angular fluctuations, there can be an amplitude mode inv
ing fluctuations inufau about its local potential minimum
Such a situation would be manifested by a simultaneous p
in S(0,v) both atv50 and at a finite frequency. It is appa
ent from Figs. 10–12 that such a situation never arises
clear-cut manner. Apparently, once angular fluctuations
pear, the nonlinear couplings between the modes is str
enough ind52 to reduce the spectral weight in the amp
tude mode to a small amount. However the amplitude m
does not completely disappear—there is a clearly vis
shoulder in then51 Fig. 10 forG535, indicating concomi-
tant angular and amplitude fluctuations. These results on
difficulty of observing an amplitude mode for largeG in d
52 ~low T in region B! connect smoothly with theT50
response of the magnetically ordered state of the quan
theoryZQ—the latter is reviewed in Appendix A, and w
find there that the amplitude mode is swallowed up in
spin-wave continuum for the continuous symmetry case.

For the quantum-critical region A in Fig. 1, we should u
the value ofG in Eq. ~1.11!. At e51, this result evaluates to
G535.5 for n52, G529.2 for n52, and toG524.9 for n
53. If we take this value ofG seriously, then we see from
Figs. 10–12 that all cases are quite close to the border
tween amplitude and phase fluctuations, when the pea
S(0,v) moves from nonzero to zero frequency. Amplitu
fluctuations are however somewhat stronger forn53 ~when
there is a well-defined peak at a nonzero frequency!, while
angular/domain-wall relaxational dynamics is stronger fon
51 ~when there is a prominent peak atv50).

There is a passing resemblance between the above c
over in dynamical properties as a function ofG, and a well-
studied phenomenon in dissipative quantum mechanics:25–27

the crossover from ‘‘coherent oscillation’’ to ‘‘incoherent re
laxation’’ in a two-level system coupled to a heat bath. Ho
ever, here we do not rely on an arbitrary heat bath of lin
oscillators, and the relaxational dynamics emerges on its
from the underlying Hamiltonian dynamics of an interacti
many-body, quantum system. Our description of the cro
over has been carried out in the context of a quasiclass
model, but, as we noted earlier, the ‘‘coherent’’ peak co
nects smoothly to the quasiparticle peak in region C of F
1; in this latter region the wave oscillations get quantiz
into discrete lumps which must then be described by
‘‘dual’’ quasiclassical particle picture.

IV. IMPLICATIONS FOR EXPERIMENTS

We first summarize the main theoretical results of t
paper. It is convenient to do this in two steps: first for t
statics, and then the dynamics.

For static properties, we presented a rather comp
analysis of the classical field theory,Z in Eq. ~1.7!, of a n
component scalar fieldFa with a quartic self-interaction. We
motivated the study ofZ here as an effective theory of th
static fluctuations of the quantum modelZQ , in Eq. ~1.2!,
but it is clear thatZ has a much wider domain of applicabi
ity. The static properties of almost any quantum model ind
52 with an O(n)-symmetric order parameter should be s
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isfactorily modeled byZ. Of course, theT-dependent values
of the coupling constants,R andG will then be different, and
depend upon the specific underlying quantum model. So,
instance, if one of the phases was ad-wave superconductor
and had gapless fermionic excitations, then the sublead
corrections to expressions for the couplingsR andG in Eq.
~B19! would change. Apart from a traditional weak couplin
analysis ofZ, we introduced a surprising, exact solution
the strong coupling limit by a dualitylike transformation. W
also interpolated between these limits by Monte Carlo sim
lations. Among our main new results was a computation
the T dependence of the spin stiffness,rs(T) for n52, and
shown in Fig. 4. When combined a knowledge of the te
perature dependence ofG as in the scaling form~1.12! it
leads to a prediction forrs(T) consistent with the form~1.1!.
As a first pass, we can combine the approximate lowT pre-
diction which follows from Eq.~B19!, GD'3T/rs(0), with
Fig. 4 and obtain an explicit prediction for the functionCr in
Eq. ~1.1!.

Our studies of dynamic properties were somewhat m
specialized to the quantum modelZQ , although we expect
that closely related methods can be applied to other mod
Our approach relied heavily on the specific value of t
‘‘mass’’ R obtained in the highT limit of ZQ—we used the
fact thatcAR/T;Ae!1 to argue for an existence of a dy
namical model of classical waves. This model is defined
the ensemble of initial conditions~1.17! and the equations o
motion~1.19! and~1.20!. The universal dynamical propertie
of this model were studied by numerical simulations direc
in d52, and results are summarized in Figs. 7–12. As
pass from region C to A to B in Fig. 1, the value of th
couplingG increases monotonically. The dynamics show
crossover from a finite frequency, ‘‘amplitude fluctuation
gapped quasiparticle mode to a zero frequency ‘‘phase’’n
>2) or ‘‘domain wall’’ (n51) relaxation mode during this
increase inG.

One of the primary applications of our results is to t
superfluid-insulator transition for the casen52. Our ap-
proach offers a precise and well-defined method to desc
the physics of strongly fluctuating superfluids above th
critical temperature, with an appreciable density of vortic
present. Near a quantum critical point, our results show
such superfluids~region A of Fig. 1! have a reasonably well
defined order parameter, withuFau nonzero over a signifi-
cant intermediate length scale. Strong phase fluctuations8 are
eventually responsible for the disappearance of true lo
range order. The evidence for this picture comes from
dynamic simulations, which show a well-formed relaxation
peak atzero frequency in the dynamic structure factor. Th
trends in the dynamic structure factor as a function ofG then
support the interpretation that this peak arises from ph
relaxation. We speculate that our results can be extende
deduce consequences for the electron photoemission s
trum of the high temperature superconductors, along
lines of Refs. 9 and 10. We imagine, in a Born-Oppenheim
picture, that the fermionic quasiparticles are moving in
quasistatic background of theFa field. Then the photoemis
sion cross section can be related to a suitable convolutio
the electron Green’s function and the dynamic structure f
tor of Fa . Under such circumstances, we believe that a z
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frequency, phase relaxation peak in the dynamic struc
factor of Fa will translate into a weak ‘‘pseudogap’’ in th
fermion spectrum.

A separate application of our results is to zero tempe
ture magnetic disordering transitions for the casen53. Re-
cent neutron scattering measurements of Aeppliet al.1 on
La22xSrxCuO4 at x50.15 are consistent with quantum
critical scaling with dynamic critical exponentz51 and
anomalous field exponenth'0, suggesting proximity to an
insulating state with incommensurate, collinear spin a
charge ordering~the collinear spin-ordering ensures that
singlen53 vector order parameter is adequate; coplanar
dering would require a more complex order parameter an
not expected to haveh close to 0!. Their measurements hav
so far mainly focused on the momentum dependence of
structure factor, and are well fit by a Lorentzian squa
form. We have not computed such momentum dependenc
our simulations here, but general experience with sca
functions ind51 suggests that such a form is to be expec
in the high T regime A.28 It would be quite interesting to
examine thev dependence of the structure factor in futu
experiments, and compare them with our results in Fig.
As we discussed in Sec. III, it is the smaller values ofG,
which have anonzerofrequency peak inS(0,v) in Fig. 12,
and which lead to a ‘‘pseudogap’’ in thespin excitation
spectrum. Compare this with our discussion of then52
superfluid-insulator transition above, where azerofrequency
peak inS(0,v) at larger values ofG was argued to lead to
fermion pseudogap. It is satisfying to note that if we are
observe both a spin and a fermion ‘‘pseudogap’’ in the
periments, then the trend in the required values ofG with n is
consistent with Eq.~1.11!.

Continuing our discussion of the application ofn53 to
the high temperature superconductors, it is also app
worthwhile to remind the reader of nature of the magne
spectrum in the magnetically disordered side, in region C
Fig. 1.29,13 Here there is a sharp triplet particle excitatio
above the spin gap, which is only weakly damped. It is
teresting that such excitations have been observed at lowT in
YBa2CuO61x .30 However, their eventual interpretation mu
await more detailed studies and comparison with the si
tion in La22xSrxCuO4.

It is tempting to combine our discussion ofn52 andn
53 models above for the high temperature superconduc
into a singlen55 model.31 However, there does not appe
to be any reason for the resulting theory to be even appr
mately O(5) invariant. Moreover, we have seen above
we need the freedom to independently varyG for the n52
re
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andn53 subsystems, at moderately large values, to obta
proper description of the physics; forn55, the value ofG in
Eq. ~1.11! is quite small, and would lead to a rather sha
gaplike structure in the dynamic structure factor of then
55 order parameter in the highT limit.

Finally, we mention recent light scattering experimen4

on double layer quantum Hall systems which have explo
both sides of a magnetic ordering transition. Simulations
n53, but in the presence of a magnetic field can lead
specific predictions for this system. The experimental res
appear to show the appearance of a spin pseudogap at hiT,
which is consistent with our results so forn53.
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APPENDIX A: SPECTRUM OF THE ORDERED STATE
OF THE QUANTUM THEORY AT T50

We address here the issue of amplitude fluctuations
ufau in a state with magnetic long-range order. We will d
this by examining the response functions of the quant
theoryZQ in Eq. ~1.2! at T50. These were computed in I b
thee expansion—for smalle, there is a well-defined peak in
the spectral density of the longitudinal response functio
corresponding to amplitude oscillations ofufau about a non-
zero value. Indeed, these results were used by Normand
Rice32 to argue that such an amplitude mode will be obse
able in the insulator LaCuO2.5, which is believed to be nea
a d53 quantum critical point.

We will consider the cased52 here, using the largen
expansion. Unliked53, we will find here that such an am
plitude mode is not visible ind52 because the cross sectio
for decay into multiple spin-wave excitations is too larg
This result also connects smoothly with ourT.0, d52
simulations in Sec. III, where again we found little sign
such an amplitude mode.

Largen results for the two-pointfa correlator in the di-
rection parallel@x i(k,v)# and orthogonal@x'(k,v)# to the
spontaneous magnetization were given in Appendix D
Ref. 13. They areuniversal functions ofrs(0), c, and the
ground state spontaneous magnetization,N0, and in particu-
lar, they do not depend upon whether the underlying degr
of freedom are soft spins~as inZQ) or vectors of unit length
~as in Ref. 13!. To leading order in 1/n, the results are
x'~k,v!5
N0

2

rs~0!@k22~v/c!2#
,

x i~k,v!5
N0

2

rs~0!

1

Ak22~v/c!2@Ak22~v/c!2116rs~0!/cn#
. ~A1!
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So, as expected, the transverse correlator has a simple p
the spin-wave frequency,v5ck. On the other hand, the lon
gitudinal correlator only has a branch-cut atv5ck—the
spectral density vanishes forv,ck, and decreases mono
tonically for v.ck. In particular, there is no polelike struc
ture at a frequency of orderrs(0)/n, which is the expected
position of the amplitude mode.

APPENDIX B: COMPUTATION OF R AND U

This appendix discusses the values ofR and U obtained
by integrating out the nonzero imaginary frequency mo
from ZQ . Such a computations was already discussed i
but here we will present the modifications necessary du
the slightly different renormalization used in Eq.~1.8!. We
will also present new computations within the magnetica
ordered state in region B of Fig. 1.

First, in Sec. B 1, we will follow the paramagnetic a
proach of I, which computes parameters forr .0, and then
extrapolates tor ,0 by a method of analytic continuation i
r, which is valid forT.0. This method works without any
hitches in regions A and C of Fig 1. In principle, it is als
expected to be valid within all of region B, but the resu
becomes progressively poorer as the limitsT→0 ande→0
do not commute forr ,0. We will then present, Sec. B 2 a
alternate computation which begins within the magnetica
ordered state of region B and then directly computes
‘‘dual’’ couplings RD andU.

1. Paramagnetic approach

We begin by noting that the value of the bare couplingr c
in Eq. ~1.2! is

r c52uS n12

6 D E ddk

~2p!dE dv

~2p!

1

k21~v/c!2
, ~B1!

to leading order inu. We assume thatr .0, and so it is valid
to integrate out fluctuations infa aboutfa50. Integrating
out the vnÞ0 modes fromZQ in this manner to leading
order inu, and comparing resulting effective action withZ,
we find straightforwardly

R̃5r 1uS n12

6 D E ddk

~2p!d FT (
vnÞ0

1

k21~vn /c!21r

2E dv

~2p!

1

k21~v/c!2G ,

U5u2u2S n18

6 D E ddk

~2p!d
T (

vnÞ0

1

„k21~vn /c!21r …2
.

~B2!

The remaining task is, in principle, straightforward: we ha
to combine Eq.~B2! with Eq. ~1.8!, and evaluate the result
ing expressions to obtain our final results forR andU. In the
vicinity of the quantum critical point in Fig. 1, the resultin
expressions should be universal functions only ofT, c, and
an energy scale measuring the deviation of the ground s
couplings from ther 50 point; for this energy scale w
choose either the ground state spin stiffness,rs(0) ~for r
e at

s
I,
to

y
e

te

,0 andn.1), or the ground state energy gap~which isD2

for r ,0, n51, and isD1 for r .0 and alln).
One reasonable approach at this point is to solve E

~B2! and ~1.8! for R andU directly in d52 by a numerical
method. This will give results forR andG which are valid
everywhere in the phase diagram of Fig. 1—the result
value ofG will increase monotonically from 0 tò as one
moves from region C to A to B. Moreover,R will remain
positive everywhere. However, the results will not be expl
itly universal and will depend upon microscopic paramet
from the theoryZQ—the values ofu and the momentum
cutoff L.

Universality of the final result can only be establish
order by order ine. In the remainder of this subsection w
will evaluate Eq.~B2! in such an expansion ine. This surely
reduces the accuracy of our final estimates forR and U; it
should not be forgotten, however, that we subsequently st
Z directly in d52, and so the scaling functions in Eq
~1.13! and ~1.26!, whose arguments are related toR andU,
are known much more accurately. We will find that our lea
ing order ine result for R vanishes whenT becomes suffi-
ciently small in region B—then thee expansion can no
longer be considered adequate for estimatingR in d52. The
vanishing ofR is acceptable for smalle (d.2) however,
because we can then do a massless subtraction in Eq.~1.8!
and negative values ofR merely place the system well within
the magnetically ordered state. An alternative,e-expansion
computation ofR for systems well within region B will ap-
pear in the following subsection.

The techniques for reducing Eqs.~B2! and ~1.8! into a
universal form in thee expansion have been discussed
length in I, and also in Ref. 3. Using these methods we fi
to leading order ine

c2R12peS n12

n18D cTAR5c2r F11eS n12

n18D lnS T

cm D G
1eT2S n12

n18DGS c2r

T1/znD ,

cU5
6e~T/c!(32d)

~n18!Sd11
F11e

~2012n2n2!

2~n18!2
1eG8S c2r

T1/znD G ,

~B3!

whereSd52/@G(d/2)(4p)d/2# a phase space factor,n51/2
1e(n12)/„4(n18)… to this order in thee expansion, andm
is a short-distance momentum scale which can be elimina
by re-expressingr in terms of physical energy scales. Th
function G(y) was given in Eq.~D8! of II:

G~y!522E
0

`

dqF lnS 2q2
„cosh~Aq21y!21…

q21y
D

2q2
y

2Aq211/e
G . ~B4!

This form of G(y) is valid for both negative and positivey
~when the argument of the square root is negative we use
identity coshix5cosx) and is easily shown to be analytic a
y50 where
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G~0!5
2p2

3
, dG/dy~0!52.453808582 . . . . ~B5!

The simple formG(y)'G(0)1y„dG/dy(0)… is actually a
reasonable approximation forG(y) over a wide range of
values ofy. For y→`, we can show from Eq.~B4! that

G~y→`!5
y ln y

2
12pAy1A8pAye2Ay1•••. ~B6!

The expression~B3! for U is identical to that in I, while
that for R differs only in that the term proportional toTAR
on the left-hand side was absent in I. This difference is
course due to the subtraction term with massR in Eq. ~1.8!.
Because of the presence of this term, Eq.~B3! is reasonable
only as long as there is a solution withR.0. For low enough
T in region B there will be no such solution, and then t
present method breaks down as a method for estimatingR in
d52; an alternative approach will be discussed in Sec. B

We complete this appendix by relatingr to physical en-
ergy scales to leading order ine. The reader can easily verif
that when we eliminater in Eq. ~B3! by the following ex-
pressions, the arbitrary scalem disappears to the appropria
order ine. The following relations can also be used to sim
larly eliminater from the expressions in Sec. B 2.

For r .0, the ground state has an energy gap,D1 for all
n. Then, from I, we have

D15cmS r

m2D n

. ~B7!

For r ,0, we have to distinguishn51 andn>2. For n
51, there is an energy gap,D2 , and

D25cmS 11
pA323

12
e D S 22r

m2 D n

. ~B8!

For n>2 it is convenient to use the parameterr̃s obtained
from the ground state spin stiffness, which has the engin
ing dimensions of energy in alld @in d52 it is simply pro-
portional tors(0)]:

r̃s5c(d22)/(d21)S 2e

~n18!

rs~0!

Sd11
D 1/(d21)

. ~B9!

Then

r̃s5cmS 12e
121n22n2

4~n18!2 D S 22r

m2 D n

. ~B10!

2. Magnetically ordered approach

Here we will directly compute the ‘‘dual’’ couplingsRD
andU by matching the effective potential forFa fluctuations
in Z in Eq. ~1.7! with that obtained by integrating out th
nonzero Matsubara frequency modes inZQ in Eq. ~1.2!. We
will initially assume that we are in the magnetically order
state, and sor ,0 andR̃,0. The effective potential of Eq
~1.7! has a minimum atuFau2526R̃/U, and its curvature a
this minimum is22R̃/T. We compute precisely the sam
f

.

r-

quantities from the free energy obtained fromZQ after inte-
grating out the nonzero Matsubara frequency modes at
one loop level, and so obtain expressions forR̃/U andR̃/T.
We solve these forR̃ andU, and obtain results which replac
Eq. ~B2!:

R̃5r 1uE ddk

~2p!d
T (

vnÞ0
F k21~vn /c!225r

2„k21~vn /c!222r …2

1
~n21!„k21~vn /c!22r …

6„k21~vn /c!2
…

2 G
2uS n12

6 D E ddk

~2p!dE dv

2p

1

k21~v/c!2
,

U5u2u2E ddk

~2p!d
T (

vnÞ0

3F 3

„k21~vn /c!222r …2
1

n21

6„k21~vn /c!2
…

2G .

~B11!

We now use Eq.~2.4! and evaluate these expressions by
same methods which led to Eq.~B3!. This replaces Eq.~B3!
by

c2RD

2
22peS n12

n18D cTARD52c2r F11eS n12

n18D lnS T

cm D G
2

eT2

n18
G1S 2

c2r

T1/znD ,

cU5
6e~T/c!(32d)

~n18!Sd11
F11e

~2012n2n2!

2~n18!2

1
e

~n18!
G2S 2

c2r

T1/znD G , ~B12!

where

G1~y!53G~2y!1~n21!G~0!29yG8~2y!

2~n21!yG8~0!,

G2~y!59G8~2y!1~n21!G8~0!. ~B13!

There expressions can now be combined with Eqs.~B8! and
~B10! to obtain universal expressions forRD and U within
region B, and also into the crossover into region A. T
resulting values, when combined with Eq.~2.5! will not
agree precisely with those obtained from Eq.~B3! because
the computations in the present appendix are good to lea
order ine, while the relation~2.5! is only valid in d52.

Let us look at the values ofRD andU obtained from Eq.
~B12! in the limit T→0 with r ,0. After using Eq.~B6! it is
straightforward to show that
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RD522r F11
9e

2~n18!
1eS n21

n18DG8~0!

1eS n12

n18D lnS T

cm D1
3e

2~n18!
lnS 22c2r

T2 D G
1

peT

c S 4n15

n18 DA22r 2
2eT2

c2 S n21

n18DG~0!1•••,

cU5
6e~22r !(32d)/2

~n18!Sd11
F11e

~2012n2n2!

2~n18!2

1
e

2~n18! H 2~n21!lnS 22c2r

T2 D
1912~n21!G8~0!1

18pT

cA22r
J G1•••, ~B14!

where only exponentially small terms of ordere2cA2r /T have
been omitted. The ln(T) terms above are dangerous as th
do not have a finite limit asT→0. Forn51, a glance at Eq
~B14! shows that all such terms do indeed cancel; so
result~B12! remains valid everywhere in region B, includin
in the limit T→0. Further it can be checked~using results in
I! thatGD(T→0)53T/N0

2, which agrees with Eq.~2.13!.
However, forn>2, there is no cancellation of such term

This indicates a breakdown of thee expansion for these val
ues ofn asT→0. The low-lying excitations for these case
are gapless spin waves. In the present approach, by matc
the quantum theory to the classical actionZ, we are effec-
tively treating these spin waves as classical up to a h
energy cutoff ofcA22r , which is the mass of the amplitud
mode. In reality, however, such spin waves are only class
up to an energykBT,19,13 and this is responsible for th
breakdown of Eq.~B12!.

In the remainder of this subsection, we abandon the
expansion, and use some reasonable physical criteria~sug-
gested by the above discussion! to estimateGD and R as T
→0. Such estimates are, by nature, unsystematic, and t
does not appear to be any clear-cut procedure by which
can be improved to extend to higherT. We will match the
exact largeG form of the correlators ofZ in Secs. II B 2 and
II B 3 with known exact results for the lowT correlators of
the quantum theoryZQ . These quantum correlators can
universally expressed in terms ofrs(0), c, and the ground
state spontaneous magnetizationN0.

For N52, the predominant fluctuations at lowT are an-
gular fluctuations about some locally ordered state. So
write

F11 iF2;eiu. ~B15!

The quantum action controlling fluctuations ofu is

Lu5
rs~0!

2
@~¹xu!21~]tu!2#. ~B16!

Evaluating the two-point correlator from Eqs.~B15! and
~B16!, and fixing the missing normalization in Eq.~B15! by
matching to the actual value ofN0, we obtain
y

e

ing

h

al

re
ey

e

(
a51

n

^Fa~x!Fa~0!&

5N0
2 expF 1

rs~0!
E d2k

~2p!2 S T(
vn

eikx21

k21~vn /c!2

1E dv

2p

1

k21~v/c!2D G . ~B17!

The expression~B17! is free of both ultraviolet and infrared
divergences, and we obtain for largeuxu

(
a51

n

^Fa~x!Fa~0!&

5N0
2 expF2

T

2prs~0!
„ln~Tuxu/c!2 ln 21g…G , ~B18!

where g is Euler’s constant. Matching this correlator wit
that of the classical theoryZ in Eq. ~C9!, we obtain two
important, and exact results

GD~T→0!5
3T

rs~0!
1•••,

RD~T→0!5
T2

c2
1•••, ~B19!

where the ellipses represent unknown terms which are hig
order inT.

A similar computation can be carried out forn>3. In this
case, comparing the classical result~C29! with the quantum
results of Refs. 19 and 13, we find precisely the relatio
~B19!. So Eq.~B19! holds for alln>2.

APPENDIX C: STATIC CORRELATIONS
IN THE ‘‘DUAL’’ THEORY

This appendix will show how we can compute correlato
of the theory~1.7! in the limit that the Ginzburg parameterG
becomes very large. This is done in the ‘‘dual’’ formulatio
discussed in Sec. II B: is a theory characterized by
Ginzburg parameterGD which becomes small whenG be-
comes large. All of the results will be expressed in a pert
bation theory inGD .

We first perform a naive computation of th
O(n)-invariant two-pointFa correlator in the original static
theory ~1.7!, assumingR̃,0. We will then renormalize it
using Eq.~2.4!, and will find, as expected, that the result
finite in the limit a→0. The interpretation of the result wil
be straightforward for the casen51 and will lead directly to
Eq. ~2.11!. We will then turn to further computations for th
casesn52, andn>3 in subsequent subsections. An impo
tant ingredient in the interpretation of the results for the
cases shall be the computation of the change in the free
ergy of the theory~1.7! in the presence of an external fie
which couples to the generator of O(n) rotations: this will
allow us to compute the renormalized spin stiffness forn
52, and the precise correlation length forn>3.



e

el

s
ta

la

on
re

er
s
g
e,
rti

m

.

r

si

n

es

left-

l-

is
ade

we

lly
-
ore

14 070 PRB 59SUBIR SACHDEV
At the mean-field level, forR̃,0 ~which is assumed
throughout this appendix!, Fa fluctuates around the averag

value uFau5A6uR̃u/U. So we write

Fa~x!5A6uR̃u
U

da,11F̃a~x!, ~C1!

where F̃a represents the fluctuations about a mean-fi
magnetization in thea51 direction. Inserting Eq.~C1! in
Eq. ~1.7! we find that the action changes to

L5
1

2 (
a51

n

@~¹xF̃a!21da,12uR̃uF̃a
2 #

1AuR̃uU
6

F̃1 (
a51

n

F̃a
21

U

24S (
a51

n

F̃a
2 D 2

. ~C2!

This action will form the basis for a perturbation theory inU
@or equivalently by Eq.~2.7!, in GD] in the rest of this ap-
pendix. Notice that there is a cubic term in this action, and

^F̃1&Þ0. Indeed, the expression for the incipient ‘‘spon
neous magnetization’’N0[^F1&, correct to zeroth order in
U, can be obtained in a straightforward perturbative calcu
tion from Eq.~C2!, and we obtain

N05A6uR̃u
U F12

TU

4uR̃u
E1/a d2k

~2p!2 S 1

k212uR̃u
1

n21

3k2 D G .

~C3!

The fluctuation corrections above come from directions l
gitudinal and transverse to the incipient magnetization,
spectively. Notice that the latter lead to an infrared div
gence forn.1, which correctly suggest that the transver
fluctuations are so strong that the actual spontaneous ma
tization is 0. For now we will ignore this infrared divergenc
as we will see that this divergence disappears upon inse
of Eq. ~C3! into combinations which are O(n) invariant. To
complete the computation of the O(n)-invariant two point
Fa correlator, we need the correlations ofF̃a . It is suffi-
cient to compute these at tree level, and we have the for
expression

^F̃a~x!F̃a~0!&5TE1/a d2k

~2p!2

eikx

k212uR̃uda,1

, ~C4!

where there is no implied sum overa on the left-hand side
We can now combine Eqs.~C1!, ~C3!, and~C4! to obtain an
expression for(a51

n ^Fa(x)Fa(0)& correct to zeroth orde

in U. In this expression we expressR̃ in terms ofRD using
Eq. ~2.4!, and also expand the resulting expression con
tently to zeroth order inU. Finally, using the definition ofGD
in Eq. ~2.7!, we obtain one of the main results of this appe
dix:

(
a51

n

^Fa~x!Fa~0!&5
3T

GD
F11

GD

3 E d2k

~2p!2 S ~n21!
eikx21

k2

1
eikx1n21

k21RD
D 1O~GD

2 !G . ~C5!
d

o
-

-

-
-

-
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It is simple to check the crucial property that Eq.~C5! is free
of bothultraviolet and infrared divergences; the former aris
because the renormalization in Eq.~2.4! is expected to cure
all short distance problems, and the latter because the
hand side isO(n) invariant.

The remaining analysis is quite different for different va
ues ofn, and we will consider the casesn51, n52, andn
>3 in the following subsections.

1. n51

The expression~C3! for the spontaneous magnetization
free of infrared divergences for this case; it can also be m
ultraviolet finite by expressingR̃ in terms ofRD using Eq.
~2.4!. This procedure leads to the simple result that

N05A3T

GD
@11O~GD

2 !#. ~C6!

The expression~C5! shows that the two-pointFa correlator
approachesN0

2 exponentially over a length scale 1/ARD.
It is not difficult to extend Eq.~C6! to obtain the two-loop

O(G D
2 ) correction by evaluatinĝ F̃1& in a perturbation

theory in U under the action~C2!. We verified that by ex-
pressingR̃ in terms ofRD using Eq.~2.4!, and expanding
consistently to the needed order inU, all the ultraviolet di-
vergent terms in the resulting expression cancelled, and
obtained

N05A3T

GD
F12

T2U2

12RD
E d2k

~2p!2E d2k

~2p!2

3H 9RD

~k21RD!2~p21RD!„~kW1pW !21RD…

1
2

~k21RD!~p21RD!„~kW1pW !21RD…
J 1O~U3!G .

~C7!

The integrals in Eq.~C7! are easily evaluated to yield

N05A3T

GD
F12

5GD
2

12
J~1,1,1!1O~GD

3 !G , ~C8!

where the numerical constantJ(1,1,1) is given later in Eq.
~C19!.

2. n52

Evaluating Eq.~C5! for x@1/ARD andn52 we obtain

(
a51

n

^Fa~x!Fa~0!&

5
3T

GD
F12

GD

6p
„ln~ uxuARD!2 ln 21g…1••• G , ~C9!

whereg is Euler’s constant. We are now in the magnetica
ordered state of then52 XY model, and we know this sys
tem has power-law decay of spatial correlations. Theref
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we assert that Eq.~C9! exponentiates into the result~2.15!,
and identify the spin stiffnessrs(T) as

rs~T!

T
5

3

GD
1O~GD

0 !. ~C10!

We will now compute the next two terms in the smallGD
expansion forrs(T) in Eq. ~C10!. Rather than obtaining
these by computing higher order corrections to the correl
in Eq. ~C9!, we will compute the stiffness directly by exam
ining the response of the free energy density to an exte
field HW which couples to the generator ofO(2) rotations.
This is equivalent to computing the change in the free ene
in the presence of twisted boundary conditions. In particu
we modify the action in Eq.~1.7! by the substitution

~¹xFa!2⇒~¹xF12 iHW F2!21~¹xF21 iHW F1!2,
~C11!
or

al

y
r,

and compute the smallH dependence of the free energ
lnZ(H). The stiffness is defined by

1

V
ln
Z~H !

Z~0!
5

rs~T!

2T
H21•••, ~C12!

whereV is the volume of the system, and the ellipses rep
sent terms higher order inH. We compute this expression b
first modifying Eq.~C1! to account for theH dependence of
the mean-field magnetization:

Fa~x!5A6~ uR̃u1H2!

U
da,11F̃a~x!, ~C13!

and expanding the resulting action in powers ofH. In this
manner it is not hard to show that to orderH2
te
ps.

rther

cted,
such
ensional

n a

of
1

VH2
ln
Z~H !

Z~0!
5

3uR̃u
TU

2^F̃1
2~x!&2A U

24uR̃u
^F̃1~x!„F̃1

2~x!1F̃2
2~x!…&

2
1

4E d2y^„F̃1~y!¹W yF̃2~y!2F̃2~y!¹W yF̃1~y!…„F̃1~x!¹W xF̃2~x!2F̃2~x!¹W xF̃1~x!…&, ~C14!

where all expectation values are to be evaluated under the action~C2!. It is a straightforward, but lengthy, exercise to compu
the right-hand side of Eq.~C14! in a perturbation theory inU, which requires enumerating all Feynman graphs to two loo
After formal expressions for the graphs have been obtained, we perform the substitution~2.4! to replaceR̃ by RD , and again
collect terms to orderU1. We will not present the details of this here, but will state the result obtained without any fu
manipulations on the expressions for the individual Feynman graphs:

rs~T!

2T
5

3RD

2TU
1TUE ddp

~2p!dE ddk

~2p!d
3H 2

RD

3~p21RD!2 F 2

k2~k21RD!
1

9

~k21RD!„~kW1pW !21RD…
1

1

k2~kW1pW !2G
2

RD

3p2~p21RD!
F2

1

k2~k21RD!
1

1

k2
„~kW1pW !21RD…

G1
1

6~p21RD!
F 1

k2~pW 1kW !2
1

3

~k21RD!„~pW 1kW !21RD…
G

1
1

3p2k2~p21RD!~k21RD!
F 3pW •kW

„~pW 1kW !21RD…
2

pW •kW

~pW 1kW !2G J . ~C15!

It is directly apparent that all terms in Eq.~C15! are individually ultraviolet convergent: this has been achieved, as expe
by the substitution ofR̃ by RD . However, many of the terms are infrared divergent, and it is not at all apparent that
divergences will cancel between the various terms. To control these divergences, we evaluate the terms in dim
regularization, i.e., thep andk integrals are evaluated in a dimensiond just above 2, and the resulting terms expanded i
series in (d22). We show below that while there are individual terms of order 1/(d22)2 and 1/(d22), they do cancel among
each other.

By a series of elementary algebraic manipulations~including splitting apart some of the denominators by the method
partial fractions!, all the terms in Eq.~C15! can be expressed in terms of two basic integral expressions. These are

I ~a,b![E ddk

~2p!d

1

~k21a!~k21b!
, ~C16!

and

J~a,b,c![E ddk

~2p!dE ddp

~2p!d

1

~k21a!~p21b!„~kW1pW !21c…
; ~C17!
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it is easy to see that bothI and J are invariant under all permutations of their arguments, i.e.,I (a,b)5I (b,a), J(a,b,c)
5J(c,a,b)5J(c,b,a), etc. In terms ofI andJ, the result~C15! takes the form

rs~T!

2T
5

3RD

2TU
1TUH 2RD

3
I ~RD,0!I ~RD,0!2

2RD

3
I ~RD ,RD!I ~RD,0!2

1

3
J~RD,0,0!1J~RD ,RD ,RD!1RD

d

dRD
J~RD ,RD ,RD!

1
RD

3

d

dRD
J~RD,0,0!J . ~C18!
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We can evaluate the needed values ofI and J by standard
methods which transform the momentum integrals into in
grals over Feynman parameters:14

I ~RD ,RD!5
G~22d/2!

~4p!d/2RD
22d/2

,

I ~RD,0!5
2I ~RD ,RD!

~d22!
,

J~RD,0,0!5
2G~32d!G~d/221!G~22d/2!

~4p!dRD
32d~d22!

,

J~RD ,RD ,RD!5
1

16p2RD
E

0

1

dy1

3E
0

1

dy2

1

y21y1~12y1!~12y2!

5
2.34390723869

16p2RD

. ~C19!

The last two expressions have been given directly ind52, as
J(RD ,RD ,RD) does not have any poles in (d22) and also
does not appear in combinations multiplying poles in E
~C18!. Inserting Eq.~C19! into Eq. ~C18! and expanding in
powers of (d22), we find that all double poles and poles
(d22) cancel, and we obtain our final result generalizi
Eq. ~C10!:

rs~T!

T
5

3

GD
2
GD

36
1O~GD

2 !. ~C20!

3. n>3

The argument is more subtle for these cases with n
Abelian symmetry. We now expect that at length sca
@1/ARD all longitudinal fluctuations will freeze out, and th
transverse fluctuations will map onto those O(n) nonlinear
sigma model. This model has a dimensionless coupling c
stantg, and for g!1 there is a large correlation length o
order ~see, e.g., Refs. 19 and 13!

j;
1

ARD
F ~n22!g

2p G1/(n22)

expS 2p

~n22!gD , ~C21!
-

.

n-
s

n-

where we have chosen 1/ARD as the natural short distanc
cutoff of the nonlinear sigma model. For 1/ARD!uxu!j, the
two point-correlations behave as13

^Fa~x!Fa~0!&}F ~n22!g lnS j

uxu D G
(n21)/(n22)

}F12
~n21!g

2p
ln~ uxuARD!1••• G .

~C22!

Let us compare this with the expression obtained from
~C5!, which yields in the same regime

^Fa~x!Fa~0!&5
3T

GD
F12

~n21!GD

6p
ln~ uxuARD!1••• G .

~C23!

Comparing Eqs.~C22! and~C23!, we can obtain the missing
prefactor in Eq.~C22!, and also get

g5
GD

3
. ~C24!

Actually it is possible to do better, and actually fix th
missing constant in Eq.~C21! precisely. To do this, as wa
shown by Hasenfratz and Niedermayer,33 we need to carry
out exactly the calculation of Appendix C 2 and obtain theH
dependence of the free energy density forn>3. Now the
analog of the replacement~C11! in the action~1.7! is

~¹xFa!2⇒~¹xF12 iHW F2!21~¹xF21 iHW F1!2

1 (
a.2

~¹xFa!2. ~C25!

Next we will compute theH dependence ofZ(H) in a per-
turbation theory inU, but will find that the structure of the
answer is actually quite different from that found in E
~C15! for n52. In the present situation one finds that all t
infrared divergences in (1/H2)lnZ(H)/Z(0) do not cancel,
which correctly indicates that the renormalized stiffne
rs(T) is strictly zero for allT.0. Instead, the smallH de-
pendence ofZ(H) is more complex, and we will show tha
lnZ(H)/Z(0);H2 ln(1/H).

After substitution of Eq.~C25! into Eq. ~1.7!, it is imme-
diately apparent that at orderU0 Z(H) consists of two sepa
rate contributions. The first is the contribution of theF̃1,2
components and this is identical to that computed in App
dix C 2 for n52, The second is the contribution of the r
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maining n22 components which, at this order, are simp
free fields with ‘‘mass’’H2. So we get

ln
Z~H !

Z~0!
5H2F3uR̃u

TU
1E d2p

~2p!2

2

p212uR̃u
G

2
~n22!

2 E d2p

~2p!2
lnS p21H2

p2 D , ~C26!

where the first two terms are obtained by evaluating
~C14! to orderU0, and the last term is the contribution of th
remaining (n22) components. Now substitutingRD for R̃
by using Eq.~2.4! we obtain, as expected, an expression f
of ultraviolet divergences:

ln
Z~H !

Z~0!
5

3RDH2

2TU
2

~n22!

2 E d2p

~2p!2

3F lnS p21H2

p2 D 2
H2

p21RD
G . ~C27!
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Finally, we evaluate the integral in the limitH2!RD , and
express the result in terms ofGD using Eq.~2.7!:

ln
Z~H !

Z~0!
5H2F 3

2GD
1

~n22!

4p
lnS H

~eRD!1/2D 1•••G .

~C28!

We can now deduce the correlation length,j, from this result
using the matching to the Bethe ansatz solution, as discu
in Ref. 33: the result is

j5
1

ARD

GS n21

n22D Fe~n22!g

16p G1/(n22)

expS 2p

~n22!gD ,

~C29!

where G(x) is the gamma function andg is given in Eq.
~C24!.
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