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We describe the nonzero temperatufg,(low frequency ) dynamics of the order parameter near quantum
critical points in two spatial dimensionsl), with a special focus on the regintes<<kgT. For the case of a
“relativistic,” O( n)-symmetric, bosonic quantum field theory we show that, for sexalB—d, the dynamics
is described by an effective classical modelvadveswith a quartic interaction. We provide analytical and
numerical analyses of the classical wave model directld=#2. We describe the crossover from the finite
frequency, “amplitude fluctuation,” gapped quasiparticle mode in the quantum paranfagMaitt insulatoy,
to the zero frequency “phase’n=2) or “domain wall” (n=1) relaxation mode near the ordered state. For
static properties, we show how a surprising, duality-like transformation allows an exact treatment of the
strong-coupling limit for alln. For n=2, we compute the universdl dependence of the superfluid density
below the Kosterlitz-Thouless temperature, and discuss implications for the high temperature superconductors.
For n=3, our computations of the dynamic structure factor relate to neutron scattering experiments on
La,; 555K 1Cu Oy, and to light scattering experiments on double layer quantum Hall systems. We expect that
closely related effective classical wave models will apply also to other quantum critical poirnts 2n
Although computations in appendixes do rely upon technical results os-&x@ansion of quantum critical
points obtained in earlier papers, the physical discussion in the body of the paper is self-contained, and can be
read without consulting these earlier workS0163-182€09)03821-1

I. INTRODUCTION ized to models which include some of the additional physics
contained in recent discussidn¥ of the T dependence of
A number of recent experiments have probed the longthe superfluid density in the high temperature superconduct-
wavelength, low frequency, nonzero temperafedynam-  ors.

ics of the order parameter associated witia0 quantum Motivated by these disparate experimental systems, this
critical point in a two spatial dimensionslY. These experi- paper will present an analysis of the long-wavelength, non-
ments include the following. zero temperature order-parameter dynamics in the vicinity of

(i) Neutron scattering measurements have mapped out tlibe simplest, interacting quantum critical pointde-2: that
T, wave vector, and frequency dependence of the dynamiof a ‘relativistic,” n-component, bosonic fieldp,, «
spin structure factor in La,Sr,CuQ, for x~0.15! The =1 ...n. However, our ideas and approach are expected to
measurements over an order of magnitudeTjnand over be far more general, as we shall discuss further in Sec. IV.
three orders of magnitude in the static susceptibility, are conThe On)-symmetric quantum partition function for the field
sistent with the presence of a nearby quantum critical pointy, is given by (in units with ai=kg=1 which we use
to an insulating ordered state with incommensurate spin anthroughout
charge ordef“stripes”?).

(i) Double layer quantum Hall systems at filling factor uT
v=2 exhibit ground states with different types of magnetic Zsz qua(x,r)ex;{ —f ddxf dTEQ)
order® Recent light scattering experimehtsave probed the 0
fluctuation of the magnetic order parameter in the vicinity of

the quantum transitions between the states. 11 u
_ (iii) Microwa}ve measurementsf the magnetic p_enetra- LQZE _2(3T¢a)2+(vx¢a)2+(rc+ r)¢§1 + 4—|(¢§)2.
tion depth of high temperature superconductors with a num- c :

ber of differentT,’s show that the superfluid stiffness satis- 1.2

fies the scaling relation
Herex is thed-dimensional spatial coordinatejs imaginary

ps(T) T time, c is a velocity, and ., r, andu are coupling constants.
ON ”(T_C)’ (1.D) The coefficient of thep? term (the “mass” tern) has been
written asr +r . for convenience; we will choose the value of
where ¥, is an apparently universal function. This is pre-r so that the quantum critical point is preciselyrat0. So
cisely the behavior expected in the vicinity of a quantumtheT=0 ground state has spontaneous “magnetic” order for
critical point whereT,.—0°2 such as a superfluid-insulator r<0 with (¢,)#0, and is a quantum paramagnet with com-
transition. In this paper, we shall provide an explicit compu-plete Of) symmetry preserved far>0. The quartic non-
tation of the universal scaling functio#f, in a model sys- linearity proportional tou is relevant about the Gaussian
tem. We believe our approach and strategy can be generdixed point U=0) for d<3, and is responsible for producing
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a nontrivial quantum critical theory with interacting excita- A
tions. Higher-order nonlinearities are irrelevant about this
guantum critical point. A

In addition to being an important and instructive toy R CONTINUUM HIGH T e
model of an interacting quantum critical point @+ 2, the T \\\QUANTUN? CRITICAL .~
field theory(1.2) also has direct applications to experimental ~. - ’
systems. We will briefly note these now, and discuss them B LOWT AR 7
further in Sec. IV. Forn=2, Z, describes the transition N C LowrT
between superfluid and Mott-insulating states of an interact- MAGNETIC or \ ,’ Quantum paramagnet
ing boson modelip, +i ¢, is the superfluid order parameter aREAFLLID LONG or Mott insulator
and the quantum paramagnet is a Mott insulator. frei3, 0 0 >
¢, plays the role of a magnetic order parameter measuring r

the amplitude of the incommensurate, collinear spin density £ 1 phase diagram of the theaBy, for d=2, n=1,2 as a

wave in the experiments of Ref. 1. Tine=3 case also de-  fnction of the temperatur® and tuning parametet The quantum

scribes the quantum Hall experiments of Ref. 4, whéte  critical point is atT=0, r=0. The most important crossovers are
now measures the difference in the magnetization of the tw@epresented by the dashed lines, and these occli-4t|?”, where

layers. the dynamic exponerg=1, andv is the correlation length expo-
An important tool in the analysis of is the e expan-  nent of the ¢+ 1)-dimensional classical ferromagnet; these cross-
sion, where overs divide the phase diagrams into regions A, B, and C. Region A
is the high temperature of the continuum thedfy, with the T
e=3—d. (1.3 — limit takenafter the short distance cutoff has been sent to zero

to obtain the continuum limit; its properties are described by plac-

ing ther =0 scale-invariant critical theory at nonzero temperature.

‘?here are two lowT regions, B, C, on either side af=0. The
round state for>0 is a quantum paramagn@tr a Mott insulator,

The structure of the expansion for thé >0 properties of
Zq has already been extensively discussed in two previou
papers, hereafter referred to a$Ref. 6 and 111 We will

now summarize the main results_ pf these papers, and th pending upon the physical systewith an energy gap; the dy-
turn to a description of the Spe(_:'f'c purpose of this pap‘?rnamics in lowT region C is described by a model of a dilute gas of
Although the present paper builds upon on these earligfermally excitecquasiclassical particlesand this shall not be dis-
works, an attempt has been made to make all of the physica|issed in this paper. The ground staterfer0 has long range order
discussion in the body of the paper self-contained; earliefith {¢,)#0 and the lowT properties above it are described by a
technical results are used in the appendixes. Some physicalodel ofquasiclassical wavefor n=2 (for n=1 a separate model
results from | are summarized in the caption of Fig. 1, whichof quasiclassical particles applieFhere is a line of finite tempera-
shall form the basis of our subsequent discussion. ture phase transition3,=T(r), within region B at which the long-
In I, the properties of the phase diagram in Fig. 1 wererange order disappears; this is denoted by the full line. Tt
analyzed in an expansion i In particular, detailece ex-  transition is of the Kosterlitz-Thouless type far=2, and in the
pansion results were obtained for the dynamic susceptibilityniversality class of the two-dimensional classical Ising model for
n=1. The phase diagram for=3 differs only in that there is no
1rim d line of T>0 phase transitions in region B, i.&,(r)=0, and long-
X(K,0p)= Hfo de d®x range order is present only far=0, r<0. The present paper uses
the e=3—d expansion to develop a theory for the low frequency
n (w<T), long distance dynamics in region A directlydr-2 for all
X X, {o(X,7) (0,0) e x—onn), n, using a model ofjuasiclassical wavegur model also contains
a=1 the initial crossovers as is lowered into regions B or CIn con-
(1.4) trast, transport of the conservedr®¢2) charge in region A was
discussed in Il for smalk; it was dominated by excitations with
wherek is the wave vectorw, the imaginary frequency; energye,~T, and described by particles obeying a quantum trans-
throughout we will use the symbal,, to refer to imaginary  port equation.
frequencies, while the use af will imply the expression has

been analytically continued to real frequencies. It was found;jon was found to fail badly, and led to unphysical results for
in | that for thestatic susceptibility smallk and w. In particular, in region A, this failure in the
_ _ computation of the dynamic properties appeared for wave

X(K=x(k0n=0), .5 vectors smaller thack~ /eT and frequencies smaller than
an expansion in powers ofe held over all regions of the w~ JeT. In the e expansion, the low frequency spectral den-
phase diagram of Fig. 1, apart from a small window in thesity is given by an integral over the phase space for the decay
immediate vicinity of the line of finite temperature phase of excitations into multiple excitations at lower energy; how-
transitions(in this window, the problem reduces to one in ever it does not self-consistently include damping in these
classical critical phenomena, and this shall not be of interedinal states, and this leads to unphysical results. In other
to us herg So in a sense, the static theory was weaklywords, determination of the values of jpik, ), for smallk
coupled for smalle, and this allowed for a satisfactory the- and w requires solution of a strong coupling probleaven
oretical treatment of the crossovers jtk). A completely  for smalle, and is dominated by the relaxation of excitations
different situation held for the dynamic properties, and inwith energies of order or smaller thafeT. Similar results
particular for the spectral density Ig{k,»): the e expan-  hold also for the expansion inril}?*31t is this strong cou-
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pling problem which will be addressed in this paper. A. Statics
Although, as just discussed, the results of | for static prop-

erties were adequately computed at low orders inethex-

pansion, even they had significant qualitative weakness

when extrapolated to the physically interesting casee of effective action for thep,,(k, »,=0) modes, which was sub-

=1, d=2, apart from also not being quantitatively very ac- geq ently analyzed by more sophisticated techniques. Our
curate. In particular, we know that the line of nonzero tem-f; ¢ step here will be identical to that in I: so we define

perature phase transitions in Fig. 1 is not presennfai3,
i.e., To(r)=0 for these cases. In contrast, leading order T
expansion results of | have B (r)>0 for all n. Further- D, (X)=T . d7d(X,7). (1.6
more, forn=2, there should be a jump in the value of the
superfluid density al. in d=2, and clearly, this also does After integrating out the modes with a nonzenq, the ef-
not appear at any order in theexpansion. We shall address fective action for® ,(x) takes the form
all of these problems in this paper, along with the dynamical .
problem indicated above. We will do this by an exact treat- _ d
ment of certain thermal fluctuatiorrectly in d=2, while Z_f D(I)a(x)exp< B Tf d Xﬁ)’
the remaining quantum and thermal effetsr which the
cased=2 plays no special rojeare treated by a low order 1 y = o U
expansion. We shall claim that this hybrid approach leads to L= 5[(Vx¢a) tROL]+ ﬂ(‘l’a) . 1.7
a more quantitatively accurate determination of both static _
and dynamic properties in the high temperatimequantum  The values of the coupling constari®gsand U will be dis-
critical) region A of Fig. 1. Our approach will lead to a cussed shortly. We are treating the consequences of the non-
computation of the scaling functioW ,, in Eq. (1.1), con-  zero w, modes at the one loop level, and at this order the
taining the universal jump in the superfluid densityTat coefficient of the spatial gradient term does not get renormal-
Before turning to a discussion of our strategy in solvingized. This approximation means that effects associated with
the strong-coupling dynamical problem, let us also reviewwave function renormalization and the quantum critical ex-
the results of Il. This paper examined transport of the conponents have been neglected: this is quite reasonable; as
served charge associated with the continuous)@fymme-  takes rather small values at the+2-dimensional quantum
try of Z5, for n=2 ande small. TheT andr dependence of critical point. Also, these two loop effects were considered at
the conductivity was examined using a perturbative expantength in I, and were found to be quite unimportant.
sion in €, especially in region A. It was found that for small ~ We note in passing thaf in Eq. (1.7) is designed to apply
€, the most important current carrying states were bosonias a model o2, in Eq. (1.2) in region A of Fig. 1. It also
particle excitations with energg,~T, and momentunk  contains the initial crossovers into regions B and C, but there
~T/c (contrast this with the typical energy of ordgleT  are some subtleties &0 in regions B and C. As we shalll
which dominates relaxation of the order parameter, as dissee in Appendix B, the limit§ —0 ande—0 do not com-
cussed above, and in. IThe damping and scattering of the mute: the leading physics for very smdllcan be properly
current carrying states with,~ T was adequately computed captured, but there are some subleading effects which are not
by thee expansion of I, as they were out of the regiorkob accounted for in an approach based on thexpansion.
space where the weak-coupling expansion broke down. Alsdlhese caveats also apply to the dynamics to be discussed in
becauses, was not much smaller tham, the occupation Sec. | B.
number of these bosonic modes could not be approximated For our remaining discussion, it is crucial to understand
by the classical equipartition valu&/e,, but required the the properties ofZ as a continuum, classical field theory in
full function 1/(e®</T—1) for quantized Bose particles. The its own right. Our strategy here will be obtain the universal
transport of charge by these particles was analyzed by theroperties of this continuum theodirectly in d=2. Actu-
solution of a quantum Boltzmann equation in II. All the ally Eq. (1.7) does not define the theor§¥ completely, as
analysis of 1l was systematic in powers ef and included some short distance regularization is needed to remove the
only the leading nontrivial terms. The present paper will de-ultraviolet divergencesA priori, it might seem that there is
velop a strong-coupling approachdi= 2, but it will be ap-  no arbitrariness in choosing the short distance regularization,
plied only to the low frequency order parameter dynamics@s it is uniquely provided by the underlying quantum theory
the transport properties of this approach will be examined inZq . However, as will become clear now, it is actually pos-
a future publication. sible to choose a “virtual” short distance regularizationzf
We are now ready to outline the strategy of this paper. Weat our convenience, provided we properly match certain
will begin in Sec. | A by recalling the approach of | for the renormalized couplings with those obtained from the true
computation of static properties ia expansion. We shall quantum regularization due t@,; we will work with a
show that a straightforward modification of this approach®virtual” lattice regularization of Z here. So, what are the
allows an exact treatment of the most singular thermal flucshort distance singularities &&? From standard field theo-
tuations in directly ind=2, allowing us to obtain results retic computations? it is known that ford<3, the modelz
which have all the correct qualitative features for all valueshas onlyone ultraviolet divergence coming from the “tad-
of n, and are also believed to be quantitatively accurate. Theole” graph shown in Fig. Zthere are some additional di-
low frequency dynamic properties will then be considered invergences, associated with composite operators, which ap-
Sec. | B. pear when two or more field operators approach each other in

The main idea of | was to analyz&, in two steps. In the
first, all modes¢,(k,w,) with a nonzero frequencyy,# 0
SRere integrated out in a naiveexpansion. This produced an
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and |V that this interpretation is very helpful in understand-
ing the origin of “pseudogap” physics in the quantum criti-
cal region.

After short distance dependencies have been removed by
the simple renormalization in Eq1.9), all correlators ofZ
are expected to be finite in the limdt—0, and are universal
functions of the renormalized couplingsand U. Actually,
FIG. 2. “Tadpole” graph containing the only ultraviolet singu- instead of working withR andU, we shall find it more con-

larity of Z. venient to usdr, and the dimensionlessinzburg parameter
G, defined by
space: we will not be concerned with these here—however,
these are important in a consideration of transport properties, TU
and will be discussed in a future pape®o all short scale g= w’ (1.10
dependence can be removed simply by defining a renormal-
ized couplingR related to the bare couplirfg by as our two independent couplings; the radigives an esti-
mate of the strength of the non-linear fluctuations about the
_ n+2\ r1a d% 1 mean-field plus Gaussian fluctuation treatmengo§o, pro-
R=R-TU 6 J 2m K+R’ (1.9 vided we express everything in termsRfand¢ (and notR

and U), the properties of£ are regularization independent
and universal functions dR and gG.

At this point, the correct approach towards computing the
static properties of the underlying quantum problefg
should be quite clear.

(i) First, we compute the values of the effective couplings

Here the expression K{+ R) should be read as a schematic
for the low momentum behavior of the propagator. At higher
momenta of order & (for lattice regularization, we will
choosea to be the lattice spacingthe propagator can have a

rather different momentum dependence and this has to bls ; ) )
. . ' . andg, defined in Egs(1.7), (1.8), and(1.10, by integrat-
accounted for in computing the integral in Ed..8). Also . . g :
: ; : ing out the nonzera, modes in Eq(1.2). This is carried out
notice that we have performed the subtraction with a propabyg an extension ofnthe approa(?rE de)veloped in | and our

gator carrying the renormalized "masst Ford=>2, this is results are presented in Appendix B. In the most interesting

not crucial and we can equally well define the subtraction ; . ; : ;
with a massless propagatoki/this procedure was followed rh|gh T region A of Fig. 1’. t.hese couplings take the following
yalues to leading order ie:

in 1, and has the advantage of leading to a simple linea

relation betweerR andR. Here, we are interested in working n+2\ 27%(T/c)?
directly ind=2, and then such a massless subtraction would R=¢ ,
. . n+8 3
lead to an infrared divergence. So we are forced to perform
the subtraction as in Eq1.9). Indeed ind=2, Eq. (1.8
evaluates to _ 48m\3
g=+e . (1.11
v2(n+2)(n+8)
- n+2
R=R-TU T)In(C/Raz), d=2, (1.9  As one moves out of the region A, these couplings become
™ smooth, monotonic, and universal functions réfr*?”. In

where C is a regularization dependent, nonuniversal Conparncular,g obeys the simple scaling form

stant. This clearly shows that it is not possible toRetO in

the subtraction term. We also note an important property of G=V o (1.12
Egs. (1.8 and (1.9 which is special tod=2. Clearly, we 9“1y | '
have assumed above that-0. However, Eq.(1.9 shows

that the bare masR ranges from— to +% asR increases
from O to. So it is no restriction to consider only positive
values ofR, as that allows us to scan the bare masg iover

all possible negative and positive valJdsis is not true for
d>2 as the reader can easily check from EQ8): then we

do need values dR<0, while defining the renormalization
with a massless propagator, to access all valueR]ofin
particular, as we will show, we will be able to access both
the magnetically ordered and disordered phaseg &r R
.>0.in d=2. We can also i_nt.erpret E@L.9 in a renormal- _can be looked up in Appendix B and I.

ization group sense as defining the scale-dependent effective (i) Then, we studyZ directly ind=2. We do this mostly
massR at a length scale, in a theory with a fixed, positive with our own convenient choice of @irtual) lattice regular-

R: so even in a theory witfR>0, it is possible to have a jzation, but we will be careful to express all physical re-
significant window of length scale, where the scale-sponse functions in terms & and G after using Eq(1.8);
dependent masR is less than zero. We will see in Secs. Ill we will explicitly show that our results become independent

where ¥ is a universal function, an@, is a nonuniversal
scale which can be eliminated if the argumentdof is re-
lated to the actuall=0 energy gap or spin stiffnesas
discussed in | and Appendix)BAs one moves in Fig. 1 from
region C to A to B, the argument o ; decreases uniformly
from +o0 to — oo, while the value ofG increases monotoni-
cally and analytically. The value ob;(0) is given in Eq.
(1.12). Similar results hold foR, which decreases monotoni-
cally from region C to A to B. In the body of this paper, we
shall regardR and G as known functions of and T which
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of a, for small a, when this is done. Finally, for these cou- tuations play equal roles in the dynamical theory; this regime
plings R and G, we use theZ, imposed values given in of dynamics was dubbeduantum relaxationaln Ref. 13.
Appendix B and Eq(1.11), to determine the true physical Here we argue that for the case wheris small, and for the
response functions. The values®fand G vary nontrivially ~ long wavelength relaxational dynamics of the order param-
as a function of andT, and the final results then contain the eteronly, it is possible to disentangle the quantum and clas-
crossovers between the different regions of Fig. 1. sical thermal effects. The central reason for this is that the
Simple, engineering dimensional analysis shows that theredominant modes contributing to the relaxation of the or-
static susceptibility ofZ, and therefore also of, has the der parameter fluctuations at long wavelengths have an en-

form (as shown in) ergy of order
1 é T [k CVR~ Ve, (115
Tx(k)=—= P (KD (—k)==V—:,G], .
x(k) n a=1< (K Po(=K)) R | RY2 g from Eqg. (1.11). It must be emphasized that these modes

(1.13 carry negligible amounts of current, and the transport prop-
_ erties continue to be dominated by excitations with energy of
whereW(k,G) is a universal function of its two arguments. orderT even for smalle, as we have discussed in Il. As the
One of our primary tasks here shall be the computation oknergy in Eq.(1.15 is parametrically smaller thaf, the

this universal function directly id=2. For smallg, this can  occupation number of the typical order-parameter modes is
be done in naive perturbation theory; as is clear from Eq.

(1.17) such a perturbation theory is applicable in region A 1 T 1
for smalle, asG~ \/e. However, ind=2 ande=1, the value —~—~—>1. (1.19
of G in Eq. (1.1]) is not particularly small, and the resulting N cVR Ve
perturbation theory for the static susceptibility is not quanti-The second term above is the classical equipartition value.
tatively reliable. We shall present the results of straightfor-sg we can conclude that there is an effective classioak
ward numerical simulations carried out on a small Worksta'linear wave modeWwhich describes the |Ong Wave|ength re-
tion, which give a reasonably accurate determination of thggxation of theg,, fluctuations. Quantum effects then appear
universal function¥ in d=2, except wherg is extremely  only in determining the coupling constants of this effective
large. Somewhat remarkably, precisely d=2, we shall  ¢|assical dynamics.
also be able to make exact statements in the strong coupling So what is the classical wave model describing the relax-
limit G—o through a duality-like transformation, and this ation of the order parameter modes? To leading order, in
will provide a useful supplement to the numerical results. Inghe required model can be deduced immediately from some
summary, by a combination of weak-coupling perturbationsimple general arguments. First, we have the important con-
theory, an exact strong-coupling “duality” mapping, and nu- straint that the equal time correlations must be identical to
merical simulations, we shall obtain fairly complete knowl- those implied byZ in Eq. (1.7). Second, to endow th®,,
edge of¥ directly ind=2. field with an equation of motion, we clearly need to intro-
In d:2, for the Case$1=1,2, there are critical ValU@ duce a Conjugate momentum Variam_ The kinetic en-
=G, Where Z exhibits phase transition@ the universality  ergy associated with this momentum is clearly given by the
classes ofd=2 classical Ising and Kosterlitz-Thouless re- time derivative term inCq in Eq. (1.2. Furthermore, we
spectively, which appear as singularities of the functi#h  know that the coefficient of this gradient term is not renor-
at G=gc. The values oG, will be determined numerically malized at ordee when the high frequency modes are inte-
(for n=1, G, was obtained in Ref. 35For Z,, these phase grated out. So we assert that the required dynamical model is
transitions, of course, reflect those along e 0 full line  specified by the following partition function over a classical

within region B in Fig. 1. phase space

An important property characterizing the low temperature
phase fod=2, n=2, andG> G, is the spin stiffness¢(T). H
Simple dimensional arguments similar to those leading to ZCZJ D(I)a(x)DHa(x)ex%—?),
Eg. (1.13 now show that its temperature dependence obeys

1 ~ u
PN =T¥,(9), (114 M= f d“x[g[czni+<vx¢a>2+R¢iJ+m(@iﬂ].

Where‘"i’p is a universal scaling function; it is closely related (1.1

to the experimentally measurab¥e, in Eq. (1.1), and this  Notice that we can perform the Gaussian integral dier

will be discussed in Sec. IV. c|ear|y”jfp vanishes forg  exactly, and we are left then with the original coordinate
<Gs. space in Eq(1.7): this is the usual situation in classical sta-
tistical mechanics, where momenta decouple from the static
analysis. To complete the specification of the classical dy-
namical model, we need to supplement Bql7) with equa-

As we have emphasized in | and II, the dynamical prop-tions of motion. These are obtained simply be replacing the
erties of region A of Fig. 1 id=2 are especially interesting quantum commutators associated with classical Poisson
because they are characterized by a phase coherence tinpgackets. So we have
and an inelastic scattering time, which are both universal
numbers timed. Consequently, thermal and quantum fluc- 1P o(X), H5(X") }p g.= 8p(X—X"). (1.18

B. Dynamics
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The deterministic, real time equations of motion are then thavhere it is understood the time evolution is now due to the

Hamilton-Jacobi equations of the Hamiltonidfy and they  quantum Hamiltonian implied b, and so is the thermal

are given by average. This structure factor obeys an exact fluctuation dis-
sipation relation toy(k,w) defined in Eq.(1.4):

ata :{q)a(x)iH}P.B.:CZHa (119) 2
g So(k,w)= ———=Im x(k, ). (1.29
an
o1 ~ U We can relate the dynamic structure fact&s and S only
at“={Ha(x),H}p_B_=V§<I>a—R<I>a— g(‘b%)q’a- under the conditions that the dominant spectral weight of

(1.20 excitations is at an energy smaller thanAs argued earlier,

' this is the case here by E(L..15 for € small. Assuming this
Equations(1.17), (1.19, and (1.20 define the central dy- condition we haveS(k,w)~ So(k,w) and
namical nonlinear wave model of interest in this paper. We
are interested in the correlations of the fidid, at unequal
times, averaged over the set of initial conditions specified by
Eqg. (1.17). Notice all the thermal “noise” arises only in the
random set of initial conditions. The subsequent time evolu
tion obeys Hamiltonian dynamics, is completely determinis
tic, and precisely conserves energy, momentum, and tot
O(n) charge. This should be contrasted with the classica
dynamical models studied in the theory of dynamic critical
phenomend®’where there are statistical noise terms and an S(k, )= X( ) k o (1.26
explicit damping coefficient in the equations of motion. \/— \/_ ’

The dynamical model above has been defined in the con-
tinuum, and so we need to consider the nature of its shorwhere‘IfSC(k o) g) is a dimensional universal function is an
distance singularities. Our primary assertion is that dor even function ofw. The prefactor of Eq(1.26 has been
<3, theonly short distance singularities are those alreadychosen to ensure that this function has a constant integral
present in the equal time correlations analyzed in Sec. | Agver frequency
These were removed by the simple renormalization in Eg.
(1.8, and we maintain this is also sufficient to define the foo

2T
S(k,w)=—Im (k). (1.29

Finally, we can write down the scaling form obeyed by
S(k,w); from the arguments of the previous paragraph, and
imple engineering dimensional considerations as in Eq.
1.13, we obtain

Sc

do N
continuum limit of the unequal time correlations. These as- Z‘I’s&k,w,g)Zl, (1.27
sertions rely on our experience with the structure of the per-
turbation theory inG presented in I, and on the consistency as follows immediately from Eq(1.22), or from Eq.(1.25
of the numerical data we shall present with the scaling strucafter use of the Kramers-Kronig representationygk) in
ture we describe below. terms of Imy(k, ). We will obtain information on the struc-
Assuming that introducin® as in Eq.(1.8) allows to take  tyre of W4, for d=2 in Sec. lll. We shall be especially
the limit a—0, we can deduce the scaling form of unequalinterested in thevo—0 limit of S(k,w) which describes the
time correlations by simple dimensional arguments. We detong time correlations of the order paramedey; ; this limit
fine the dynamic structure factdg(k,w) by is not accessible in perturbation theory even for srgalas
was shown in I.
d —i(kx— ot The outline of the remainder of the paper is as follows.
Sk,w) f dtj d le (Pa(x)P,(0,0)e ( . We will present details of our analysis of the static properties
(1.22) of Zin Sec. Il. The main achievements of this section are of
a technical and quantitative nature, and there are no qualita-
tively new physical results; some readers may wish to skip

Notice that, unlike Eq(1.4), this involves an integral over
real time,t. Comparing with the equal time correlator in Eq.

; this section and go directly to Sec. lll. In Sec. Il we will

(1.13, we clearly have the relation present our numerical results on the long time dynamics of
= do the modelZ; . A synthesis of our results in the context of its

TX(k)_f ——S(k,w). (1.22  experimental implications will then appear in Sec. IV. Some

~=(2) technical details, including a summary of needed results

However, what is the relationship betwe8(k,») and the from I and Ii are presented in the Appendixes.

physically appropriate quantum dynamic susceptibility
x(k,w) obtained by analytically continuing Eq1.4? By IIl. STATICS IN TWO DIMENSIONS
analogy with Eq(1.21) we can define the physical, quantum s section will examine the classical mod@l.7) di-

dynamic structure factor rectly ind=2. We will obtain essentially complete informa-
n tion on the static susceptibilityy(k), by a combination of
So(k, )= EJOC dtf ddXE (bo(X,1) $,(0,0))e 1 (kx0D), weak coupling(Sec. Il A), strong coupling(Sec. Il B, and
NJ- a=1 numerical methods¢Sec. Il Q. The exact duality-like trans-
(1.23 formation will be described in Sec. Il B.
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A. Weak coupling

For smallG, we can perform a familiar Feynman graph

expansion in the quartic coupling ifi. At order G2 we ob- 10
tain atk=0 N
8-
n+2
X_1(0)=R{l—(l—g)J(l,l,l)QZJrO(gs) , (21 6
whereJ(1,1,1) is a number defined in E¢C19), and Eq. ]

(2.1) is clearly consistent with the scaling for(i.13. The
order G2 correction starts becoming important fGr~15,

which then is roughly where the crossover to strong coupling 0 : : . .

occurs. 0 100 200 300 400
The spatial correlations ob decay exponentially on a g

scale of order YR, Neglecting the ordeg® corrections, we FIG. 3. The “dual” dimensionless coupling, as a function of

get fr|0r|n a Fourier transform of the ¥+ R) propagator at g for n=1 (full line), n=2 (dashed ling andn=3 (dotted line.
large|x

Assuming the existence of a soluti¢@.5 for Ry, we

1 n -I— . . .

< _ —Ix/é now have a new renormalized theory in which the local ef-

n Zl (@.0Pa(0)) ,/87T|X|/§e ' 2.2 fective potential for® , fluctuations has the form
where the correlation length is Ro., U

—— P2+ —(D2)%+ ..., (2.6)
1 4 "¢ 4>«
- 2
§= ﬁ[l"'o(g )] 2.3 where the ellipses represent counterterms arising from Eg.

(2.4) which will cancel the cutoff dependencies order by or-
) der inU. So if this renormalized theory is weakly coupled,
B. Strong coupling |®,| will fluctuate around a nonzero mean value of order
We will now consider correlators of in the limit G V3Rp/U. But is this the case? Clearly, this depends upon
— o0, Quite remarkably, exact information can be obtained irthe value of a “dual” dimensionless couplingp , which is
this limit too. The key is an ingenious proposal made soméhe analog of Eq(1.10
time ago by Chan§ for the n=1 Ising case, but which
appears to have been forgotten since. Chang proposed a G :E 2.7
strong-to-weak coupling mapping fer=1, which has the PRy '
flavor to a duality transformation. Here we will review his

mapping, and show that closely related methods can be ajfYnat is the value ofip? This can be obtained by combining

gs.(2.5), (1.10 and(2.7) into the dimensionless equation

plied to alln.
The argument begins by noting that in the liRit> 0, the 1 1 N2 G
bare mas® in Eq. (1.8) tends to—«. So at short scales, the §+ E= pyr Ing—D (2.9

effective potential controlling the fluctuations b | will
have a negative curvature at the origin and a minimum at ghich can be solved to yield, as a function ofj. A plot of
nonzero value of® ,|. This suggests that we renormalize the G, versusg is shown in Fig. 3. A straightforward analysis of
theory with anegativerenormalized coefficient of th@i Eq. (2.8) shows that there is no real solution 6 for G

term. So we replace E¢1.8) by <54.2756 forn=1, for G<40.7069 forn=2, and G
<32.5655 fom= 3. Forg larger than these values, there is a
~ Rp n+2| (va d’k 1 solution for Gp which decreases monotonically from
R=-—5~-TU =5 J (2m)2 K2+ Ry’ (24 (Go)max=127/(n+2) as@ increases, and a— o« it obeys
where we have introduced a new renormalized “dual” mass 127 1
Rp>0; the factor of 1/2 in the first term on the right-hand 9o~ n¥2) Ing’ (2.9

side is for future convenience, and has no particular signifi-
cance. While both Eqg2.4) and (1.8) have a nonuniversal So Gp is small asG becomes very large, and this “dual”
cutoff dependence in their momentum integral, this disapproblem is therefore in a weak coupling limit, as we had

pears when we combine them to elimin&end obtain hoped. _ _ _
We have so far been expressing all universal physical

Rp n+2\ Rp properties of Eq(1.7) in terms of G and R. However, for
R+ 5 = TU 24 |nﬁ- (2.9 largegd, it is clear that we can freely trade these couplings for

Gp andRp : we defineGy from Eq.(2.8) and relateRpy and
This equation can be solved to yigRh>0 as a function of R by the relationship
U andR. As we will discuss shortly, such a solution exists
only for R small enough. RpGp=RG, (2.10
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obtained by comparing Eqgl.10 and(2.7). We will mainly ~ which is consistent with the scaling for(t.14). The power-

useRp andGp as our independent couplings in the remain-law decay in Eq.(2.15 corresponds to a quasi-long-range

der of this subsection. XY order in the two-component planar order parameter
It now remains to do a weak coupling analysis in powers(®,,®,). In momentum space, the quasi-long-range order

of Gp. This is straightforward fon=1, but the cases with implies a power-law singularity in the static susceptibility at

continuous symmetryn=2, have to be treated with some k=0:

care. All of these analyses have been discussed in Appendix

C, and we will present the final results for different value of 3 (1—75/2) 1

] i - = , (2.18
n in the following subsections. x( 27T (7/2) gDRg’sz—’f

1.n=1 which is consistent with the scaling forf.13.

Forn=1, we have from Eq(C5) for large x| 3 =3
.=

T = . i-lona- i .
(CDa(x)®a(0))=N§+ o Ie 2.11) Forn=3, no long-range or quasi-long-range order is pos

gr|x|/& sible. Correlations always decay exponentially at sufficiently
_ long scales, but the correlation length does become very
where the correlation length large in the strong coupling limit. We conclude from the
analysis in Sec. C 3 that the ultimate long-distance decay of
1 the correlation function has the form
&= \/—_ (2.12
RD , e ‘ ‘/§
and the spontaneous magnetization was computed in Eq. 2 (P (X)P,(0))= Clg —g- -2 _—_——
(C9): Vixire’
(2.19
3T 592 where(; is a universal number, and the correlation length is
No=\/= o 1- —J(l 1,)+0G3)|. (213 given by
The numerical constart(1,1,1) also appeared in E.1), 1 n—1\[e(n—2)Gp]H-2 67
and its value is given in Eq(C19. So the correlator ap- &= ( ) } e ;{—)
proachesNS exponentially on the scalé. In momentum \/R_D n—2 A8 (n=2)Gp
space, the static susceptibility has the form (220
5 The static susceptibility can be deduced from the results of
N 1 2
(k)= ?0(277)252(k)+ . ’ (2.14 Refs. 19 and 13, and is given by
k“+Rp Gp\VO-2)
which is of the form(1.13. The presence of the delta func- X(k):CZ(? £t (ké) (2.21
tion indicates true long-range order which breaks the
— —® symmetry for smallgy (largeg). for small k, whereC, is a universal numbefrC,~1.06 for
N=3 (Ref. 20], f is a smooth scaling function considered in
2.n=2 Refs. 19 and 13 witf(0)=1. Notice that, unlike the cases

n=1,2, there is no singularity iry(k) atk=0 for smallGp

(largeG); insteady(0) becomes exponentially large-¢?),

has an exponentially small width~1/£) in momentum
space, but remains a smooth functionkof

Forn=2, from Eq.(C9) and the arguments below it, we
can conclude that fojx|>1/\Rp, there is a power-law de-
cay in the order parameter correlator

n
3T/ (In2—+y) ,
D (D (X)DPL(0))= oo | 1t =590+ O(GD) C. Numerical results
a=1 D
We now have an understanding of the propertiesZof
X[|X|VRp]~ 7, (2.195 both in the limitsG— 0 andG— in d=2. For smallg, we

have the resul{2.2) and (2.3) showing the® , correlations

where vy is Euler's constant, and the continuously varying decay exponentially in space due to the fluctuations &

exponent,, is related tgp(T), the exact renormalized spin modes aboutb,=0, while Eq.(2.1) shows that the static

stiffiness toward$)(2) rotations, by susceptibilityy(0)~ 1/R. For largeG we have the results for
T the static susceptibility in Eq$2.14), (2.18, and(2.21). We
p=—-. (2.1  will examine the manner in which the system interpolates
27ps(T) between these limits in the following subsections.
We computedpg(T) in Appendix C2 in a perturbation
theory inGp and found

The delta function in Eq(2.14) indicates the presence of

ps(T) _ i_ @+ (G2) 2.17) long-range order for sufficiently larg@ This delta function

T o 36 D ' is expected first appears at a critical vafire G, by a phase

1.n=1
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transition in the universality class of tlie=2 classical Ising
model. The value oG, was determined numerically in a
recent Monte Carlo simulation in Ref. 15, which found

G.=61.44. (2.22

2.n=2

The quasi-long-range order implied by Ed2.15 and
(2.18 is expected to be present fg>G., and to vanish at

G. by a Kosterlitz-Thouless transition. The low temperature
phase is characterized by the spin stiffness which obeys the

scaling form in Eq(1.14). The behavior of the scaling func-

tion \T’p for large G (small Gp) was obtained earlier in Eq.
(2.17. We expect that

T ,(G<G.)=0, (2.23

while precisely atG. its takes the value specified by the
Nelson-Kosterlitz jump

T ,(G=G.) (2.24

=—.
We performed Monte Carlo simulations to obtain more
information on the functional form cﬁfP and the value of
G.. We discretized Eq.1.7) on a square lattice of spacirg
and used am X L lattice with periodic boundary conditions.

SUBIR SACHDEV

1

0.8

Ps(T) Gp /3T

0 T T 1

1.5
Gp/3

FIG. 4. Numerical results fofps(T)/T)/(Gp/3) as a function of
Gp/3. We used a square latticelok L sites with periodic boundary
conditions and lattice spacing. The lattice sizes used wele
=64 (starg, L=128(pluses, andL =256 (X's). The dashed line is
the locus of points where the Nelson-Kosterlitz jurt24) is
obeyed. The full line is the result of the sm@l, expansion in Eq.
(2.17). The filled circle indicates the position of the Kosterlitz-
Thouless transition determined by the extrapolatior. toc limit
using the method described in the text and in Fig. 5. In the approxi-
mation in which we assume that thi@lependence df, is given by
its leading value a¥— 0, G~ 3T/p4(0), thescale on the horizon-
tal axis becomed/p4(0), while that on the vertical axis becomes

The Monte Carlo sweeps consisted of two alternating steps(T)/p4(0).

First we updated both the amplitude and phase &f (
+i®,) on each site by a heat bath algoritimThen we
applied the Wolff cluster algorithff to rotate the phase of
sites on clusters by a random angle. As we are interested

fairly large values ofj, Where\Tfp is nonzero in the thermo-
dynamic limit, it is more appropriate to use the dual cou-
plings, Gp andRp in testing for the appearance of the con-
tinuum limit. In particular, we nee®Rpa®<1, and we used
values around Rpa?~0.04; this was found to yield

a-independent susceptibilities, as we will display more ex-

plicitly in our discussion of then=3 case.

Our numerical results fop(T) are shown in Fig. 4. The
stiffness was measured by evaluating the expectation val
of the appropriate current-current correlation function im-

plied by the Kubo formula. The results are presented by plot-

ting (ps(T)/T)/(3/Gp) versusGp/3, and we will now discuss
the reason for this choice. From E@.17) and our discus-
sion in Appendix B we see thaip vanishes linearly a3
—0, and that

Go(T) 3
T ps0)’

where we have now emphasized thgtis a function ofT, as
was also noted in the scaling forti.12); this relationship

lim
T—0

(2.29

guarantees that vertical coordinate in Fig. 4 becomes unity as

Gp—0. Further, if we approximate the dependence of
by Gp(T)=~3T/ps(0) (this relationship isot exactly true,
then the vertical axis in Fig. 4 becompg(T)/ps(0), while
the horizontal axis ig/p¢(0).

Notice that for smallGy, the results forpg(T) are ap-
proximately independent af, while they become strongly
dependent aroundp~ 3, as would be expected in the vicin-

u

ity of the Nelson-Kosterlitz jump, which is present only in
the infiniteL limit. We can make quite a precise estimate of
the position of this jump by fitting the L dependence qf,

to the following theoretically predictéd finite-size scaling

form:
(1+

A andL, are free parameters, determined by optimizing the

f(iat. The best fit values of are shown in Fig. 5. The value of

1

ps(T) _ 2A
T 21n(L/Ly)

T

. (2.26

v

1.154

1.05+

0.95+

0.85 T T T
2.6 27 2.8 29
%o

FIG. 5. Values of the coefficierk in Eq. (2.26) determined by
fitting the L dependence of the measuyedT)/T to Eq.(2.26). We
fit the value ofA to a linear function ofj, , and the point where the
line has the valuA=1 (indicated by the dotted lingsletermines
the position of the Kosterlitz-Thouless transition.
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34  —— L=64 Re2=0.02 6+

(R/T) S(0.H

-&— L=64 Ra®=0.03

-o- L=64 Ra®=0.04
X(0)R -o— L=64 Ra®=0.08
-o- L=128 Ra2=0.02
-=- L=128 Ra2=0.03
24— L=128 Ra2=0.04
—— L=128 Ra2=0.08

_ weak coupling
theory

0 5 10 1

o A 5 20
1 =y _ - oot : : (o] t\/ﬁ

25

FIG. 7. The dynamic structure factor in the time domain,
FIG. 6. Scaling plot of the static susceptibilig(0) forn=3 as ~ S(k.t)=fdw/(2m)S(k,w)e”'*', for n=1 and with ¢
function of G. The dashed line indicates the prediction of weak- =25, 30, 35, 40.
coupling expansion in Eq2.1).
lations show a clear damped oscillation in time. These oscil-
Gp at whichA=1 determines the position of the Kosterlitz- lations represeramplitude fluctuationsn @, about a mini-

Thouless transition, and in this manner we determine mum in the effective potential & ,=0. The damping of the
oscillations increases with increasigguntil the oscillations
Gpc=2.747. (2.27  disappear entirely fog large enough.

The Fourier transform of the data in Figs. 7-9 to fre-
quency directly gives us the dynamic structure factor, and
the scaling functiol ¢, defined in Eq.(1.26. The results
for this are shown in Figs. 10-12 fer=1, 2, and 3, re-
spectively. Notice thatS(0,0) is clearly always nonzero.
Consequently, by the fluctuation-dissipation theorem, Egs.

There is now no phase transition as a functihrand the  (1.24 or (1.25), Im x(0,0) ~ w for smallw. The perturbative
susceptibility exhibits a smooth crossover from the weak<computations in | did not obey this simple and important low
coupling form(2.1) to the strong-coupling limit2.21). We  frequency limit, and so this sickness has been cured by the
obtained numerical results fai(0) at intermediate values of present nonperturbative, but numerical, computation.

G, and the results are shown in Fig. 6. A range of valugs of  The smallG regime of amplitude fluctuations discussed
andRa’? were used, and the excellent collapse of these meabove in the time domain, translates now into a peak in
surements in Fig. 6 indicates that we are studyihin Eq.  S(0,0) at finite frequency of order-c\R. As G is reduced,
(1.7) in the continuum and infinite volume limits. The weak- we move out of the highi region A in Fig. 1, and into low
coupling prediction of Eq(2.1) is also shown, and this is T region C on the quantum paramagnetic side. This finite

Finally, using Eq.(2.8) we get
G.=102. (2.28

3.n=3

seen to work only for very small values 6f frequency, amplitude fluctuation peak connects smoothly
with a sharp peak associated with a quasiparticle excitation
II. DYNAMICS IN TWO DIMENSIONS of the quantum paramagnet. Of course, once we are region

Finally, we turn to the central problem of dynamic corre- 4_
lations. We generated initial conditions fdr, as described (R/T) S(0,t)
in Sec. Il C, forll, by the simple independent Gaussian
distributions specified by Eq1.17, and then integrated the |
equations of motion(1.19 and (1.20 by a fourth-order
predictor-corrector algorithm. Correlations &f, at unequal

n=2

times were then measured, and in this manner we obtained | G=40

the correlation functiorf d®x(® ,(x,t)® ,(0,0)). The results

are shown in Figs. 7-9 far=1, 2, and 3 respectively, for a

series of values ofj. The values ofG were chosen to be \ g=3OA\

around the quantum critical val#.11) evaluated directly in 0

e=1. Also in Fig. 9, we show results for different values of

Ra&?, and their independence on this parameter is evidence G=20

thqt we are measuring the universal values in the continuum '20 5 10 15 20 o5
limit. ct \/ﬁ

There is a simple, and important, trend in the dynamical
correlations with increasing. For smallg, thek=0 corre- FIG. 8. As in Fig. 7, but fon=2 and withG= 20, 30, 40.
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*1(RM SO
2 n=3
G=30
14
G=25
S
16

416=20

] 10 20 ctJR 30 FIG. 11. As in Fig. 10 but fon=2 andG=20, 30, 40.

FIG. 9. As in Fig. 7 but forn=3 and G=20, 25,30. Forg  over whichR is negative, which prefers a locally nonzero
=20, 30 we used two different valuesR&* (Ra’=0.03,0.04 for  value of|#,|, and allows for low-energy phase fluctuations.
G=20, andRa’=0.04, 0.08 forG=30) and these are indicated by e can understand the nature of the dynamics in the limit
the presence of both dashed and full lines for these cases. The gogd., o by arguments analogous to those made for the statics.
agreement between the dashed and full lines is evidence that we aj§a \ill restrict our attention here to=3, and other cases
measuring the universal values in the continuum limit. are similar. We saw in Sec. Il B 3 that the statics were de-

scribed by thed=2 O(3) nonlinears model. In a similar

C, the amplitude and width of the .peak can no longer bq‘nanner we can argue that the dynamics will be given by the
computed by the present quasiclassigal’edescription, and dynamical extension of this model considered by Tyc

we need an approach which treats the excitadicles qua- et al,?° and the three-argument universal scaling function

siclassically. ; : .
. . . , V.in EQ.(1.26 will collapse to the two-argument universal
Now consider the opposite trend of increasigowards scaling functions of Tyt al. in the limit G—oo. This col-

Fhe low T reﬁmn B l?rg)thedmagnettljcally ordelslred ﬁ'de' As lapse is similar to the transformation of E$.13 to (2.21)
Increases, the peak broadens and eventually, the maximuftly,e same imit for the statics. Consistent with the interpre-

moves do"_V” to zero frequency. FoB2, it is nat_ural ©  tation in the previous paragraph, the description of ¢he
interpret this dominance of low frequency relaxation as due , limit of the dynamics given by the model of Tyt al
to “phase” or “angular” fluctuations of® , along the con- '

tour of zero energy deformations at a fixed nonzerg|. Of is described by a model in whidkp,,| is constrained to have

the full lized effecti tential a fixed length. Further the results of Tgtal. show a large
course the fully renormalized €fiective potential necessary, _ o ek inS(0,w),2° which is consistent with the trends
has a minimum atb ,=0 because this is a region without P :
| der- thel h b anifi otbserved here with increasintg
.0?9 rar(;get olr er,thnevelr cless, h'ef:etth:S Ie fafl S|tgn| Icant The above description of the origin of the low frequency
Intermediate fength scale over which the focal efiectiVe pos.q v ation in the continuum high region A due to angular

tiggiln:ﬁ;n? fmgll;gl:ir:nzt (; n;PeZZ;O :Izdﬁe'llﬁgé;]ngl;gebe fluctuations in¢, clearly relies on the existence of a con-
P @ gufar. tinuous symmetry fon=2. However, closely related argu-

seen from the relatiofiL.9): crudely, we can imagine varying ments can also be made for=1 by appealing to the low-

a at fixed R to determine the effective ma$son a length  energy mode arising from the motion of domain walls
scalea—we see that for largé, there is a significant scale petween ordered regions with opposite orientations.

0 T T T 1
0 0.4 08 — 1.2 1.6

FIG. 10. The Fourier transform of Fig. 7 to frequencies, which  F|G. 12. As in Fig. 10 but fon=3 andG=20, 25, 30. As in

yields the scaling function?s{(0,0,G) in Eq. (1.26), where » Fig. 9, there are two data sets fgr=20, 30 (indicated by the
=w/cyR. Results are fon=1 andG=25, 30, 35, 40. dashed and full linéscorresponding to two different values RE2.
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We have implicitly assumed above that “amplitude” and isfactorily modeled byz. Of course, tha-dependent values
“angular” fluctuations are mutually exclusive phenomena, of the coupling constant&® andg will then be different, and
but this is cIearI_y not true in principle. Even in a region with depend upon the specific underlying quantum model. So, for
angular fluctuations, there can be an amplitude mode involvingtance, if one of the phases was-wave superconductor
ing fluctuations in|¢,| about its local potential miNIMUM.  ang had gapless fermionic excitations, then the subleading
Such a situation would be manifested by a simultaneous pea&)rrections to expressions for the couplir@and g in Eq
in S(0,w) both atw=0 and at a finite frequency. Itis appar- g19) \would change. Apart from a traditional weak coupling

ent from Figs. 10—12 that such a situation never arises in nalysis ofZ, we introduced a surprising, exact solution of
clear-cut manner. Apparently, once angular fluctuations ap; L o .

. : : the strong coupling limit by a dualitylike transformation. We
pear, the nonlinear couplings between the modes is stro

r]:glso interpolated between these limits by Monte Carlo simu-

enough ind=2 to reduce the spectral weight in the ampli- i A : it tati f
tude mode to a small amount. However the amplitude mod!ea IonS. AmOng our main new resufts was a computation o

does not completely disappear—there is a clearly visibldn® T dependence of the spin stiffnegg(T) for n=2, and
shoulder in the=1 Fig. 10 forG=35, indicating concomi- Shown in Fig. 4. When combined a knowledge of the tem-
tant angular and amplitude fluctuations. These results on theerature dependence ¢f as in the scaling form(1.12) it
difficulty of observing an amplitude mode for larggin d leads to a prediction fgig(T) consistent with the fornil.1).
=2 (low T in region B connect smoothly with thg=0  As a first pass, we can combine the approximate Topre-
response of the magnetically ordered state of the quantusiiction which follows from Eq.(B19), Go~3T/p(0), with
theory Zo—the latter is reviewed in Appendix A, and we Fig. 4 and obtain an explicit prediction for the functid), in
find there that the amplitude mode is swallowed up in theEq. (1.1).
spin-wave continuum for the continuous symmetry case. Our studies of dynamic properties were somewhat more
For the quantum-critical region A in Fig. 1, we should usespecialized to the quantum modgl},, although we expect
the value ofG in Eq. (1.11). At e=1, this result evaluates to that closely related methods can be applied to other models.
G=35.5 forn=2, G=29.2 forn=2, and toG=24.9 forn  Our approach relied heavily on the specific value of the
=3. If we take this value of seriously, then we see from “mass” R obtained in the high limit of Zo—we used the
Figs. 1012 that all cases are quite close to the border béact thatc\R/T~ \e<1 to argue for an existence of a dy-
tween amplitude and phase fluctuations, when the peak inamical model of classical waves. This model is defined by
S(0,0) moves from nonzero to zero frequency. Amplitude the ensemble of initial conditiord.17) and the equations of
fluctuations are however somewhat strongerrfer3 (when  motion (1.19 and(1.20. The universal dynamical properties
there is a well-defined peak at a nonzero frequgnepile  of this model were studied by numerical simulations directly
angular/domain-wall relaxational dynamics is strongerrfor in d=2, and results are summarized in Figs. 7—-12. As we
=1 (when there is a prominent peakat=0). pass from region C to A to B in Fig. 1, the value of the
There is a passing resemblance between the above crogsuplingG increases monotonically. The dynamics shows a
over in dynamical properties as a function@fand a well-  crossover from a finite frequency, “amplitude fluctuation,”
studied phenomenon in dissipative quantum mech&niés: gapped quasiparticle mode to a zero frequency “phase” (
the crossover from “coherent oscillation” to “incoherent re- =2) or “domain wall” (n=1) relaxation mode during this
laxation” in a two-level system coupled to a heat bath. How-increase ing.
ever, here we do not rely on an arbitrary heat bath of linear One of the primary applications of our results is to the
oscillators, and the relaxational dynamics emerges on its owsuperfluid-insulator transition for the case=2. Our ap-
from the underlying Hamiltonian dynamics of an interacting proach offers a precise and well-defined method to describe
many-body, quantum system. Our description of the crossthe physics of strongly fluctuating superfluids above their
over has been carried out in the context of a quasiclassicakitical temperature, with an appreciable density of vortices
model, but, as we noted earlier, the “coherent” peak con-present. Near a quantum critical point, our results show that
nects smoothly to the quasiparticle peak in region C of Figsuch superfluidéregion A of Fig. 2 have a reasonably well-
1; in this latter region the wave oscillations get quantizeddefined order parameter, wiflkb ,| nonzero over a signifi-
into discrete lumps which must then be described by a&ant intermediate length scale. Strong phase fluctutimes

“dual” quasiclassical particle picture. eventually responsible for the disappearance of true long-
range order. The evidence for this picture comes from our
IV. IMPLICATIONS FOR EXPERIMENTS dynamic simulations, which show a well-formed relaxational

peak atzerofrequency in the dynamic structure factor. The

We first summarize the main theoretical results of thistrends in the dynamic structure factor as a functio tfien
paper. It is convenient to do this in two steps: first for thesupport the interpretation that this peak arises from phase
statics, and then the dynamics. relaxation. We speculate that our results can be extended to

For static properties, we presented a rather completdeduce consequences for the electron photoemission spec-
analysis of the classical field theorg in Eq. (1.7), of an  trum of the high temperature superconductors, along the
component scalar field , with a quartic self-interaction. We lines of Refs. 9 and 10. We imagine, in a Born-Oppenheimer
motivated the study of here as an effective theory of the picture, that the fermionic quasiparticles are moving in a
static fluctuations of the quantum modg},, in Eq. (1.2,  quasistatic background of the,, field. Then the photoemis-
but it is clear thatZ has a much wider domain of applicabil- sion cross section can be related to a suitable convolution of
ity. The static properties of almost any quantum moded in the electron Green’s function and the dynamic structure fac-
=2 with an Of)-symmetric order parameter should be sat-tor of ® ,. Under such circumstances, we believe that a zero
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frequency, phase relaxation peak in the dynamic structurandn=3 subsystems, at moderately large values, to obtain a
factor of @, will translate into a weak “pseudogap” in the proper description of the physics; for=5, the value ofj in

fermion spectrum. Eqg. (1.11) is quite small, and would lead to a rather sharp
A separate application of our results is to zero temperagaplike structure in the dynamic structure factor of the

ture magnetic disordering transitions for the case3. Re- =5 order parameter in the highlimit.

cent neutron scattering measurements of Aepplal! on Finally, we mention recent light scattering experiménts

La, ,Sr,CuQ, at x=0.15 are consistent with quantum- on double layer quantum Hall systems which have explored

critical scaling with dynamic critical exponerk==1 and both sides of a magnetic ordering transition. Simulations at

anomalous field exponeni~0, suggesting proximity to an n=3, but in the presence of a magnetic field can lead to

insulating state with incommensurate, collinear spin andspecific predictions for this system. The experimental results

charge orderingthe collinear spin-ordering ensures that aappear to show the appearance of a spin pseudogap af high

singlen=3 vector order parameter is adequate; coplanar orwhich is consistent with our results so for 3.

dering would require a more complex order parameter and is

not expected to have close to (. Their measurements have ACKNOWLEDGMENTS

e e e oo, | 1ank G, Asopl, C_uragoan, K. Darie ). Tran

form. We have r'10t computed such n):omentum depengencedﬁ)uada' and J. Zaanen for useful discussions. This research
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our simulations here, but general experience with scaling

functions ind=1 suggests that such a form is to be expected

in the highT regime AZ° It would be quite interesting to APPENDIX A: SPECTRUM OF THE ORDERED STATE

examine thew dependence of the structure factor in future OF THE QUANTUM THEORY AT T=0
experiments, and compare them with our results in Fig. 12.
As we discussed in Sec. I, it is the smaller valuesGof We address here the issue of amplitude fluctuations of

which have anonzerofrequency peak ir8(0,w) in Fig. 12,  |¢,| in a state with magnetic long-range order. We will do
and which lead to a “pseudogap” in thgpin excitation this by examining the response functions of the quantum
spectrum. Compare this with our discussion of e2  theoryZ,in Eq.(1.2) atT=0. These were computed in | by
superfluid-insulator transition above, whereeaofrequency the e expansion—for smal¢, there is a well-defined peak in
peak inS(0,w) at larger values of was argued to lead to a the spectral density of the longitudinal response functions,
fermion pseudogap. It is satisfying to note that if we are tocorresponding to amplitude oscillations|ef,| about a non-
observe both a spin and a fermion “pseudogap” in the ex-zero value. Indeed, these results were used by Normand and
periments, then the trend in the required value§ wfith n is Rice® to argue that such an amplitude mode will be observ-
consistent with Eq(1.11). able in the insulator LaCuf}, which is believed to be near

Continuing our discussion of the application &3 to  ad=3 quantum critical point.
the high temperature superconductors, it is also appears We will consider the case=2 here, using the larga
worthwhile to remind the reader of nature of the magneticexpansion. Unliked=3, we will find here that such an am-
spectrum in the magnetically disordered side, in region C oplitude mode is not visible inl=2 because the cross section
Fig. 12%13 Here there is a sharp triplet particle excitation for decay into multiple spin-wave excitations is too large.
above the spin gap, which is only weakly damped. It is in-This result also connects smoothly with olite>0, d=2
teresting that such excitations have been observed afiow simulations in Sec. Ill, where again we found little sign of
YBa,CuQs. ,.° However, their eventual interpretation must such an amplitude mode.
await more detailed studies and comparison with the situa- Largen results for the two-point, correlator in the di-
tion in La, _,Sr,CuQ,. rection paralle[ x(k,w)] and orthogonal x, (k,)] to the

It is tempting to combine our discussion o2 andn  spontaneous magnetization were given in Appendix D of
=3 models above for the high temperature superconductorfef. 13. They arainiversalfunctions of p4(0), ¢, and the
into a singlen=5 model*! However, there does not appear ground state spontaneous magnetizathg, and in particu-
to be any reason for the resulting theory to be even approxiar, they do not depend upon whether the underlying degrees
mately O(5) invariant. Moreover, we have seen above thabf freedom are soft spin@s in Z,) or vectors of unit length
we need the freedom to independently véryor the n=2 (as in Ref. 13 To leading order in 1, the results are

_ NG
 psO)[K— (wlc)?]’

XL(k!w)

N2 1
o .
Xtk @)= 210) VK= (wlc)’[ VK= (wlc)*+16p4(0)/cn]

(A1)
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So, as expected, the transverse correlator has a simple pole<ad andn>1), or the ground state energy gaphich isA _

the spin-wave frequencyy = ck. On the other hand, the lon- for r<0, n=1, and isA, for r>0 and alln).

gitudinal correlator only has a branch-cut at=ck—the One reasonable approach at this point is to solve Egs.
spectral density vanishes fes<<ck, and decreases mono- (B2) and(1.8) for R andU directly in d=2 by a numerical
tonically for w>ck. In particular, there is no polelike struc- method. This will give results foR and G which are valid
ture at a frequency of order,(0)/n, which is the expected everywhere in the phase diagram of Fig. 1—the resulting

position of the amplitude mode. value of G will increase monotonically from O tee as one
moves from region C to A to B. MoreoveR will remain
APPENDIX B: COMPUTATION OF RAND U positive everywhere. However, the results will not be explic-

) o ) itly universal and will depend upon microscopic parameters

This appendix discusses the valuesRoéindU obtained  fom the theory Z,—the values ofu and the momentum
by integrating out the nonzero imaginary frequency modes,ioff A .
from Zq. Such a computations was already discussed in |, yniversality of the final result can only be established
but here we will present the modifications necessary due tgqer by order ine. In the remainder of this subsection we
the slightly different renormalization used in EQ.8). We || evaluate Eq.(B2) in such an expansion ia This surely
will also present new computations within the magnetically,gqyces the accuracy of our final estimates Roand U it
ordered state in region B of Fig. 1. _ should not be forgotten, however, that we subsequently study

First, in Sec. B1, we will follow the paramagnetic ap- z girectly in d=2, and so the scaling functions in Egs.
proach of I, which computes parameters for0, and then (1 13 and(1.26, whose arguments are relatedRand U,
extrapolates to <0 by a method of analytic continuation in are known much more accurately. We will find that our lead-
r, which is valid forT>0. This method works without any jng order ine result for R vanishes whe becomes suffi-
hitches in regions A and C of Fig 1. In principle, it is also ciently small in region B—then the expansion can no
expected to be valid within all of region B, but the results longer be considered adequate for estimakig d=2. The
becomes progressively poorer as the liniits:0 ande—0  \anjshing ofR is acceptable for smak (d>2) however,
do not commute fqr<0. We will t.hen present, Sec. B 2 an pecause we can then do a massless subtraction if1EB).
alternate computation which begins W|t_h|n the magneticallyy,q negative values & merely place the system well within
ordered state of region B and then directly computes thene magnetically ordered state. An alternativeexpansion

“dual” couplings Rp andU. computation ofR for systems well within region B will ap-
pear in the following subsection.
1. Paramagnetic approach The techniques for reducing Eqd2) and (1.8) into a
We begin by noting that the value of the bare couplipg Universal form in thee expansion have been discussed at
in Eq. (1.2 is length in I, and also in Ref. 3. Using these methods we find

to leading order ine

n+2 f dk [ do 1 - N0 neol (T
Fre=—u d 2 2 2 =2 —
6 (2m9) (27) K2+ (wic) C’R+2me| ¢ cTVR=c%r|1+e 5| o
to leading order inu. We assume that>0, and so it is valid )
to integrate out fluctuations i, about$,=0. Integrating +6T2(n+2 cr
out the w,#0 modes fromZg in this manner to leading +8 Tlzv |
order inu, and comparing resulting effective action wit)
we find straightforwardly y 6e(T/c)C~9 (20+2n—n?) , c2r
cUu= )
- n+2) d 1 (N+8)Sy+1 2(n+8)2 Tlzv
R=r+u| — J— T2 5———— B3
6 /) 2m)i] onto K2+ (wnl/c)?+r (83
where S;=2/[T'(d/2)(47)%?] a phase space factor=1/2
do 1 +e(n+2)/(4(n+8)) to this order in thes expansion, ang
] 2m) K2+ (/)2 is a short-distance momentum scale which can be eliminated

by re-expressing in terms of physical energy scales. The
function G(y) was given in Eq(D8) of Il

y ) n+8” d9k . 1
=u—u .
6 (2m) % 6n70 (K2+ (w,/c)?+1)? = (cosh\g?+y)—1)
(B2) G(y)=—2J dq| In| 29 .
0 a*+y

The remaining task is, in principle, straightforward: we have

to combine Eq(B2) with Eq. (1.8), and evaluate the result- y

ing expressions to obtain our final results RandU. In the —a- zm
vicinity of the quantum critical point in Fig. 1, the resulting

expressions should be universal functions onlyTpt, and  This form of G(y) is valid for both negative and positiwe

an energy scale measuring the deviation of the ground statevhen the argument of the square root is negative we use the
couplings from ther=0 point; for this energy scale we identity costix=cosx) and is easily shown to be analytic at
choose either the ground state spin stiffngsg0) (for r y=0 where

: (B4)
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G(0) = 2
(0)="5,
The simple formG(y)~G(0)+y(dG/dy(0)) is actually a
reasonable approximation fdg(y) over a wide range of
values ofy. Fory—o, we can show from EqB4) that

dG/dy(0)=2.45380858.... (B5)

In =
G(y—o»)= ¥+2W§+ v8mye V+.... (B6)

The expressioriB3) for U is identical to that in I, while
that for R differs only in that the term proportional f6yR

on the left-hand side was absent in I. This difference is of

course due to the subtraction term with m&sm Eq. (1.8).
Because of the presence of this term, EBpB) is reasonable
only as long as there is a solution wigr 0. For low enough

T in region B there will be no such solution, and then the

present method breaks down as a method for estim&iimg

d=2; an alternative approach will be discussed in Sec. B 2.

We complete this appendix by relatimgto physical en-

ergy scales to leading order é The reader can easily verify

that when we eliminate in Eq. (B3) by the following ex-

pressions, the arbitrary scaledisappears to the appropriate
order ine. The following relations can also be used to simi-

larly eliminater from the expressions in Sec. B 2.
Forr>0, the ground state has an energy gap, for all
n. Then, from I, we have

v

r

For r<0, we have to distinguish=1 andn=2. Forn
=1, there is an energy gap,_, and

14

—2r

2

1+

A_=cu (B8)

mJ3—3
12 ¢

For n=2 it is convenient to use the paramefgrobtained

from the ground state spin stiffness, which has the engineer-

ing dimensions of energy in atl [in d=2 it is simply pro-
portional topg(0)]:

1/(d—1
o=cld-2)/(d-1) _2e_pg0)) M (B9)
S (N+8) Syy1 .
Then
~ L 12+n-2n?\[ —2r\"” (610
=cu| l—e
Pe= it 4(n+8)2 w?

2. Magnetically ordered approach

Here we will directly compute the “dual” couplingRp
andU by matching the effective potential fdr, fluctuations

in Zin Eq. (1.7) with that obtained by integrating out the

nonzero Matsubara frequency modesdg in Eq. (1.2). We

will initially assume that we are in the magnetically ordered

state, and so<0 andR<0. The effective potential of Eq.
(1.7) has a minimum ajd ,|>= — 6R/U, and its curvature at

SUBIR SACHDEV
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quantities from the free energy obtained frdry after inte-
grating out the nonzero Matsubara frequency modes at the

one loop level, and so obtain expressions®st) andR/T.

We solve these foR andU, and obtain results which replace
Eqg. (B2):

~ d9
R=r+uf T
(2m)® w%o

(n—1)(K*+ (wy/c)?—r)
6(k>+ (w,/c)?)?

f dk de 1
(2m)4) 27 K2+ (wlc)?’

) dv
U=u—u T

k?+ (w,/c)?>—5r
2(k?+ (w,/c)?—2r)?

(n+2
e

(2m)9 o 70
« 3 N n—-1
K2+ (wn/c)2—2r)2  6(K2+(w,/c)d)?]
(B11)

We now use Eq(2.4) and evaluate these expressions by the
same methods which led to E@3). This replaces EqB3)

by
c’Rp ) n+2 e <n+2|(T
5 —2me _n+8C p=—Cr €\ nis na
€T? c’r
“nr8 T )
_ 6e(T/c)®™9 (20+2n—n?)
© (N+8)Sy4s 2(n+8)2
S ¢ B12
+(n+8) 2 iz | (B12)
where
Gi1(y)=3G(2y)+(n—1)G(0)—9yG'(2y)
—(n=1)yG’(0),
G,(y)=9G’'(2y)+(n—1)G'(0). (B13)

There expressions can now be combined with EB8) and

(B10) to obtain universal expressions f&;, and U within
region B, and also into the crossover into region A. The
resulting values, when combined with E(R.5 will not
agree precisely with those obtained from EB3) because

the computations in the present appendix are good to leading
order ine, while the relation(2.5) is only valid ind=2.

Let us look at the values d®, andU obtained from Eq.
(B12) in the limit T—0 with r<0. After using Eq(B6) it is

this minimum is —2R/T. We compute precisely the same straightforward to show that
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Ro=—2r| 14— " Lsio é@ ®,(0
p= —4&f +2(n+8)+6 n+8 ( ) a:l< a(X) a( )>
n+2 T 3e —2c?r 1 d2k aikx_ 1
+el——=]In —)+ In ) =N2ex f T
n+8/leu/ 2(n+8) T T SR 5 07) (22| T it (ano)?
meT (4n+5 2€T?(n-1 d 1
=2r- —)G<0>+---, [
C n+8 C2 n+8 + 2T k2+((1)/C)2 ’ (817)
Be(—2r)B-92 (20+2n—n?) The expressiotiB17) is free of both ultraviolet and infrared
CU:W W divergences, and we obtain for large
d+1 n
n
¢ —2c’ 2 (@,(0P,(0)
+m{_(n_l)|n< T2 ) a=1

£942(n-1)G'(0)+ L
n_

cy—2r
where only exponentially small terms of order®~"'T have
been omitted. The I terms above are dangerous as the
do not have a finite limit a§—0. Forn=1, a glance at Eq.
(B14) shows that all such terms do indeed cancel; so the

-
+.... (B14) =NSex;{—m(ln(T|x|/c)—In2+y), (B18)

where vy is Euler's constant. Matching this correlator with
that of the classical theorg in Eq. (C9), we obtain two
yimportant, and exact results

result(B12) remains valid everywhere in region B, including Go(T—0)=——++---,
in the limit T— 0. Further it can be checkddsing results in ps(0)
) that Go(T—0)=3T/NZ, which agrees with Eq2.13. ,
However, fon=2, there is no cancellation of such terms. Rop(T—0)= r ‘... (B19)
This indicates a breakdown of tkeeexpansion for these val- D c? '

ues ofn asT—0. The low-lying excitations for these cases
are gapless spin waves. In the present approach, by matchm@ere_the ellipses represent unknown terms which are higher
the quantum theory to the classical actiBnwe are effec- orderinT.
tively treating these spin waves as classical up to a high A similar computation can be carried out flox3. In this
energy cutoff ofc/— 2r, which is the mass of the amplitude ¢aS€, comparing the classical res@®9 with the quantum
mode. In reality, however, such spin waves are only classicd€sults of Refs. 19 and 13, we find precisely the relations
up to an energykgT,!**3 and this is responsible for the (B19). So Eq.(B19) holds for alin=2.
breakdown of Eq(B12).

In the remainder of this subsection, we abandon ¢he APPENDIX C: STATIC CORRELATIONS
expansion, and use some reasonable physical crifsuig- IN THE “DUAL” THEORY
gested by the above discussidp estimateG, andR as T
—0. Such estimates are, by nature, unsystematic, and ther
does not appear to be any clear-cut procedure by which the&i
can be improved to extend to high&r We will match the
exact larggs form of the correlators of in Secs. Il B 2 and
Il B 3 with known exact results for the low correlators of
the quantum theoryZ,. These quantum correlators can be

universally expressed in terms pf(0), ¢, and the ground - . .
state spontaneous magnetizathdg We first perform a naive computation of the

For N=2, the predominant fluctuations at Iofare an- O(n)-invariant two—poigttl)a correlatgr in the original _stati_c
gular fluctuations about some locally ordered state. So wéheory (1.7), assumingR<0. We will then renormalize it
write using Eq.(2.4), and will find, as expected, that the result is

‘ finite in the limita— 0. The interpretation of the result will
O, +id,~e'’. (B15  be straightforward for the case=1 and will lead directly to
Eq. (2.11). We will then turn to further computations for the
casem=2, andn=3 in subsequent subsections. An impor-
ps(0) tant ingredient in the interpretation of the results for these
=T[(Vx0)2+((970)2]. (B16) cases shall be the computation of the change in the free en-
ergy of the theory(1.7) in the presence of an external field
Evaluating the two-point correlator from Eq&éB815 and  which couples to the generator of ©( rotations: this will
(B16), and fixing the missing normalization in E@B15) by  allow us to compute the renormalized spin stiffness rior
matching to the actual value dfy, we obtain =2, and the precise correlation length for 3.

This appendix will show how we can compute correlators
the theory(1.7) in the limit that the Ginzburg parametér
ecomes very large. This is done in the “dual” formulation
discussed in Sec. Il B: is a theory characterized by a
Ginzburg paramete§, which becomes small whe@ be-
comes large. All of the results will be expressed in a pertur-
bation theory inGp .

The quantum action controlling fluctuations éfis

Lo
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At the mean-field level, forR<0 (which is assumed It is simple to check the crucial property that EG5) is free

throughout this appendjxq)a fluctuates around the average of bothultraviolet and infrared diVergenceS; the former arises
value|®,| = 6|F€|/U. So we write because the renormalization in Eg.4) is expected to cure

all short distance problems, and the latter because the left-
6|ﬁ| hand side is{.)(.n) invariapt._ o _
D (X)=\/ 8, 1+ D (%), (C1) The remaining analysis is quite different for different val-
u-® ues ofn, and we will consider the cases=1, n=2, andn

where @, represents the fluctuations about a mean-fielu23 in the following subsections.
magnetization in thex=1 direction. Inserting Eq(C1) in
Eq. (1.7 we find that the action changes to 1.n=1

The expressiofiC3) for the spontaneous magnetization is
free of infrared divergences for this case; it can also be made
ultraviolet finite by expressing in terms of Ry using Eq.
(2.4). This procedure leads to the simple result that

IRU. & o U L \?
+ | é @12 CDiJFﬂ(Z d)i) . (C2) 3T ,
ot «t No= g—D[1+O(gD)]-

This action will form the basis for a perturbation theoryun

[or equivalently by Eq(2.7), in Gp] in the rest of this ap- The expressiofiC5) shows that the two-poind , correlator
pendix. Notice that there is a cubic term in this action, and s@pproache®3 exponentially over a length scale\Rp.
(®,)#0. Indeed, the expression for the incipient “sponta- Itis not difficult to extend Eq(C6) to obtain the two-loop
neous magnetizationNy=(®,), correct to zeroth order in O(G3) correction by evaluating®;) in a perturbation
U, can be obtained in a straightforward perturbative calculatheory inU under the actio{C2). We verified that by ex-

tion from Eq.(C2), and we obtain pressingR in terms of Ry using Eq.(2.4), and expanding

= consistently to the needed orderlih all the ultraviolet di-
6|R| TU (va d%k 1 n—1
Noz 1— Py J — + .
U™ R o2\ k+2R 3k

n
L=3 D [(V,®,)%+68,,2|R|®2]
a=1

N -

(C6)

vergent terms in the resulting expression cancelled, and we
obtained

C3
: . . ( ) [3T|  T?U? [ d% dk
The fluctuation corrections above come from directions lon- Ny= \/—| 1— J f
gitudinal and transverse to the incipient magnetization, re- 9o 1RpJ (2m)2) (2m)?
spectively. Notice that the latter lead to an infrared diver-
gence forn>1, which correctly suggest that the transverse 9Rp
fluctuations are so strong that the actual spontaneous magne- (k>4 Rp)2(p2+ RD)((E+ 5)2+ Rp)

tization is 0. For now we will ignore this infrared divergence,

as we will see that this divergence disappears upon insertion N 2 L OWUY)

of Eq. (C3) into combinations which are @j invariant. To K+ R 2 R V(KL D)2+ R :
complete the computation of the @)¢invariant two point ( o) (P™+Ro) ((k+p)™+Rp)

®,, correlator, we need the correlations ®f,. It is suffi- (C7)

cient to compute these at tree level, and we have the formatye integrals in Eq(C7) are easily evaluated to yield
expression

/3
- - 1/a d2k eikx N,.= 20
<<1>a(x)<1>a(0)>=TJ 2 K 2 R5.s (C4 Vg

1—5g2%111 ogG3
F(!!)—’— (gD)

. (Cy

where the numerical constadf1,1,1) is given later in Eq.
where there is no implied sum overon the left-hand side. (C19).

We can now combine Eq§C1), (C3), and(C4) to obtain an

expression for=!,_(® (x)®,(0)) correct to zeroth order 2 n=2

in U. In this expression we expre&sin terms ofRp using

Eq. (2.4), and also expand the resulting expression consis-

tently to zeroth order itJ. Finally, using the definition ofp n

in Eq. (2.7), we obtain one of the main results of this appen- > (B, (X)D,(0))
a=1

Evaluating Eq.(C5) for x>1/\Rp andn=2 we obtain

dix:
: 3T| . Go( d% el — 3T[. 6o
D,(X)P,(0))=— 1+—J— n—-1 =—|1- —(n(|x|VRp)— In2+y)+---|, (C9
2 (P Dy(0) =1+ 3 (277)2(< )= Go| 1 5 (n(IXVRo) ”) (C9)
el 4 n—1 wherevy is Euler’s constant. We are now in the magnetically
— +(9(g2D)1. (C5  ordered state of the=2 XY model, and we know this sys-
k“+Rp tem has power-law decay of spatial correlations. Therefore
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we assert that EqIC9) exponentiates into the resyl2.19, and compute the smalH dependence of the free energy

and identify the spin stiffnesgs(T) as In Z(H). The stiffness is defined by
pS(T) 3 0
= = 4 . 1 Z(H T
T TG O(GR) (C10 (H) pdT) , (12

VA= 10 RS A
We will now compute the next two terms in the sm@j}

expansion forpg(T) in Eq. (C10). Rather than obtaining whereV is the volume of the system, and the ellipses repre-

these by computing higher order corrections to the correlatagent terms higher order id. We compute this expression by

in Eq. (C9), we will compute the stiffness directly by exam- first modifying Eq.(C1) to account for thed dependence of

ining the response of the free energy density to an externdhe mean-field magnetization:

field H which couples to the generator @f(2) rotations.

This is equivalent to computing the change in the free energy 6(|~R| +H?)

in the presence of twisted boundary conditions. In particular, D (X)= "\ /—5a 1+ D (X), (C13
we maodify the action in Eq(1.7) by the substitution U '

(V@ )%= (VD —iHD,) 2+ (V, D, +iH D)2 and expanding the resulting action in powershbfin this
(C1y manner it is not hard to show that to ordef

|
1 " Z(H) :3|§| —(@2(x)) - \/I@) (X)(@2(x) + D3(x)))
vz " Z(0) T TU ! 24R[" ' 2

1 ~ s~ ~ -~ ~ 5 o~ ~ o~
- Zj d?y((@1(y)VyPo(y) = Po(Y)Vy @1 (Y@ 1 () ViPo(X) = Po(x) V, @y (X)),  (C14

where all expectation values are to be evaluated under the &a€®nit is a straightforward, but lengthy, exercise to compute
the right-hand side of EqC14) in a perturbation theory itJ, which requires enumerating all Feynman graphs to two loops.
After formal expressions for the graphs have been obtained, we perform the subst@ufico replaceR by Ry, and again
collect terms to ordet!. We will not present the details of this here, but will state the result obtained without any further
manipulations on the expressions for the individual Feynman graphs:

ps(T)  3Rp Jddp ddk Rpb 2 9 1
ST =57t T Xy = + ——— + ==
2T 2TV (2m4) (2m)d 3(p?+Rp)?[ k¥ (K®+Rp)  (k*+Rp)((k+p)?+Rp)  k*(k+p)?
Rpb 1 . 1 . 1 1 . 3
3p2(p2+Rp)| K3(k2+Rp) KA(k+p)2+Rp)| 6(p?+Rp) [ k3(p+k)2  (K2+Rp)((p+k)2+Rp)
1 3p-K 5K
+ = P — 9p — . (C1H
3p2%k3(p?+Rp)(k+Rp) | (p+K)2+Rp)  (p+k)?

It is directly apparent that all terms in EGC15) are individually ultraviolet convergent: this has been achieved, as expected,

by the substitution oR by Rp. However, many of the terms are infrared divergent, and it is not at all apparent that such
divergences will cancel between the various terms. To control these divergences, we evaluate the terms in dimensional
regularization, i.e., th@ andk integrals are evaluated in a dimensidijust above 2, and the resulting terms expanded in a
series in l—2). We show below that while there are individual terms of orded 4/2)? and 1/@d— 2), they do cancel among
each other.

By a series of elementary algebraic manipulatiénsluding splitting apart some of the denominators by the method of
partial fraction$, all the terms in Eq(C15 can be expressed in terms of two basic integral expressions. These are

I(a b)=f o : .
) emd ie+a ki b)”
and
[ d% [ dip ! :
J(a,b,C)=J(ZW)dJ’(zw)d(k2+a)(p2+b)((|2+5)2+c)’ (C17
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it is easy to see that bothand J are invariant under all permutations of their arguments, i@,b)=1(b,a), J(a,b,c)
=J(c,a,b)=J(c,b,a), etc. In terms of andJ, the result(C15 takes the form

p(T) 3Ry 2Rp 2Rp 1 d
5T =2TU+TU 3 |(RD,0)|(RD,0)_T'(RD,RD)|(RD,O)_gJ(RD,QO)*'J(RD1RD1RD)+RDEJ(RD,RD,RD)
R d R 00 C18
?ﬁ ( D !) . ( )

We can evaluate the needed values @fnd J by standard where we have chosen\iR, as the natural short distance
methods which transform the momentum integrals into intecutoff of the nonlinear sigma model. ForJR_D<|x|<§, the

grals over Feynman parametéfs: two point-correlations behave 'ds
(n=1)/(n—2)
(R Rg)= —2-92) (®,(X) D ,(0))o (n—@gln(%”
(47T) d/ZRZD— d/2
(n—1)g
" o)_ZI(RDvRD) oc[l— 5—— (x| VRp)+ -+ .
D» - (d_ 2) ’ (C22)
Let us compare this with the expression obtained from Eq.
_2P@E-d)I(diz-1)I'(2—df2) (C5), which yields in the same regime
J(RD,0,0)_ 3—d ]
(4m) R %d-2)
3T (n— 1)gD
(Pa()Po(0))= | 1= —g——In(X|\Ro) + -+ |.
e i " c23
I(Ro Ro Ro) = T Jodyl (€23
T "D Comparing Egs(C22 and(C23), we can obtain the missing
jl prefactor in Eq(C22), and also get
x| d
0 yzY2+y1(1_y1)(1_y2) %

. (C29
2.34390723869 3
= (C19

16m°Rp Actually it is possible to do better, and actually fix the
) ) . . missing constant in EqC21) precisely. To do this, as was
The last two expressions have been given directly=r2, as  shown by Hasenfratz and Niedermayémye need to carry
J(Rp,Rp,Rp) does not have any poles inl{2) and also  out exactly the calculation of Appendix C 2 and obtain khe
does not appear in combinations multiplying poles in Eq.dependence of the free energy density fier3. Now the
(C18). Inserting Eq.(C19 into Eq.(C18) and expanding in  analog of the replacemef€11) in the action(1.7) is
powers of l—2), we find that all double poles and poles in

(d—2) cancel, and we obtain our final result generalizing (Vi@ )%= (V@ —iHD )2+ (V, D+ iH D)2
Eqg. (C10:
2
ps(T) 3 Gp , + 2 (V)2 (C25
T = g—D— %‘FO(QD . (CZO)

Next we will compute theH dependence of£(H) in a per-
turbation theory inU, but will find that the structure of the
3.n=3 answer is actually quite different from that found in Eq.
The argument is more subtle for these cases with nonLClS) for n=2. In the present situation one finds that all the
Abelian symmetry. We now expect that at length scalednfrared divergences in (#7)In Z(H)/Z(0) do not cancel,
>1/\Rp, all longitudinal fluctuations will freeze out, and the Which correctly indicates that the renormalized stiffness
transverse fluctuations will map onto thosenPonlinear  ps(T) is strictly zero for allT>0. Instead, the smaH de-
sigma model. This model has a dimensionless coupling corReéndence ofZ(H) is more complex, and we will show that
stantg, and forg<1 there is a large correlation length of In Z(H)/Z(0)~H?In(1H).

order(see, e.g., Refs. 19 and )13 After substitution of Eq(C25) into Eq.(1.7), it is imme-
diately apparent that at ordex® Z(H) consists of two sepa-

1 [(n—2)g|¥n-2) 20 rate contributions. The first is the contribution of thg ,
E~— } xp{ ) (C21)  components and this is identical to that computed in Appen-
VRpl 27 (n=2)g dix C 2 for n=2, The second is the contribution of the re-
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maining n—2 components which, at this order, are simply Finally, we evaluate the integral in the limit?<Ry, and

free fields with “mass”H?. So we get express the result in terms 6f using Eq.(2.7):
Z(H) He 3R f d?p 2
- 2 )24 o|E Z(H 3 (n-2 H
20) | TU ) 2m? pre 2R na) ol 3 (072 )
2(0) 2Gp 41 | (eRy)Y2

(C28

n—2 d? 2+ H2

( . )f pzln(p L e
(2m) p

where the first two terms are obtained by evaluating EqWe can now deduce the correlation lengfhfrom this result
(C14) to orderU®, and the last term is the contribution of the using the matching to the Bethe ansatz solution, as discussed
remaining 6—2) components. Now substituting, for R i Ref. 33: the result is
by using Eq.(2.4) we obtain, as expected, an expression free
of ultraviolet divergences:

1 n—1\[e(n—2)g]¥("~2 2
2 _ 2 &= r exp ———|,
nZ(H):SRDH _(n 2)f dp JRp \n=2/| 16w (n—2)g
Z(0) 2TU 2 (2r)2 (C29
p2+ H2 H2 . . . . .
X|In e . (C27  whereI'(x) is the gamma function and is given in Eq.
p pP°+Rp (C24).
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