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Cavity resonances in Josephson ladders
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Electromagnetic waves which propagate along a Josephson junction ladder are shown to manifest them-
selves by resonant steps in the current-voltage characteristics. We report on experimental observation of
resonances in ladders of different geometries. The step voltages are mapped on the wave dispersion relation
which we derive analytically for the general case of a ladder of arbitrary anisotropy. Using the developed
model, current amplitudes of the resonances are also calculated and their dependence on magnetic field is
found to be in good accord with experiment.@S0163-1829~99!06121-4#
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Josephson junction ladders have given rise to a great
of interest in the past few years.1–7 These quasi-one
dimensional~1D! structures are more complex than alrea
well-understood 1D parallel Josephson junction arrays
long Josephson junctions. In contrast to the latter system
ladder contains small Josephson junctions in the direc
transverse to the bias current~Fig. 1!. The ladder can be
viewed as the elementary row of a two-dimensional Jose
son junction array which, in general, shows very comp
dynamics. Thus, better understanding of electromagn
properties of ladders may lead to new insight into the
namics of underdamped 2D Josephson junction arrays.

For experimentally relevant modeling of Josephson l
ders it is important to take into account magnetic fie
screening effects which are related to the finite inductan
of elementary cells. Using the simplest model with only se
inductances taken into account, both static2,3,6,7and some of
the dynamic4–6 properties of ladders have been recently
vestigated. However, one of the basic characteristics of th
systems such as the dispersion relation for small-amplit
waves remained unstudied until now. As in the case of lo
junctions and 1D parallel arrays, cavity resonances in un
damped ladders can be important as experimentally mea
able ‘‘fingerprints’’ of their electrodynamic properties.

In this paper we report on the observation of cavity re
nances in Josephson junction ladders with different ani
ropy. We also derive the dispersion relation for linear wav
in ladders which allows us to consistently explain the m
surements and also interpret previously published data
other authors.

The measured ladders consist of Nb/Al-AlOx /Nb under-
damped Josephson tunnel junctions. We investigated
the annular geometry and the linear geometry ladd
sketched in Fig. 1. Each cell of a ladder contains four sm
junctions. The bias currentI ext is injected uniformly at every
node via the external resistors. Here, we callvertical (JJV)
the junctions placed in the direction of the external bias c
PRB 590163-1829/99/59~21!/14050~4!/$15.00
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rent, andhorizontal (JJH) the junctions transverse to th
bias. The ladder voltage is read across the vertical junctio

We have measured current-voltage (I -V) characteristics
of annular ladders with two different values of the ratio
the JJH’s areaSH to JJV’s areaSV . This ratio is referred in
the following as anisotropy factorh5I cH /I cV , defined in
terms of the junction critical currents. Our annular ladde
have either h50.5 (SH516 mm2, SV532 mm2) or h
51 (SH5SV516 mm2). The number of cells isN512, the
cell size A5135 mm2. The studied linear ladders haveh
51 (SH5SV516 mm2), N515, and A5140 mm2. The
discreteness of the ladder is expressed in terms of the pa
eterbL52pI cVL/F0 , whereL is the self-inductance of the
elementary cell of the ladder,I cV is the critical current of the
single vertical junction, andF0 is the magnetic flux quan
tum. The cell inductance can be roughly estimated asL

FIG. 1. Sketches of 1D Josephson junction ladders:~a! linear
geometry;~b! annular geometry (N510).
14 050 ©1999 The American Physical Society
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51.25m0AA, wherem0 is the magnetic permeability. AtT
54.2 K, the values ofb are between 0.1 and 0.2, dependi
on the vertical junction critical current. The damping of t
ladder is given in terms of the junction McCumber para
eter, defined asbc52pI cV,HR2

V,HCV,H /F0 . Here RV,H is
the subgap resistance;CV,H is the junction capacitance, ca
culated from the Fiske modes in a long junction on the sa
chip (C/S53.4 mF/cm2). At T54.2 K, typical values of
bc for annular ladders are around 200. The applied fieldHext
is transverse to the cells plane and is expressed in term
the frustrationf, defined as the magnetic flux threading t
cell normalized toF0 .

In the presence of frustration, theI -V curves of the lad-
ders show steps with resonant behavior. These steps occ
fixed voltage positions and are split in two voltage doma
denoted byV1 and V2 ~upper and lower voltage reso
nances!. Figure 2 shows an enlargement of theI -V curves of
the anisotropic annular ladder in the voltage region where
upper resonancesV1 appear. The curves were recorded
different values of frustration forT54.2 K. At this tempera-
ture, in both the anisotropic and isotropic annular ladde
only four resonancesV1 are present in the region of frustra
tion 0< f <0.5. A slight increase of the temperature leads
the appearance of the fifth resonance, at aboutf 50.4. Each
step is located at a given voltage position and shows a r
nant dependence of its magnitude onf ~see the inset of Fig
2!. In contrast to 1D parallel arrays~no horizontal junctions,
h5`), in ladders the reduction of the Josephson criti
current due to frustration is rather small,2 even in the case o
low b. As a consequence of this, at anyf the critical current
of a ladder is always larger than the amplitude of the re
nances, and the ladder switches from the zero voltage s
directly to the gap voltage state. The only way to bias
ladder on one of the resonances is to follow the backw
hysteretic branch of theI -V curve to the bottom part of the
resonance. The voltage spacing between the higher ste
slightly reduced. Inversely, the current amplitude of the re
nances increases with voltage, and the resonance atf 50.5
has the maximum height.

In both annular and linear ladders the voltage of the re

FIG. 2. Current-voltage characteristics of an annular Joseph
ladder with anisotropyh50.5 for different values of frustrationf.
TemperatureT54.2 K. Inset: MeasuredV1 vs f at the same tem-
perature; the horizontal branches indicate the step stability ran
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nances is field dependent and approaches its maximumf
50.5. We show these dependencies for isotropic and an
tropic annular ladders in Fig. 3 and for a linear ladder in F
4. All curves are found to be nearly symmetric with respe
to f 50.5. Thus, for the isotropic case we show data only
to f 50.5.

In Fig. 4 the two resonancesV1 and V2 for the linear
ladder are compared with the resonant step in a linear
parallel array. The 1D array has the same number of c
and cell and junction areas as the ladder. A small differe
in their critical currents givesb50.12 for the ladder, and
b50.17 for the array. The responses of the ladder and
array to the frustration are very different. In the 1D arra
there is only one resonance (VPA), and the voltage of this
resonance follows the well known sin-like dependence of.
Above a critical value of frustration (f '0.1) the resonance
appears, by increasingf it moves to higher voltages, and a
f 50.5 it saturates at the valueVPA5135 mV. The ladders,
instead, have two branchesV2 andV1 , which are confined
in two different voltage regions. BothV2 andV1 have the
samef periodicity asVPA . In contrast to the annular case,

on

.

FIG. 3. Experimental~circles! and theoretical~solid lines! de-
pendencies of the resonance voltagesV1 on the frustrationf for two
annular Josephson ladders. Results are shown for isotropic~open
circles! and anisotropic~solid circles! ladders. TemperatureT
'5.7 K. To fit the experimental data by Eq.~3!, we have used the
parametersh51 with b50.16 andh50.5 with b50.3.

FIG. 4. Experimental~circles! and theoretical~lines! dependen-
cies of the voltage position of two resonancesV6( f ) on the frus-
tration for the linear isotropic ladder. The dependence of the re
nance voltage position on the frustration for the parallel ar
(h5`) is also shown~solid circles!.
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the linear laddersV2 andV1 were found to be continuousl
tuned by field in the ranges 0<V2<25 mV and 135<V1

<165 mV, respectively.
In the following, we present a theory ofI -V resonances

for a Josephson junction ladder. The theory allows us
predict the voltages and the current magnitudes of re
nances observed in experiment.

We use the time-dependent Josephson phases of ve
wn and horizontalcn1,2 junctions. The indices 1 and 2 refe
to the lower and upper branches of horizontal junctions,
n is the index of the cell in the ladder. For the upper a
lower horizontal junctions we use the symmetry conditi
that cn152cn25cn.2,5,8 According to the derivation done
in Refs. 2,8 for the isotropic case, we use the resistiv
shunted model for Josephson junctions and the usual ana
for superconductive loops with only self-inductances tak
into account to derive a set of normalized dynamical eq
tions for the phaseswn andcn for the anisotropic case

ẅn1aẇn1sinwn

5
1

b
@2cn22cn211wn2122wn1wn11#1g ,

c̈n1aċn1sincn5
1

hb
@wn2wn1122cn#1

2p f

hb
,

n51, . . . ,N. ~1!

Here, the unit of time isvp
215A\CV /(2eIcV), the in-

verse of plasma frequency of the ladder. The parametea
51/Abc determines the damping in the ladder. We ha
used the fact that the anisotropy in typical Josephson circ
is realized by choosing different areas of horizontal and v
tical junctions. Thus, the conditionI cH /I cV5CH /CV
5RV /RH is assumed in Eq.~1!. Note that, in this case,vp
and a do not depend on anisotropy of the ladder. Fina
g5I ext/I cV is the normalized bias current. In the finite vo
age state we impose a whirling solution along the verti
junctions and oscillations with a small amplitude for t
horizontal junctions.9 Moreover, the phase of vertical junc
tions increases from cell to cell due to the presence of fr
tration. In this case, we quite naturally decompose the
sephson phases as follows:

wn5vt12p f n1wei (vt12pqn),

cn5cei (vt12pqn), ~2!

wherev andq are the angular frequency and the wave nu
ber of the electromagnetic wave in the ladder. The time
erage Josephson current of vertical junctions is zero for
kind of a solution. In the limit of small amplitudesw andc,
we obtain the spectrum of electromagnetic wave propaga
along the ladder. This spectrum consists of two branc
v6(q) and is given by~in the usual units!

v65vp
AF6AF22G, ~3!

where F5 1
2 11/(hb)1(2/b)sin2(pq), and G5 (4/

b)sin2(pq). This equation generalizes, for the case of
arbitrary wave number, the dynamical checkerboard s
o
o-

cal

d
d

ly
sis
n
-

e
its
r-

,

l

s-
o-

-
-
is

g
s

e
te

(q50.5) considered in Ref. 5. The presence of the horizon
junctions leads to two branches in the spectrum of elec
magnetic waves. Moreover, the maximum value ofv1 is
higher than that of 1D parallel array and the depende
v1(q) is more flat.10

Note, that in the case of another particular ground st
(^wn&5^cn&50) instead of Eq.~2!, the spectrum~3! is sub-
stituted byv15vpA2F andv25vp . This dispersion rela-
tion is important, e.g., for understanding the radiation
fluxon moving in the ladder.

As is well known, the electromagnetic waves interact w
the oscillating Josephson current and this effect leads to
resonances on theI -V curve.11,12 More precisely, the reso
nance conditions are

q05 f , V65
\v6~q0!

2e
. ~4!

The possibility to observe these resonances on theI -V
curve depends on their current amplitudes. In the same l
of small amplitudes of the Josephson phasesw andc and by
making use of the method elaborated in Refs. 11,12,
magnitudes of the resonances are given by

I s
65NIcV

1

a

6AF22G2F1G

AF6AF22GAF22G
. ~5!

The important result of this theory is that the amplitude
the resonanceI s

1 is small in the limits of both small and larg
b ~see Fig. 5!. Moreover, it has a maximum atf 50.5. In the
limit of very anisotropic ladder, whenh5`, the magnitude
of I s

2 of the resonanceV2 decreases as 1/h and only the
resonanceV1 can be observed. This is consistent with t
case of 1D parallel arrays.

Using the developed theory, we can explain all importa
features of experimentally observed resonances on
current-voltage characteristic of Josephson ladders. First,
to the annular geometry only the electromagnetic waves w
quantized wave numbersqn5n/N can propagate in the lad
der. Heren51, 2, . . . ,N is an integer. The resonances

FIG. 5. Dependence of the maximum magnitudeI s
1 of the reso-

nanceV1 on the self-inductance parameterb and frustrationf for
the isotropic ladder.
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sufficiently large magnitude are observed on theI -V curve
when the value of frustration matches these wave num
@see Eq.~4!#.

The experimentally observed dependence of the volt
V1 on the frustrationf, shown in Fig. 3, is well described b
Eq. ~3! for both isotropic and anisotropic annular ladde
We obtain a good quantitative agreement between theory
experiment using the plasma frequencyf 5vp/2p
514 GHz ~independent measurements give the value
vp'16 GHz) and the self-inductance parametersb50.16
and 0.3, correspondingly, for isotropic and anisotropic ca
We also observe that the current magnitude of the resona
monotonically decreases when the frustrationf deviates from
the value 0.5~see Fig. 2!. It qualitatively agrees with the Eq
~5! for the maximum magnitude of the resonance.

In the case of annular ladder withN512 cells, we may
expect to observe six resonances in the region of 0< f <0.5.
In fact, we have observed only four stable resonances co
sponding to the values ofn52, 3, 4, 6~see Fig. 2!. The reso-
nance corresponding to the value of frustrationf 51/12 is,
apparently, not stable due to its small current magnitude
described by Eq.~5!. Another resonance corresponding
the frustration f 55/12 is not stable atT54.2 K, but we
observed it at slightly higher temperature. The poor stabi
of this resonance can be due to its small distance from
neighboring resonance atf '1/2.

Similar results have been obtained for Josephson junc
ladder of linear geometry. We have observed two resonan
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V1 and V2 in the upper and lower voltage regions. How
ever, in this case, most probably due to a relatively low va
of the subgap resistance~larger a) we have found that the
dependence of their voltages on frustration is continu
~Fig. 4!. Again, the resonanceV1 disappears in the limit of
small frustration due to its small amplitude according to E
~5!.

Finally, we have observed that the dependenceV2( f ) de-
viates from the theory@Eqs. ~3! and ~4!# in the region of
frustration f <0.3. This can be connected with the particu
assumption on the state of the horizontal junctions. O
analysis has been carried out for the most simple s
(^cn&50), but in general one might consider the case wh
the phases of the horizontal junctions undergo small am
tude oscillations around a finite angle. In this case, the re
nance condition on the wave numberq is not simplyq05 f ,
but a more complicated relationship can appear~see Ref. 9!.
The theoretical and experimental study of the properties
such general state, i.e., of the current-voltage characteri
of Josephson ladder in the region of small voltage, is
progress.
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