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Cavity resonances in Josephson ladders
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Electromagnetic waves which propagate along a Josephson junction ladder are shown to manifest them-
selves by resonant steps in the current-voltage characteristics. We report on experimental observation of
resonances in ladders of different geometries. The step voltages are mapped on the wave dispersion relation
which we derive analytically for the general case of a ladder of arbitrary anisotropy. Using the developed
model, current amplitudes of the resonances are also calculated and their dependence on magnetic field is
found to be in good accord with experimefs0163-18299)06121-4

Josephson junction ladders have given rise to a great deegnt, andhorizontal (JJ,) the junctions transverse to the
of interest in the past few yeals’ These quasi-one- bias. The ladder voltage is read across the vertical junctions.
dimensional(1D) structures are more complex than already We have measured current-voltage\() characteristics
well-understood 1D parallel Josephson junction arrays oof annular ladders with two different values of the ratio of
long Josephson junctions. In contrast to the latter systems, the JJ's areaSy to JJ,/'s areaS, . This ratio is referred in
ladder contains small Josephson junctions in the directiothe following as anisotropy facton=1I.,/l.y, defined in
transverse to the bias curreffig. 1). The ladder can be terms of the junction critical currents. Our annular ladders
viewed as the elementary row of a two-dimensional Josepthave either »=0.5 (Sy=16 um?, S,=32 um?) or 7z
son junction array which, in general, shows very complex=1 (Sy=Sy=16 um?). The number of cells i8l=12, the
dynamics. Thus, better understanding of electromagnetigell size A=135 um?. The studied linear ladders hawe
properties of ladders may lead to new insight into the dy-=1 (Su=Sy=16 un¥), N=15, andA=140 um’. The
namics of underdamped 2D Josephson junction arrays.  discreteness of the ladder is expressed in terms of the param-

For experimentally relevant modeling of Josephson lad€terBL=2mlc\L/®o, wherel is the self-inductance of the
ders it is important to take into account magnetic ﬁe|de_lementary ceII_ of th_e laddelr,y, is the critical current of the
screening effects which are related to the finite inductance§Ndle vertical junction, ane, is the magnetic flux quan-
of elementary cells. Using the simplest model with only self-UM- The cell inductance can be roughly estimatedLas
inductances taken into account, both statit’and some of
the dynamié ® properties of ladders have been recently in-
vestigated. However, one of the basic characteristics of these
systems such as the dispersion relation for small-amplitude
waves remained unstudied until now. As in the case of long
junctions and 1D parallel arrays, cavity resonances in under-
damped ladders can be important as experimentally measur-
able “fingerprints” of their electrodynamic properties.

In this paper we report on the observation of cavity reso-
nances in Josephson junction ladders with different anisot-
ropy. We also derive the dispersion relation for linear waves
in ladders which allows us to consistently explain the mea-
surements and also interpret previously published data by
other authors.

The measured ladders consist of Nb/Al-AlDIb under-
damped Josephson tunnel junctions. We investigated both
the annular geometry and the linear geometry ladders,
sketched in Fig. 1. Each cell of a ladder contains four small
junctions. The bias curremt,; is injected uniformly at every
node via the external resistors. Here, we ealitical (JJ,) FIG. 1. Sketches of 1D Josephson junction laddéasiinear
the junctions placed in the direction of the external bias curgeometry;(b) annular geometryN=10).
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pendencies of the resonance voltageson the frustratiorf for two
FIG. 2. Current-voltage characteristics of an annular Josephso@nnular Josephson ladders. Results are shown for isotfopin
ladder with anisotropyy=0.5 for different values of frustratioh ~ circles and anisotropic(solid circleg ladders. Temperaturd
TemperaturéT=4.2 K. Inset: Measurel, vsf at the same tem- ~5.7 K. To fit the experimental data by EG), we have used the
perature; the horizontal branches indicate the step stability range.parametersy=1 with 8=0.16 andz=0.5 with =0.3.

=1.2540VA, where u, is the magnetic permeability. AT nances is field dependent and approaches its maximum at
=4.2 K, the values of8 are between 0.1 and 0.2, depending =0.5. We show these dependencies for isotropic and aniso-
on the vertical junction critical current. The damping of the tropic annular ladders in Fig. 3 and for a linear ladder in Fig.
ladder is given in terms of the junction McCumber param-4. All curves are found to be nearly symmetric with respect
eter, defined ag.= 27T|cv,HR2v,HCv,H /®y. HereRyy is  to f=0.5. Thus, for the isotropic case we show data only up
the subgap resistanc€y y is the junction capacitance, cal- to f=0.5.
culated from the Fiske modes in a long junction on the same In Fig. 4 the two resonanceg, andV_ for the linear
chip (C/S=3.4 uFlcn?). At T=4.2 K, typical values of ladder are compared with the resonant step in a linear 1D
B¢ for annular ladders are around 200. The applied fi€ld  parallel array. The 1D array has the same number of cells
is transverse to the cells plane and is expressed in terms ahd cell and junction areas as the ladder. A small difference
the frustrationf, defined as the magnetic flux threading thein their critical currents gives3=0.12 for the ladder, and
cell normalized tod,. B=0.17 for the array. The responses of the ladder and 1D
In the presence of frustration, theV curves of the lad- array to the frustration are very different. In the 1D array,
ders show steps with resonant behavior. These steps occurtaere is only one resonanc&{,), and the voltage of this
fixed voltage positions and are split in two voltage domaingesonance follows the well known sin-like dependencd.on
denoted byV, and V_ (upper and lower voltage reso- Above a critical value of frustrationf&0.1) the resonance
nances Figure 2 shows an enlargement of {h% curves of  appears, by increasinigit moves to higher voltages, and at
the anisotropic annular ladder in the voltage region where thé=0.5 it saturates at the valdé,,=135 uV. The ladders,
upper resonanceg, appear. The curves were recorded atinstead, have two branch®s. andV ., , which are confined
different values of frustration fof =4.2 K. At this tempera- in two different voltage regions. Botii_ andV_ have the
ture, in both the anisotropic and isotropic annular ladderssamef periodicity asVp,. In contrast to the annular case, in
only four resonance¥ | are present in the region of frustra-
tion 0=<f=<0.5. A slight increase of the temperature leads to
the appearance of the fifth resonance, at albeud.4. Each 160
step is located at a given voltage position and shows a reso-
nant dependence of its magnitude fofsee the inset of Fig.
2). In contrast to 1D parallel arrayso horizontal junctions,
n=»), in ladders the reduction of the Josephson critical
current due to frustration is rather smabyen in the case of
low B. As a consequence of this, at ahthe critical current
of a ladder is always larger than the amplitude of the reso-
nances, and the ladder switches from the zero voltage state
directly to the gap voltage state. The only way to bias the 0 — ——
ladder on one of the resonances is to follow the backward 000 025 030 075  1.00
hysteretic branch of the-V curve to the bottom part of the frustration 1
resonance. The voltage spacing between the higher steps is F|G. 4. Experimentaicircles and theoreticallines) dependen-
Sllghtly reduced. |nverse|y, the current amplitude of the eSOcijes of the voltage position of two resonandés(f) on the frus-
nances increases with voltage, and the resonanée-@t5 tration for the linear isotropic ladder. The dependence of the reso-

has the maximum height. nance voltage position on the frustration for the parallel array
In both annular and linear ladders the voltage of the reso¢»=) is also showr(solid circles.
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the linear laddery _ andV, were found to be continuously

tuned by field in the ranges<OV_<25 uV and 135V, 10
<165 uV, respectively. iy
In the following, we present a theory ofV resonances 08l

for a Josephson junction ladder. The theory allows us to |+ +max
predict the voltages and the current magnitudes of reso- * % 061
nances observed in experiment.
We use the time-dependent Josephson phases of vertical 0.4
¢n and horizontakf; , junctions. The indices 1 and 2 refer
to the lower and upper branches of horizontal junctions, and o214 : L 40
n is the index of the cell in the ladder. For the upper and 00
lower horizontal junctions we use the symmetry condition 0

that .1 = — .= ¥,,.>>8 According to the derivation done

in Refs. 2,8 for the isotropic case, we use the resistively
shunted model for Josephson junctions and the usual analysis FIG. 5. Dependence of the maximum magnituigeof the reso-
for superconductive loops with only self-inductances takemanceV, on the self-inductance paramet@rand frustrationf for
into account to derive a set of normalized dynamical equathe isotropic ladder.

tions for the phase,, and i, for the anisotropic case

. . ] (g=0.5) considered in Ref. 5. The presence of the horizontal
ont+ ap,t+sing, junctions leads to two branches in the spectrum of electro-
magnetic waves. Moreover, the maximum valuewof is
higher than that of 1D parallel array and the dependence
w.(q) is more flat*®

Note, that in the case of another particular ground state

1
= E[Z'pn_zdfnfl"'(Pnfl_2¢n+‘Pn+1]+ Y

- : 1 2t ({en)=(¢n)=0) instead of Eq(2), the spectrung3) is sub-
Ynt aiptsin w”_%[%_ Pne1= 240l F B’ stituted byw = w,\2F andw_ = w,,. This dispersion rela-

tion is important, e.g., for understanding the radiation by
n=1,...N. (1)  fluxon moving in the ladder.
) ) N ) As is well known, the electromagnetic waves interact with
Here, the unit of time isw, “= A Cy/(2elcy), the in-  the oscillating Josephson current and this effect leads to the
verse of plasma frequency of the ladder. The parameter resonances on theV curve!'*2 More precisely, the reso-
=1/\/ﬁ—C determines the damping in the ladder. We havenance conditions are
used the fact that the anisotropy in typical Josephson circuits
is realized by choosing different areas of horizontal and ver- - (do)
tical junctions. Thus, the conditionl.y/l,,=Cy/Cy go=", VI:__o_
=Ry /Ry is assumed in Eq.1). Note that, in this casay, 2e
and « do not depend on anisotropy of the ladder. Finally,
v=lgyll vy is the normalized bias current. In the finite volt-  The possibility to observe these resonances onl the
age state we impose a whirling solution along the verticaturve depends on their current amplitudes. In the same limit
junctions and oscillations with a small amplitude for the of small amplitudes of the Josephson phasesd ¢ and by
horizontal junctions. Moreover, the phase of vertical junc- making use of the method elaborated in Refs. 11,12, the
tions increases from cell to cell due to the presence of frusmagnitudes of the resonances are given by
tration. In this case, we quite naturally decompose the Jo-

4

sephson phases as follows: X 1 +JF2—G-F+G
= wt+ 27fn+ peilet+2mn). Is=Nlev— ' ®
#n ¢ * JF+F?-GJF?-G
wn: ¢ei(wt+2qu)’ (2)

wherew andq are the angular frequency and the wave num- The importa+n_t result c_>f this t_he_ory is that the amplitude of
ber of the electromagnetic wave in the ladder. The time ayiN€ resonancks is smallin the limits of both small and large
erage Josephson current of vertical junctions is zero for thi§ (S€€ Fig. 5. Moreover, it has a maximum &t=0.5. In the
kind of a solution. In the limit of small amplitudes andy, ~ IMit of very anisotropic ladder, whew=c°, the magnitude
we obtain the spectrum of electromagnetic wave propagatingf s Of the resonanc&_ decreases as 4/and only the
along the ladder. This spectrum consists of two branchekesonance/, can be observed. This is consistent with the

w-(q) and is given by(in the usual units case of 1D parallel arrays. . _
Using the developed theory, we can explain all important
0= w, /F + m 3) features of experimentally observed resonances on the

current-voltage characteristic of Josephson ladders. First, due
where F=3%1+1/(9B)+(2/B)sirk(wg), and G= (4/ tothe annular geometry only the electromagnetic waves with
B)sirf(7q). This equation generalizes, for the case of thequantized wave numberg,=n/N can propagate in the lad-
arbitrary wave number, the dynamical checkerboard statder. Heren=1,2,... N is an integer. The resonances of
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sufficiently large magnitude are observed on th¥ curve V. andV_ in the upper and lower voltage regions. How-
when the value of frustration matches these wave numbersver, in this case, most probably due to a relatively low value
[see Eq.(4)]. of the subgap resistandtarger «) we have found that the
The experimentally observed dependence of the voltaggependence of their voltages on frustration is continuous
V. on the frustratiorf, shown in Fig. 3, is well described by (Fig. 4). Again, the resonanc¥. disappears in the limit of
Eq. (3) for both isotropic and anisotropic annular ladders.small frustration due to its small amplitude according to Eq.
We obtain a goo_d guantitative agreement between theory ar*(@)_
experiment using the plasma frequency=wp/2m Finally, we have observed that the dependevicéf) de-
=14 GHz (independent measurements give the value of;ates from the theoryEgs. (3) and (4)] in the region of

wp~16 GHz) and the self-inductance parametgrs0.16  ,qirationf<0.3. This can be connected with the particular
and 0.3, correspondingly, for isotropic and anisotropic Casesassumption on the state of the horizontal junctions. Our
We also observe that the current magnitude of the resonancg

. : Ralysis h n carri t for the most simple stat
monotonically decreases when the frustrafialeviates from ysis has been camied out for the most simple state

) - : ({(¥n)=0), but in general one might consider the case when
the value O.E(se_:e Fig. 2 It q_uahtatwely agrees with the Eq. the phases of the horizontal junctions undergo small ampli-
(5) for the maximum magnitude of the resonance.

ol tude oscillations around a finite angle. In this case, the reso-
In the case of annular ladder witki=12 cells, we may " . . N
. . . nance condition on the wave numlegrs not simplyge="f ,
expect to observe six resonances in the regionsf &0.5. but a more complicated relationship can appeae Ref. 9
The theoretical and experimental study of the properties of
such general state, i.e., of the current-voltage characteristics

; . of Josephson ladder in the region of small voltage, is in
apparently, not stable due to its small current magnitude aﬁrogress
described by Eq(5). Another resonance corresponding to '
the frustrationf=5/12 is not stable af=4.2 K, but we We thank H. Kohlstedt for providing us access to tech-
observed it at slightly higher temperature. The poor stabilitynological facilities for sample preparation at Forschungszen-
of this resonance can be due to its small distance from thum Juich. P.C. and M.V.F. thank, respectively, the Euro-
neighboring resonance at=1/2. pean Office of Aerospace Research and Development

Similar results have been obtained for Josephson junctiofEOARD) and the Alexander von Humboldt Stiftung for

ladder of linear geometry. We have observed two resonancesipporting this work.

sponding to the values of=2, 3, 4, 6(see Fig. 2 The reso-
nance corresponding to the value of frustration1/12 is,
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