
PHYSICAL REVIEW B 1 JUNE 1999-IVOLUME 59, NUMBER 21
Phase transitions in isotropic extreme type-II superconductors

S-K. Chin, A. K. Nguyen, and A. Sudbo”

Department of Physics, Norwegian University of Science and Technology, Trondheim, 7034 Norway
~Received 4 September 1998; revised manuscript received 24 November 1998!

Using large-scale Monte Carlo simulations on a uniformly frustrated three-dimensionalXY model, we report
a first-ordervortex lattice melting transition in clean,isotropicextreme type-II (k→`) superconductors. This
work clarifies an important issue: the unpinned vortex liquid is alwaysincoherentwith no phase coherence in
any direction for all anisotropies. Previous claims of a disentangled vortex liquid for isotropic superconductors
based on simulations are due to finite-size effects. We explicitly show that the effective vortex-line tension
vanishes precisely at the superconducting phase transition in zero magnetic field. This loss of line tension is
accompanied by an abrupt change in the connectivity of the vortex tangle across the superconductor. We also
obtain results indicating that the connectivity of the vortex tangle changes in a similar way even in a finite
magnetic field, and suggest that this could also be associated with a genuine phase transition.
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I. INTRODUCTION

Since the discovery of copper-oxide-based hig
temperature superconductors~HTSC’s!,1 which are of the
extreme type-II variety, there has been great interest in t
phenomenological phase diagrams. Abrikosov’s mean-fi
description,2 which is valid for conventional low-temperatur
superconductors, is expected to be modified by the str
thermal fluctuations in HTSC’s. Extensive research
theory, numerical simulations, and experiments over
years has resulted in a general consensus on some o
fundamental issues. The current understanding of HTSC’
a uniform magnetic fieldB is as follows. In the absence o
any pinning disorder, the low-temperature Abrikosov vort
lattice phase melts into a vortex liquid via a first-order tra
sition at the temperatureTm . The Abrikosov vortex lattice
phase is characterized by a transverse triangular crysta
order and a finite longitudinal phase coherence.

However, recently there has been some debate abou
nature of the vortex liquid which the Abrikosov vortex lattic
melts into as temperature increases. Numerous simulat
using the three-dimensional~3D! XY model3–6 and London7

and lowest-Landau-level approximations8 have indicated tha
the vortex liquid isincoherent; i.e., the phase coherence
superfluid density in any direction is zero. The crystalli
order and phase coherence are destroyed simultaneous
the melting transition. This scenario has been supported
experiments on high quality Y-Ba-Cu-O crystals.9 Other
simulations using the 3DXY model10–12have suggested tha
the longitudinal phase coherence persists above the me
transition and only vanishes at a higher ‘‘entanglemen
temperatureTE . In this scenario, the vortex liquid atTm
,T,TE would be disentangled with relatively straight vo
tex lines. ForT.TE , it was claimed that larger thermal fluc
tuations cause the vortex lines to be entangled with a c
comitant loss of global phase coherence.10–12

Previously, a vortex liquid with nonzero longitudina
phase coherence, or superfluid density, was found in sim
tions on an isotropic system.10,12More recently,12 it has been
proposed that for largeB, Tm and TE merge into a single
transition, whereas for smallB they are well separated. Th
authors found that for an isotropic system, the crossover
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tween the two regimes is at a filling fraction 1/18, f ,1/6,
where the precise definition off }B will be given shortly.
However, these simulations were performed on rather sm
systems. In the present work, we have performed sim
simulations on a much larger system, and found an ex
sively incoherent vortex liquid down tof 51/60. This im-
plies that the only thermodynamically stable vortex liqu
phase is one which has zero longitudinal superfluid dens
with full translational and rotational symmetries and ze
phase coherence in all directions. We are therefore led to
conclusion that the recently discussed12 crossover between
the phase-coherent vortex liquid and the phase-incohe
vortex liquid is a numerical artifact.

The organization of this paper is as follows. In Sec. II w
first briefly review the model used in the simulations and
quantities we calculate. In Sec. III we discuss our results
their implications. In Sec. IV we provide a summary a
conclusion.

II. MODEL

We use a uniformly frustrated 3DXY model on a cubic
lattice to describe an isotropic, extreme type-II supercondu
ors in a magnetic field. The London model for supercondu
ors can be readily derived from the phenomenologi
Ginzburg-Landau~GL! model with the approximation tha
the amplitude of the local complex order parameter,c
5ucuexp@iu#, is fixed. The HamiltonianH of the London
model consists of degrees of freedom in the phaseu(r ) and
the gauge vector potentialAvp(r ) associated with the mag
netic induction B inside the system, i.e., H
5H@$u(r ),Avp(r )%#.

For an isotropic extreme type-II superconductor, the p
etration depthl is much larger than the coherence lengthj
such that the GL parameterk5l/j→`. This means that the
magnetic fields surrounding the vortex lines strongly over
with one another, giving a spatially smoothB. This condition
is ensured in the regime whereB.Bc1. In other words, the
fluctuations ofAvp(r ) on the length scale ofj are negligible
compared to the fluctuations ofu(r ). Therefore, we can fur-
14 017 ©1999 The American Physical Society
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ther simplify the problem by dropping the degrees of fre
dom of Avp(r ) from the HamiltonianH, and fix B equal to
the external applied magnetic field. The resulting Ham
tonian H5H@$u(r )%# is the 3DXY model. Thisk→` ~or
frozen gauge! approximation has been widely used as a p
nomenological model for superconductors. Note that, wit
this model, the system has nomagnetic flux lines, since there
can be no tubes of confined magnetic flux whenl→`. The
system only exhibitsvortex lines.

In order to perform numerical simulations on the resulti
model, we discretize the model on a 3D cubic lattice w
grid spacingj. The dimensionless Hamiltonian of this lattic
model is given by13,11,4

H@$u~r !%#52J0 (
r ,a5x,y,z

cos$ j a@u~r !#%, ~1!

where J05F0
2j/4p2m0l2 is the isotropic coupling energy

F05\p/e is the flux quanta, andm0 is the permeability of a
vacuum in SI units. The dimensionless vectorr labels the
position of an arbitrary grid point. We define the gaug
invariant phase differencej a(r ) as

j a~r ![u~r1ea!2u~r !2
2pj

F0
E

r

r1ea
dr 8•Avp~r 8!, ~2!

whereea is the unit vector along thea axis. The convention
is that j a(r ) ‘‘flows’’ from the grid at r to r1ea . In this
model, it is natural to define a dimensionless temperaturT̃
5kBT/J0. The magnetic inductionB is conveniently repre-
sented by the filling fraction

f 5
Bj2

F0
. ~3!

In this paper, we perform a Monte Carlo simulation on
isotropic system withV5Nx3Ny3Nz number of grid
points. The aim of our numerical simulations is to ident
possible thermodynamic phases~i.e., vortex lattice or liquid,
etc.! and phase transitions~first order or continuous! or
crossovers associated with them. Specifically, we are in
ested in calculating the internal energy, specific heat, st
ture factor, and helicity moduli. These thermodynamic qu
tities and their physical significance will be discussed ne
In addition, we introduce and define a quantityOL which we
denote the vortex-path probability, and discuss some o
physical implications.

A first-order transition is indicated by ad-function
anomaly in the specific heat, equivalently a discontinuo
jump in the internal energy. On the other hand, the hallm
of a continuous transition is a jump in the specific he
modified by fluctuation contributions to the anomaly, and
continuous internal energy. The internal energy per site
obtained by averagingH in Eq. ~1! over the thermal equilib-
rium states, normalized by the total number of grids, i.e.E
5^H&/V. We define a dimensionless specific heat per sitC
using the standard fluctuation theorem of a classical sys
with Gibbs distribution:14

C5
^H2&2^H&2

V~kBT!2
. ~4!

A convenient and widely used quantity to probe theglo-
bal phase coherence of the system is the helicity modu
-
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which is proportional to the second derivative of the fr
energy associated with Eq.~1! with respect to an infinitesi-
mal phase twist.10,3 On a square lattice, the dimensionle
helicity modulusYa can be written as

Ya5
1

V K (
r

cosj a2
1

T̃
U(

r
sin j aU2L . ~5!

Ya measures the ‘‘stiffness’’ ofu with respect to twisting
along thea direction. If Ya.0, then u is stiff in the a
direction or, more precisely, there isglobal phase coherence
or superconducting response in that direction. By track
the temperature at whichY goes to zero, one can determin
the superconducting–normal-metal transition temperatur
the system. In the mixed phaseY i.0 andY'50, where the
subscriptsi and' denote the directions longitudinal an
transverse toB, respectively.

The structure factor probes the transverse crystalline o
of the vortex system. We adopt a conventional definition4

S~k'!5
1

~ f V!2 K U(r
v i~r !exp~ ik'•r !U2L , ~6!

wherek' is a two-dimensional reciprocal vector andva(r ) is
the local vorticity measured on the dual square lattice grid3,4

composed of the centers of every direct unit cell. A cryst
line ordered phase is characterized byS(k0).0 ~or Bragg
peaks! wherek0 are thediscreteset of reciprocal lattice vec
tors associated with the crystal structure. On the other ha
S(k) for a phase with full rotational invariance exhibits rin
patterns.

At a fixed temperature, the equilibrium configurations a
generated by making random changes tou(r ) at each grid
point via the Metropolis algorithm. This is equivalent to ra
domly changing all sixj a attached to each grid point. T
ensure conservation of vorticity in each unit cell,j a has to be
in the range@2p,p). Addition of 62p shall be adminis-
trated to bringj a back into range at every Monte Carlo ste
This procedure introduces vortex loops into the system. S
loops are the elementary topological excitation of the mod.
Periodic boundary conditions~PBC’s! are imposed onj a
such thatj a(r1Nmem)5 j a(r ) for m5(x,y,z). More details
about the Monte Carlo procedure may be found in Refs
and 4.

We defineOL as the probability of finding a directed vor
tex path threading the entire system transverse to the in
tion B, without using the PBC’s-along the field direction.15 It
is obtained by computing the numberNV of times we findat
least onesuch path threading the system in any direction'B
in NP different phase configurations, normalized byNP , i.e.,
OL5NV /NP . The fact thatOL50 implies that there is no
connected path of vortex segments that threads the e
system in the transverse direction, without using PBC
along the field direction several times. Now, letNL

a (a
P@x,y,z#) denote the areal density of connected vort
paths threading the system in any direction, including
direction parallel to the induction. It is clear that in the Abr
kosov vortex lattice phaseOL50, and NL

z5B/F0, while
NL

x5NL
y50. Thus,NL

a is a conserved quantity at fixed induc
tion B. On the other hand,OL51 implies thatNL

x,y.0, and
the total number of vortex paths threading the system in a
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FIG. 1. Specific heatC, superfluid stiffnessY,
and vortex-path probabilityOL for G51, f 50.
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direction scales with system size, but undergoes ther
fluctuations. Therefore,NL

a is no longer a conserved quantit
We propose the following scenario to interpret the chan

in OL and NL
a. Number conservation uniquely identifies

U(1) symmetry, and hence the low-temperature phase of
vortex system~the dual of the phase representation of t
superconductor! exhibits explicit U(1) symmetry, sinceOL

50. At high temperaturesOL51, NL
a is not conserved, and

the U(1) symmetry is broken. A U(1)-symmetric phase can
not be analytically continued to a U(1)-nonsymmetric one
The change inOL from 0 to 1 could therefore signal a pha
transition, in this case involving breaking a global U(1
symmetry, in finite as well as zero magnetic field. Howev
to substantiate such a claim, one needs to argue thatOL is
related to a local order parameter of the system. To this e
we note that it is possible to transcribe thevortex partof the
Ginzburg-Landay theory in the phase-only approximation
such a way that the vortex part of the theory is specified
terms of a local, complex matter fieldf(x), and that the
theory thenexplicitly exhibits a U(1) symmetry.16 In the
lattice London model, corresponding to the Villain appro
mation to the Ginzburg-Landau theory, this symmetry
therefore onlyimplicit, or ‘‘hidden.’’ The probability of find-
ing a connected vortex path starting at a pointx and ending
at pointy, G(x,y), is given in terms of the two-point corre
lation function of the matter field f(x), G(x,y)
5^f* (x) f(y)&.16 OL may be viewed as a special case
G, and in the thermodynamic limit corresponds
limux2yu→`G(x,y). If G(x,y) is nonzero in this limit, this
suggeststhe possibility of havinĝ f(x)&Þ0 and, hence, a
broken U(1) symmetry. Although this does not constitute
proof thatOL is connected to a local order parameter who
expectation value is associated with a broken U(1) sym
try, it seems to be suggestive of such a phase transition
isting even at finite magnetic field. Note that the above lo
matter fieldf appears to be the dual field of a complex ord
parameter appearing in a somewhat different independen
proach to the same problem by Tesˇanović.17
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III. RESULTS AND DISCUSSION

In this section, we discuss the results of our simulatio
on an isotropic system with size of 1203 grid points, which is
the largest to date on an isotropic system. The system
subdivided into multiple sections, and the Monte Carlo p
cedure is implemented in parallel across the sections u
3D ‘‘black and white’’ decomposition.6 The filling fractions
considered are 1/f 520,40,60, and̀ . The system is cooled
from high temperatures. For each temperature, a typical
consists of 120 000 Monte Carlo sweeps across the wh
lattice, 1/3 of that were used for equilibration. Near pha
transitions, up to 600 000 sweeps were used.

In Fig. 1, we present the results for the zero-field casef
50, where we show the specific heatC, the superfluid stiff-
nessY, and the vortex-path probabilityOL as functions of
temperature. Note how the specific heat anomaly, the van
ing of the superfluid stiffness, andOL all coincide with T̃c
'2.20. The physical interpretation ofOL51 is that the ef-
fective long-wavelength vortex-line tension vanishes.4,6,17

This claim is substantiated by calculating the probability d
tribution D(p) of vortex loops as a function of perimeterp,
at various temperatures. We may fit this distribution to t
form18

D~p!5Ap2ae2b«p ~T,Tc!

5Ap2a ~T>Tc!, ~7!

where « is an effective, temperature-dependent, long-
wavelength line tension,b51/kBT, anda55/2. The results
are shown in Fig. 2, demonstrating that atT5Tc , a purely
algebraic decay is realized, implying«50. Below Tc , the
exponential decay is well fitted, showing that«Þ0. The inset
of Fig. 2 shows« as a function of temperature, as obtained
our simulations. A similar method of extracting« for the
zero-field case using a similar form forD(p) ~without the
power-law prefactor! has previously been used by Li an
Teitel, in Ref. 19.
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The results for the quantitiesS(k), Y, and C for 1/f
520 are shown in Fig. 3. Similar qualitative features are a
found for the cases 1/f 540,60. First,S(k') exhibits sixfold
Bragg peaks at low temperatures~not shown!. This indicates
that the low-temperature phase is a triangular vortex lat
phase. The destruction of the vortex lattice structure
marked by a melting transition atT̃m'1.34 whereS(k1)
drops sharply to zero, wherek1 is the wave vector of one o
the six first-order Bragg peaks. The sharpness of the dro
S(k1) strongly suggests that the transition is first order. T
is confirmed by the appearance of ad-function-like peak in
C at the same temperatureT̃m . Coincidentally,Y i which is
finite at low temperatures, also drops sharply to zero atT̃m .
The isotropic system exhibits longitudinal superconductiv

FIG. 2. Vortex loop probability distributionD(p) as a function
of loop perimeterp for various temperatures,G51, f 50. The lines
in the figure are fits usingD(p)5Ap2a exp(2b«p), with A51,
a55/2, andb51/kBT. « is the only fitting parameter in all plots
The inset shows the effective long-wavelength vortex-line tens
«. The solid line is a guide to the eye.« vanishes atT5Tc . Here,
j is the grid spacing of the numerical lattice, and serves both
unit of length and a measure of the superconducting cohere
length.
o

e
is

in
s

y

below T̃m , but not above. Moreover, based on our abov
discussion in Sec. II, we interpret the rise in the quantityOL
from 0 to 1 as signaling that the effective long-waveleng
vortex-line tension vanishes. Thus, the vortex liquid phas
divided into two regions in phase space. In one region,
vortex liquid is phase incoherent, i.e., has no longitudi
superfluid density but has finite vortex-line tension. Wepro-
posethat this phase exhibits a vortex-associated U(1) sy
metry. In the other region the vortex liquid is phase incoh
ent but has zero vortex-line tension. We propose that
phase exhibits a broken U(1) symmetry.

Based on this, one can conclude that a first-order mel
transition of the Abrikosov vortex lattice exists in anisotro-
pic system in the absence of pinning. The entire vortex liq
phase isincoherent, i.e., a vortex liquid phase with no lon
gitudinal superconductivity. Note that the same conclus
has been reached in earlier simulations onanisotropic
systems.5,4,6There have been earlier reports of a disentang
vortex liquid, i.e., vortex liquid with nonzero longitudina
phase coherence. These results have been obtained in si
simulations.10–12 In Ref. 12, it was argued that a phas
coherent vortex liquid should be most easily observed
isotropic systems forf <1/18. However, these simulation
were performed on comparatively small systems, typically
sizes no larger than 243. Our present results are based
much larger systems, 1203. We have observed a slight dif
ference in the temperatures at whichS(k) andY i vanish in
simulations on smaller system or lower number of swee
Therefore, it may be concluded that the existence of a vo
liquid with a nonzero longitudinal superfluid density is
numerical artifact of small system sizes and/or insufficie
simulation time.20 It is well understood that thel transition
is driven by proliferation of thermally excited loops of a
sizes. In recent work by some of us, it was proposed that
same mechanism is driving the first-order melting transit
at low B and a newly discovered continuous transition
volving the breaking of U~1! symmetry at largeB.6

Similar results for 1/f 540 and 60 enable us to propose
simple phase diagram for an isotropic extreme type-II sup

n

a
ce
.

D

FIG. 3. Specific heat per siteC, helicity
moduli Y' and i , vortex-path probabilityOL ,
and structure factorS(k1) ~wherek1 is the wave
vector for one of the first-order Bragg peak! as a

function of T̃ for a system sizeV51203 and 1/f

520. The melting temperatureT̃m'1.34 is
marked by the sharp drop ofS(k1). The coinci-

dence of a sharp peak inC at T̃m confirms that the
melting phase transition is first order.Y i also

vanishes atT̃m , indicating that the triangular vor-
tex crystal melts into an incoherent vortex liquid

At T̃'1.90, OL jumps from 0 to 1, signaling a
U(1) symmetry breaking or, equivalently, a 3
XY transition.
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FIG. 4. The intrinsicf -T̃ phase
diagram of an isotropic system
based on simulations on syste
size V51203 and f 50,1/20,1/40,
and 1/60. The first-order melting
line and the 3DXY line are de-

noted byT̃m andT̃L , respectively.
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conductor in the absence of disorder~see Fig. 4!. Immedi-
ately below and above theT̃m line, the phases of the vorte
system are identified as the Abrikosov vortex lattice and
incoherent vortex liquid, respectively.

In a pin-free system, one would expectY' to be zero at
all temperatures. In this case, the numerical lattice, on wh
simulations are performed, effectively pins the vortex lin
from moving in the transverse plane and counteracts the
entz forces on them in the presence of a transverse ap
current. However, the pinning is overcome by thermal flu
tuations at higher temperature and the vortex lines are
pinned at temperatureT̃d'0.62. Fortunately, we see tha
T̃d!T̃m , which means that nearT̃m , the vortex lines and the
melting process are completely free from the effects of
numerical grid. Therefore, the features ofC, Y i , andS(k) at
T̃m are genuine thermodynamic effects.

IV. CONCLUSION

We have performed simulations of the uniformly fru
trated 3DXY model on a largeisotropic system (1203 grid
points! for a variety of filling fractions 1/f 520, 40, 60, and
`. We found a first-order melting transition in this isotrop
system for all the three nonzero values off considered. The
longitudinal phase coherence and triangular crystalline o
of the Abrikosov vortex crystal are simultaneously destroy
at the melting transition. Above the melting temperature,
incoherent vortex liquid is the only thermodynamic pha
We have demonstrated that previous claims of the existe
of disentangled vortex liquid10–12 are due to performing
simulations using insufficient system sizes and simulat
times.

We have shown that the effective vortex-line tension v
ishes precisely at the zero-field superconducting transit
The loss of superfluid stiffness, the loss of line tension, a
the abrupt change in the connectivity of the vortex tangle
signaled by the change in the quantityOL across the system
all coincide in this case. A similar change in connectiv
across the vortex system takes place at finite magnetic fi
e
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r-
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-
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The results of the Ref. 15, the present paper, and in partic
those of Ref. 6 strongly indicate that this change in conn
tivity is sharp in the limit of large systems, thus indicatin
the loss of the number conservation of connected vor
paths threading the system. Since the finite probability
finding a connected vortex path threading the system i
direction other than the magnetic field may be tied to
finite expectation value of a local complex matter field,16 this
lends further support to the argument that the change inOL
signals the breaking of a U(1) symmetry.21 At the very least
this proposition appears to be intriguing enough to warr
further investigation.

We finally caution the reader that we so far have not be
able to detect any anomaly in specific heat at the sugge
new finite-field transition inside the vortex liquid, for th
isotropic case. Even the anomaly at the first-order melt
transition is weak in the isotropic case, and is difficult
bring out in simulations. It may be that considerably larg
systems are needed for the isotropic case in order to
signals in the specific heat of the suggested new transi
due to the small amount of entropy in the transition. This
the reason why the anomaly at the first-order vortex latt
melting transition is difficult to observe in simulations. It
conceivable that increasing the anisotropy of the sys
should bring out the anomaly clearer, if it exists. This inde
is the case for the anomaly at the vortex lattice melting tr
sition. A weak anomaly associated with the putative U(
transition may in fact have been observed for the anisotro
case in Ref. 6.
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