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Phase transitions in isotropic extreme type-Il superconductors
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Using large-scale Monte Carlo simulations on a uniformly frustrated three-dimen3i¥nalodel, we report
afirst-ordervortex lattice melting transition in cleaigotropic extreme type-Il ¢— ) superconductors. This
work clarifies an important issue: the unpinned vortex liquid is alwiagsherentwith no phase coherence in
any direction for all anisotropies. Previous claims of a disentangled vortex liquid for isotropic superconductors
based on simulations are due to finite-size effects. We explicitly show that the effective vortex-line tension
vanishes precisely at the superconducting phase transition in zero magnetic field. This loss of line tension is
accompanied by an abrupt change in the connectivity of the vortex tangle across the superconductor. We also
obtain results indicating that the connectivity of the vortex tangle changes in a similar way even in a finite
magnetic field, and suggest that this could also be associated with a genuine phase transition.
[S0163-182699)14721-0

[. INTRODUCTION tween the two regimes is at a filling fraction 1K 8<1/6,
where the precise definition df<B will be given shortly.

Since the discovery of copper-oxide-based high- X .
DT . However, these simulations were performed on rather small
temperature superconductofdTSC’s),” which are of the -
systems. In the present work, we have performed similar

extreme type-ll variety, there has been great interest in the"imulations on a much laraer svstem. and found an exclu-
phenomenological phase diagrams. Abrikosov’s mean-fielsiveI incoherent vortex li guid c}/own t,tb— 1/60. This im-
descriptior? which is valid for conventional low-temperature y d N :

superconductors, is expected to be modified by the stron lies that the on_ly thermodynampally stable vort_ex Ilqw_d
: . , . . _phase is one which has zero longitudinal superfluid density,
thermal fluctuations in HTSC’s. Extensive research in

. . . . with full translational and rotational symmetries and zero
theory, numerical simulations, and experiments over the hase coherence in all directions. We gre therefore led to the
years has resulted in a general consensus on some of tRe '

fundamental issues. The current understanding of HTSC's iﬁ]onclusmn that the recently discusSedrossover between

a uniform magnetic fieldB is as follows. In the absence of the phase-coherent vortex liquid and the phase-incoherent

o ; , vortex liquid is a numerical artifact.
any pinning disorder, the low-temperature Abrikosov vortex N ; ;
The organization of this paper is as follows. In Sec. Il we

lattice phase melts into a vortex liquid via a first-order tran-_. i . . ) .
" . . first briefly review the model used in the simulations and the
sition at the temperaturé,,. The Abrikosov vortex lattice " :
uantities we calculate. In Sec. Il we discuss our results and

phase is characterized by a transverse triangular crystalling™"" ", "=~ "™~ .

order and a finite longitudinal phase coherence. their |m_pl|cat|ons. In Sec. IV we provide a summary and
However, recently there has been some debate about gg@nclusion.

nature of the vortex liquid which the Abrikosov vortex lattice

melts into as temperature increases. Numerous simulations Il. MODEL

using the three-dimensioné8D) XY modef~° and Londo#

and lowest-Landau-level approximatiSiave indicated that

the vortex liquid isincoherent i.e., the phase coherence or lattice to describe an isotropic, extreme type-Il superconduct-
superfluid density in any direction is zero. The crystalline pIC, yb P

order and phase coherence are destroyed simultaneously% In a magnetic f!eld. The London model for supercondyct-
the melting transition. This scenario has been supported b§/S can be readily derived from the phenomenological
experiments on high quality Y-Ba-Cu-O crystdlther mzburg-.LandaL(GL) model with the approximation that
simulations using the 3XY modef°*2have suggested that e amplitude of the local complex order parametgr,
the longitudinal phase coherence persists above the melting|#/exfi6], is fixed. The HamiltoniarH of the London
transition and only vanishes at a higher “entanglement”’model consists of degrees of freedom in the ph&s¢ and
temperatureTe. In this scenario, the vortex liquid &k, the gauge vector potentidl, (r) associated with the mag-
<T<Tg would be disentangled with relatively straight vor- netic induction B inside the system, ie., H
tex lines. FOIT>Tg, it was claimed that larger thermal fluc- =H[{0(r),A,,(r)}].
tuations cause the vortex lines to be entangled with a con- For an isotropic extreme type-Il superconductor, the pen-
comitant loss of global phase coherefge-? etration depth\ is much larger than the coherence length
Previously, a vortex liquid with nonzero longitudinal such that the GL parameter=\/{— . This means that the
phase coherence, or superfluid density, was found in simulanagnetic fields surrounding the vortex lines strongly overlap
tions on an isotropic systetfi:}>More recently'?it has been  with one another, giving a spatially smodh This condition
proposed that for larg8, T,, and Tz merge into a single is ensured in the regime wheB=>B_;. In other words, the
transition, whereas for small they are well separated. The fluctuations ofA,,(r) on the length scale af are negligible
authors found that for an isotropic system, the crossover besompared to the fluctuations é{r). Therefore, we can fur-

We use a uniformly frustrated 3BY model on a cubic
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ther simplify the problem by dropping the degrees of free-which is proportional to the second derivative of the free
dom of A, ,(r) from the HamiltonianH, and fixB equal to  energy associated with E{l) with respect to an infinitesi-
the external applied magnetic field. The resulting Hamil-mal phase twist®® On a square lattice, the dimensionless
tonianH=H[{A(r)}] is the 3DXY model. Thisk—o (or  helicity modulusY , can be written as
nomenological model for superconductors. Note that, within 1 o1 P
this model, the system has neagnetic flux linessince there Ya:v Z COSJ o~ 7 Z SINJo| /- 5
can be no tubes of confined magnetic flux whenr «. The

In order to perform numerical simulations on the resultingalong the« direction. If Y >0, then 6 is stiff in the «
model, we discretize the model on a 3D cubic lattice withirection or, more precisely, there géobal phase coherence
grid spacingé. The dimensionless Hamiltonian of this lattice or superconducting response in that direction. By tracking

frozen gaugeapproximation has been widely used as a phe-
system only exhibityortex lines Y, measures the “stiffness” of with respect to twisting

model is given by>'** the temperature at whicli goes to zero, one can determine
_ the superconducting—normal-metal transition temperature of
HI{o(OD}=-3, > codj o1}, (1) the system. In the mixed pha¥e>0 andY , =0, where the
ra=xy,z

) y o ) _ ) subscripts| and L denote the directions longitudinal and
where Jo=d5&/4m"wuo\” is the isotropic coupling energy, transverse t@, respectively.
Po=%mleis the flux quanta, ang, is the permeability of a The structure factor probes the transverse crystalline order
vacuum in Sl units. The dimensionless vectotabels the  of the vortex system. We adopt a conventional definftion
position of an arbitrary grid point. We define the gauge-
invariant phase differencg,(r) as 1 2
S(k,)=—— . ®
i o(r+e,)— 6(r) ngfr+eadr’ A1), (2 (tV)

r)=o(r - - . , . . . . .

Jar)=6( “« Dy Jy P wherek, is a two-dimensional reciprocal vector amg(r) is
wheree, is the unit vector along the axis. The convention the local vorticity measured on the dual square lattice dfid,
is thatj,(r) “flows” from the grid atr to r+e,. In this composed of the centers of every direct unit cell. A crystal-
line ordered phase is characterized $k,) >0 (or Bragg
peaks wherek, are thediscreteset of reciprocal lattice vec-
tors associated with the crystal structure. On the other hand,
) S(k) for a phase with full rotational invariance exhibits ring

B¢ patterns.
f=_—2. ©) ; _ ' .

d, At a fixed temperature, the equilibrium configurations are
generated by making random changesg{o) at each grid
point via the Metropolis algorithm. This is equivalent to ran-
. . . . : . . .. domly changing all sixj, attached to each grid point. To
pglsnstisb-lg?r?e?rhnc]) dOfngmigu?;;g:I ‘?’/'(';r;git:g?tis‘césotﬂi'dfigt'fy ensure conservation of vorticity in each unit cg)),has to be
b y b N aud:in the range] — 7, 7). Addition of =27 shall be adminis-

etc) and phase f[ran5|t|o.nsf|rst order or contlnuousor' trated to bringj , back into range at every Monte Carlo step.
crossovers associated with them. Specifically, we are inter:

ested in calculating the internal energy, specific heat, stru This procedure introduces vortex loops into the system. Such

ture factor, and helicity moduli. These thermodynamic quan(ioopS are the elementary topological excitation of the model

. ; : C : . Periodic boundary condition§BC’s) are imposed orj
tities and their physical significance will be discussed next. . T - a
In addition, we introduce and define a quanty which we such thaf ,(r +N,e,) =] (r) for u=(x,y,2). More details

denote the vortex-path probability, and discuss some of itg1bOUt the Monte Carlo procedure may be found in Refs. 3

L T and 4.
physical implications. ) . - .
A first-order transition is indicated by a-function We defineO, as the probability of finding a directed vor-

anomaly in the specific heat, equivalently a discontinuouiex path threading the entire system transverse to the induc-

jump in the internal energy. On the other hand, the hallmar ;Ogb?éyxgzotgt léz':]g trt]'i Ptice i'arfgg tf;(;: tflglgsdlrcht'ﬁ;;t
of a continuous transition is a jump in the specific heat,: " : ﬁ' th ?#' % thu t(/ | V(\j' 'm
modified by fluctuation contributions to the anomaly, and aﬁal\? ?j?f?(salrjgnt%a;lase rcec?nfliggrat?o?és ﬁé?é]naﬁ;g dl‘tlbr;Ci o
continuous internal energy. The internal ener er site i P S T
9y 9y P =Ny /Np. The fact thatO, =0 implies that there is no

obtained by averaginl in Eq. (1) over the thermal equilib- .
rium states, normalized by the total number of grids, Ee connected path of vortex segments that threads the entire
, .~ system in the transverse direction, without using PBC'’s

=(H)/V. We define a dimensionless specific heat perGite I he field directi i |
using the standard fluctuation theorem of a classical systefdond the field direction several times. Now, IS («

> vj(nexp(ik, )

Y

model, it is natural to define a dimensionless temperafure
=kgT/Jo. The magnetic inductioB is conveniently repre-
sented by the filling fraction

In this paper, we perform a Monte Carlo simulation on an
isotropic  system withV=N, XN, XN, number of grid

with Gibbs distribution:* e[x,y,z]) denote the areal density of connected vortex
paths threading the system in any direction, including the
(H?)—(H)? direction parallel to the induction. It is clear that in the Abri-
- V(kgT)? ' (4) kosov vortex lattice phas®_ =0, and Nf =B/®,, while

N{'=NY=0. Thus,N{" is a conserved quantity at fixed induc-
A convenient and widely used quantity to probe tile-  tion B. On the other hand)_ =1 implies thatN;"Y>0, and
bal phase coherence of the system is the helicity modulughe total number of vortex paths threading the system in any
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FIG. 1. Specific heat, superfluid stiffnesy’,

v and vortex-path probabilitp, for '=1, f=0.
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direction scales with system size, but undergoes thermal lll. RESULTS AND DISCUSSION

fluctuations. Thereforay" is no longer a conserved quantity. In this section, we discuss the results of our simulations

~ We propose the following scenario to interpret the change,, 4, isotropic system with size of 12grid points, which is

in O_ and Ni. Number conservation uniquely identifies a the |argest to date on an isotropic system. The system is
U(1) symmetry, and hence the low-temperature phase of theubdivided into multiple sections, and the Monte Carlo pro-
vortex system(the dual of the phase representation of thecedure is implemented in parallel across the sections using
superconductgrexhibits explicit U(1) symmetry, sinc®_ 3D “black and white” decompositiofi.The filling fractions
=0. At high temperature®_=1, N[ is not conserved, and considered are 1#20,40,60, ande. The system is cooled
the U(1) symmetry is broken. A (1)-symmetric phase can- from high temperatures. For each temperature, a typical run
not be analytically continued to a(l)-nonsymmetric one. consists of 120000 Monte Carlo sweeps across the whole
The Change "OL from O to 1 could therefore Signa| a phase |attlce, 1/3 of that were used for equi“bration. Near phase
transition, in this case involving breaking a global U(1) transitions, up to 600000 sweeps were used.

symmetry, in finite as well as zero magnetic field. However, N Fig. 1, we present the results for the zero-field cdse,
to substantiate such a claim, one needs to argueQhds  —0 Where we show the specific he@tthe superfluid stiff-
related to a local order parameter of the system. To this end!€SSY . and the vortex-path probabili®, as functions of
we note that it is possible to transcribe Wartex partof the temperature. Note how the specific heat anomaly, the~van|sh-
Ginzburg-Landay theory in the phase-only approximation ining of the superfluid stiffness, an@d, all coincide withT,
such a way that the vortex part of the theory is specified ir=2.20. The physical interpretation @ =1 is that the ef-
terms of a local, complex matter field(x), and that the fective long-wavelength vortex-line tension vanishés’
theory thenexplicitly exhibits a U(1) symmetr{® In the  This claim is substantiated by calculating the probability dis-
lattice London model, corresponding to the Villain approxi- tribution D(p) of vortex loops as a function of perimetgy
mation to the Ginzburg-Landau theory, this symmetry isat various temperatures. We may fit this distribution to the
therefore onlyimplicit, or “hidden.” The probability of find- form?

ing a connected vortex path starting at a poirgnd ending

at pointy, G(x,y), is given in terms of the two-point corre- D(p)=Ap %e PP (T<T,)
lation function of the matter field ¢(x), G(Xx,y) -
=(¢*(x) ¢(y)).** O, may be viewed as a special case of =Ap * (T=Ty), )

G, and in the thermodynamic limit corresponds to

lim|x_y—.G(Xy). If G(x,y) is nonzero in this limit, this where ¢ is an effective, temperature-dependentong-
suggestshe possibility of having(¢(x))#0 and, hence, a wavelength line tensior3=1/kgT, anda=>5/2. The results
broken U(1) symmetry. Although this does not constitute aare shown in Fig. 2, demonstrating thatTat T, a purely
proof thatO, is connected to a local order parameter whosealgebraic decay is realized, implying=0. Below T, the
expectation value is associated with a broken U(1) symmeexponential decay is well fitted, showing that 0. The inset
try, it seems to be suggestive of such a phase transition exf Fig. 2 shows: as a function of temperature, as obtained in
isting even at finite magnetic field. Note that the above locabur simulations. A similar method of extracting for the
matter field¢ appears to be the dual field of a complex orderzero-field case using a similar form f@(p) (without the
parameter appearing in a somewhat different independent apewer-law prefactgr has previously been used by Li and
proach to the same problem by “Besvic'’ Teitel, in Ref. 19.
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below T,,, but not above Moreover, based on our above
N i discussion in Sec. Il, we interpret the rise in the quartity
\ i from 0 to 1 as signaling that the effective long-wavelength
\\\ [ vortex-line tension vanishes. Thus, the vortex liquid phase is
ol e ] divided into two regions in phase space. In one region, the

T 1 vortex liquid is phase incoherent, i.e., has no longitudinal
superfluid density but has finite vortex-line tension. We-

. T posethat this phase exhibits a vortex-associated U(1) sym-
107} §$ M metry. In the other region the vortex liquid is phase incoher-
. 20 = ent but has zero vortex-line tension. We propose that this
107 ris . phase exhibits a broken U(1) symmetry.
1o 16 . Based on this, one can conclude that a first-order melting

1000 transition of the Abrikosov vortex lattice exists in &otro-

pic system in the absence of pinning. The entire vortex liquid

phase isncoherenti.e., a vortex liquid phase with no lon-

of loop perimetep for various temperature§,=1, f=0. The lines gitudinal supercondut_:tlwty. !\lote .that the same concllusmn

in the figure are fits usin@(p)=Ap~* exp(—Bep), with A=1, has beg?,e r(re]achehd mbearller I'S|mulat|ons fanlds_otroplc od

@=5/2, andB=1kgT. ¢ is the only fitting parameter in all plots. SYSEMS:”There have been earlier reports of a disentangle
vortex liquid, i.e., vortex liquid with nonzero longitudinal

The inset shows the effective long-wavelength vortex-line tension . e
¢. The solid line is a guide to the eye.vanishes af =T, . Here phase coherence. These results have been obtained in similar

: o 10-12 :
¢ is the grid spacing of the numerical lattice, and serves both as gimulations. In R.ef. 12, it was argued .that a phase.—
unit of length and a measure of the superconducting coherencgoherent vortex liquid should be most easily observed in
length. isotropic systems fof<1/18. However, these simulations

were performed on comparatively small systems, typically of
The results for the quantitieS(k), Y, and C for 1/f sizes no larger than 34Our present results are t_)ased_on
=20 are shown in Fig. 3. Similar qualitative features are alsgnuch larger systems, 120we have observed a slight dif-
found for the cases 1+ 40,60. FirstS(k, ) exhibits sixfold ~ ference in the temperatures at whigtk) andY vanish in
Bragg peaks at low temperatur@®t shown. This indicates 5|mulat|ons_ on smaller system or lower nl_meer of sweeps.
that the low-temperature phase is a triangular vortex latticd herefore, it may be concluded that the existence of a vortex

phase. The destruction of the vortex lattice structure idduid with a nonzero longitudinal superfluid density is a
marked by a melting transition &, ~1.34 whereS(k,) numerical artifact of small system sizes and/or insufficient

drops sharply to zero, whele is the wave vector of one of simulation timez.o_lt is well understood that the transition

the six first-order Braé;g peaks. The sharpness of the drop s driven by proliferation of thermally excited loops of all

S(k,) strongly suggests that thé transition is first order ThisS'ZeS' In recent wo.rk by some of us, it was proposed thgt. the

is clonfirmed by the appearance oBdunction-like peak .in same mechanism is dnymg the f|rst—or<_:ier melting transition
~ at low B and a newly discovered continuous transition in-

C at the same temperatufig,. Coincidentally,Y whicﬁ is volving the breaking of (1) symmetry at large.®

finite at low temperatures, also drops sharply to zerdat Similar results for 1f'=40 and 60 enable us to propose a

The isotropic system exhibits longitudinal superconductivitysimple phase diagram for an isotropic extreme type-Il super-

= L
(=]

FIG. 2. Vortex loop probability distributio® (p) as a function

FIG. 3. Specific heat per sit€, helicity
moduli Y, and ||, vortex-path probabilityO, ,
and structure factoB(k;) (wherek; is the wave
vector for one of the first-order Bragg peas a
function of T for a system siz&/ =120 and 1f
=20. The melting temperaturd ,~1.34 is
marked by the sharp drop &{k;). The coinci-
dence of a sharp peak thatT,, confirms that the
melting phase transition is first ordeY, also
vanishes af ,,, indicating that the triangular vor-
tex crystal melts into an incoherent vortex liquid.
At T~1.90, O, jumps from 0 to 1, signaling a
U(1) symmetry breaking or, equivalently, a 3D
XY transition.
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FIG. 4. The intrinsicf-T phase
diagram of an isotropic system
based on simulations on system

1/404 size V=120 and f=0,1/20,1/40,
and 1/60. The first-order melting
1/60 line and the 3DXY line are de-

noted byT,, andT, , respectively.
Abrikosov Crystal

T = kgT/Jy

conductor in the absence of disordsee Fig. 4. Immedi-  The results of the Ref. 15, the present paper, and in particular

ately below and above thE,, line, the phases of the vortex those of Ref. 6 strongly indicate that this change in connec-
system are identified as the Abrikosov vortex lattice and thdiVity is sharp in the limit of large systems, thus indicating
incoherent vortex liquid, respectively. the loss of the number conservation of connected vortex
In a pin-free system, one would expéXt to be zero at patr_\s threading the system. Since the_finite probability of
all temperatures. In this case, the numerical lattice, on whicinding a connected vortex path threading the system in a
simulations are performed, effectively pins the vortex linesdirection other than the magnetic field may be tied to the
from moving in the transverse plane and counteracts the Loffinite expectation value of a local complex matter figidhis
entz forces on them in the presence of a transverse applid@nds further support to the argument that the chang®,in
current. However, the pinning is overcome by thermal fluc-Signals the breaking of a U(1) symmetryAt the very least
tuations at higher temperature and the vortex lines are ddhis proposition appears to be intriguing enough to warrant
pinned at temperatur?i’dmo.GZ. Fortunately, we see that further !nvest|gat|9n.
~ = . ~ . We finally caution the reader that we so far have not been
Td«.Tm’ which means that nediy,, the vortex lines and the able to detect any anomaly in specific heat at the suggested
melting process are completely free from the effects of th

: ; Shew finite-field transition inside the vortex liquid, for the
Dumerlcal grid. Therefore, the features@fY), andS(k) at isotropic case. Even the anomaly at the first-order melting
T, are genuine thermodynamic effects.

transition is weak in the isotropic case, and is difficult to
bring out in simulations. It may be that considerably larger
systems are needed for the isotropic case in order to see
i i . signals in the specific heat of the suggested new transition
We have performed simulations of the uniformly frus- gue to the small amount of entropy in the transition. This is
trated 3DXY model on a largésotropic system (128 grid  the reason why the anomaly at the first-order vortex lattice
points for a variety of filling fractions /=20, 40, 60, and  melting transition is difficult to observe in simulations. It is
oo, We found a first-order me|t|ng transition in this iSOtrOpiC Conceivable that increasing the anisotropy Of the System
system for all the three nonzero valuesfafonsidered. The should bring out the anomaly clearer, if it exists. This indeed
longitudinal phase coherence and triangular crystalline ordeg the case for the anomaly at the vortex lattice melting tran-
of the Abrikosov vortex crystal are simultaneously destroyedsjtion. A weak anomaly associated with the putative U(1)

at the melting transition. Above the melting temperature, theransition may in fact have been observed for the anisotropic
incoherent vortex liquid is the only thermodynamic phasecase in Ref. 6.

We have demonstrated that previous claims of the existence
of disentangled vortex liquid=1? are due to performing
simulations using insufficient system sizes and simulation
times.

We have shown that the effective vortex-line tension van- We thank J. S. Hge, P. Olsson, S. Teitel, and Z. Te-
ishes precisely at the zero-field superconducting transitiorsanovicfor discussions and constructive remarks. This work
The loss of superfluid stiffness, the loss of line tension, andvas supported by the Norges Forskningstander Grant
the abrupt change in the connectivity of the vortex tangle, adlos. 115577/410, 110566/410, and 110569/410. We ac-
signaled by the change in the quanf@y across the system, knowledge the use of the Cray T3E-600 computer at the
all coincide in this case. A similar change in connectivity Norwegian Supercomputing Project of NTNU, Trondheim,
across the vortex system takes place at finite magnetic fieldNorway.
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