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Configuration-interaction approach to hole pairing in the two-dimensional Hubbard model
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The interactions between holes in the Hubbard model, in the low density, intermediate- to strong-coupling
limit, are investigated by systematically improving mean field calculations. The configuration-interaction basis
set is constructed by applying to local unrestricted Hartree-Fock configurations all lattice translations and
rotations. It is shown that this technique reproduces, correctly, the properties of the Heisenberg model, in the
limit of large U. Upon doping, dressed spin polarons in neighboring sites have an increased kinetic energy and
an enhanced hopping rate. Both effects are of the order of the hopping integral and lead to an effective
attraction at intermediate couplings. The numerical results also show that when more than two holes are added
to the system, they do not tend to cluster, but rather hole pairs remain far apart. Hole-hole correlations are also
calculated and shown to be in qualitative agreement with exact calculationx#rcflisters. In particular our
results indicate that for intermediate coupling the hole-hole correlation attains a maximum when the holes are
in the same sublattice at a distance\@& times the lattice spacing, in agreement with exact results antdthe
model. The method is also used to derive known properties of the quasiparticle band structure of isolated spin
polarons[S0163-182609)15221-4

I. INTRODUCTION native scheme to go beyond the unrestricted Hartree-Fock
(UHF) approximation is to supplement it with the Gutzwiller
The nature of the low-energy excitations in the Hubbardprojection method or, equivalently, slave boson
model has attracted a great deal of attention. It is well estagechniques®?° These results are in agreement with the exis-
lished that at half-filling the ground state is an antiferromag-tence of significant effects due to the delocalization of the
netic (AF) insulator. Also, there exists conclusive evidencesolutions, as reported here.
which indicates that antiferromagnetism is rapidly sup- The restof the paper is organized as follows. In Sec. Il we
pressed upon doping Close to half-filling, a large amount discuss the physical basis of our proposal and the way in
of work suggests the existence of spin polarons, made d#hich we implement the configuration-interaction method. A
dressed holes, which propagate within a given sublattice witfiliscussion of the limit of largéJ/t in the undoped case is
kinetic energy which in the strong-coupling limit is of the presented in Sec. Ill. It is shown that, contrary to some ex-
order ofJ=4t?/U ** wheret is the hopping integral and pectations, the Hartree-Fock scheme reproduces correctly the
the on-site Coulomb repulsion. These results are consistefitean field solution of the Heisenberg model. The systematic
with similar calculations in the strong-coupling, low-doping corrections analyzed here can be put in precise correspon-
limit of the Hubbard model, the-J model®~" There is also dence with similar terms discussed for quantum antiferro-

evidence for an effective attraction between these spifnagnets. Results for thexd4 cluster are compared with ex-

p0|ar0n58__14 However, recent and extensive Monte Carlo act results in Sec. IV. Section V is devoted to a discussion of

calculations for 0.85 filling and) =2t—8t have shown that our results for a single holéspin polaron and for two or

the pairing correlations vanish as the system size or the inmore holes. The hole-hole correlations are also presented in

teraction strength increas&s. this section. The last section is devoted to the conclusions of
We have recently analyzed the dynamics of spinour work.

polarond®’ and the interactions between th¥nby means

of a systematic expansion around mean field calculations of Il. METHODS
the Hubbard model. Two spin polarons in neighboring sites o
experience an increase in their internal kinetic energy, due to A. Hamiltonian

the overlap of the charge cloud. This repulsion is of the order e investigate the simplest version of the Hubbard

of t. In addition, a polaron reduces the obstacles for the diftjamiltonian used to describe the dynamics of electrons in
fusion of another, leading to an assisted hopping term whicloyo, layers, namely,

is also of the same order. The combination of these effects is

an attractive interaction at intermediate valuesUdt. The H=T+C, (13
purpose of this work is to discuss in detail the results and the

approach proposed in Ref. 18. We present new results which

support the validity of our approach, highlighting the physi- T=> To== > tijCiTaCja1 (1b)

cally appealing picture of pairing that it provides. An alter- I o (ij)
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CZE Uin”nil. (1C) :
| & &

The Hamiltonian includes a single atomic orbital per lattice A P Py l
site with energyE;=0. The sums are over all lattice sites YUY Y
=1, N, of the chosen cluster of the square lattice and/or the R {j N
zcomponent of the spin=T, ). The operatoc;,, destroys b)
an electron of spirr at sitei, and nig:cfo_cig is the local
density operatort;; is the hopping matrix element between a)
sitesi andj (the symbol(ij) denotes that the sum is re-
stricted to all nearest neighbor paind U; is the intrasite FIG. 1. (a) Sketch of one of the bipolaron solutions, at large
Coulomb repulsion. Here we takg=t andU;=U, and the values of U/t, considered in .the text. Circles denote the Iogal
lattice constant as the unit of length. charge, measured from half-filling, and arrows denote the spins.

There are two localized states marked by the dashed line. For com-
B. Unrestricted Hartree-Fock solutions parison, the single-polaron solution is shown(li.

As we shall only consider UHF solutions having a local must exist in finite clusters. However, it is spontaneously
magnetization pointing in the same direction everywhere irbroken in the thermodynamic limit, due to the presence of
the cluster, we shall use the most simple version of the UHFhe antiferromagnetic background. Hence, we do not expect
approximatiorf! Within this approximation the effective that the lack of spin invariance is a serious drawback of the
mean field Hamiltonian that accounts for the Hubbard term igHartree-Fock solutionéhis point is analyzed in some detail
written as in Ref. 22. Results obtained for small clustéf$’ show a

slight improvement of the energy, which goes to zero as the
luster size is increased. On the other hand, translational in-
cef=> X7=U (niXn;), 2 clus ; : * .
Z Z (i) (29 variance is expected to be present in the exact solution of
clusters of any size. The way we restore translational invari-
ance is discussed in the following subsection. Finally we

X”:UZ N Niz)- (2b) show how to estimate the effects due to zero-point fluctua-
tions around the UHF ground st&feFor spin polarons these
The full UHF Hamiltonian is then written as corrections do not appreciably change the results, although
UHF off they are necessary to describe the long-range magnon cloud
H™=T+C™. (3 around the spin polardf.

Use of the UHF approximation in finite clusters provides
a first-order approximation to the spin polaron near half-
filling. As discussed elsewhere, the UHF approximation de- We have improved the mean field results by following a
scribes well the undoped, insulating state at half-fifingee  procedure suggested years ago by some &f Wge hybrid-
also the next sectign A realistic picture of the spin-wave ize a given spin UHF solution with all wave functions ob-
excitations is obtained by adding harmonic fluctuations bytained from it by lattice translations. In the case of two or
means of the time-dependent Hartree-Fock approximatiomore holes point symmetry has also to be restored. This is
[random phase approximati¢RPA)].?? At intermediate and accomplished by applying rotations to the chosen configura-
large values obJ/t, the most stable HF solution with a single tion. Configurations generated from a given one through this
hole is a spin polaroft*® In this solution, approximately procedure are degenerate in energy and interact strongly.
half of the charge of the hole is located at a given site. TheHere we have also investigated the effect of extending the
spin at that site is small and it is reversed with respect to théasis by including other configurations having different en-
antiferromagnetic background. The remaining charge is conergies. In all cases we include sets of wave functions with the
centrated in the four neighboring sites. A number of alternalattice symmetry restored as mentioned.
tive derivations lead to a similar picture of this small spin In a path integral formulation, this procedure would be
bag?3~%® A similar solution is expected to exist in theJ  similar to calculating the contribution from instantons which
model. visit different minima. On the other hand, it is equivalent to

A schematic picture of the initial one- and two-hole the configuration interactiofCl) method used in quantum
Hartree-Fock wave functions used in this work is shown inchemistry. The Cl wave function for a solution correspond-
Fig. 1. They represent the solutions observed at large valugag to N, electrons is then written as
of U/t for the isolated polaron and two spin polarons on
neighboring sites. The electronic spectrum of these configu- .
rations shows localized states which split from the top of the W (Ne)= Z 2 ®'(Ne), )
valence band. _

As usual in mean field theories, the UHF solution for anwhere the se®'(N,) is formed by some chosen UHF wave
arbitrary number of hole%: such as the spin polaron solution functions (Slater determinantsplus those obtained from
described above, breaks symmetries which must be restoré¢dem by all lattice translations and rotations. The coefficients
by quantum fluctuations. In particular, it breaks spin symme-4a; are obtained through diagonalization of the exact Hamil-
try and translational invariancésee Fig. 1 Spin isotropy tonian. The same method, using homogeneous paramagnetic

C. Configuration-interaction method
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solutions as starting point, has been used in Ref. 29. The . 4 o
wave functions forming this basis set are not in principle <¢'ng|xa¢ﬁng>:U2k aniini Nia) - (11)
orthogonal. Thus, the wave function overlap has to be taken
into account in the calculation of the matrix elements of theOn the other hand, the matrix elements®éare
Hamiltonian.

If only configurations having the same energy and corre- o
sponding, thus, to the same UHF Hamiltonian are included, a g U, (M )i (M (12

hysicall sound decomposition of the exact Hamiltonian is
pny y P where each r(k(,)Il is given by an equation similar to Eq.

the followin
g’ (10). The matrix elements of the density operator between
Z E monoelectronic wave functions are
H=HY"F+C— > X7+U2 (ni)(n;)). (5
7 i <¢ |nk0'¢m> a’nkangk (13)

In writing the matrix elements of this Hamiltonian we should If the CI basis includes wave functions having different UHF

note that the basis formed by the wave functidnsis not  energies, the above procedure is not valid and one should

orthogonal. Then, we obtain calculate the matrix elements of the original exact Hamil-
tonian. Although this is in fact reduced to calculating the
matrix elements of the kinetic energy operalorthe proce-
dure is slightly more costlyin terms of computer timethan

(6)  the one described above. The matrix elements of the exact

Hamiltonian in the basis of Slater determinants are
where EYHF is the UHF energy of a given mean field solu-

tion, and the matrix elements of the overl§@are given by

Hij = EYP+ U (i m ) | S+ G = 2 XS

E T"S"+C”, (14)
=(®'(Ng)|®I(Ne))=5]; S}, . (7)
¢ ¢ a whereT{] are given by an equation similar to EG.0), and
This factorization is a consequence of the characteristics athe matrix elements of the kinetic energy operator between
the mean field solutions considered in this wddnly one  monoelectronic wave functions are

component of the spin different from zerd@’he specific ex-

ression for the matrix elements of the overlap is o 4jo o jo
P P (ST gm)= 13 aran. (15
(Bl - (PTTeK) . . . :
The matrix elements involved in the calculation of hole-
= ‘ e , (8 hole correlations for a given Cl wave function are similar to
<¢, |¢JU> o <¢ |¢J<T> those that appeared in the computation of the Hubbard term.

In particular the following expectation value has to be com-
where the number of particles for each component of the spifiuted:
is determined from the usual conditiom +N; =N, and

N;—N,;=2S,. The ¢\’ are the monoelectronic wave func- (¥|(1—n)(1—n)|¥)= E aa(®i|(1-nY(1—n)|d)),
tions corresponding to the Slater determingnt 16
16

¢in<r>:2 o ka |0Y, (9) wherenk.= N+ Ny The.te.rms of the four operators |n this
i expectation value are similar to E¢L2). Those requiring

o more computer time involvey,n;; with k#1,
nk being real coefficients obtained through diagonalization

of the HY"F Hamiltonian. The matrix element of the ex- (nyny;);;
change operator between Slater determinaatsdj is

. . o <¢1U|nk1¢ (pln k) - (P1AN)
SIIXTB) - <¢'f|¢'N<;> _
Xij= Inm¢“’> (ox Inm¢>jz" PPN |¢>J">
o J(r
<¢ |X ¢ <¢ |¢ + permutations. (17
(1) - (BTIXTGN)
NS D. Numerical calculations

0| 4o 0 \vo o Calculations have been carried outloi L clusters with
o |P17) o (DN IX7N) periodic boundary conditionsL&12) and U =8t—500Q.
(10) Some results for lower values bof are also presented. Note
thatU =28t is widely accepted as the most physically mean-
where the matrix elements of” between monoelectronic ingful value of Coulomb repulsion in these systefsse, for
wave functions are given by instance, Ref. 30 Although larger clusters can be easily
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TABLE I. Exact(Ref. 8, UHF, and Cl(see text energies of the Hubbard model & for the half-filled
4x 4 cluster. All energies are given in units of the hopping integyrdlhe UHF solution of lowest energy
corresponds to the antiferromagnetic configuration while the CI results were obtained by adding to the AF
configuration the 32 configurations having two neighboring spins fligpeférred to as $f The interaction
and overlap between the AF and the sf configuratidg { andtas o) are also given.

Exact UHF Cl

u/t Exact AF sf AF+sf tAF of SAF sf
6 —10.55222 —9.37989 —7.94663 —9.85296 1.1410 0.1035
8 —8.46887 —7.38963 —6.16154 —7.87777 0.5863 0.0572
16 —4.61186 —3.91165 —3.20231 —4.27171 0.1692 0.0150
32 —2.37589 —1.98846 —1.61884 —2.19194 0.0682 0.0039
50 —1.53078 —1.27695 —1.03838 —1.41060 0.0415 0.0016
100 - —0.63962 —0.51980 —0.70736 0.0202 0.0004

reached, no improvement of the results is achieved due to ththe Slater type; that is, coherent quasiparticles can always be

short-range character of the interactiqaee below. defined in the metallic side. These results seem to favor the
The numerical procedure runs as follows. Localized UHFscenario suggested in Ref. 31, and lend support to our mean-

solutions are first obtained and the Slater determinants for field-plus corrections approach.

given filling constructed. The full Cl basis set is obtained by ~ Without entering into the full polemic outlined above, we

applying all lattice translations to the chosen localized UHFhow show that the method used here gives, in full detail, the

Slater determinants all having the sameomponent of the results which can be obtained from the Heisenberg model by

spinS,. Then we calculate the matrix elements of the over-expanding around the antiferromagnetic mean field

lap and of the Hamiltonian in that basis set. This is by far thesolution®> Such an expansion gives a consistent picture of

most time-consuming part of the whole calculation. Diago-the physics of the Heisenberg model in a square lattice.

nalization is carried out by means of standard subroutines for The ground state energy of the Hartree-Fock solution in a

nonorthogonal bases. The state of lowest energy corresponds< 4 cluster is compared to the exact vdlae large values

to the CI ground state of the system for a givBn The  of U in Table I. The corresponding Heisenberg model is

desired expectation values are calculated by means of this

ground state wave function. The procedure is variational and, 42 R

thus, successive enlargements of the basis set always im- HHeis:U ; Si'SJ_U ; nin; .

prove the description of the ground state.

(18

In a 4X 4 cluster, the exact ground state energy is

Ill. LIMIT OF LARGE U IN THE UNDOPED CASE 412

t
The Hartree-Fock scheme, for the undoped Hubbard Ereis=—18c+0.9 7, (19

model in a square lattice, gives an antiferromagnetic ground 36 )
state, with a charge gap. At large valued.t, the gap is of wherec=0.702;" in good agr_eement with the results for the
order U. The simplest correction beyond Hartree-Fock, theHubbard model. The mean field energy can be parametrized
RPA approximation, leads to a continuum of spin waves atn the same way, except that=0.5. This is the result that
low energie$? Thus, the qualitative features of the solution ©n€ expects for the mean field solution of the Heisenberg
are in good agreement with the expected properties of afodel, which is given by a staggered configuration of static
antiferromagnetic insulator. spins. This solution can be viewed as the ground state of an
There is, however, a great deal of controversy regardin@nisotropic Heisenberg model with=J andJ.. =0. _
the adequacy of mean field techniques in describing a Mott e now analyze corrections to the Hartree-Fock solution
insulators? In principle, the Hubbard model, in the large- Py hybridizing it with mean field wave functions obtained
U limit, should describe well such a system. At half-filling from it by flipping two neighboring spinéhereafter referred
and largeU, the only low-energy degrees of freedom of thet0 as “sf”). These solutions are local extrema of the mean
Hubbard model are the localized spins, which interact antifield solutions in the largé} limit. In Table | we show the
ferromagnetically, with coupling=4t%U. It has been ar- €nergy difference between_ these states and t.he AF Hartree-
gued that, as long-range magnetic order is not relevant de(?Ck ground state, and their overlap and matrix element also
the existence of the Mott insulator, spin systems with a spivith the ground state. We have checked that these are the
gap are the most generic realization of this phase. A spin ga@nly wave functions with a non-negligible mixing with the
is often associated with the formation of a resonating valencground state. The overlap goes rapidly to zero, and the en-
bond (RVB)-like state, which cannot be adiabatically con- €rgy difference and matrix elements adjust well to the ex-
nected to the Hartree-Fock solution of the Hubbard modelPréssions
So far, the best examples showing these features are two-leg )
spin-1/2 ladderé? Recent worf indicates that, in the pres- AE.. —E.—E _ 1t (203
ence of magnetic order, the metal-insulator transition is of ARSI AR sy
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TABLE Il. UHF and Cl (see text energies of the Hubbard model in the<44 cluster for several values
of U and one and two holegwith respect to half-filling. All energies are given in units of the hopping
integral t. The CI results for two holes were obtained by including all configurations having the holes
separated by vectors of the ddt0} or {2,1}. The CI calculation for one hole includes the spin polaron
configuration. In both cases the full basis set was constructed by restoring point and translational symmetries.

One hole Two holes
U UHF cl UHF<1,0) CI-{1,0 UHF-(2,2) Cl-{2,1
4 —13.30222 —13.36021 —14.09307 —14.20511 —14.09240 —14.16640
6 —10.27549 —10.59418 —11.18149 —11.65669 —11.12471 —11.55214
8 —8.46151 —8.76271 —9.47288 —9.94496 —9.47043 —9.81703
16 —5.37431 —5.53656 —6.59120 —7.08701 —6.79804 —6.97274
32 —3.70563 —3.78024 —5.04100 —5.54390 —5.40559 —5.48360
50 —3.09365 —3.13879 —4.47406 —4.97558 —4.90015 —4.94714
2t2 in agreement with the result reported in Ref. 35. Although
Lars= 5 (20D this correction to the AF energy has the expected size depen-

dence for an extensive magnituie is proportional to the

These are the results that one obtains when proceeding frofffMPer of sited\s) and gives an energy already very similar

the Heisenberg model. These values, inserted in a perturb the exact, it was obtained by inconsistently expanding in

tive analysis of quantum corrections to the ground state erl€'™MS ©of & parameter that can be quite large. For instance, in

ergy of the Heisenberg mod¥ljead to excellent agreement the 4X4 cluster andJ :50'[’2 Epe” 1.51, closze to the exact

with exact resultgsee also below result (Table ), while (8L tAFlsf)/(AEAF,Sf)_ ~3.9, much _
As already pointed out, in the Cl calculation of the ground!@rger than 1. Thus, perturbation theory is doomed to fail

state energy we only include the mean field wave function§Vven for rather small clusters. _ .

with two neighboring spins flipped. Restoring point symme- On the other hand, the CI calculation described above

try gives a total of 4 configurations, while applying lattice introduces a correction to the AF energy which does not

translations leads to a set o #2 configurationgremember ~Nave the correct size dependence. This can be easily checked

that configurations on different sublattices do not intoreet 1N the large-cluster limit in which the CI energy can be ap-

which the AF wave function has to be added. In the case oproximated by

the 4x 4 cluster the set has a total of 33 configurations. The

Cl energy for this cluster is given in Table | along with the 1

exact and the UHF energies. It is noted that the CI calcula- Ec~ E(EAF+ Es) — \/ELtAF,Sf, (23

tion reduces in 50% the difference between the exact and the

mean field result. Improving this result would require includ-

ing a very large set, as other configurations only decrease thighile the correct expression should scaléN\gs because, in

ground state energy very slightly. large clusters, the difference between the exact and the
In the largeV limit, the largest interaction itye ;. Then, Hartree-Fock ground state energies must be proportional to

neglecting the overlap between the AF and the sf mean fielllls, irrespective of the adequacy of the Hartree-Fock ap-

solutions, the CI energy of the ground state can be approxiProximation.
mated by Thus, one obtains a better approximation to the ground

state energy in the thermodynamic limit, by using the pertur-

2 bative calculations in small clusters and extrapolating them
1 _ 8L Tk st to large clusters, as in the related model®® In any case,
Eci=5| EaAr T Esr— ABprsi\/ 1+ — |- (21 - ,
2 ' (AEpr ) the problem outlined here does not appear when calculating

corrections to localized spin textures, such as the one- and

For U =50t this expression giveBc,= —1.421, in excellent two-spin polarons analyzed in the next sections. The relevant

agreement with the CI result given in Table 1. properties are associated with the size of the texture, and do
Note that a perturbative calculation of the corrections offot scale with the size of the cluster they are embedded in.
the ground state energy in finite clusters is somewhat tricky, From the previous analysis, we can safely conclude that
as the matrix element scales witfNg, whereNs=L2 is the ~ Our scheme gives a reliable approximation to the undo_ped
number of sites in the cluster, while the energy difference igiubbard model in a square lattice in the strong-coupling
independent oN,. The first term in a perturbative expansion fegimeU/t>1. We cannot conclude whether the method is

(pe) coincides with the first term in the expansion of the @dequate or not for the study of models which exhibit a spin
square root in Eq(21), gap. It should be noted, however, that a spin gap need not

only be related to RVB states like ground states. A spin
2,2 system modeled by the nonlinearmodel can also exhibit a
2Lt
, gap in the ground state, if quantum fluctuations, due to di-
AFsf (22) in th d if fl i d di

E _—1 . . . . . .
pe AR AEpr st mensionality or frustration, are sufficiently large. In this
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TABLE Ill. Exact (Ref. 8 and UHF or Cl(see text energies of T
the Hubbard model in % 4 clusters for several values bfone or S
two holes(with respect to half-filling. All energies are given in |
units of the hopping integrdl The CI results for two holes were :

obtained by including alf1,0} and {2,1} configurations(see also
caption of Table I).

Exact Cl

u/t One hole Two holes One hole Two holes ". ;'
—14.66524 —15.74459 —13.36021 —14.48135 O ‘ O

N

6 —11.96700 —13.42123 —10.59418 —11.81262
—10.14724 —11. —-8.76271 —-10.1 . . . .
12 ~ g 80729 -9 gggg? _2 52656 N 3 Zﬁgg FIG. 2. Sketch of the bipolaron UHF wave functions used in this
: : ’ ) work. Note that the four wave functions are obtained by successive
32 —4.93556  —7.56832  —-3.78024  —5.59560 rotations ofw/2. The complete basis set is produced by translation
50 —4.25663  —7.07718  —3.13879  —5.00862 of these wave functions through the whole cluster.

The results for the energies of wave functions w&h
case, a mean field approach plus leading quantum correctiorsg for several values of the interaction paramelterare
should be qualitatively correct. reported in Tables Il and III. As found for a single hole, the
kinetic energy, included by restoring the lattice symmetry,
improves the wave function energi#sThe improvement in
the energy is larger for intermediat® For instance, folJ
=32 a 10% gain is noted. Within the UHF approximation,

In order to evaluate the performance of our approach wéhe solution with the holes at the largest distance is more
have calculated the ground state energy of two holes in th&avorable forU>8t. Instead, restoring the translational and
4% 4 cluster and compared the results with those obtained bgoint symmetries favors a solution with the holes at neigh-
means of the Lanczos methBdhe results are reported in boring sites for allu shown in the tables. The results also
Tables II-1V, where the energies for one hole are also givernndicate that the correction introduced by this procedure does
for the sake of completnesa full discussion of this case can not vanish withU. A more detailed discussion of the physi-
be found in Ref. 16; see also belpvn the case of one hole cal basis of this result along with results for larger values of
the standard spin polaron soluti@fig. 1) and those derived U and larger clusters will be presented in the following sec-
from it through lattice translations form the basis set. For twation. On the other hand, the energies get closer to the exact
holes we consider solutions wi,=0 or 1. In the first case energiegsee Table . A further improvement in the energy
we include either the configuration having the two holes ais obtained by including both UHF configurations, namely,
the shortest distance, i.e., separated b, vectof’ and/or  {1,0} and{2,1}. This improvement is larger for intermediate
at the largest distance possible, that is, separated @yla U and vanishes ad increasegTable Ill). Other configura-
vector, and those obtained from them through rotations. Th&ons, such as that proposed in Ref. 47 in which the two holes
basis used for the two polarons at the shortest distance Il on neighboring sites along a diagonal and a neighboring
shown in Fig. 2. The set of these four configurations has thepin is flipped, may contribute to further improve the CI
proper point symmetry. Again, lattice translations are appliednergy of the ground state.
to these configurations to produce a basis set with full trans- It is interesting to compare these results with those corre-
lational symmetry. On the other hand, wave functions withsponding to wave functions witls,=1 also reported in
S,=1 can be constructed by including configurations withTable IV. It is noted that fotJ =6t—16t the energy of the
the two holes separated by vectdétsl) and/or(2,2). solution including all configurations from the s¢t,1} is

smaller than those obtained with all configurations from ei-

TABLE IV. Same as Table Il for two holes wave functions with ther the sef1,0} or the se{2,1}. However, the wave function
S,=1. The energy of the Cl solution corresponding2¢?) almost ~ constructed with all configurations from the last two sets is
coincides with that of its UHF solution. Including all configurations more favorable than the best wave function witl+=1. The
of the sets(1,1} and{2,2} does not change the result obtained with latter is in agreement with exact calculatidmgich obtained

IV. COMPARISON WITH EXACT RESULTS FOR 4 x4
CLUSTERS WITH TWO HOLES

only the former set. a ground state wave function wit,=0.
UHF Cl V. RESULTS

U/t 1,9 2,2 Ly A. Single polaron

6 —11.12980 —10.89495 —11.77834 Here we only consider the quasiparticle band structure

8 —9.48701 —9.37275 —10.11391 associated with the single polaron; the energy gain induced
16 —6.77454 —6.78954 —7.10740 through restoration of translational symmetry has been con-
32 —5.33285 —5.41009 —5.48456 sidered elsewher®. The calculated dispersion band of a
50 —4.80587 —4.90506 —4.89772 single polaron is shown in Fig. 3. Because of the antiferro-

magnetic background, the band has twice the lattice period-
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approximatioft’ behaves in this way. All these features are
in good agreement with known restift&*for both the Hub-
; bard and the-J models.
The single-hole dispersion in thteJ model is well de-
. scribed by the self-consistent Born approximatidnyhich
I & allows for some insight into the physics governing the diffu-
‘ sion of the hole. It has been shown that higher-order correc-
0.0 . s . 9\ fietes . . - .
000 005 010 015 tions are smalf® Within this approximation, nearest neigh-
tu , bor hopping is necessarily accompanied by the absorption, or
emission, of a hole. Thus, coherent propagation is only pos-
sible after an even number of virtual hoppings, so that the
magnons are emitted and absorbed. As in our study, this
approximation concludes that the most important effective
hoppings are to thex1,=1) and (+2,0) neighboring sites
(and those equivalent by symmetrifhis explains the simi-
larities in the shape of the band in the two approaches. We
-69 have also shown that the bandwidth goes, approximately, as
r X M r 11t?/U~3J. Results for thet-J model, for large values of
t/J, suggest that the bandwidth goes a@s*2* This scaling
follows from the fact that coherent hopping involves, at least,
FIG. 3. Quasiparticle band structure for a single hole on 12one spin flip. Whenl<t, the spin flip is the slowest process
X 12 clusters of the square lattice with periodic boundary conditionsand governs the hopping. The spin flip involves virtual tran-
andU=8t. The solid line corresponds to the fitted dispersion rela-sitions to doubly occupied sites, similar to those considered
tion (see text The inset shows the bandwidth as a function?t in our approach. Our results give a somewhat wider band.
for U=8t; the fitted straight line is-0.022+11.1%?/U. This is partly due to the fact that, when reducing the Hub-
bard model to thé-J model for large values dfi/t, effective
icity. Exact calculations in finite clusters do not show this hopping terms are generated, which involve intermediate
periodicity, as the solutions have a well-defined spin and mixransitions to doubly occupied sites. These terms are dis-
different background textures. As cluster sizes are increasedarded when defining thteJ model. Because of this, the hole
however, exact solutions tend to show the extra periodicitypropagation must always be reduced in thé model with
of our results. We interpret this as a manifestation that spimespect to the Hubbard model.
invariance is broken in the thermodynamic limit, because of Note, finally, that our results are also similar to those
the antiferromagnetic background. Hence, the lack of thisbtained by the self-consistent Born approximation to homo-
symmetry in our calculations should not induce spurious efgeneous solutions of the Hubbard model itéélas well as
fects. Figure 3 shows the polaron bandwidth as a function ofvith strong-coupling expansions, similar to the self-
U. It behaves as?/U, the fitted law being consistent Born approximation for thel model#®

n

—
(=]

BAND WIDTH (1)
o
L9
-
»
~N

ENERGY (t)

t2
Egw=—0.022 + 11'1]L_J' (29 B. Two holes

) o ) We now consider solutions with two spin polarons. The
This result indicates that the bandwidth tends to zeréJas relevant UHF solutions are those wiy=0 (solutions with

approaches infinity, as observed in the results for the energy —1 will also be briefly consideredin order for the cou-
gain reported in Ref. 16. Our scheme allows a straightforpjing to be finite, the centers of the two spin polarons must
ward explanation of this scaling. Without reversing the spinpe |ocated in different sublattices. The mean field energy
of the whole background, the polaron can only hop within ajncreases as the two polarons are brought closer, although,
into a site with an almost fully localized electron of the op- Hartree-Fock solution can be found with two polarons at
posite spin. The amplitude of finding a reversed spin in thisyrpitrary distances. We have not attempted to do a full Cl

new site decays as/U at largeU. _ _ . analysis of all possible combinations of two holes in a finite
On the other hand, we find that the dispersion relation cag|yster. Instead, we have chosen a given mean field solution

be satisfactorily fitted by the expression (UHF) and hybridized it with all others obtained by all lattice
translations and rotations. Some results of calculations in

€= €9+ 4t1,c09k,) cog ky) + 2t,( cog 2k,) + cog 2ky) | which more than one UHF solution are included will be also

presented. Clusters of sizes up to<IT0 were studied which,
4122009 2k,) COY 2ky ) + 4ty cO 3ky) cOky ) as in the case of the polaron, are large enough due to the
+cog k) cog3ky)]. (25) short-range interactions between different configurations.
The basis used for the two polarons at the shortest distance is
For U=8t, we get t,,=0.1899, t,,=0.0873, t,, shown in Fig. 2. This procedure leads to a set of bands,
=—0.0134, andt3;= —0.008%. All hopping integrals van- whose number depends on the number of configurations in-
ish ast?/U in the largeV limit for the reason given above. cluded in the CI calculation. For instance, if the basis set of
Also the energy gain with respect to the UHF Fig. 2 is used, four bands are obtainsee also beloyw
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where Eq.(26g corresponds to holes at the shortest distance
and Eq.(26b) to holes at the largest distance. Note that
whereas in the case of the holes at the largest distance the
gain goes to zero in the larde-limit, as for the isolated
polaron, when the holes are separated K .8 vector, the
gain goes to a finite value. This result is not surprising, as the
following arguments suggest. The hopping terms in the bi-
polaron calculation, which are proportional t@t largeU,
describe the rotation of a pair around the position of one of
the two holes. Each hole is spread between four sites. In
order for a rotation to take place, one hole has to jump from
one of these sites into one of the rotated positions. This pro-
cess can always take place without a hole moving into a fully
polarized site with the wrong spin. There is a gain in energy,
even wherlJ/t— . In the single-polaron case, the motion of
a hole involves the inversion of, at least, one spin, which is
fully polarized in the larged limit. Because of this, hybrid-

U 0.10 0.15 ization gives a vanishing contribution to the energylls$
— 00,

The results discussed above are in line with those for the
width of the quasiparticle band. The numerical results can be

fitted by

FIG. 4. Comparison of the hole-hole interacti@ee main text
for the definition obtained within UHHtriangleg and Cl (circleg
approximations for wave functions with,=0. Results correspond

to 6X 6, 8%X8, and 1< 10 clusters with periodic boundary condi- t2

tions, andU=8t. The size of the symbols increases with increasing E{gl\,’\,o}= 3.968 + 14.470, (279
cluster size. The inset shows the energy gain due to the inclusion of

correlation effects via the CI for both the configuration of holes )

located in neighboring positiongircles and holes that are maxi- _ t

mally separated in the finite-size clust@tiangles. The respective Egw=—0.00%+ 10'1U' (27b

asymptotic behaviors for large are 0.495+ 1.532/U for holes at
the shortest distance ard0.002 +3.7&2/U for holes at the largest
distance.

notation as in Eq(26). Thus, the total bandwidth of the two
bands obtained for holes in neighboring sites does not vanish
] ] ) o in the infiniteU limit (as the energy gain reported in Fig. 2

As in the single-polaron case, we obtain a gain in energyrhe internal consistency of our calculations is shown com-
(with respect to the UHF approximatiprdue to delocaliza-  paring the largdd behavior of the two holes at the largest
tion of the pair. The numerical results fer=6, 8, and 10  gjstance possible with the corresponding results obtained for
andU in the range 8-500Q are shown in the inset of Fig. 4. the isolated polaroficompare this fitting with that given in
They can be fitted by the following straight lines: Eq. (24)].

2 The hole-hole interaction, i.e., the difference between the

EL%=0.495+ 1.5%, (269  energy of a state built up by all configurations with the two
holes at the shortest distan@®parated by a vector of the set
2 {1,0)) and the energy of the state having the holes at the
__ largest distance possible at a given cluster, is depicted in Fig.
Ee=-0002+3.787, (260 4. Two holes bind for intermediate values Wf** This hap-

TABLE V. UHF and Cl(see textenergies of the Hubbard model in the<66 cluster for two holegwith
respect to half-filling and several values d&f. All energies are given in units of the hopping integralhe
UHF results correspond to the configurations with the two holes at the shortest distance witsgitbesr
1 separated by lattice vect(tk,0) or (1,1), respectively, and at the largest distance V@i O holes separated
by a (2,3 vector. The CI results were obtained by including all configurations derived either from the set
{1,0} or {2,3} (a total of 72 configurationsthe set{1,1} (36 configurationsall sets havingS,=0, namely,
{1,0}, {2,1}, {3,0}, and{2,3} (324 configurations or all sets havings,=1, i.e.,{1,1}, {2,2}, {3,1}, and{3,3}
(117 configurations

UHF o]

ut (1,0 2,3 1,0 1,0 2,3 1,4 Al S,=0 Al S=1
6 —23.147 —23.121 -23.063 —23.704 —23.608 —23.352 —23.813 —23.700

8 —18.867 —18.920 -18.848 —10.488 —19.385 —19.075 —19.586 —19.448
20 —9.952 -10.260 -10.159 -10.525 -10.452 —10.285 —10.562 —10.479
200 —4.120 —4.632 —4500 —4.622 -4.647 —4510 —4.652 —4.650
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pens because the delocalization energy tends to be higher TABLE VI. Absolute value of the interactiorts and overlaps;
than the repulsive contribution obtained within mean field.between the configurations included in the case of two holes at the
The local character of the interactions is illustrated by theshortest distance, for several values of the interaction parardeter
almost null dependence of the results shown in Fig. 4 on théhe meaning of the symbols is given in Fig. 5. The results corre-

cluster size. spond to the &6 cluster.

The only numerical calculation which addresses the bind-
ing of holes in the Hubbard model is that of Ref. 8. The Y/t t t2 ts S1 S2 Ss
binding energy is defined as=E,+Ey—2E;, whereE,is g 2459 4672 1202 0124 0235  0.056
the ground state energy of the system wittholes. The 5, 1418 1.624 0.159 0119 0.135 0.009

results of _Ref. 8 for the A 4 cluster shovy _that b?nding IS 500 0.646 0.651 0.007 0.088 0.088 X905
favore_lble in the whole range & explored; in partlcuIaA 2000 0584 0584 %10-% 0084 0084 107
steadily decreases from 0.00563 to —0.0947 whenU is

varied fromt to 5. Those authors also point out that for

U =00, repulsion is found withA ~1.32. Our results forA, I di .
as defined in the preceding paragraph and for the same cluSMall difference between the results {a;0} and those with

ter, vary from—0.03a to —0.029 for U=4t—5@, with a all configura'tions withS,=0 for IargeU .is misleading. In
maximum value of—0.12& for U=8t (see Table Ii. The fact, the weight of the configuration with the holes at the
agreement with the results of Ref. 8 can be considered dgrgest distanc€2,3) in the final Cl wave function increases
satisfactory, once the differences in the definition of thewith U. This will be apparent in the hole-hole correlations
binding energy and in the characteristics of the two calculadiscussed in the following paragraph.
tions are taken into account. On the other hand, the absence We have analyzed the symmetry of the ground state wave
of binding at infiniteU reported in Ref. 8 is compatible with function |¥) obtained with all configurations having the
the results shown in Fig. 4. Similar calculations for thé  holes at the shortest distance. The numerical results faf all
model give binding between holes faft=0.11° Takingd  show that (®W)=—(DV)=(D3|¥)=—(DIV),
=4t2/U, this threshold agrees well with our results. where the|®') are the four configurations shown in Fig. 2.
In order to clarify some aspects of the method, we havelhis symmetry corresponds to th#._,2 symmetry, in
carried out a more detailed analysis of two-hole solutions iragreement with previous theoretical studies of the Hubbard
6x6 clusters. The results are presented in Table V. Withirandt-J models**“®
the UHF approximation the most favorable solution is that The quasiparticle band structure for two holes has also
with the two holes at the largest distan3) but for the  been investigated. The main interactidnsind the overlaps
smallestU shown in Table V. The solution with the holes at s; between the configurations are given in Table (e
the shortest distancd,,0) is only favored at smalU, while  meaning of the symbols is specified in Fig. Zhe results
for U=8 even the solution witls,= 1 has a smaller energy. correspond to a 86 cluster with the two holes at the short-
Instead when the lattice symmetry is restored the solutiorst distance. At finitd)J many interactions contribute to the
with the holes at the shortest distance is the best folJall band; in Table VI we only show the largest ones. Of particu-
excluding U=200. For such a largé) the wave function lar significance is the; interaction which accounts for the
constructed with all configurations frof@,3} has the lowest simultaneous hopping of the two holes. This term, which
energy. The solution witt5,=1 is unfavorable for allu clearly favors pairing, vanishes in the infinitedimit, in line
shown in Table V, in contrast with the results found in thewith the results for the hole-hole interactidsee above
4 4 cluster, indicating that size effects were determinant invhich indicate that pairing is not favored at large Also in
the results for the smaller cluster. Including all configura-this limit t;=t,. Including only the interactions given in
tions with S, either 1 or 0 does not change this trend. TheTable VI, the bands can be easily obtained from

E+2(s,E—ty)cosk,+2(s3sE—t3)cosk, (SE—ty)(1+ex)(1+e'ky)
(S:E—t5)(1+e k) (1+e) E+2(s,E—ty)cosk, + 2(SsE—tg)cosky| (28)
Neglecting the overlap, the bands are given by
E(k)=(t;+1t3)(cosky+cosky) + VI (t;+t3)(cosk,+ cosky)]2+ 4t5(1+ cosky) (1+ cosk,). (29

In the infiniteU limit (t;=0 and|t;|=]t,|) the bands are Note that, as in the single-hole case and due to the antifer-
simply romagnetic background, the bands have twice the lattice pe-
riodicity. The dispersionless band has also been reported in
_ Ref. 35 and, in our case, it is a consequence of the absence of
Ea(k) 2, (303 two-hole hopping in the infinité&J limit (t;=0). Our results,
however, disagree with the conclusions reached in Ref. 35
E,(k)=2t;(1+ cosk,+cosk,). (30b  concerning the absence of hole attraction. We find a finite
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TABLE VII. Hole-hole correlationg(1—n;)(1—n;)) as a func- TABLE IX. UHF and CI energiesin units of the hopping inte-
tion of the hole-hole distancsg; for three values ob). The results  gral t) for four holes in 16< 10 clusters and several values of the
correspond to two holes inX66 clusters and were obtained includ- interactionU. The results correspond to configurations with either
ing all configurations of the sef1,0;. The normalization;((1 the four holes on a squatdenominated as)r on two bipolarons

—n;)(1—n;))=1 was used. (2+2) separated by &,5) vector.
rij /U 8t 20t 200t 4 242
0 1.4 0.657 0.491 U/t UHF Cl UHF Cl
! —0.1r1 —251x10°8 3.27x10°° 8  -50.500 —50.828 —50.782 —51.242
V2 3.99¢10 ¢ 6.30<10"* 6.97x10°* 16 —29.208 —29.629 —29.922 —30.321
2 2.0x10°8 1.43x10°3 3.97x 1074 : ‘ ' ‘
3 3 3 32 —17.588 —17.989 —18.574 —18.921
NG 9.6x 10 9.55x 10 9.54 X 10
N 3.34%10- 8.43¢ 10~ 7 53¢ 10-* 128 —-8.651 —9.005 -9.851  —10.148
3 4'54>< e 4l18>< 103 6I03>< 103 512 —6.406 —6.744 —7.659 —7.941
. . ' L, ' L, 4096 —5.750 —6.084 —7.020 —7.297
J10 2.46x10 6.66x 10 7.53x10
J13 1.49x10°3 8.51x 1074 7.53x1074

calized nature of the spin polarons, as seen in Fig. 1. The
center of each spin polaron propagates through one sublattice
attraction for holes at intermediaté’s. It is interesting to  only, but the electron cloud has a finite weight in the other
note that our effective hopping is of ordgrand not of order  one, even whet)/t— . This effect is noted in all cases but
t?/U as in Ref. 35. This effect is due to the delocalizedfor U =200t with all configurations. In that case there is not
nature of the single-polaron textutive sites, at leagtand 3 clear maximum and the correlations are appreciable even at
it does not correspond to a formally similar term which canrather large distances. The reason for this behavior is that for
be derived from the mapping from the Hubbard to thé  |arge U the configuration with the holes at the largest dis-
model*° tance, namely{2,3}, has the lowest energy and, thus, a large
The results for the hole-hole correlatiof(1—n;)(1  weight in the Cl wave function. This is consistent with the
—n;)), as function of the hole-hole distancg=|r;—r;| are  fact that no attraction was observed at latgésee Fig. 4.
reported in Tables VIl and VIII. The normalizatiod;((1  The slower decrease with distance of hole-hole correlations,
—n)(1—n;))=1 has been used. The results correspond to Cobtained forU=8t including configurations from the four
wave functions withS,=0 and were obtained including all sets(Table VIII), may be a consequence of the decrease in
configurations from either the sgit,0} or from the set§1,0,,  the difference between UHF and Cl energiesJadiminishes
11,2, {3,0}, and{2,3. The results are in qualitative agree- (see Fig. 4 Finally, note that the correlation function shows
ment with those in Ref. 8. When comparing with resultsa better defined peak at a distance\@f the lattice constant,
obtained for the-J model, one must take into account that, for U= 20t (see Tables VIl and VIII, particularly the latier
in the Hubbard model, the hole-hole correlation, as definedhis is in agreement with remarks of Ref. 8 in the sense that

above, can take negative valugee the Appendix This is  the most favorable range for binding weis= 16t—2Gt.
due to the appearance of configurations with doubly occu-

pied sites, which are counted as negative holes. Aside from
this effect, our results describe well a somewhat puzzling C. Four holes

result found in the-J model(see, for instance, Refs. 13,30,  An interesting question is whether the holes would tend to
and 47 and in small clusters of the Hubbard moflghe  segregate when more holes are added to the cluster. In order
maximum hole-hole correlation occurs when the two holegg investigate this point, we have calculated total energies for
are in the same sublattice, at a distance equaPtdimes the  four holes on 16 10 clusters with the holes either centered
lattice spacindg® This result follows directly from the delo- on a square or located on two bipolarons separated(bysa
vector and with the holes at the shortest distance. Tfauar)
TABLE VIII. As in Table VII, but including all configurations ~ configurationgplus translationswere included in each case.

from the setg1,0}, {2,1, {3,0}, and{2,3. In the case of two bipolarons only configurations in which
the two bipolarons are rotated simultaneously are included.
rij /U 8t 20t 200t Other possible configurations have different energies and
contribute to a lesser extent to the wave function. In any

0 1.367 0.664 0.493 case, increasing the size of the basis set would not have

1 —0.183 —1.08x10°? 5.18x<10°° changed the essential conclusion of our analisge below.

V2 2.38<10°2 5.18<10°2 7.65¢10°° The results for several values bf are shown in Table IX.

2 4.37x10°° 3.06x10°° 2.36x10°? We note that already at the UHF level the solution with two
V5 8.57x10°° 8.99x10°° 1.59x1072 separated bipolarons has a lower energy. The Coulomb re-
2\2 9.48x10°3 5.20x 1073 7.48x10°3 pulsion term in the Hamiltonian does not favor the configu-

3 1.30x 10 2 7.47x10°3 4.43x10 2 ration with the aggregated holes but for very smallRe-

J10 8.86x 1072 4.64x10°3 2.36x10°2 storing lattice symmetry decreases the energy in both cases
J13 1.74x10°2 6.4x 1073 5.06x10°3 to an amount which in neither case vanishes in the infidite-

limit. The decrease is slightly larger in the case of the four
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relation. The bandwidth, in the lardé-imit, scales as?/U,

and the solutions correspond to spin polarons delocalized in
a given sublattice only. As in the undoped case, these results
are in good agreement with other numerical calculations, for

the Hubbard and-J models.

The same approach is used to analyze the interactions
between pairs of holes. We first obtain Hartree-Fock solu-
tions with two holes at different separations. From compar-
ing their respective energies, and also with single-hole solu-
tions, we find a short-range repulsive interaction between
holes. This picture is significantly changed when building
delocalized solutions. The energy gain from the delocaliza-
tion is enough to compensate the static, mean field, repul-

FIG. 5. Interactions between two-hole configurations having thesion. There is a net attractive interaction fo=8/t<50,
holes at the shortest distankseparated by &1,0) vector. approximately. The correlations between the holes which

. form this bound state are in good agreement with exact cal-

holes on a square. This result can be understood by notingjations, when available. The state figs_,> symmetry. In
that the holes move more freefproducing the smallest dis- i range of parameters, we find no evidence of hole clus-
tortion to the AF backgroundvhen the charge is confined to ering into larger structures.

the smallest region possible. In any case, this is not enough £ iher proof of the efficiency of the present Cl approach

to compensate the rather important difference in energy beuqits from a comparison with the CI approach of Ref. 29,

tween the two cases at the UHF level. These results indicatenich is based upon an extended basisspacé. For a 6
that for large and intermediatd no hole segregation takes %6 cluster andU =4t the UHF localized solution has an

place and that the most likely configuration is that of S€P3%nergy of—31.747. A Cl calculation including 36 localized

rated bipolarons. configurations lowers the energy down-t®1.972. This has
to be compared with the result reported in Ref. 29 obtained

D. Effective Hamiltonian for hole pairing by means of 2027860 extended configurations, namely,

As discussed above, in the largledimit the bipolaron ~ —30.471. The difference between the two approaches should
moves over the whole cluster due to the interactions amonfjirther increase for largeu.

the four mean field wave functions of Fig.(iteractionst; We have not applied the same technique to other Hartree-

andt2 in F|g 5) This mechanism can be viewed as anotherFOCk solutions which have been found eXtenSiVEly in the
manifestation of hole-assisted hopping. The possibility offtubbard model: domain walls separating antiferromagnetic
hole-assisted hopping has been already considered in Réggions:*°~**The breakdown of translational symmetry as-

49, although in a different context. It always leads to Supersogiated with these solutions is probabl_y real and_not just an
conductivity. In our case, we find a contribution, in the large-artifact of the Hartree-Fock solution, as in the previous cases.

U limit, of the type Hybridization of equivalent solutions can, however, stabilize
domain walls with a finite filling, which are not the mean
field solutions with the lowest energy.

_ t t — f — N . .
Hhop_Z AtCi,j;oCi,j;(r(CHl,j;;Ci,j+1;a+ Ci_1j:oCi+1ji0 Because of the qualitative differences between spin po-
larons and domain walls, we expect a sharp transition be-
+H.c. +perm. (31  tween the two at low values ad/t. Note, however, that the

scheme presented here, based on mean field solutions plus

This term admits the BCS decoupling corrections, is equally valid in both cases.
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V1. CONCLUDING REMARKS APPENDIX: HOLE-HOLE CORRELATIONS

We have analyzed the leading corrections to the Hartree- IN THE HYDROGEN MOLECULE
Fock solution of the Hubbard model, with zero, one, and two
holes. We show that a mean field approach gives a reasorij

able picture of the undoped system for the entire range o odel. Let us calla’. and b the operators that create a

values ofU/t. . ; . . ;
The main drawback of mean field solutions in doped Sys_partlcle with spino at sitesa andb, respectively. The ground
- . . . . state wave function haS,=0 and is given by
tems is their lack of translational invariance. We overcome
this problem by using the configuration-interaction method. —(2+ a?)" 12 + + Al
In the case of one hole, the localized spin polaron is replaced 1) =21 %) [ o)+l o) | b)), A1)

by delocalized wave functions with a well-defined dispersionwhere,

Here we explicitly calculate the hole-hole correlations in
e hydrogen molecule described by means of the Hubbard
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|¢1)=alb]|0), (A2a)
1
| ba) = E(a}fa‘ﬁ blb])[0), (A2b)
| p3)=D]a]|0), (A20)
with
E U U2 1/2
a’zﬁ, _E— T+4 (A3)

The wave functions in Eqs(A2) are orthonormalized,
namely, (¢ ¢;)=6; . The result for the hole-hole correla-
tions on different sites is

LOUIS, GUINEA, LOPEZ SANCHO, AND VERGE
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(U(A=nx)(I=np)|sh)= - (A4)

2+ a?

As a=—+/2,0 whenU=0., this expectation value varies
from —0.5 to 0.0. Thus it can take negative values as found
in the case of clusters of the square lattice. Instead, the hole-
hole correlation on the same site is given by

2

<¢|(1—na)(1—na)|¢>=m- (A5)

which is positive for all values of). Particle-particle corre-
lations are obtained by adding 1 to these results.
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