
PHYSICAL REVIEW B 1 JUNE 1999-IVOLUME 59, NUMBER 21
Configuration-interaction approach to hole pairing in the two-dimensional Hubbard model
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The interactions between holes in the Hubbard model, in the low density, intermediate- to strong-coupling
limit, are investigated by systematically improving mean field calculations. The configuration-interaction basis
set is constructed by applying to local unrestricted Hartree-Fock configurations all lattice translations and
rotations. It is shown that this technique reproduces, correctly, the properties of the Heisenberg model, in the
limit of large U. Upon doping, dressed spin polarons in neighboring sites have an increased kinetic energy and
an enhanced hopping rate. Both effects are of the order of the hopping integral and lead to an effective
attraction at intermediate couplings. The numerical results also show that when more than two holes are added
to the system, they do not tend to cluster, but rather hole pairs remain far apart. Hole-hole correlations are also
calculated and shown to be in qualitative agreement with exact calculations for 434 clusters. In particular our
results indicate that for intermediate coupling the hole-hole correlation attains a maximum when the holes are
in the same sublattice at a distance ofA2 times the lattice spacing, in agreement with exact results and thet-J
model. The method is also used to derive known properties of the quasiparticle band structure of isolated spin
polarons.@S0163-1829~99!15221-4#
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I. INTRODUCTION

The nature of the low-energy excitations in the Hubba
model has attracted a great deal of attention. It is well es
lished that at half-filling the ground state is an antiferroma
netic ~AF! insulator. Also, there exists conclusive eviden
which indicates that antiferromagnetism is rapidly su
pressed upon doping.1,2 Close to half-filling, a large amoun
of work suggests the existence of spin polarons, made
dressed holes, which propagate within a given sublattice w
kinetic energy which in the strong-coupling limit is of th
order ofJ54t2/U,3,4 wheret is the hopping integral andU
the on-site Coulomb repulsion. These results are consis
with similar calculations in the strong-coupling, low-dopin
limit of the Hubbard model, thet-J model.5–7 There is also
evidence for an effective attraction between these s
polarons.8–14 However, recent and extensive Monte Ca
calculations for 0.85 filling andU52t –8t have shown that
the pairing correlations vanish as the system size or the
teraction strength increases.15

We have recently analyzed the dynamics of s
polarons16,17 and the interactions between them18 by means
of a systematic expansion around mean field calculation
the Hubbard model. Two spin polarons in neighboring si
experience an increase in their internal kinetic energy, du
the overlap of the charge cloud. This repulsion is of the or
of t. In addition, a polaron reduces the obstacles for the
fusion of another, leading to an assisted hopping term wh
is also of the same order. The combination of these effec
an attractive interaction at intermediate values ofU/t. The
purpose of this work is to discuss in detail the results and
approach proposed in Ref. 18. We present new results w
support the validity of our approach, highlighting the phy
cally appealing picture of pairing that it provides. An alte
PRB 590163-1829/99/59~21!/14005~12!/$15.00
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native scheme to go beyond the unrestricted Hartree-F
~UHF! approximation is to supplement it with the Gutzwille
projection method or, equivalently, slave bos
techniques.19,20 These results are in agreement with the ex
tence of significant effects due to the delocalization of
solutions, as reported here.

The rest of the paper is organized as follows. In Sec. II
discuss the physical basis of our proposal and the way
which we implement the configuration-interaction method
discussion of the limit of largeU/t in the undoped case i
presented in Sec. III. It is shown that, contrary to some
pectations, the Hartree-Fock scheme reproduces correctl
mean field solution of the Heisenberg model. The system
corrections analyzed here can be put in precise corres
dence with similar terms discussed for quantum antifer
magnets. Results for the 434 cluster are compared with ex
act results in Sec. IV. Section V is devoted to a discussion
our results for a single hole~spin polaron! and for two or
more holes. The hole-hole correlations are also presente
this section. The last section is devoted to the conclusion
our work.

II. METHODS

A. Hamiltonian

We investigate the simplest version of the Hubba
Hamiltonian used to describe the dynamics of electrons
CuO2 layers, namely,

H5T1C, ~1a!

T5(
s

Ts52 (
s,^ i j &

t i j cis
† cj s , ~1b!
14 005 ©1999 The American Physical Society
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C5(
i

Uini↑ni↓ . ~1c!

The Hamiltonian includes a single atomic orbital per latt
site with energyEi50. The sums are over all lattice sitesi
51, Ns of the chosen cluster of the square lattice and/or
z component of the spin (s5↑,↓). The operatorcj s destroys
an electron of spins at site i, andnis5cis

† cis is the local
density operator.t i j is the hopping matrix element betwee
sites i and j ~the symbol^ i j & denotes that the sum is re
stricted to all nearest neighbor pairs! andUi is the intrasite
Coulomb repulsion. Here we taket i j 5t andUi5U, and the
lattice constant as the unit of length.

B. Unrestricted Hartree-Fock solutions

As we shall only consider UHF solutions having a loc
magnetization pointing in the same direction everywhere
the cluster, we shall use the most simple version of the U
approximation.21 Within this approximation the effective
mean field Hamiltonian that accounts for the Hubbard term
written as

Ceff5(
s

Xs2U(
i

^ni↑&^ni↓&, ~2a!

Xs5U(
i

nis^ni s̄&. ~2b!

The full UHF Hamiltonian is then written as

HUHF5T1Ceff. ~3!

Use of the UHF approximation in finite clusters provid
a first-order approximation to the spin polaron near ha
filling. As discussed elsewhere, the UHF approximation
scribes well the undoped, insulating state at half-filling21 ~see
also the next section!. A realistic picture of the spin-wave
excitations is obtained by adding harmonic fluctuations
means of the time-dependent Hartree-Fock approxima
@random phase approximation~RPA!#.22 At intermediate and
large values ofU/t, the most stable HF solution with a sing
hole is a spin polaron.21,16 In this solution, approximately
half of the charge of the hole is located at a given site. T
spin at that site is small and it is reversed with respect to
antiferromagnetic background. The remaining charge is c
centrated in the four neighboring sites. A number of alter
tive derivations lead to a similar picture of this small sp
bag.23–26 A similar solution is expected to exist in thet-J
model.

A schematic picture of the initial one- and two-ho
Hartree-Fock wave functions used in this work is shown
Fig. 1. They represent the solutions observed at large va
of U/t for the isolated polaron and two spin polarons
neighboring sites. The electronic spectrum of these confi
rations shows localized states which split from the top of
valence band.

As usual in mean field theories, the UHF solution for
arbitrary number of holes,21 such as the spin polaron solutio
described above, breaks symmetries which must be rest
by quantum fluctuations. In particular, it breaks spin symm
try and translational invariance~see Fig. 1!. Spin isotropy
e
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must exist in finite clusters. However, it is spontaneou
broken in the thermodynamic limit, due to the presence
the antiferromagnetic background. Hence, we do not exp
that the lack of spin invariance is a serious drawback of
Hartree-Fock solutions~this point is analyzed in some deta
in Ref. 22!. Results obtained for small clusters17,27 show a
slight improvement of the energy, which goes to zero as
cluster size is increased. On the other hand, translationa
variance is expected to be present in the exact solution
clusters of any size. The way we restore translational inv
ance is discussed in the following subsection. Finally
show how to estimate the effects due to zero-point fluct
tions around the UHF ground state.22 For spin polarons these
corrections do not appreciably change the results, altho
they are necessary to describe the long-range magnon c
around the spin polaron.28

C. Configuration-interaction method

We have improved the mean field results by following
procedure suggested years ago by some of us.16 We hybrid-
ize a given spin UHF solution with all wave functions o
tained from it by lattice translations. In the case of two
more holes point symmetry has also to be restored. Thi
accomplished by applying rotations to the chosen configu
tion. Configurations generated from a given one through
procedure are degenerate in energy and interact stron
Here we have also investigated the effect of extending
basis by including other configurations having different e
ergies. In all cases we include sets of wave functions with
lattice symmetry restored as mentioned.

In a path integral formulation, this procedure would
similar to calculating the contribution from instantons whi
visit different minima. On the other hand, it is equivalent
the configuration interaction~CI! method used in quantum
chemistry. The CI wave function for a solution correspon
ing to Ne electrons is then written as

C~Ne!5(
i

aiF
i~Ne!, ~4!

where the setF i(Ne) is formed by some chosen UHF wav
functions ~Slater determinants! plus those obtained from
them by all lattice translations and rotations. The coefficie
ai are obtained through diagonalization of the exact Ham
tonian. The same method, using homogeneous paramag

FIG. 1. ~a! Sketch of one of the bipolaron solutions, at larg
values of U/t, considered in the text. Circles denote the loc
charge, measured from half-filling, and arrows denote the sp
There are two localized states marked by the dashed line. For c
parison, the single-polaron solution is shown in~b!.
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solutions as starting point, has been used in Ref. 29.
wave functions forming this basis set are not in princip
orthogonal. Thus, the wave function overlap has to be ta
into account in the calculation of the matrix elements of
Hamiltonian.

If only configurations having the same energy and cor
sponding, thus, to the same UHF Hamiltonian are include
physically sound decomposition of the exact Hamiltonian
the following:17

H5HUHF1C2(
s

Xs1U(
i

^ni↑&^ni↓&. ~5!

In writing the matrix elements of this Hamiltonian we shou
note that the basis formed by the wave functionsF i is not
orthogonal. Then, we obtain

Hi j 5S EUHF1U(
i

^ni↑&^ni↓& DSi j 1Ci j 2(
s

Xi j
s Si j

s̄ ,

~6!

whereEUHF is the UHF energy of a given mean field sol
tion, and the matrix elements of the overlapS are given by

Si j 5^F i~Ne!uF j~Ne!&5Si j
↑Si j
↓ . ~7!

This factorization is a consequence of the characteristic
the mean field solutions considered in this work~only one
component of the spin different from zero!. The specific ex-
pression for the matrix elements of the overlap is

Si j
s 5U ^f1

isuf1
j s& ••• ^f1

isufNs

j s &

••• ••• •••

^fNs

is uf1
j s& ••• ^fNs

is ufNs

j s &
U , ~8!

where the number of particles for each component of the s
is determined from the usual conditionsN↑1N↓5Ne and
N↑2N↓52Sz . The fn

is are the monoelectronic wave func
tions corresponding to the Slater determinanti,

ufn
is&5(

k
ank

iscks
† u0&, ~9!

ank
is being real coefficients obtained through diagonalizat

of the HUHF Hamiltonian. The matrix element of the ex
change operator between Slater determinantsi and j is

Xi j
s 5U ^f1

isuXsf1
j s& ••• ^f1

isufNs

j s &

••• ••• •••

^fNs

is uXsf1
j s& ••• ^fNs

is ufNs

j s&
U

1•••1U ^f1
isuf1

j s& ••• ^f1
isuXsfNs

j s &

••• ••• •••

^fNs

is uf1
j s& ••• ^fNs

is uXsfNs

j s &
U ,

~10!

where the matrix elements ofXs between monoelectroni
wave functions are given by
e

n
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^fn
isuXsfm

j s&5U(
k

ank
isamk

j s ^nks̄&. ~11!

On the other hand, the matrix elements ofC are

Ci j 5U(
k

~nk↑! i j ~nk↓! i j , ~12!

where each (nks) i j is given by an equation similar to Eq
~10!. The matrix elements of the density operator betwe
monoelectronic wave functions are

^fn
isunksfm

j s&5ank
isamk

j s . ~13!

If the CI basis includes wave functions having different UH
energies, the above procedure is not valid and one sh
calculate the matrix elements of the original exact Ham
tonian. Although this is in fact reduced to calculating t
matrix elements of the kinetic energy operatorT, the proce-
dure is slightly more costly~in terms of computer time! than
the one described above. The matrix elements of the e
Hamiltonian in the basis of Slater determinants are

Hi j 5(
s

Ti j
s Si j

s̄ 1Ci j , ~14!

whereTi j
s are given by an equation similar to Eq.~10!, and

the matrix elements of the kinetic energy operator betw
monoelectronic wave functions are

^fn
isuTsfm

j s&52t(̂
kl&

ank
isaml

j s . ~15!

The matrix elements involved in the calculation of hol
hole correlations for a given CI wave function are similar
those that appeared in the computation of the Hubbard te
In particular the following expectation value has to be co
puted:

^Cu~12nk!~12nl !uC&5(
i j

aiaj^F i u~12nk!~12nl !uF j&,

~16!

wherenk5nk↑1nk↓ . The terms of the four operators in th
expectation value are similar to Eq.~12!. Those requiring
more computer time involvenk↑nl↑ with kÞ l ,

~nk↑nl↑! i j

5U ^f1
isunk↑f1

j s& ^f1
isunl↑f2

j s& ••• ^f1
isufNs

j s &

••• ••• ••• •••

^fNs

is unk↑f1
j s& ^fNs

is unl↑f2
j s& ••• ^fNs

is ufNs

j s &
U

1permutations. ~17!

D. Numerical calculations

Calculations have been carried out onL3L clusters with
periodic boundary conditions (L<12) and U58t –5000t.
Some results for lower values ofU are also presented. Not
that U58t is widely accepted as the most physically mea
ingful value of Coulomb repulsion in these systems~see, for
instance, Ref. 30!. Although larger clusters can be easi
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TABLE I. Exact ~Ref. 8!, UHF, and CI~see text! energies of the Hubbard model vsU, for the half-filled
434 cluster. All energies are given in units of the hopping integralt. The UHF solution of lowest energy
corresponds to the antiferromagnetic configuration while the CI results were obtained by adding to
configuration the 32 configurations having two neighboring spins flipped~referred to as sf!. The interaction
and overlap between the AF and the sf configurations (SAF,sf and tAF,sf) are also given.

Exact UHF CI

U/t Exact AF sf AF1sf tAF,sf SAF,sf

6 210.55222 29.37989 27.94663 29.85296 1.1410 0.1035
8 28.46887 27.38963 26.16154 27.87777 0.5863 0.0572

16 24.61186 23.91165 23.20231 24.27171 0.1692 0.0150
32 22.37589 21.98846 21.61884 22.19194 0.0682 0.0039
50 21.53078 21.27695 21.03838 21.41060 0.0415 0.0016

100 - 20.63962 20.51980 20.70736 0.0202 0.0004
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reached, no improvement of the results is achieved due to
short-range character of the interactions~see below!.

The numerical procedure runs as follows. Localized U
solutions are first obtained and the Slater determinants f
given filling constructed. The full CI basis set is obtained
applying all lattice translations to the chosen localized U
Slater determinants all having the samez component of the
spin Sz . Then we calculate the matrix elements of the ov
lap and of the Hamiltonian in that basis set. This is by far
most time-consuming part of the whole calculation. Diag
nalization is carried out by means of standard subroutines
nonorthogonal bases. The state of lowest energy corresp
to the CI ground state of the system for a givenSz . The
desired expectation values are calculated by means of
ground state wave function. The procedure is variational a
thus, successive enlargements of the basis set always
prove the description of the ground state.

III. LIMIT OF LARGE U IN THE UNDOPED CASE

The Hartree-Fock scheme, for the undoped Hubb
model in a square lattice, gives an antiferromagnetic gro
state, with a charge gap. At large values ofU/t, the gap is of
order U. The simplest correction beyond Hartree-Fock,
RPA approximation, leads to a continuum of spin waves
low energies.22 Thus, the qualitative features of the solutio
are in good agreement with the expected properties o
antiferromagnetic insulator.

There is, however, a great deal of controversy regard
the adequacy of mean field techniques in describing a M
insulator.31,32 In principle, the Hubbard model, in the large
U limit, should describe well such a system. At half-fillin
and largeU, the only low-energy degrees of freedom of t
Hubbard model are the localized spins, which interact a
ferromagnetically, with couplingJ54t2/U. It has been ar-
gued that, as long-range magnetic order is not relevant
the existence of the Mott insulator, spin systems with a s
gap are the most generic realization of this phase. A spin
is often associated with the formation of a resonating vale
bond ~RVB!-like state, which cannot be adiabatically co
nected to the Hartree-Fock solution of the Hubbard mod
So far, the best examples showing these features are two
spin-1/2 ladders.34 Recent work33 indicates that, in the pres
ence of magnetic order, the metal-insulator transition is
he
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the Slater type; that is, coherent quasiparticles can alway
defined in the metallic side. These results seem to favor
scenario suggested in Ref. 31, and lend support to our m
field-plus corrections approach.

Without entering into the full polemic outlined above, w
now show that the method used here gives, in full detail,
results which can be obtained from the Heisenberg mode
expanding around the antiferromagnetic mean fi
solution.35 Such an expansion gives a consistent picture
the physics of the Heisenberg model in a square lattice.

The ground state energy of the Hartree-Fock solution i
434 cluster is compared to the exact value8 at large values
of U in Table I. The corresponding Heisenberg model is

HHeis5
4t2

U (
i j

S¢ i•S¢ j2
t2

U (
i j

ninj . ~18!

In a 434 cluster, the exact ground state energy is

EHeis5216~c10.5!
4t2

U
, ~19!

wherec50.702,36 in good agreement with the results for th
Hubbard model. The mean field energy can be parametr
in the same way, except thatc50.5. This is the result tha
one expects for the mean field solution of the Heisenb
model, which is given by a staggered configuration of sta
spins. This solution can be viewed as the ground state o
anisotropic Heisenberg model withJz5J andJ650.

We now analyze corrections to the Hartree-Fock solut
by hybridizing it with mean field wave functions obtaine
from it by flipping two neighboring spins~hereafter referred
to as ‘‘sf’’ !. These solutions are local extrema of the me
field solutions in the large-U limit. In Table I we show the
energy difference between these states and the AF Har
Fock ground state, and their overlap and matrix element a
with the ground state. We have checked that these are
only wave functions with a non-negligible mixing with th
ground state. The overlap goes rapidly to zero, and the
ergy difference and matrix elements adjust well to the
pressions

DEAF,sf5EAF2Esf5
12t2

U
, ~20a!
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TABLE II. UHF and CI ~see text! energies of the Hubbard model in the 43 4 cluster for several values
of U and one and two holes~with respect to half-filling!. All energies are given in units of the hoppin
integral t. The CI results for two holes were obtained by including all configurations having the h
separated by vectors of the set$1,0% or $2,1%. The CI calculation for one hole includes the spin polar
configuration. In both cases the full basis set was constructed by restoring point and translational sym

One hole Two holes

U UHF CI UHF-~1,0! CI-$1,0% UHF-~2,1! CI-$2,1%

4 213.30222 213.36021 214.09307 214.20511 214.09240 214.16640
6 210.27549 210.59418 211.18149 211.65669 211.12471 211.55214
8 28.46151 28.76271 29.47288 29.94496 29.47043 29.81703

16 25.37431 25.53656 26.59120 27.08701 26.79804 26.97274
32 23.70563 23.78024 25.04100 25.54390 25.40559 25.48360
50 23.09365 23.13879 24.47406 24.97558 24.90015 24.94714
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tAF,sf5
2t2

U
. ~20b!

These are the results that one obtains when proceeding
the Heisenberg model. These values, inserted in a pertu
tive analysis of quantum corrections to the ground state
ergy of the Heisenberg model,35 lead to excellent agreemen
with exact results~see also below!.

As already pointed out, in the CI calculation of the grou
state energy we only include the mean field wave functi
with two neighboring spins flipped. Restoring point symm
try gives a total of 4 configurations, while applying lattic
translations leads to a set of 4L2/2 configurations~remember
that configurations on different sublattices do not interact! to
which the AF wave function has to be added. In the case
the 434 cluster the set has a total of 33 configurations. T
CI energy for this cluster is given in Table I along with th
exact and the UHF energies. It is noted that the CI calcu
tion reduces in 50% the difference between the exact and
mean field result. Improving this result would require inclu
ing a very large set, as other configurations only decrease
ground state energy very slightly.

In the large-U limit, the largest interaction istAF,sf . Then,
neglecting the overlap between the AF and the sf mean fi
solutions, the CI energy of the ground state can be appr
mated by

ECI5
1

2 FEAF1Esf2DEAF,sfA11
8L2tAF,sf

2

~DEAF,sf!
2G . ~21!

For U550t this expression givesECI521.421, in excellent
agreement with the CI result given in Table I.

Note that a perturbative calculation of the corrections
the ground state energy in finite clusters is somewhat tric
as the matrix element scales withANs, whereNs5L2 is the
number of sites in the cluster, while the energy difference
independent ofNs . The first term in a perturbative expansio
~pe! coincides with the first term in the expansion of t
square root in Eq.~21!,

Epe5EAF2
2L2tAF,sf

2

DEAF,sf
, ~22!
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in agreement with the result reported in Ref. 35. Althou
this correction to the AF energy has the expected size de
dence for an extensive magnitude~it is proportional to the
number of sitesNs) and gives an energy already very simil
to the exact, it was obtained by inconsistently expanding
terms of a parameter that can be quite large. For instanc
the 434 cluster andU550t, Epe'1.51, close to the exac
result ~Table I!, while (8L2tAF,sf

2 )/(DEAF,sf)
2'3.9, much

larger than 1. Thus, perturbation theory is doomed to
even for rather small clusters.

On the other hand, the CI calculation described abo
introduces a correction to the AF energy which does
have the correct size dependence. This can be easily che
in the large-cluster limit in which the CI energy can be a
proximated by

ECI'
1

2
~EAF1Esf!2A2LtAF,sf , ~23!

while the correct expression should scale asNs , because, in
large clusters, the difference between the exact and
Hartree-Fock ground state energies must be proportiona
Ns , irrespective of the adequacy of the Hartree-Fock
proximation.

Thus, one obtains a better approximation to the grou
state energy in the thermodynamic limit, by using the pert
bative calculations in small clusters and extrapolating th
to large clusters, as in the relatedt-J model.35 In any case,
the problem outlined here does not appear when calcula
corrections to localized spin textures, such as the one-
two-spin polarons analyzed in the next sections. The relev
properties are associated with the size of the texture, an
not scale with the size of the cluster they are embedded

From the previous analysis, we can safely conclude t
our scheme gives a reliable approximation to the undo
Hubbard model in a square lattice in the strong-coupl
regimeU/t@1. We cannot conclude whether the method
adequate or not for the study of models which exhibit a s
gap. It should be noted, however, that a spin gap need
only be related to RVB states like ground states. A s
system modeled by the nonlinears model can also exhibit a
gap in the ground state, if quantum fluctuations, due to
mensionality or frustration, are sufficiently large. In th
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case, a mean field approach plus leading quantum correc
should be qualitatively correct.

IV. COMPARISON WITH EXACT RESULTS FOR 4 34
CLUSTERS WITH TWO HOLES

In order to evaluate the performance of our approach
have calculated the ground state energy of two holes in
434 cluster and compared the results with those obtained
means of the Lanczos method.8 The results are reported i
Tables II–IV, where the energies for one hole are also gi
for the sake of completness~a full discussion of this case ca
be found in Ref. 16; see also below!. In the case of one hole
the standard spin polaron solution~Fig. 1! and those derived
from it through lattice translations form the basis set. For t
holes we consider solutions withSz50 or 1. In the first case
we include either the configuration having the two holes
the shortest distance, i.e., separated by a~1,0! vector37 and/or
at the largest distance possible, that is, separated by a~2,1!
vector, and those obtained from them through rotations.
basis used for the two polarons at the shortest distanc
shown in Fig. 2. The set of these four configurations has
proper point symmetry. Again, lattice translations are app
to these configurations to produce a basis set with full tra
lational symmetry. On the other hand, wave functions w
Sz51 can be constructed by including configurations w
the two holes separated by vectors~1,1! and/or~2,2!.

TABLE III. Exact ~Ref. 8! and UHF or CI~see text! energies of
the Hubbard model in 434 clusters for several values ofU one or
two holes~with respect to half-filling!. All energies are given in
units of the hopping integralt. The CI results for two holes were
obtained by including all$1,0% and $2,1% configurations~see also
caption of Table II!.

Exact CI

U/t One hole Two holes One hole Two holes

4 214.66524 215.74459 213.36021 214.48135
6 211.96700 213.42123 210.59418 211.81262
8 210.14724 211.86883 28.76271 210.17505

16 26.80729 29.06557 25.53656 27.21100
32 24.93556 27.56832 23.78024 25.59560
50 24.25663 27.07718 23.13879 25.00862

TABLE IV. Same as Table II for two holes wave functions wi
Sz51. The energy of the CI solution corresponding to~2,2! almost
coincides with that of its UHF solution. Including all configuration
of the sets$1,1% and $2,2% does not change the result obtained w
only the former set.

UHF CI

U/t ~1,1! ~2,2! $1,1%

6 211.12980 210.89495 211.77834
8 29.48701 29.37275 210.11391

16 26.77454 26.78954 27.10740
32 25.33285 25.41009 25.48456
50 24.80587 24.90506 24.89772
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The results for the energies of wave functions withSz
50 for several values of the interaction parameterU are
reported in Tables II and III. As found for a single hole, th
kinetic energy, included by restoring the lattice symmet
improves the wave function energies.16 The improvement in
the energy is larger for intermediateU. For instance, forU
532 a 10% gain is noted. Within the UHF approximatio
the solution with the holes at the largest distance is m
favorable forU.8t. Instead, restoring the translational an
point symmetries favors a solution with the holes at neig
boring sites for allU shown in the tables. The results als
indicate that the correction introduced by this procedure d
not vanish withU. A more detailed discussion of the phys
cal basis of this result along with results for larger values
U and larger clusters will be presented in the following se
tion. On the other hand, the energies get closer to the e
energies~see Table II!. A further improvement in the energ
is obtained by including both UHF configurations, name
$1,0% and $2,1%. This improvement is larger for intermediat
U and vanishes asU increases~Table III!. Other configura-
tions, such as that proposed in Ref. 47 in which the two ho
lie on neighboring sites along a diagonal and a neighbor
spin is flipped, may contribute to further improve the C
energy of the ground state.

It is interesting to compare these results with those co
sponding to wave functions withSz51 also reported in
Table IV. It is noted that forU56t – 16t the energy of the
solution including all configurations from the set$1,1% is
smaller than those obtained with all configurations from
ther the set$1,0% or the set$2,1%. However, the wave function
constructed with all configurations from the last two sets
more favorable than the best wave function withSz51. The
latter is in agreement with exact calculations8 which obtained
a ground state wave function withSz50.

V. RESULTS

A. Single polaron

Here we only consider the quasiparticle band struct
associated with the single polaron; the energy gain indu
through restoration of translational symmetry has been c
sidered elsewhere.16 The calculated dispersion band of
single polaron is shown in Fig. 3. Because of the antifer
magnetic background, the band has twice the lattice per

FIG. 2. Sketch of the bipolaron UHF wave functions used in t
work. Note that the four wave functions are obtained by succes
rotations ofp/2. The complete basis set is produced by translat
of these wave functions through the whole cluster.
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PRB 59 14 011CONFIGURATION-INTERACTION APPROACH TO HOLE . . .
icity. Exact calculations in finite clusters do not show th
periodicity, as the solutions have a well-defined spin and m
different background textures. As cluster sizes are increa
however, exact solutions tend to show the extra periodi
of our results. We interpret this as a manifestation that s
invariance is broken in the thermodynamic limit, because
the antiferromagnetic background. Hence, the lack of
symmetry in our calculations should not induce spurious
fects. Figure 3 shows the polaron bandwidth as a function
U. It behaves ast2/U, the fitted law being

EBW520.022t111.11
t2

U
. ~24!

This result indicates that the bandwidth tends to zero aU
approaches infinity, as observed in the results for the ene
gain reported in Ref. 16. Our scheme allows a straight
ward explanation of this scaling. Without reversing the s
of the whole background, the polaron can only hop within
given sublattice. This implies an intermediate virtual h
into a site with an almost fully localized electron of the o
posite spin. The amplitude of finding a reversed spin in t
new site decays ast2/U at largeU.

On the other hand, we find that the dispersion relation
be satisfactorily fitted by the expression

ek5e014t11cos~kx!cos~ky!12t20@cos~2kx!1cos~2ky!#

14t22cos~2kx!cos~2ky!14t31@cos~3kx!cos~ky!

1cos~kx!cos~3ky!#. ~25!

For U58t, we get t1150.1899t, t2050.0873t, t22
520.0136t, andt31520.0087t. All hopping integrals van-
ish ast2/U in the large-U limit for the reason given above
Also the energy gain with respect to the UH

FIG. 3. Quasiparticle band structure for a single hole on
312 clusters of the square lattice with periodic boundary conditi
andU58t. The solid line corresponds to the fitted dispersion re
tion ~see text!. The inset shows the bandwidth as a function oft2/U
for U>8t; the fitted straight line is20.022t111.11t2/U.
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approximation17 behaves in this way. All these features a
in good agreement with known results3–6,14for both the Hub-
bard and thet-J models.

The single-hole dispersion in thet-J model is well de-
scribed by the self-consistent Born approximation,38 which
allows for some insight into the physics governing the diff
sion of the hole. It has been shown that higher-order corr
tions are small.39 Within this approximation, nearest neigh
bor hopping is necessarily accompanied by the absorption
emission, of a hole. Thus, coherent propagation is only p
sible after an even number of virtual hoppings, so that
magnons are emitted and absorbed. As in our study,
approximation concludes that the most important effect
hoppings are to the (61,61) and (62,0) neighboring sites
~and those equivalent by symmetry!. This explains the simi-
larities in the shape of the band in the two approaches.
have also shown that the bandwidth goes, approximately
11t2/U;3J. Results for thet-J model, for large values of
t/J, suggest that the bandwidth goes as 2J.39–41This scaling
follows from the fact that coherent hopping involves, at lea
one spin flip. WhenJ!t, the spin flip is the slowest proces
and governs the hopping. The spin flip involves virtual tra
sitions to doubly occupied sites, similar to those conside
in our approach. Our results give a somewhat wider ba
This is partly due to the fact that, when reducing the Hu
bard model to thet-J model for large values ofU/t, effective
hopping terms are generated, which involve intermedi
transitions to doubly occupied sites. These terms are
carded when defining thet-J model. Because of this, the hol
propagation must always be reduced in thet-J model with
respect to the Hubbard model.

Note, finally, that our results are also similar to tho
obtained by the self-consistent Born approximation to hom
geneous solutions of the Hubbard model itself,42 as well as
with strong-coupling expansions, similar to the se
consistent Born approximation for thet-J model.43

B. Two holes

We now consider solutions with two spin polarons. T
relevant UHF solutions are those withSz50 ~solutions with
Sz51 will also be briefly considered!. In order for the cou-
pling to be finite, the centers of the two spin polarons m
be located in different sublattices. The mean field ene
increases as the two polarons are brought closer, altho
for intermediate and large values ofU, a locally stable
Hartree-Fock solution can be found with two polarons
arbitrary distances. We have not attempted to do a full
analysis of all possible combinations of two holes in a fin
cluster. Instead, we have chosen a given mean field solu
~UHF! and hybridized it with all others obtained by all lattic
translations and rotations. Some results of calculations
which more than one UHF solution are included will be al
presented. Clusters of sizes up to 10310 were studied which,
as in the case of the polaron, are large enough due to
short-range interactions between different configuratio
The basis used for the two polarons at the shortest distan
shown in Fig. 2. This procedure leads to a set of ban
whose number depends on the number of configurations
cluded in the CI calculation. For instance, if the basis se
Fig. 2 is used, four bands are obtained~see also below!.
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14 012 PRB 59LOUIS, GUINEA, LÓPEZ SANCHO, AND VERGE´ S
As in the single-polaron case, we obtain a gain in ene
~with respect to the UHF approximation!, due to delocaliza-
tion of the pair. The numerical results forL56, 8, and 10
andU in the range 8t – 5000t are shown in the inset of Fig. 4
They can be fitted by the following straight lines:

EG
$1,0%50.495t11.53

t2

U
, ~26a!

EG520.002t13.78
t2

U
, ~26b!

FIG. 4. Comparison of the hole-hole interaction~see main text
for the definition! obtained within UHF~triangles! and CI ~circles!
approximations for wave functions withSz50. Results correspond
to 636, 838, and 10310 clusters with periodic boundary cond
tions, andU>8t. The size of the symbols increases with increas
cluster size. The inset shows the energy gain due to the inclusio
correlation effects via the CI for both the configuration of ho
located in neighboring positions~circles! and holes that are maxi
mally separated in the finite-size cluster~triangles!. The respective
asymptotic behaviors for largeU are 0.495t11.53t2/U for holes at
the shortest distance and20.002t13.78t2/U for holes at the larges
distance.
y

where Eq.~26a! corresponds to holes at the shortest dista
and Eq. ~26b! to holes at the largest distance. Note th
whereas in the case of the holes at the largest distance
gain goes to zero in the large-U limit, as for the isolated
polaron, when the holes are separated by a$1,0% vector, the
gain goes to a finite value. This result is not surprising, as
following arguments suggest. The hopping terms in the
polaron calculation, which are proportional tot at largeU,
describe the rotation of a pair around the position of one
the two holes. Each hole is spread between four sites
order for a rotation to take place, one hole has to jump fr
one of these sites into one of the rotated positions. This p
cess can always take place without a hole moving into a fu
polarized site with the wrong spin. There is a gain in ener
even whenU/t→`. In the single-polaron case, the motion
a hole involves the inversion of, at least, one spin, which
fully polarized in the large-U limit. Because of this, hybrid-
ization gives a vanishing contribution to the energy asU/t
→`.

The results discussed above are in line with those for
width of the quasiparticle band. The numerical results can
fitted by

EBW
$1,0%53.965t114.47

t2

U
, ~27a!

EBW520.007t110.1
t2

U
, ~27b!

notation as in Eq.~26!. Thus, the total bandwidth of the tw
bands obtained for holes in neighboring sites does not va
in the infinite-U limit ~as the energy gain reported in Fig. 2!.
The internal consistency of our calculations is shown co
paring the large-U behavior of the two holes at the large
distance possible with the corresponding results obtained
the isolated polaron@compare this fitting with that given in
Eq. ~24!#.

The hole-hole interaction, i.e., the difference between
energy of a state built up by all configurations with the tw
holes at the shortest distance~separated by a vector of the s
$1,0%! and the energy of the state having the holes at
largest distance possible at a given cluster, is depicted in
4. Two holes bind for intermediate values ofU.44 This hap-

of
e set
TABLE V. UHF and CI~see text! energies of the Hubbard model in the 63 6 cluster for two holes~with
respect to half-filling! and several values ofU. All energies are given in units of the hopping integralt. The
UHF results correspond to the configurations with the two holes at the shortest distance with eitherSz50 or
1 separated by lattice vector~1,0! or ~1,1!, respectively, and at the largest distance withSz50 holes separated
by a ~2,3! vector. The CI results were obtained by including all configurations derived either from th
$1,0% or $2,3% ~a total of 72 configurations!, the set$1,1% ~36 configurations! all sets havingSz50, namely,
$1,0%, $2,1%, $3,0%, and$2,3% ~324 configurations!, or all sets havingSz51, i.e., $1,1%, $2,2%, $3,1%, and$3,3%
~117 configurations!.

UHF CI

U/t ~1,0! ~2,3! ~1,1! $1,0% $2,3% $1,1% All Sz50 All Sz51

6 223.147 223.121 223.063 223.704 223.608 223.352 223.813 223.700
8 218.867 218.920 218.848 219.488 219.385 219.075 219.586 219.448

20 29.952 210.260 210.159 210.525 210.452 210.285 210.562 210.479
200 24.120 24.632 24.500 24.622 24.647 24.510 24.652 24.650



gh
ld
th
th

nd
he

r

clu

h
la

en

v
i

hi
a

at

.
tio
ll

he
t i
ra
he

he
s
s

ave
e
ll

2.

ard

lso

t-
e
u-

e
ich

the
r

rre-

PRB 59 14 013CONFIGURATION-INTERACTION APPROACH TO HOLE . . .
pens because the delocalization energy tends to be hi
than the repulsive contribution obtained within mean fie
The local character of the interactions is illustrated by
almost null dependence of the results shown in Fig. 4 on
cluster size.

The only numerical calculation which addresses the bi
ing of holes in the Hubbard model is that of Ref. 8. T
binding energy is defined asD5E21E022E1, whereEn is
the ground state energy of the system withn holes. The
results of Ref. 8 for the 434 cluster show that binding is
favorable in the whole range ofU explored; in particularD
steadily decreases from20.00563t to 20.0947t whenU is
varied from t to 50t. Those authors also point out that fo
U5`, repulsion is found withD'1.32t. Our results forD,
as defined in the preceding paragraph and for the same
ter, vary from20.039t to 20.029t for U54t –50t, with a
maximum value of20.128t for U58t ~see Table II!. The
agreement with the results of Ref. 8 can be considered
satisfactory, once the differences in the definition of t
binding energy and in the characteristics of the two calcu
tions are taken into account. On the other hand, the abs
of binding at infiniteU reported in Ref. 8 is compatible with
the results shown in Fig. 4. Similar calculations for thet-J
model give binding between holes forJ/t>0.1.10 Taking J
54t2/U, this threshold agrees well with our results.

In order to clarify some aspects of the method, we ha
carried out a more detailed analysis of two-hole solutions
636 clusters. The results are presented in Table V. Wit
the UHF approximation the most favorable solution is th
with the two holes at the largest distance~2,3! but for the
smallestU shown in Table V. The solution with the holes
the shortest distance~1,0! is only favored at smallU, while
for U>8 even the solution withSz51 has a smaller energy
Instead when the lattice symmetry is restored the solu
with the holes at the shortest distance is the best for aU
excluding U5200. For such a largeU the wave function
constructed with all configurations from$2,3% has the lowest
energy. The solution withSz51 is unfavorable for allU
shown in Table V, in contrast with the results found in t
434 cluster, indicating that size effects were determinan
the results for the smaller cluster. Including all configu
tions with Sz either 1 or 0 does not change this trend. T
er
.
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small difference between the results for$1,0% and those with
all configurations withSz50 for largeU is misleading. In
fact, the weight of the configuration with the holes at t
largest distance~2,3! in the final CI wave function increase
with U. This will be apparent in the hole-hole correlation
discussed in the following paragraph.

We have analyzed the symmetry of the ground state w
function uC& obtained with all configurations having th
holes at the shortest distance. The numerical results for aU
show that ^F1uC&52^F2uC&5^F3uC&52^F4uC&,
where theuF i& are the four configurations shown in Fig.
This symmetry corresponds to thedx22y2 symmetry, in
agreement with previous theoretical studies of the Hubb
and t-J models.11,45

The quasiparticle band structure for two holes has a
been investigated. The main interactionst i and the overlaps
si between the configurations are given in Table VI~the
meaning of the symbols is specified in Fig. 2!. The results
correspond to a 636 cluster with the two holes at the shor
est distance. At finiteU many interactions contribute to th
band; in Table VI we only show the largest ones. Of partic
lar significance is thet3 interaction which accounts for th
simultaneous hopping of the two holes. This term, wh
clearly favors pairing, vanishes in the infinite-U limit, in line
with the results for the hole-hole interaction~see above!
which indicate that pairing is not favored at largeU. Also in
this limit t15t2. Including only the interactions given in
Table VI, the bands can be easily obtained from

TABLE VI. Absolute value of the interactionst i and overlapssi

between the configurations included in the case of two holes at
shortest distance, for several values of the interaction parameteU.
The meaning of the symbols is given in Fig. 5. The results co
spond to the 636 cluster.

U/t t1 t2 t3 s1 s2 s3

8 2.459 4.672 1.202 0.124 0.235 0.056
20 1.418 1.624 0.159 0.119 0.135 0.009
200 0.646 0.651 0.007 0.088 0.088 931025

2000 0.584 0.584 731024 0.084 0.084 931027
UE12~s1E2t1!coskx12~s3E2t3!cosky ~s2E2t2!~11eikx!~11e2 iky!

~s2E2t2!~11e2 ikx!~11eiky! E12~s1E2t1!cosky12~s3E2t3!coskx
U50. ~28!

Neglecting the overlap, the bands are given by

E~k!5~ t11t3!~coskx1cosky!6A@~ t11t3!~coskx1cosky!#214t2
2~11coskx!~11cosky!. ~29!
ifer-
pe-
d in
ce of

35
ite
In the infinite-U limit ( t350 and ut1u5ut2u) the bands are
simply

E1~k!522t1 , ~30a!

E2~k!52t1~11coskx1cosky!. ~30b!
Note that, as in the single-hole case and due to the ant
romagnetic background, the bands have twice the lattice
riodicity. The dispersionless band has also been reporte
Ref. 35 and, in our case, it is a consequence of the absen
two-hole hopping in the infinite-U limit ( t350). Our results,
however, disagree with the conclusions reached in Ref.
concerning the absence of hole attraction. We find a fin
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14 014 PRB 59LOUIS, GUINEA, LÓPEZ SANCHO, AND VERGE´ S
attraction for holes at intermediateU ’s. It is interesting to
note that our effective hopping is of ordert, and not of order
t2/U as in Ref. 35. This effect is due to the delocaliz
nature of the single-polaron texture~five sites, at least!, and
it does not correspond to a formally similar term which c
be derived from the mapping from the Hubbard to thet-J
model.46

The results for the hole-hole correlation,^(12ni)(1
2nj )&, as function of the hole-hole distancer i j 5ur i2r j u are
reported in Tables VII and VIII. The normalization( j^(1
2ni)(12nj)&51 has been used. The results correspond to
wave functions withSz50 and were obtained including a
configurations from either the set$1,0% or from the sets$1,0%,
$1,2%, $3,0%, and$2,3%. The results are in qualitative agre
ment with those in Ref. 8. When comparing with resu
obtained for thet-J model, one must take into account tha
in the Hubbard model, the hole-hole correlation, as defi
above, can take negative values~see the Appendix!. This is
due to the appearance of configurations with doubly oc
pied sites, which are counted as negative holes. Aside f
this effect, our results describe well a somewhat puzzl
result found in thet-J model~see, for instance, Refs. 13, 3
and 47! and in small clusters of the Hubbard model:8 the
maximum hole-hole correlation occurs when the two ho
are in the same sublattice, at a distance equal toA2 times the
lattice spacing.48 This result follows directly from the delo

TABLE VII. Hole-hole correlationŝ (12ni)(12nj )& as a func-
tion of the hole-hole distancer i j for three values ofU. The results
correspond to two holes in 636 clusters and were obtained includ
ing all configurations of the set$1,0%. The normalization( j^(1
2ni)(12nj )&51 was used.

r i j /U 8t 20t 200t

0 1.4 0.657 0.491
1 20.171 22.5131023 3.2731022

A2 3.9931022 6.3031022 6.9731022

2 2.031023 1.4331023 3.9731024

A5 9.631023 9.5531023 9.54 31023

2A2 3.3431023 8.4331024 7.5331024

3 4.5431023 4.1831023 6.0331023

A10 2.4631023 6.6631024 7.5331024

A13 1.4931023 8.5131024 7.5331024

TABLE VIII. As in Table VII, but including all configurations
from the sets$1,0%, $2,1%, $3,0%, and$2,3%.

r i j /U 8t 20t 200t

0 1.367 0.664 0.493
1 20.183 21.0831022 5.1831023

A2 2.3831022 5.1831022 7.6531023

2 4.3731023 3.0631023 2.3631022

A5 8.5731023 8.9931023 1.5931022

2A2 9.4831023 5.2031023 7.4831023

3 1.3031022 7.4731023 4.4331022

A10 8.8631023 4.6431023 2.3631022

A13 1.7431022 6.431023 5.0631023
I
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calized nature of the spin polarons, as seen in Fig. 1.
center of each spin polaron propagates through one subla
only, but the electron cloud has a finite weight in the oth
one, even whenU/t→`. This effect is noted in all cases bu
for U5200t with all configurations. In that case there is n
a clear maximum and the correlations are appreciable eve
rather large distances. The reason for this behavior is tha
large U the configuration with the holes at the largest d
tance, namely,$2,3%, has the lowest energy and, thus, a lar
weight in the CI wave function. This is consistent with th
fact that no attraction was observed at largeU ~see Fig. 4!.
The slower decrease with distance of hole-hole correlatio
obtained forU58t including configurations from the fou
sets~Table VIII!, may be a consequence of the decrease
the difference between UHF and CI energies asU diminishes
~see Fig. 4!. Finally, note that the correlation function show
a better defined peak at a distance ofA2 the lattice constant
for U520t ~see Tables VII and VIII, particularly the latter!.
This is in agreement with remarks of Ref. 8 in the sense t
the most favorable range for binding wasU516t –20t.

C. Four holes

An interesting question is whether the holes would tend
segregate when more holes are added to the cluster. In o
to investigate this point, we have calculated total energies
four holes on 10310 clusters with the holes either center
on a square or located on two bipolarons separated by a~5,5!
vector and with the holes at the shortest distance. Two~four!
configurations~plus translations! were included in each case
In the case of two bipolarons only configurations in whi
the two bipolarons are rotated simultaneously are includ
Other possible configurations have different energies
contribute to a lesser extent to the wave function. In a
case, increasing the size of the basis set would not h
changed the essential conclusion of our analysis~see below!.
The results for several values ofU are shown in Table IX.
We note that already at the UHF level the solution with tw
separated bipolarons has a lower energy. The Coulomb
pulsion term in the Hamiltonian does not favor the config
ration with the aggregated holes but for very smallU. Re-
storing lattice symmetry decreases the energy in both c
to an amount which in neither case vanishes in the infiniteU
limit. The decrease is slightly larger in the case of the fo

TABLE IX. UHF and CI energies~in units of the hopping inte-
gral t) for four holes in 10310 clusters and several values of th
interactionU. The results correspond to configurations with eith
the four holes on a square~denominated as 4! or on two bipolarons
~212! separated by a~5,5! vector.

4 212

U/t UHF CI UHF CI

8 250.500 250.828 250.782 251.242
16 229.208 229.629 229.922 230.321
32 217.588 217.989 218.574 218.921

128 28.651 29.005 29.851 210.148
512 26.406 26.744 27.659 27.941

4096 25.750 26.084 27.020 27.297
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holes on a square. This result can be understood by no
that the holes move more freely~producing the smallest dis
tortion to the AF background! when the charge is confined t
the smallest region possible. In any case, this is not eno
to compensate the rather important difference in energy
tween the two cases at the UHF level. These results indi
that for large and intermediateU no hole segregation take
place and that the most likely configuration is that of se
rated bipolarons.

D. Effective Hamiltonian for hole pairing

As discussed above, in the large-U limit the bipolaron
moves over the whole cluster due to the interactions am
the four mean field wave functions of Fig. 2~interactionst1
and t2 in Fig. 5!. This mechanism can be viewed as anoth
manifestation of hole-assisted hopping. The possibility
hole-assisted hopping has been already considered in
49, although in a different context. It always leads to sup
conductivity. In our case, we find a contribution, in the larg
U limit, of the type

Hhop5( Dtci , j ;s
† ci , j ;s~ci 11,j ;s̄

†
ci , j 11;s̄1ci 21,j ;s̄

†
ci 11,j ;s̄

1H.c. 1perm!. ~31!

This term admits the BCS decoupling

Dt^ci , j ;s
† ci 11,j ;s̄

†
&ci , j ;sci , j 11;s̄1H.c.1••• .

It favors superconductivity with eithers- or d-wave symme-
try, depending on the sign ofDt. Since we findDt.0,
d-wave symmetry follows.

VI. CONCLUDING REMARKS

We have analyzed the leading corrections to the Hart
Fock solution of the Hubbard model, with zero, one, and t
holes. We show that a mean field approach gives a rea
able picture of the undoped system for the entire range
values ofU/t.

The main drawback of mean field solutions in doped s
tems is their lack of translational invariance. We overco
this problem by using the configuration-interaction meth
In the case of one hole, the localized spin polaron is repla
by delocalized wave functions with a well-defined dispers

FIG. 5. Interactions between two-hole configurations having
holes at the shortest distance@separated by a~1,0! vector#.
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relation. The bandwidth, in the large-U limit, scales ast2/U,
and the solutions correspond to spin polarons delocalize
a given sublattice only. As in the undoped case, these res
are in good agreement with other numerical calculations,
the Hubbard andt-J models.

The same approach is used to analyze the interact
between pairs of holes. We first obtain Hartree-Fock so
tions with two holes at different separations. From comp
ing their respective energies, and also with single-hole so
tions, we find a short-range repulsive interaction betwe
holes. This picture is significantly changed when buildi
delocalized solutions. The energy gain from the delocali
tion is enough to compensate the static, mean field, re
sion. There is a net attractive interaction for 8<U/t<50,
approximately. The correlations between the holes wh
form this bound state are in good agreement with exact
culations, when available. The state hasdx22y2 symmetry. In
this range of parameters, we find no evidence of hole c
tering into larger structures.

Further proof of the efficiency of the present CI approa
results from a comparison with the CI approach of Ref.
which is based upon an extended basis (k space!. For a 6
36 cluster andU54t the UHF localized solution has a
energy of231.747. A CI calculation including 36 localize
configurations lowers the energy down to231.972. This has
to be compared with the result reported in Ref. 29 obtain
by means of 2 027 860 extended configurations, nam
230.471. The difference between the two approaches sh
further increase for largerU.

We have not applied the same technique to other Hart
Fock solutions which have been found extensively in
Hubbard model: domain walls separating antiferromagn
regions.21,50–52The breakdown of translational symmetry a
sociated with these solutions is probably real and not jus
artifact of the Hartree-Fock solution, as in the previous cas
Hybridization of equivalent solutions can, however, stabil
domain walls with a finite filling, which are not the mea
field solutions with the lowest energy.

Because of the qualitative differences between spin
larons and domain walls, we expect a sharp transition
tween the two at low values ofU/t. Note, however, that the
scheme presented here, based on mean field solutions
corrections, is equally valid in both cases.
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APPENDIX: HOLE-HOLE CORRELATIONS
IN THE HYDROGEN MOLECULE

Here we explicitly calculate the hole-hole correlations
the hydrogen molecule described by means of the Hubb
model. Let us callas

† and bs
† the operators that create

particle with spins at sitesa andb, respectively. The ground
state wave function hasSz50 and is given by

uc&5~21a2!21/2~ uf1&1uf2&1uf3&), ~A1!

where,

e
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uf1&5a↑
†b↓

†u0&, ~A2a!

uf2&5
1

A2
~a↑

†a↓
†1b↑

†b↓
†!u0&, ~A2b!

uf3&5b↑
†a↓

†u0&, ~A2c!

with

a5
E

A2
, E5

U

2
2S U2

4
14D 1/2

. ~A3!

The wave functions in Eqs.~A2! are orthonormalized
namely,^f i uf j&5d i j . The result for the hole-hole correla
tions on different sites is
et

E

.

.

R.

m

^cu~12na!~12nb!uc&52
a2

21a2
. ~A4!

As a52A2,0 whenU50,̀ , this expectation value varie
from 20.5 to 0.0. Thus it can take negative values as fou
in the case of clusters of the square lattice. Instead, the h
hole correlation on the same site is given by

^cu~12na!~12na!uc&5
a2

21a2
, ~A5!

which is positive for all values ofU. Particle-particle corre-
lations are obtained by adding 1 to these results.
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