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Nonlinear transit of defects in quantum crystals

N. Giorgadze
Institute of Physics, Tamarashvili Street 6, Tbilisi 380077, Republic of Georgia

R. Khomeriki*
Department of Physics, Tbilisi State University, Chavchavadze Avenue 3, Tbilisi 380028, Republic of Georgia

~Received 20 January 1998; revised manuscript received on 10 June 1998!

The possibility of existence and motion of solitary plane-wave formation of defects in quantum crystals~in
particular, vacancy soliton in solid4He) is proved. The parameters of solitons are calculated. It is shown that
the solitons of defects could be observed experimentally under specific conditions obtained in the present
paper.@S0163-1829~99!09017-7#
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I. INTRODUCTION

Different types of motions in quantum crystals1 caused by
tunneling of admixture defects~such as vacancies in soli
helium and hydrogen,3He atoms in solid4He or vice versa,
etc.! have been the subject of intensive investigation fo
long time ~in particular, quantum diffusion phenomenon2

spin-lattice relaxation in solid3He,3,4 and in solid hydrogen5

caused by vacancies, etc.!.
We consider the case of a small concentration of defe

x!1023 (x5nd /N, nd is the number of defects andN is
the number of lattice sites in a sample!. Then the defects are
free to move through the crystal even at zero temperature
to the quantum tunneling phenomenon. It was predicted
their mobilities can be characterized by linear wavelike
citations ~defectons!.1,6 This theoretical assumption was in
directly confirmed by experiments, namely, by measur
times of spin-lattice relaxation caused by vacancies in a s
3He crystal.3,4

On the other hand, certain instability might cause the
currence of nonlinear solitary waves of defects which c
propagate within a sample with an amplitude enough to
serve them experimentally. Such formation could be direc
observed even in4He ~with x-ray-diffraction technique!
where the NMR measurements become useless. There
for simplicity and to be specific we consider vacancies
solid 4He, i.e., we study nonlinear vacancy waves and inv
tigate the properties of wave excitations~vacancions!.

The method of inverse scattering problem7 is usually used
to find exact soliton solutions of integrable nonlinear moti
equations. Hence it could be applied to achieve
object—to describe the nonlinear transit of vacancies in s
4He. But as the amplitude of the solitary wave~the local
relative concentration of vacancies! should be very smal
x!1023 ~otherwise the vacancies are localized at lo
temperatures2! we apply the reductive perturbation metho
developed in Ref. 8.

This method has been successfully used for the desc
tion of propagation of solitary waves in the plasma9 and
magnetic materials.10 Moreover, the above method can b
extended to the investigation of propagation of dynami
solitons consisting of short-wavelength excitations~of the
order of lattice parameter!, as was done in Ref. 11.
PRB 590163-1829/99/59~21!/14001~4!/$15.00
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In this paper we will find a solution in the form of collec
tive solitary motion of vacancies in solid4He and define the
conditions under which the solution can be obtained.

II. NONLINEAR SOLUTION

Let us introduce the operators of creationSf
1 and annihi-

lation Sf
2 of vacancy in the lattice sitef. These operators

should obey the Fermi commutation relations for the purp
of avoiding a double occupancy of the lattice sites. In t
original papers6 these operators were considered to be
Bose operators. In the linear approximation overx these two
approaches give the same results. But in order to cons
nonlinear effects, a more strict approach1 of Fermi operators
must be used. These operators can be presented as the
matrices, and the Hamiltonian describing vacancy mobilit
could be written as follows:1

H5v0(
f

N

~Sf
z11/2!2(

f ,g

N

Af gSf
1Sg

2 , ~1!

wherev0 is an energy of the vacancy creation in frequen
units (\5kB51); eigenvaluesSf

z521/2 andSf
z51/2 corre-

spond to the absence and presence of the vacancy in
lattice site f, respectively;Af g is a constant characterizin
tunneling of a defect from sitef to the siteg. It is supposed
that Af g5A5const ~the case of small concentration o
vacancies,1,6! for the nearest neighborhood, andAf g50 for
the other sites~tunneling takes place only in the neare
neighboring sites!. Thus the Hamiltonian~1! has a strong
resemblance with the Hamiltonian of Heisenberg ferrom
net with exchange interaction@except that the term propor
tional toSf

zSg
z is absent in Eq.~1!#. Hence having written the

motion equations for the fictitious spin system considere

dSf
6

dt
56 i S v0Sf

612(
g

N

Af gSf
zSg

6D ,

dSf
z

dt
52 i(

g

N

Af g~Sf
2Sg

12Sf
1Sg

2!, ~2!
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we can use the Weiss field approximation1 ~neglecting quan-
tum correlations, e.g.,̂Sf

1Sg
2&[^Sf

1&^Sg
2&, etc., wheref

Þg) as in Ref. 12 where the nonlinear evolution of mac
scopical quantities, particularly, components of the full s
was considered in the real spin systems~e.g., ferromagnets!.
Justification of this assumption for our case will be giv
below.

DenotingM f
6[^Sf

7&, M f
z[^Sf

z& ~bracketŝ . . . & express
quantum statistical averaging! let us determine reduced dy
namical part of M f as mf[(M f2M0)/M0, where M0
5M0ez , ez is a unit vector alongz axis in the fictitious
space,M0.21/2, andM0 is a static value ofM f . It should
be noticed that using the above definitions the only phy
cally measurable quantity—relative concentration
vacancies—can be presented by the averaged compone
the fictitious spin as follows:

x5x01dx, x05M011/2, dx5M0mz ~3!

(x0 is a static relative concentration of defects!. Further, we
get from Eq.~2! the equation

dmf
6

dt
57 i S v0mf

612M0(
g

N

Af gmg
6D 72iM 0mf

z(
g

N

Af gmg
6

~4!

and relation

mf
z52

1

2
@mf

1mf
21~mf

z!2# ~5!

derived from the conservation lawuM f u25M0
2, which can be

easily obtained by averaging quantum statistically the se
Eqs.~2! in Weiss field approximation.

Following Ref. 8 and considering the weakly nonline
fictitious spin excitations let us search for the solution of
set of Eqs.~4! and ~5! in the form

mg
65 (

a51

`

«a (
l 52`

`

ml
6(a)~jg ,t!•eil (kr g2vt),

mg
z5 (

a51

`

«a (
l 52`

`

ml
z(a)~jg ,t!•eil (kr g2vt), ~6!

wherem2 l
2(a)5(ml

1(a))* , m2 l
z(a)5(ml

z(a))* , and

jg5«~srg2lt !, t5«2t ~7!

are slowly varying space-time variables8 (s[k/k, i.e., the
modulation alongk is examined!; l is a propagation velocity
of the modulated wave and« is a formal small parameter. A
we will see below,« will enter in the combination withm.
This coupling will play the role of expansion parameter a
in the final results we will set« to unity. As components o
ml(jg ,t) depend only on slow variables~7! we can suppose
that their inhomogeneous parameterL is much larger thana
(a is a distance between the nearest-neighboring sites o
tice!, soml(jg ,t) could be considered as a continuous fun
tion. Let us note that indicesf and g numerate lattice sites
while the indexl specifies different harmonics ofmf .

For the calculation of combination(g
NAf gmg

6 in Eq. ~4!
let us expandml

6(a)(jg ,t) in the vicinity of j f @inhomoge-
-

i-
f
s of

of

r
e

at-
-

neous scale ofml
6(a)(j,t) is supposed much more than th

tunneling distance which is of the order ofa]. Thereby we
get

(
g

N

Af gmg
65 (

l 52`

`

eil (kr f2vt) (
a51

`

(
n50

`
~2 i !n

n!
«a1n

3H S s
]

]q

]

]j f
D n

@A~q!ml
6(a)~j f ,t!#J

q5 lk

,

~8!

where

A~q![(
g

N

Af geiq(rg2r f ). ~9!

Substituting expressions~6! and~8! into Eqs.~4! and~5!,
and taking into consideration the operator relation

dmf
6

dt
[ (

a51

`

«a (
l 52`

`

eil (kr f2vt)

3S 2 i l v2«l
]

]j f
1«2

]

]t Dml
6(a)~j f ,t! ~10!

@which follows from definitions~6! and~7!# and equating the
coefficients of various powers of« in the same harmonics to
zero one can obtain the closed system of equations to ca
late the values ofml

6(a)(j,t) andml
z(a)(j,t).

Particularly in the first order of« from Eq. ~4! we get

@ lv7v072M0A~ lk!#ml
6(1)~j,t!50. ~11!

If we assume that only the nonzero harmonic
m1

1(1)(j,t), then, from expression~15! we obtain the follow-
ing dispersion law:

v5v022uM0uA~k!. ~12!

So, on the present stage Eq.~11! indicates thatm1
1(1)

5(m21
2(1))* is an arbitrary function of the slow variable

j, t, andm1
2(1)5(m21

1(1))* 50. Furthermore, from Eq.~5!
we get

ml
z(1)~j,t!50. ~13!

In the second order of« we obtain from the motion Eq
~4! the relation

i @ lv7v072M0A~ lk!#ml
6(2)~j,t!

1S l72M0

]A~k!

]k
sD ]

]j
ml

6(1)~j,t!50.

Examining this equation for the main harmonic (l 51) and
using Eq.~12! we get the expression for propagation velo
ity:

l5
]v

]k
s52M0

]A~k!

]k
s ~14!

and conclude thatm1
1(2)(j,t) is an arbitrary function of slow

variablesj, t, andm1
2(2)(j,t)50.
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We should also determine overtonesm0
(2)(j,t) and

m2
(2)(j,t), which are necessary for our further calculation

Taking into consideration the conservation condition~5!, we
obtain that all components of the overtones are equal to
except the following one:

m0
z(2)~j,t!52

1

2
um1

1(1)u2. ~15!

Finally, in the third approximation, from Eq.~4! in view
of Eqs. ~8!, ~10!, ~12!, ~14!, and ~15! the nonlinear Schro¨-
dinger equation is obtained for the main harmonic (l 51):

2i
]m1

1(1)

]t
1v9

]2m1
1(1)

]j2
1Dm1

1(1)um1
1(1)u250, ~16!

where (a, b5x, y, z)

v95(
a,b

]2v

]ka]kb
sasb52M0(

a,b

]2A~k!

]ka]kb
sasb ,

D52M0A~k!. ~17!

Equation~16! has a trivial solution in a form of nonlinea
plane wave with a constant amplitudeum1

1(1)u:

m1
1(1)5um1

1(1)u•e2 idvSt, dvS52
1

2
Dum1

1(1)u2. ~18!

If Lighthill condition13 v9D.0 holds, the nonlinear plan
waves become unstable under any modulation and Eq.~16!
permits soliton solution in the following form:

m1
1(1)5um1

1(1)umax•sechH 1

L
~sr2lt !J e2 idvSt, ~19!

where the soliton widthL and the shift of frequencydvS
caused by the nonlinear ‘‘self-action’’ are given by the fo
lowing expressions:

L5
1

um1
1(1)umax

A2v9

D
, dvS52

1

4
Dum1

1(1)umax
2 . ~20!

Now we will considerum1(1)
1umax instead of the smal

parameter« ~the weakly nonlinear excitations are examine!,
so um1

1(1)umax!1 and in view of Eqs.~3!, ~15!, and~19! the
relative concentration of defects can be expressed as

x5x01dx, dx5dxm•sech2HA2dxmD

v9
~sr2lt !J

if v9D.0, ~21!

or x5x05 const if v9D,0. ~22!

Here it is taken into account thatM0.21/2; dxm is an
amplitude ofdx. So the width of the soliton of defects is

L5A v9

2dxmD
. ~23!
.

ro

It should be noted that the value ofdx can be much more
than static relative concentrationx0 ~weak nonlinearity re-
quires only the satisfaction of conditiondxm!1).

Now let us consider the validity of Weiss field approx
mation~possibility of neglect of quantum correlations!. This
is easier to do using Dyson’s transform14 of Fermi operators:

Sf
15bf

12bf
1bf

1bf , Sf
25bf , Sf

z521/21bf
1bf

(bf
1 andbf are Bose operators! in momentum presentation

bf
15

1

AN
(

k
bk

1eikr f , bf5
1

AN
(

k
bke

2 ikr f .

Then we can present Hamiltonian~1! in the following
form:

H5(
k

@v02A~k!#bk
1bk2v1AN~bqe

ivt1bq
1e2 ivt!

1
1

N (
k1k2k3

A~k1!bk1

1 bk2

1 bk3
bk11k22k3

, ~24!

where the source field with amplitudev1 and wave number
q is added to get nonthermal concentration of vacanci
with definite wave number~thermal concentration of vacan
cies at low temperatures is close to zero!. Although we con-
sider the nonlinear behavior after switching off this sour
field, the average value of vacancy concentration remains
same and we can use it for estimations.

Applying Eq. ~24! one can examine the motion equatio
for operatorsbq

1bq , bqbq
1 , and bq

1 , bq , e.g., the motion
equation forbq could be written in the following form:

H d

dt
1gq1 i @v02A~q!#J bq1

2i

N
A~q!bq

1bqbq

5 iv1ANe2 ivt. ~25!

Here the damping constantgq is introduced. It appears from
the four vacancion term of Hamiltonian and expresses
influence of thermal vacancions on theq mode.gq is pro-
portional to the concentration of thermal vacancions a
consequently, is close to zero.

Neglecting in Eq.~25! slow time evolution and nonlinea
term expressing the self-action the stationary solutions
obtained for averaged values: ^bq&5(^bq

1&)*
5v1ANe2 ivt/@v02v1A(q)2 igq#. Further, writing the
motion equations forbq

1bq andbqbq
1 the following equalities

can be easily derived:̂ bq
1bq&5^bqbq

1&5^bq
1&^bq&5nd ,

where nd is a concentration of vacancies. But as far
bq

1bq5211bqbq
1 we see the possible error. However,

can be neglected in comparison with the macroscop
quantity ^bq

1bq&5nd@1.
If the weakly nonlinear effects and slow time evolutio

are taken into account we obtain the following expressio
^bq

1bq&5^bq
1&^bq&@11O(x)#5N@x1O(x2)# ~let us remind

that x5nd /N is relative concentration of vacancies!. How-
ever, we consider approximation up to«3, i.e., x3/2, thus the
corrections induced by the quantum correlations can be
glected.
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III. DISCUSSION AND ESTIMATIONS

All parameters specifying the soliton depend upon
functionA(k) @see expressions~17! and~23!#. So we should
determine it in the bcc and hcp phases of solid4He crystal.

At first let us examine bcc phase. Directing the axes
reference along lattice edges~crystallographic axes!, suppos-
ing that quantum tunneling is restricted only to eight neig
boring sites and denotingAf g5A we get from the definition
~9!

A~k!58A• cos
akx

A3
cos

aky

A3
cos

akz

A3
. ~26!

Considering the long-wavelength excitationska!1 we eas-
ily obtain

A~k!58AS 12
1

6
~ak!21••• D ~27!

and thereby, and in view of Eq.~12!, we get the same dis
persion law as in Refs. 4 and 6. It can be easily seen f
Eqs.~17! and~27! that the Lighthill condition is not satisfied
and, consequently, there is no possibility of existence of s
tary formation of defects for the long-wavelength exci
tions. Further analysis of Eq.~27! shows that solitary solu
tion does not exist ifk is directed along the crystallograph
axesx, y, z. But it can be easily shown that soliton sol
tion exists in the wide range ofkx , ky , kz space. Indeed, if
we examine for simplicity the case whenk is in thexy plane,
in view of Eqs.~23!, ~17!, and~26! the following expression
for the width of soliton can be obtained:

L5
a

3Adxm

Asxsytg
akx

A3
tg

aky

A3
21/2. ~28!

It is valid if tg(akx /A3)tg(aky /A3).(1/2)sxsy . It follows
from Eqs.~28! and ~23! that generallyL;a/Adxm ~conse-
quentlyL@a as it should be! and we should exclude from
consideration the points ink space where the conditionL
@a does not hold. Furthermore, as it can be easily seen f
Eq. ~28!, the width of the soliton grows rapidly i
cos(akx /A3)→0, kyÞ0 or cos(aky /A3)→0, kxÞ0.

Let us consider briefly another hcp phase of solid heliu
We examine the axes of reference wherexy plane coincides
with a hexagon plane of lattice andx axis coincides with a
B

e

f

-

m

i-
-

m

.

line connecting opposite sites of the hexagon. Restrict
ourself only to 12 neighboring sites and denoting againAf g
5A we get

A~k!52AH 2 cos
akx

2 Fcos
A3

2
aky1 cos

a

2A3
~2A2kz2ky!G

1 cosakx1 cos
a

A3
~A2kz1ky!J .

As in the previous case we obtain that there is no solit
solution for the long-wavelength excitations (ka!1). But
regarding the propagation alongz axis ~i.e., sx5sy50) we
can make a conclusion that the solitary solution exi
~Lighthill condition is satisfied! in the range of 21
< cos(A2/3akz),0. Moreover, if cos(A2/3akz/2)→21 we
obtain thatL→` andl→0.

In the case of propagation alongx axis the solitary solu-
tion exists in the range of 0< cos(akx/2),1/2. At the point
cos(akx/2)→0 we get thatL→` and ulu→4aAÞ0.

IV. CONCLUSIONS

We have investigated the collective solitary motion of v
cancies in solid4He. This motion is possible to observe u
ing x-ray-diffraction technique4 in the range of the wave
numbers of vacancy excitations where the soliton solut
exists. Moreover, the above consideration can be extende
the case of motion of vacancies in solid3He, or to motion of
admixture 4He atoms in3He where the collective solitary
motion can be observed by measuring times of spin-lat
relaxation. However, it should be mentioned that in the la
cases there exist real spins besides the fictitious spins. T
considering the mobilities of defects in solid3He we cannot
directly use the results of the above calculations and a s
rate consideration is required.
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