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Nonlinear transit of defects in quantum crystals
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The possibility of existence and motion of solitary plane-wave formation of defects in quantum cfiystals
particular, vacancy soliton in solitHe) is proved. The parameters of solitons are calculated. It is shown that
the solitons of defects could be observed experimentally under specific conditions obtained in the present
paper.[S0163-182@09)09017-7

[. INTRODUCTION In this paper we will find a solution in the form of collec-
tive solitary motion of vacancies in solitHe and define the
Different types of motions in quantum crystataused by ~ conditions under which the solution can be obtained.
tunneling of admixture defect&such as vacancies in solid
helium and hydrogenHe atoms in solid*He or vice versa,
etc) have been the subject of intensive investigation for a
long time (in particular, quantum diffusion phenomerfon, Let us introduce the operators of creati®f and annihi-
spin-lattice relaxation in solidHe ** and in solid hydrogeh  |ation S; of vacancy in the lattice sité These operators
caused by vacancies, etc. should obey the Fermi commutation relations for the purpose
We consider the case of a small concentration of defectsf avoiding a double occupancy of the lattice sites. In the
x<10"2 (x=ng4/N, nqis the number of defects arld is  original paper? these operators were considered to be the
the number of lattice sites in a sampl&hen the defects are Bgse operators. In the linear approximation ox¢nese two
free to move through the crystal even at zero temperature dugpproaches give the same results. But in order to consider
to the quantum tunneling phenomenon. It was predicted thajonlinear effects, a more strict approacti Fermi operators
their mobilities can be characterized by linear wavelike exmust be used. These operators can be presented as the Pauli
citations (defectons™® This theoretical assumption was in- matrices, and the Hamiltonian describing vacancy mobilities
directly confirmed by experiments, namely, by measuringcould be written as follows:
times of spin-lattice relaxation caused by vacancies in a solid

1. NONLINEAR SOLUTION

3He crystal* N N
On the other hand, certain instability might cause the oc- H=w> (S+1/2)— >, ArSS, (1)
currence of nonlinear solitary waves of defects which can f o 9 ?

propagate within a sample with an amplitude enough to ob-
serve them experimentally. Such formation could be directiywherewg is an energy of the vacancy creation in frequency
observed even in*He (with x-ray-diffraction technique units i=kg=1); eigenvalue$?= —1/2 andS¢=1/2 corre-
where the NMR measurements become useless. Therefogpond to the absence and presence of the vacancy in the
for simplicity and to be specific we consider vacancies inlattice sitef, respectively;A¢y is a constant characterizing
solid “He, i.e., we study nonlinear vacancy waves and investunneling of a defect from sitbto the siteg. It is supposed
tigate the properties of wave excitatiofi@cancions that A¢g=A=const (the case of small concentration of
The method of inverse scattering probleimusually used vacancies;9 for the nearest neighborhood, aAg,=0 for
to find exact soliton solutions of integrable nonlinear motionthe other sitegtunneling takes place only in the nearest
equations. Hence it could be applied to achieve oumeighboring sites Thus the Hamiltonianl) has a strong
object—to describe the nonlinear transit of vacancies in solidesemblance with the Hamiltonian of Heisenberg ferromag-
“He. But as the amplitude of the solitary wauhie local net with exchange interactigexcept that the term propor-
relative concentration of vacancjeshould be very small tjonal toS%Sé is absent in Eq(1)]. Hence having written the

x<10"2 (otherwise the vacancies are localized at lowmotion equations for the fictitious spin system considered,
temperaturé$ we apply the reductive perturbation method

developed in Ref. 8. dst N
This method has been successfully used for the descrip- i: *il woSF+2, A SISt |,
tion of propagation of solitary waves in the plashend dt g 99
magnetic material® Moreover, the above method can be
extended to the investigation of propagation of dynamical N N
solitons consisting of short-wavelength excitatidio$ the _:_-2 Ar(ST S —S'Sy) )
order of lattice parametgras was done in Ref. 11. dt T 0 g TTTen
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we can use the Weiss field approximafigneglecting quan- neous scale Olfn|i(“)(§,7') is supposed much more than the
tum correlations, e.9.(S{ Sy)=(S{ )(Sy), etc., wheref  tunneling distance which is of the order af. Thereby we
#() as in Ref. 12 where the nonlinear evolution of macro-get
scopical quantities, particularly, components of the full spin

was considered in the real spin systef@g., ferromagnels . i (kr ¢~ ot) S —|)n
Justification of this assumption for our case will be given E ArgMg _|:E_x el az 2
below. -
DenotingM; =(S{), M?=(S}) (bracketq . ..) express Ja a (@)
quantum statistical averaginget us determine reduced dy- X Sﬁ & [A(q)ml (&.7)] q:Ik’

namical part of My as m;=(M;—Mgy)/M,, where Mg
=Mye,, €& is a unit vector along axis in the fictitious 8
spaceMy=—1/2, andM,, is a static value oM; . It should \yhere
be noticed that using the above definitions the only physi-

cally measurable quantity—relative concentration of _
vacancies—can be presented by the averaged components of A(Q)=2, Argeldar), 9
the fictitious spin as follows: 9

N

Substituting expression($) and (8) into Egs.(4) and(5),

X=X+ 8X, Xo=Mo+1/2, ox=Mom, @ and taking into consideration the operator relation

(Xg is a static relative concentration of defectsurther, we

get from Eq.(2) the equation dmf 2 2 el (kr = ot)
dm; N N o
f — . =+
gt = 1| womf +2|v|02 ArgMy | 72iMom?>, Argmy ] A
g X| —ilo—eN—+e2— my- (&,7) (10
(4) o IT
and relation [which follows from definitiong6) and(7)] and equating the

coefficients of various powers @fin the same harmonics to
. 2 zero one can obtain the closed system of equations to calcu-
—5Llmemg +(mp)] ®)  Jate the values ofn™((¢,7) andmA (¢, 7).
Particularly in the first order of from Eq.(4) we get

m{=

derived from the conservation la¢|>=M3, which can be
easily obtained by averaging quantum statistically the set of [loF woF 2MA(IK) M M(¢,7)= (12)
Egs.(2) in Weiss field approximation.

Following Ref. 8 and considering the weakly nonlinear If we assume that only the nonzero harmonic is
fictitious spin excitations let us search for the solution of them; (W&, 7), then, from expressiofi5) we obtain the follow-
set of Eqs.(4) and(5) in the form ing dispersion law:

(1)

,:E 8&2 mli(a)(é_-g,T).e“(krg*wt),
a=1

1= So, on the present stage E@l1l) indicates thatm;
=(m-{M)* is an arbitrary function of the slow variables

” - _ g 7, andm; V=(m"{M)*=0. Furthermore, from Eq5)
— 2 e« E mIZ(a)(gg,T).ell(krgfwt), (6) we get 1 1
a=1 ==
wherem- (9= (m;"()* = mA®0=(m#*)* and mY(¢,7)=0. (13
Eg=e(sTg—\1), =2t 7) In the second order of we obtain from the motion Eg.

(4) the relation

are slowly varying space-time variabfegs=k/k, i.e., the
modulation alond is examinedt \ is a propagation velocity i[loF woF 2MA(Ik)Im= @ (¢, 7)
of the modulated wave andis a formal small parameter. As
we will see below,e will enter in the combination withm. )\+2M0‘9A( )s
This coupling will play the role of expansion parameter and ok
in the final results we will set to unity. As components of
m,(&4,7) depend only on slow variablég) we can suppose : - . _
that tgheir inhomogeneous parametelis much larger thaa ::;.mg Ea.(12) we get the expression for propagation veloc
(a is a distance between the nearest-neighboring sites of lat
tice), som(&4,7) could be considered as a continuous func- Jw IA(K)
tion. Let us note that indicesand g numerate lattice sites A= WS_ZMOTS (14
while the indexl specifies different harmonics of .

For the calculation of comblnatloENAfgm* in Eq. (4 and conclude than; ()(&,7) is an arbitrary function of slow
let us expandn;()(&;,7) in the vicinity of & [inhomoge- variables¢, 7, andm; ®(¢,7)=0.

m (g, 1) =0.

i

Examining this equation for the main harmonic=(1) and
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We should also determine overtones{?(¢,7) and It should be noted that the value 6% can be much more
m$?(&,7), which are necessary for our further calculations.than static relative concentration (weak nonlinearity re-
Taking into consideration the conservation conditip we  quires only the satisfaction of conditiafx,,<1).

obtain that all components of the overtones are equal to zero Now let us consider the validity of Weiss field approxi-
except the following one: mation (possibility of neglect of quantum correlation3 his
is easier to do using Dyson’s transfdthof Fermi operators:

1
Mg 2 (&, 7)== 5 [my V. (15 S'=b; —bibib;, S =bs, St=—1/2+b’b;

Finally, in the third approximation, from Ed4) in view (bi andby are Bose operatorsn momentum presentation

of Egs.(8), (10), (12), (14), and (15) the nonlinear Schro

. S - - . 1 _ 1 )
dinger equation is obtained for the main harmodie {): b= bielk po=-—— boe ik
f \/NEK: k ’ f \/NEk: k .
P &m;-r(l) "(92m1r(1) +(1)] t+(1)]2
2——+o 2 +Am; lmF=0, (16) Then we can present Hamiltonigd) in the following
3 form:
where @, b=x, vy, 2)
— + i wt + ot
- Fo S 2AK) H= 2% [wo= A(K) b by— @1 VN(bge!*'+ by ™)
T Gkak, 2T EM0L i gk, SaSh .
+— A(kq)b, by by b K 24
A=2MoA(K). (17) N klkzzkg (K2)bye, bie, D i+, (24)

where the source field with amplitude, and wave number
g is added to get nonthermal concentration of vacancions
with definite wave numbefthermal concentration of vacan-
_ 1 cies at low temperatures is close to 2emlthough we con-
m; M=|mfW)].e 1% spg=— §A|mf(1)|2. (18 sider the nonlinear behavior after switching off this source
field, the average value of vacancy concentration remains the
same and we can use it for estimations.
Applying Eq. (24) one can examine the motion equations
for operatorsby by, bqb, . andb, , by, e.g., the motion
equation forb, could be written in the following form:

Equation(16) has a trivial solution in a form of nonlinear
plane wave with a constant amplitutta; (!)|:

If Lighthill condition'® »”A>0 holds, the nonlinear plane
waves become unstable under any modulation and(Hj.
permits soliton solution in the following form:

1 )
m; W=|m; @) ~secr{—(sr—)\t)]e"5‘“5‘, (19 d 2i
' R P i Yatilwo=A(@)] ] byt 5 AA)bg beby
where the soliton widthA and the shift of frequencywg _ _
caused by the nonlinear “self-action” are given by the fol- =iwyNe !, (29

lowing expressions: . .
g exp Here the damping constant, is introduced. It appears from

1 the four vacancion term of Hamiltonian and expresses the
Swg=— —A|m1+(1)|fnax- (200  influence of thermal vacancions on themode. yq is pro-
4 portional to the concentration of thermal vacancions and,
consequently, is close to zero.

1 20"

A: NEETZET A
my e, ¥ A

Now we will consider|m*®,|, .. instead of the small Neglecting in Eq(25) slow time evolution and nonlinear
parametee (the weakly nonlinear excitations are examined term expressing the self-action the stationary solutions are
so|m; ®M|max<1 and in view of Eqs(3), (15), and(19) the  obtained  for  averaged  values: (bg)=((b{))*
relative concentration of defects can be expressed as =wl\/ﬁe*iwt/[w0—w+A(q)—iyq]_ Further, writing the

motion equations fob, b, aTdbqbg the+foIIowi+ng equalities
m can be easily derived{b b =(bsby)=(by }{by=ny,
X=Xo+ 6X, 5X=5Xm'sed?'[ o (sr— M)J where ng is a concent:at?onq>of <v;c?ar>10iés.q >I3<utq>as far as
by by=—1+bb,; we see the possible error. However, it
if @"A>0, (21)  can be neglected in comparison with the macroscopical
quantity (b, bg)=ng>1.
or x=Xo= const if w”A<O0. (22) If the weakly nonlinear effects and slow time evolution

o _ _ are taken into account we obtain the following expressions:
Here. it is taken into account th&\ﬂo:'—llz; O IS an (b;bq)=<b§><bq>[l+(’)(x)]=N[x+ O(x?)] (let us remind
amplltude ofox. So the width of the soliton of defects is that x= nd/N is relative concentration of Vacancjeﬁow_
ever, we consider approximation up 49, i.e.,x>?, thus the

_ w corrections induced by the quantum correlations can be ne-
A= . (23
glected.
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l1l. DISCUSSION AND ESTIMATIONS line connecting opposite sites of the hexagon. Restricting

All parameters specifying the soliton depend upon theourself only to 12 neighboring sites and denoting agsy

function A(k) [see expressiond7) and(23)]. So we should =A we get . \/§
determine it in the bce and hep phases of sdlite crystal. _ aky Vo a _
At first let us examine bcc phase. Directing the axes ofA(k)_2A 2 co 2 |92 aky+ cosz\/g(z\/sz ky)
reference along lattice edgésystallographic axgssuppos-
ing that quantum tunneling is restricted only to eight neigh- a
boring sites and denoting;;=A we get from the definition + cosak, + COSE(\/EKZJr Ky) (-
C)
B ak, ak, ak, As in the previous case we obtain that there is no solitary
A(k)=8A- cosﬁcosﬁcosﬁ. (26)  solution for the long-wavelength excitationka<1). But
regarding the propagation alorzgaxis (i.e., s,=s,=0) we
Considering the long-wavelength excitatidks<1 we eas- can make a conclusion that the solitary solution exists
ily obtain (Lighthill condition is satisfieyl in the range of —1
1 < cos(y/2/3ak,)<0. Moreover, if cos(/2/3ak,/2)— —1 we
— _ - 24 ... Z . ' Z
All)=8A| 1 G(ak) * @7 obtain thath —o and\—0.

and thereby, and in view of Eq12), we get the same dis- In the case of propagation alomxgaxis the solitary solu-

persion law as in Refs. 4 and 6. It can be easily seen fronﬂon exists in the range of9@ cos(@k,/2)<1/2. At the point
Egs.(17) and(27) that the Lighthill condition is not satisfied °5@K¢2)—0 we get thatA —c and|x|—4aA#0.

and, consequently, there is no possibility of existence of soli-
tary formation of defects for the long-wavelength excita-
tions. Further analysis of Eq27) shows that solitary solu- v have investigated the collective solitary motion of va-
tion does not exist ik is directed along the crystallographic c4ncies in solid*He. This motion is possible to observe us-
axesx, Yy, z. But it can be easily shown that soliton solu- ing x-ray-diffraction technigutin the range of the wave

IV. CONCLUSIONS

tion exists in the wide range &, k,, k, space. Indeed, if
we examine for simplicity the case wheris in thexy plane,
in view of Egs.(23), (17), and(26) the following expression
for the width of soliton can be obtained:

—1/2. (29)

A a \/ ) akxt ak,

3ox. xSytd 73 g 73
It is valid if tg(aky/+3)tg(ak,/y/3)>(1/2)s,s, . It follows
from Egs.(28) and (23) that generallyA ~a/+/ 6%, (conse-

guently A>a as it should bpand we should exclude from
consideration the points ik space where the conditioh

>a does not hold. Furthermore, as it can be easily seen from

Eq. (28), the width of the soliton grows rapidly if
cosak,/\3)—0, k,#0 or cos@k,/3)—0, k0.

numbers of vacancy excitations where the soliton solution
exists. Moreover, the above consideration can be extended to
the case of motion of vacancies in sofidle, or to motion of
admixture “He atoms in®He where the collective solitary
motion can be observed by measuring times of spin-lattice
relaxation. However, it should be mentioned that in the latter
cases there exist real spins besides the fictitious spins. Thus
considering the mobilities of defects in solftHe we cannot
directly use the results of the above calculations and a sepa-
rate consideration is required.
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