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Magnetic penetration length and irreversibility of a disordered granular superconductor
with p junctions

R. Šášik
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We calculate the magnetic penetration lengthl(T) of a disordered granular superconductor withp junctions
in zero magnetic field, using a mean-field replica method. The superconductor is modeled by an array of
Josephson junctions whose couplings are drawn randomly from a Gaussian distribution centered atJ0.0, with
width J. For disorder strengthd[J/J0,1 there are three thermodynamical phases of the array separated by
continuous transitions:~i! the high-temperature normal phase,~ii ! the reversible superconducting phase, and
~iii ! the low-temperature superconducting glass phase with broken ergodicity. For a range of disorderd near 1
there is a further possibility of reentry into a low-temperature normal glass phase. Ford>1 there are only two
phases:~i! the high-temperature normal phase and~ii ! the low-temperature normal glass phase with broken
ergodicity. In the superconducting glass phase we calculate both the Gibbs averaged and the single-state-
averaged magnetic penetration lengths.@S0163-1829~99!04702-5#
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I. INTRODUCTION

Irreversibility of magnetic properties of type-II superco
ductors in external magnetic fields is characteristic of a s
nificant part of theT-H phase diagram. Because of it, it
meaningless to speak of a ‘‘state’’ of the superconducto
the thermodynamic sense, and quantities such as magne
tion and magnetic penetration length can no longer be
fined as equilibrium properties of the sample. The bound
between reversible and irreversible regions of the phase
gram came to be known as ‘‘the irreversibility line,’’ an
much experimental and theoretical effort went into und
standing its nature.1–4

On the other hand, irreversibility of type-II supercondu
ors in zeroapplied magnetic field is more surprising as w
as subtle. An astonishing manifestation of it is the so-ca
Wohlleben effect, or paramagnetic Meissner effect:5–8 it is
found that some otherwise diamagnetic samples bec
paramagneticat low temperatures, depending on their h
tory. This effect is observed primarily—although n
exclusively—on annealed granular samples with large su
conducting grains, with good contacts between the gra
Soon after the experimental discovery of the Wohlleben
fect it was suggested7 that a possible explanation might in
volve the presence of the so-calledp junctions between
some of the superconducting grains. Regardless of the
croscopic mechanism, ap junction is phenomenologically
described as a Josephson junction with an effectivelynega-
tive critical current: its energy is minimum when the pha
difference between the superconducting condensate w
functions at the opposite ends of the junction isp, in con-
trast with the regular Josephson junction, whose energ
minimum when the two wave functions are in phase.

When a fraction of all junctions in a network arep junc-
tions, phases on grains are frustrated, and the ground sta~or
PRB 590163-1829/99/59~2!/1396~11!/$15.00
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ground states! of the network contains phases which may n
all be the same, so there are permanent microscopic curr
flowing between the grains. These currents create mic
scopic~local! magnetic moments, which may be aligned by
weak external magnetic field as the sample is being coo
down from a high-temperature normal state to a lo
temperature superconducting state. This alignment of m
netic moments is then thought to cause the global param
netic response of the sample. When the sample is be
cooled in the absence of an external magnetic field, lo
magnetic moments will freeze with random orientation, a
the global response of the sample will be diamagnetic. Th
are the essential ingredients of the theory of Sigrist a
Rice,8 who find a quantitative agreement of their theory w
experiment. While their approach allows one to calculate
magnetic susceptibility, it does not give any informatio
about the coherent superconducting properties of super
ducting arrays, for they model the superconducting netw
as a collection of independent, noninteracting, microsco
current loops, while it is precisely the Josephson interact
among the grains, which is responsible for superconducti
of the whole sample in the first place.

In this work we calculate the magnetic penetration len
l(T) of a model granular superconductor withp junctions,
as the defining property of a superconductor. A finitel(T)
indicates a superconductor with Meissner effect~the bulk of
the sample is free of magnetic fields!, and infinitel(T) in-
dicates a sample in the normal state, unable to expel s
magnetic fields.

Our model includes Josephson interaction between
grains, as well as randomness of the coupling strengths,
the possibility of some couplings being negative—the k
ingredient leading to frustration and irreversibility of macr
scopic properties. The concepts of randomness and fru
tion, as well as that of irreversibility, are familiar from th
theory of spin glasses,9–11 and we will apply the technique
1396 ©1999 The American Physical Society
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developed there to the present problem of a disorde
granular superconductor withp junctions. Electromagnetic
interaction between microscopic currents in the array is
glected, and we assume zero applied magnetic field.

II. REPLICA FORMALISM

We consider a model granular superconductor descr
by the Hamiltonian

2bH5b(
n,m

Jm~n!cosDmf~n!, ~1!

where Dmf(n)[f(n1m̂)2f(n),m̂ are unit vectors of a
hypercubic lattice, integer vectorsn label the nodes of the
lattice, f(n) are phases of the superconducting condens
on individual grains, assumed to be placed on the lattice,
Jm(n) are Josephson coupling strengths between grainsn
andn1m̂. The coefficientsJm(n) are drawn randomly from
a distribution

P@Jm~n!#5
1

~2pJ2/z!1/2
e2z[Jm~n!2J0 /z] 2/2J2

. ~2!

Bonds with negativeJm(n) represent thep junctions, and
J0.0 so that ‘‘on average’’ the superconducting phase
herence is supported.z is the number of nearest neighbor
which appears here so that it would not appear explicitly
most of the following developments.

Using the replica trick lnZ̄5limn→0(1/n)(Zn̄21), where
the overline denotes disorder averaging, we write

Zn̄5TrfE )
n,m

P@Jm~n!#dJm~n!e2b(
a51

n

H a
[Trfe2bH ~n!

,

~3!

the last equality being a definition of the replica Hamiltoni

2bH ~n!5bJ0z21H(
n,m

(
a

cosDmfa~n!

1
J2b

2J0
(
n,m

(
a,b

cosDmfa~n!cosDmfb~n!J .

~4!

III. HELICITY MODULUS IN THE MEAN-FIELD
APPROXIMATION

At this point it is useful to introduce the concept of th
helicity modulus—the straightforward connection betwe
the helicity modulus and the magnetic penetration length
be given at the end of this section.

A definition best suited to our method is the original de
nition of Fisher, Barber, and Jasnow:12

Y~T!5 lim
L→`

2L2

p2
@F2~T;L !2F1~T;L !#, ~5!

whereF1(T;L) @orF2(T;L)# is the free energy per particl
of an infinite system subject to periodic~or antiperiodic!
boundary conditions of periodicityL along one direction.
d
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Y(T) is a macroscopic variable measuring the stiffness
the system to an externally imposed twist in the phases
means of antiperiodic boundary conditions. At zero tempe
ture, the difference in the right-hand side~rhs! of Eq. ~5! is
just the domain-wall energy. At finite temperature it is t
free energy of a domain wall. Therefore a finiteY(T) indi-
cates a phase-coherent state, whereas a vanishingY(T) in-
dicates a phase incoherent, or thermally disordered, stat

We adopt definition~5! even for systems with quenche
disorder, implicitly assuming that the disorder ensemble
eraging is performed within bothF1 andF2. This can be
done as in the previous section by going into the repl
space. In order to evaluateF2, we apply antiperiodic
boundary conditions to every replica along all spatial dire
tions. This is merely for convenience. In any case, we
allowed to do so for isotropic systems~the replica Hamil-
tonian is isotropic, even though perhaps some disorder r
izations are not!.

In the ground state of the replica Hamiltonian the pha
fa(n) absorb the twist imposed by the boundary conditio
uniformly, i.e.,

fa~n!5f01~nx1ny1nz!«, ~6!

where«5p/L. It is convenient to choose the constantf0
50. With this choice, cos@fa(n)2(nx1ny1nz)«#51 and
sin@fa(n)2(nx1ny1nz)«#50. We expect therefore that a
any finite temperaturê cosua(n)&5g and ^ sinua(n)&50,
where we definedua(n)[fa(n)2(nx1ny1nz)« to be the
angle measured in a rotating reference frame. Hereg is a
constant independent of the site indexn, which allows for a
standard mean-field treatment. After substitution the rep
Hamiltonian~4! becomes

2bH «
~n!5bJ0z21H(

n,m
(

a
cos@Dmua~n!1«#

1
J2b

2J0
(
n,m

(
a,b

cos@Dmua~n!1«#

3cos@Dmub~n!1«#J . ~7!

The usual mean-field ansatz 0'(A2^A&)(B2^B&), where
A and B are arbitrary operators and̂•••& denotes therma
averaging, now leads to

cos@ua~n1m̂ !2ua~n!1«#

'@g cosua~n!1g cosua~n1m̂ !2g2#cos«,

~8!

after which the first term becomes

(
n,m

(
a

cos@ua~n1m̂ !2ua~n!1«#

'z cos«(
n

(
a

g@cosua~n!2g/2#. ~9!
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We further define cab5^ cosua(n)cosub(n)& and sab
5^ sinua(n)sinub(n)&. Finally, the mean-field replica
Hamiltonian corresponding to the system with a twist b
comes

2bH «
~n!5

1

T(n
H cos«(

a
g@cosua~n!2g/2#

1
d2

2T(ab
S Fcosua~n!cosub~n!2

1

2
cabG

3~cab cos2«1sab sin2«!

1Fsinua~n!sinub~n!2
1

2
sabG

3~cab sin2«1sab cos2«! D J , ~10!

where T[1/(bJ0) is the dimensionless temperature andd
[J/J0 is a dimensionless parameter, which we will refer
as the disorder strength.

DenotingLD the volume of the cube of linear extentL,
the resulting free energy per particle

F«~g,$cab%,$sab%!52
1

b
lim
n→0
L→`

1

nLD
@Tru exp~2bH «

~n!!21#

~11!

is a function of« and variational parametersg, $cab%, and
$sab%, which satisfy saddle-point equations

05
]F«

]g
5

]F«

]cab
5

]F«

]sab
, ~12!

which are equivalent to the mean-field self-consistency c
ditions. In the thermodynamic limit«→0, and the helicity
modulus can be written as a partial derivative

Y5
2

zS ]2F«

]«2 D
«50

52
2

bz
lim
n→0
L→`

1

nLD
TruS ]2

]«2
exp@2bH «

~n!# D
«50

, ~13!

where« is now regarded as a continuous variable, and
factor 2/z appears because we apply the twist in all spa
directions instead of just one.

Performing the suggested differentiation, while holdi
g, $cab%, and$sab% constant, we arrive at

Y/J05g21
d2

T lim
n→0

1

n (
ab

~cab2sab!
2. ~14!

Here the expectation valuesg, $cab%, and $sab% are to be
calculated at«50, i.e., without any imposed twist.

We now make a connection between the helicity modu
expressed above as a function of mean-field order param
of the model, and the magnetic penetration length, which
ultimately want to calculate. We note that the twist angle«
enters the Hamiltonian in the same way as a uniform exte
-

-

e
l

s
ers
e

al

vector potentialA, if such were applied to the system. Th

correspondence is«↔(2p/f0)*n
n1m̂A•dl. Since in general

1

4pl2~T!
5

2

z(m S ]2F
]Am

2 D
A50

, ~15!

we have

1

4pl2~T!
5S f0

2p D 2

Y~T!. ~16!

In the following sections we will analyze the saddle-po
equations ~12! in the limit n→0, first in the replica-
symmetric ~RS! ansatz, then in the replica symmetr
breaking~RSB! ansatz.

IV. REPLICA-SYMMETRIC SOLUTION

In this case we assume perfect permutational symmetr
replicas. The thermal averagescab and sab are denoted as
follows:

caa51/21 c̃/2,

saa51/22 c̃/2, ~17!

cab5c, sab5s aÞb.

In the Hamiltonian ~10! ~with «50) we complete the
squares as follows:

(
ab

S cosua cosub2
1

2
cabD cab

5cS (
a

cosuaD 2

1~1/21 c̃/22c!(
a

cos2ua

2
1

2

~11 c̃!2

4
n2

1

2
c2n~n21!, ~18!

and likewise for the sines. Integration over the angles
made possible by a repeated use of the identity

eax2
5

1

A2p
E dle2l2/21A2alx. ~19!

After taking then→0 limit we arrive at

F/J05
1

2
g22

d2

2T F1

2
c21

1

2
s22

1

4
~11 c̃!22s1

1

2G
2TE dlGd2c~l!E dsGd2s~s! f ~l,s!, ~20!

whereGj(u)[(2pj)21/2exp(2u2/2j), and

f ~l,s!5 lnE
2p

p

du expH 1

T @~g1l!cosu1s sinu#

1
d2

2T 2
~ c̃2c1s!cos2uJ . ~21!
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In order to locate the critical point~s! and the mean-field
critical behavior of this system, we first assume that the or
parametersg2, c, s, andc̃, are all small in the neighborhoo
of a critical point. We next expand the free-energy functio
~20! to third order in these variables. The critical temperat
Tc is found as the temperature below which the free ene
has a saddle point for nontrivial~i.e., nonzero! values of
some or all of the order parameters. It turns out that we h
to treat separately the casesd,1 ~weak disorder! andd>1
~strong disorder!. Our results are summarized in the follow
ing table~expansions are in the variablet512T/Tc):

d,1 d>1

Tc 1/2 d/2

g2 t~223d21d4!/~112d22d4!1O~t2! 0

c t~22d2!/~112d22d4!1O~t2! t/21O~t2!

s O~t2! t/21O~t2!

c̃ t~12d2!/~112d22d4!1O~t2! 0.

This set of data reveals a peculiarity: if one were to ima
ine a process in which the disorder strengthd is being con-
tinuously tuned from a value below 1 to a value above 1,
behavior of order parameters should continuously cha
from that in the left column to that in the right column~un-
less there is a discontinuous phase transition associated
a discontinuous change of symmetry!. Thes-order parameter
behaves differently at first sight. Its power-law expansion
the neighborhood of the critical line changes from at le
quadratic int for d,1 to linear int for d>1. The obvious
escape is that the relations5O(t2) is invalid exactly atd
51, but since it holds for anyd,1, the region of its validity
must be continuously shrinking to zero asd approaches 1
from below. This behavior follows naturally if, ford,1,
there is another line of criticalityTs , lying below Tc , and
which runs intoTc exactly atd51 ~see Fig. 1!. Continuing
this line of thought even further, ifs5O(ts),ts[12T/Ts ,
just belowTs , we must haves[0 everywhere betweenTs
andTc . This is of course consistent withs5O(t2) just be-
low Tc .
er
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e
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e
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t

The reason why this transition line did not appear in o
previous analysis is that nearTs only the s order parameter
can be considered small, while the others,g2, c, and c̃, are
‘‘large.’’ Therefore, in order to obtain the functional form o
Ts(d), we have to treat them exactly, and expand only w
respect tos.

It is somewhat more convenient to expand the sadd
point equation]F/]s50 to second order ins, than to expand
F to third order ins and then differentiate. Either procedu
yields the saddle-point equation fors,

05sH 122S d2

2T 2D E dlGd2c~l!h2
2~T,l!

18sS d2

2T 2D 2E dlGd2c~l!h2
3~T,l!1O~s2!J .

~22!

Here we have introduced a new function,

FIG. 1. Mean-field phase diagram of a model granular superc
ductor withp junctions. N is the normal phase, S is the reversi
superconducting phase, iS is the irreversible superconducting g
phase with broken ergodicity, and iN is the normal phase w
broken ergodicity. TheTn phase boundary has been calculated
the RS ansatz, and is therefore approximate.
h2~T,l![

E
2p

p

du sin2u exp$1/T~g1l!cosu1d2/~2T 2!~ c̃2c!cos2u%

E
2p

p

du exp$1/T~g1l!cosu1d2/~2T 2!~ c̃2c!cos2u%

, ~23!
ich

for brevity. In this expressiong, c, andc̃ satisfy the saddle-
point equations

]F/]g5]F/]c5]F/] c̃50. ~24!

When the zeroth-order term in the brackets of Eq.~22! is
positive, the solution is trivial,s50. The critical temperature
Ts is found as the point where this term vanishes, wh
yields implicitly for Ts :

15
d2

T s
2E dlGd2c~l!h2

2~Ts ,l! ~d,1!. ~25!
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Equation~25! for Ts , along with Eqs.~24! ands50, can be
solved numerically; the result is presented in Fig. 1.

We can now determine the behavior of all order para
eters just below theTs line, to first order ints . To this
accuracy the order parametersg, c, and c̃ will be deter-
mined by Eqs.~24!, with s50. This is seen from the expan
sion of the free-energy functionalF in powers of s: this
expansion does not contain a term linear ins, since]F/]s
50 at Ts . Therefore, expressions~24!, with s50, will pro-
vide values ofg, c, and c̃ correct toO(ts

2) nearTs .
Combining Eq.~22! with Eq. ~25!, we find

s5S T s
2

2d2D E dlGd2c~l!@h2
2~T,l!2h2

2~Ts ,l!#

E dlGd2c~l!h2
3~Ts ,l!

1O~ts
2!.

~26!

We have expresseds in terms of known quantities@recall that
g, c, and c̃ are determinedindependentlyof s to O(ts

2) ac-
curacy#.

Our analysis of the replica-symmetric solution is not co
plete, however. At least in the RS ansatz there is anot
reentrant, phase transitionbelowtheTs line. This line, which
we denoteTn , is the line of a reentrant phase transition ba
into the normal state, where the primary order parameteg
vanishes. In order to locateTn , we impose a stronger cond
tion

lim
g→01

1

g

]F
]g

50, ~27!

which explicitly excludes the trivial solutiong[0 from our
consideration. This condition, along with the usual

]F/]c5]F/]s5]F/] c̃50, ~28!

leads to a closed-form expression forTn :

1

2
2Tn5

1

2E0

`

dlle2l2/2F I 1~d/TnA1/22Tnl!

I 0~d/TnA1/22Tnl!
G 2

, ~29!

where I 0(x) and I 1(x) are modified Bessel functions. Fo
completness,s5c51/22Tn , and c̃5g50 at Tn . Equation
~29! can be solved numerically forTn , with the result pre-
sented in Fig. 1.

V. REPLICA SYMMETRY-BROKEN SOLUTION

It is a rule rather than an exception that in solving pro
lems with quenched disorder with replicas, one ends
breaking the replica symmetry in some region of the ph
diagram. The reason is the instability of the free-energy fu
-

-
r,

k

-
p
e
-

tional to small deviations away from the RS solution.13 The
stability of the RS solution is indicated by the eigenvalues
the reduced Hessian,

Si j 5
]2

]Xi]Xj
F«~g,$cab%,$sab%!, ~30!

whereXi5cab or sab , aÞb, and«50. Differentiation and
eigenvalue calculation in Eq.~30! must be done before th
limit n→0 is taken. All eigenvalues of the Hessian must
positive in order that the RS solution be stable.

Here we adopt a more pragmatic~and not particularly
rigorous! approach, in which replica symmetry breaking
allowed from the outset, by working with a larger set
order parameters. In addition to the ubiquitous RS soluti
at low temperatures there will also appear a nontrivial R
solution. In such a case we simply assume that the R
solution is the stable one.

At first we allow one-step replica symmetry breakin
(1-RSB!, known to produce quantitatively correct results f
a broad range of temperatures~except near zero! in the
theory of the Ising spin glass.14 In this approach then repli-
cas are divided inton/m blocks ofm replicas in each block.
The thermal averagescab andsab then assume a small num
ber of values:

caa51/21 c̃/2,

saa51/22 c̃/2,

cab5c1 , sab5s1 aÞb, $a,b%Pblock,

cab5c0 , sab5s0 aÞb, $a,b%¹block. ~31!

In the Hamiltonian~10! ~with «50) we now complete the
squares as follows:

(
ab

S cosua cosub2
1

2
cabD cab

5c0S (
a

cosuaD 2

1~c12c0!(
k51

n/m S (
aPblock~k!

cosuaD 2

1S 11 c̃

2
2c1D(

a
cos2ua2

1

2

~11 c̃!2

4
n

2
1

2
c1

2n~m21!2
1

2
c0

2n~n2m!, ~32!

and likewise for the sines. Integration over the angles
again facilitated by the identity~19!. In the end, after taking
the n→0 limit,
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F/J05
1

2
g22

d2

2T F1

2
c1

2~12m!1
1

2
c0

2m1
1

2
s1

2~12m!1
1

2
s0

2m2
~11 c̃!2

4
2s11

1

2
G

2TE dl0Gd2c0
~l0!E ds0Gd2s0

~s0!
1

m
lnE dl1Gd2~c12c0!~l12l0!E ds1Gd2~s12s0!~s12s0!exp@m f1~l1 ,s1!#,

~33!
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where

f 1~l,s!5 lnE
2p

p

du expH 1

T @~g1l!cosu1ssinu#

1
d2

2T 2
~ c̃2c11s1!cos2uJ . ~34!

The method just described can be used repeatedly to
clude multiple-step replica symmetry breaking, and gene
izes to a case of continuous~or infinite-step! replica symme-
try breaking.15,16 In this latter case thec and s order
parameters become functionsc(x) and s(x) on the interval
@0,1#, and provided these functions are continuous, the
energy acquires the form

F/J05
1

2
g22

d2

2T

3F1

2E0

1

dx@c2~x!1s2~x!#2
~11 c̃!2

4
2s~1!1

1

2G
2TE dlGd2c~0!~l!E dsGd2s~0!~s! f ~0ul,s!,

~35!

where functionf (xul,s) satisfies a nonlinear partial differ
ential equation

] f

]x
52

d2

2

dc~x!

dx F ]2f

]l2
1xS ] f

]l D 2G
2

d2

2

ds~x!

dx F ]2f

]s2
1xS ] f

]s D 2G , ~36!

and a boundary condition

f ~1ul,s!5 f 1~l,s!. ~37!

The free energy of the system at any temperature can
found from Eq.~35!, where the parameters satisfy the sadd
point equations

05
]F
]g

5
]F
] c̃

5
dF

dc~x!
5

dF
ds~x!

. ~38!

The set of equations~35!–~38! defies all attempts to a
closed-form solution, and approximations have to be ma
As a rule, analytical results forc(x) and s(x) can be ob-
tained only in the neighborhood of the critical point.17 On the
other hand, if one were to obtain an ‘‘exact’’ numerical s
n-
l-

e

be
-

e.

-

lution valid in the entire temperature range, an ingenio
scheme has been designed and used by Sommers
Dupont.18

Here we content ourselves with the solution of a 1-R
model ~33! and ~34!, by solving

05
]F
]g

5
]F
] c̃

5
]F
]c1

5
]F
]c0

5
]F
]s1

5
]F
]s0

5
]F
]m

. ~39!

Again, we can solve these equations only in the neighb
hood of the critical point, but this is to no detriment as this
precisely where they are expected to be valid.

Leaving computational details for the Appendix, we su
marize that a nontrivial 1-RSB solution exists whenever
replica-symmetric order parameters is nonzero, i.e., below
theTs line for d,1, and below theTc line for d>1. This is
in qualitative agreement with the complete analysis of
Hessian for a similar, infinite-rangedm-vector spin glass in a
field,19,20 according to which RSB is indicated simulta
neously with the onset of the transverse order parame
Analytical results for the 1-RSB essential for the pres
discussion are summarized below:

c12c0 s1 s0 m

d,1 O~ts
2! O~ts! O~ts! O~ts!

d>1 O~tc! O~tc! O~tc! O~tc!.

This table shows that the mathematical expression of
1-RSB changes qualitatively atd51. This alone, however
does not mean there must be another line of criticality be
Ts , as was the case in the previous section. Results fod
,1 in this table were obtained assumingO(c1)51, which
breaks down atd51 @the denominator in Eq.~A5! vanishes#.
Nonetheless, theTn line obtained in the RS ansatz does ha
this bias, see Fig. 1. It is clear that such a line must
present in the exact solution as well, separating the super
ducting and the normal glass phases, although it may
vertical.

VI. HELICITY MODULUS AND IRREVERSIBILITY

The helicity modulus~14! becomes, in the RS ansatz~17!,

YRS/J05g21
d2

T @ c̃22~c2s!2#. ~40!

A numerical solution ofYRS as function of temperature an
disorder is presented in Fig. 2. Immediately apparent are
nonanalytical points inYRS, which mark the transition be
tween the reversible superconductor and the supercondu
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1402 PRB 59R. ŠÁŠIK, P. DEMO, AND Z. KOŽÍŠEK
glass. This behavior resembles the nonanalyticity of m
netic susceptibility of spin glasses.10,11Mathematically it fol-
lows from the fact thats50 aboveTs , ands5O(ts) below
Ts . Another remarkable property is the positive slope
YRS(T) within the reversible phase, in the neighborhood
the glass transition temperatureTs .

In the continuous RSB scenario

Y/J05g21
d2

T H c̃22E
0

1

dx@c~x!2s~x!#2J . ~41!

This is the Gibbs average over the entire phase space, w
is often designated as the field-cooled average in the con
of spin glasses. There is a difference, however, between
‘‘field’’ in the spin-glass context, and the ‘‘field’’ in the con
text of superconductivity. While in the former case the ma
netic fieldH couples directly to the order parameter~magne-
tization!, in the latter case the coupling to th
superconducting order parameter~complex scalar wave func
tion! is minimal through the vector potentialA. One there-
fore hesitates to use the term ‘‘field-cooled’’ for the Gib
average in the present context. In fact, cooling a disorde
superconductor in a magnetic field and subsequently turn
off the field would lead to trapped magnetic flux and exc
vortices inside the sample, which is out of equilibrium. B
contrast, a spin glass is a nonergodic systemin equilibrium.
In the next section we will discuss possible ways to meas
the Gibbs averaged helicity modulus of a granular superc
ductor.

In the phase with broken ergodicity, manifested ma
ematically by the breaking of replica symmetry, the syst
explores only one thermodynamic state—one ‘‘valley’’
the complex free-energy landscape. Therefore, we also n
to calculate the single-state average as another experim
tally relevant quantity. Following Parisi’s interpretation,21

the single-state averageY1 is obtained when, instead of in
tegrating over the entire interval@0,1# as in Eq.~41!, one
uses only values atx51, i.e.,c(1) ands(1):

Y1 /J05g21
d2

T $c̃22@c~1!2s~1!#2%. ~42!

In the 1-RSB ansatz~31!, the analog of Eq.~41! reads

FIG. 2. Helicity modulusYRS(T), parametrized by disorde
strengthd.
-
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Y/J05g21
d2

T @ c̃22m~c02s0!22~12m!~c12s1!2#.

~43!

This is the Gibbs-averaged value ofY. In the same ansatz
the values entering the single-state average, i.e.,c(1) and
s(1), areapproximated byc1 ands1 , respectively, and the
single-state-averaged helicity modulus is

Y1 /J05g21
d2

T @ c̃22~c12s1!2#. ~44!

One can see by inspection that bothY and Y1 vanish
whend>1. Therefore we have to classify both phases, N a
iN, see Fig. 1, asnormal~nonsuperconducting!. Phase iN has
broken ergodicity, and must be irreversible in some sen
although the helicity modulus is insensitive to it. This
apparently a consequence of the fact that theU(1) symmetry
is not broken atTc ~sinceg[0).

For d,1 the U~1! symmetry is broken atTc . The sample
is in a superconducting state S with no trace of glassiness
Ts,T,Tc ~replica symmetry is unbroken!, and the helicity
modulus is given by Eq.~40!. BelowTs , however,bothU~1!
and replica symmetries are broken, and we have a no
godic, irreversible, glassy superconductor iS. When mea
ing the helicity modulus of the iS phase, one can, in pr
ciple, distinguish between the single-state averaged and
Gibbs-averagedY. Near theTs line the differenceY12Y
5O(ts

2). More specifically,

~Y12Y!/J052
d2

Ts
c1m~s12s0!1O~ts

3!. ~45!

The significance of this result is thatthe existence of the
glassy superconducting state in granular superconduct
can be probed by measuring the penetration lengthl(T):
the single-state averageY1 and the Gibbs averageY will
appear as two branches of the 1/l2(T) vs T curve. The
single-state average branch is the ‘‘stiffer’’ of the two, co
responding to a shorter penetration length. AtTs the two
branches merge smoothly with the RS solution: by insp
tion of the 1-RSB solution fors1 , Eq. ~A2!, and the RS
solution for s, Eq. ~26!, one can see thats15s1O(ts

2).
HenceYRS, Y1 , andY are all equal toO(ts

2). The nonana-
lytical point in the temperature dependence of the helic
modulus remains the characteristic of the S-iS transition
the 1-RSB solution, and we believe the same is true of
exact solution.

At the reentrant transition atTn the helicity modulus van-
ishes, and the sample becomes normal~and remains glassy!.
The RS analysis suggests that this is a continuous transi

VII. DISCUSSION AND CONCLUSIONS

We have analyzed a model disordered granular super
ductor with p junctions in a mean-field replica approxima
tion. Quenched disorder as well as randomness in the sig
the couplings between superconducting grains are real
by working with an ensemble, in which each couplin
strength is drawn randomly from a Gaussian distributio
The width-to-average ratiod of this distribution serves as th
characteristic of disorder.
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There is a close correspondence between the pre
model and the previously mentionedm-vector spin glass in a
field,22–24 defined by the Hamiltonian

H52(
n,n8

Jn,n8S~n!•S~n8!2H•(
n

S~n!. ~46!

In this Hamiltonian the first summation is over all pairsn,n8,
and the distributionP(Jn,n8) is a zero-centered Gaussia
Spins S(n) have m components and a fixed length,S2(n)
5m. Casem52 is the random-bondXY model in a ‘‘field,’’
and is relevant to our discussion.

WhenS(n) represent magnetic moments, as understoo
the spin-glass context,H is the usual external magnetic field
If S(n) were to represent phases of a superconductor, a
this work,H in Eq. ~46! would represent a fictitious field, fo
which there is no experimental realization. This is why t
second term in Eq.~46! does not appear in our Hamiltonia
~1!. In fact, we assumed zero applied magnetic field throu
out this paper. This simply reflects our inability to solve a
XY-type models with minimal coupling to the field, sinc
infinitesimal changes of the field bring about qualitati
changes to the Hamiltonian.25,26

The most interesting common feature of the pres
model and them-vector model is the separate U~1! and er-
godicity breaking for weak disorder. In both models the U~1!
symmetry breaking occurs first: in them-vector model~45! it
is the external field, which is responsible for the U~1! sym-
metry breaking, while in model~1! this symmetry is broken
spontaneously when the ‘‘on average’’ ferromagnetic c
pling overcomes thermal effects. At a lower temperatureTs ,
from within the ordered phase there emerges a phase
broken ergodicity, a superconducting glass~the iS phase! in
the present model, and the ‘‘canted ferromagnet’’ in t
m-vector model. The analog of theTs line of the present
model is the Gabay-Toulouse line22 of the m-vector model.

There is one, we believe important, difference in ho
these two models are treated mathematically. In the stan
solution of them-vector model one makes an, in gener
nonequivalent substitution in the partition sum,

TrSa~n![E F )
m51

m

dSm
a ~n!Gd„Sa~n!•Sa~n!2m…

→E )
m51

m

dSm
a ~n!, ~47!

plus a much weaker constraint^Sa(n)•Sa(n)&5m. In other
words, the fixed length constraint is enforced only on av
age, which may be justified for largem, where there arem
21 Euler angles per spin and the analysis becomes diffic
but it is suspect form52 or 3. In this work (m52) we work
with the polar anglesua(n). The fixed length constraint is
thus always in place, not just on average. We believe
this property is important for the calculation of the helici
modulus, which probes the response to a long-wavelen
twist of the phase.

We found that the iS phase of a granular supercondu
is accessible for detection using a penetration length pro
Y. At Ts there is a discontinuity of the first derivative o
Y(T). Just aboveTs the helicity modulusincreaseswith
nt
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temperature. This is made possible by the interplay betw
thermal fluctuations, randomness of the effective coupling
the direction transverse to the direction of the primary or
parameterg, and the fixed length constraint, which in th
language of phase variables reads simply cos2u(n)
1sin2u(n)51. BelowTs one, in principle, measures two va
ues ofY; the Gibbs averaged and the single-state averag
A simple slow cooling of a sample in zero magnetic fie
from the normal state to the superconducting state will p
pare a sample equilibratedwithin its ergodicity space. Below
Ts , a measurement on such a sample will produce the sin
thermodynamic-state averageY1 . The Gibbs average is les
straightforward to obtain. In the case of a spin glass this
done by first aligning spins by an applied field, which
turned off when the sample is cooled. The system th
breaks up into spatial domains, each domain adjusting to
local disorder individually. Hopefully the domains will cove
all the thermodynamic states, even the thermodynamicly
ones. Measurement on this heterogeneous sample will y
the Gibbs averaged quantity. In analogy with this procedu
we are looking for a way to constrain the superconduct
sample in a state ‘‘most dissimilar’’ to the single thermod
namic state that would have been obtained by slow ann
ing, then to release the constraint and perform the meas
ment after equilibration. Since this constraint cannot
imposed by the magnetic field, we have to turn to oth
means of experimental preparation of the sample for Gi
averaging. In the case of a granular superconductor we
think of preparing the sample at temperatureT2 by slow
annealing, then rapidly quenching toT1,T2 , and doing the
measurement atT1 . The slow annealing will prepare th
sample in a single thermodynamic stateat T2 . Recall that it
is the nature of a spin glass that the free-energy landsc
evolves chaotically as function of temperature. Therefo
the thermodynamic state in which the system is atT2 is very
dissimilar to the thermodynamic state that the system wo
have been in if the annealing had been continued down
T1 . The rapid quench toT1 ~the experimental challenge is i
the word ‘‘rapid’’! will put the system into a new free-energ
landscape, to which it will have to adjust. The hope is th
the sample will break up into spatial domains, each in
different thermodynamic state~all individually equilibrated
at T1). The subsequent measurement on this sample
yield an approximation to the Gibbs averaged helicity mod
lus Y.

There appears to be a critical valueds;0.26 below which
the superconducting glass does not exist, not even atT50
~see Fig. 1!. We have been unable to further substantiate t
claim, as one has to either characterize the ground stat
the system with randomp bonds, which is not trivial, or to
solve the mean-field equations in the singular limitT→0.
Vannimenuset al. investigated ground-state properties of
related model.27 They find that when a singlep junction of
strength2K is immersed in an infinite lattice of regula
junctions, it takes a supercritical strengthK.Kc.0 to per-
turb the spins around thep junction from perfect alignment
Since the distortion field of such a junction is that of a d
pole, i.e., short ranged, one can expect that a dilute syste
p junctions of small but finite strength will have a pefect
collinear ground state. Indeed, this is true as long as thp
junctions do not percolate.27 Thep bonds will be invisible to
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the order parameterg, which will be 1. However, the elastic
properties of this ground statewill be affected. This is why
the zero-temperature helicity modulus—or phase stiffnes
will be less than 1 for 0,d,dc , even though the system i
clearly not a glass~see Fig. 2, curved50.2). This is also
supported by our numerical results, which suggest tha
zero temperatureg51 for 0,d,dc . Only for d.dc we see
g detach from 1. Simultaneously,s becomes nonzero, th
replica symmetry is broken, and the system becomes a g
The apparent existence of a criticaldc.0 in the present
model is nonetheless surprising, since the Gaussian dist
tion ~2! always allows forp junctions of arbitrary strength.

In our RS analysis there is a window 0.886,d,1, for
which there is a reentrant transition into the normal gl
phase atTn ~see Fig. 1!. This result is unreliable, as the exa
solution with broken replica symmetry is needed in that
gion. The actualTn line may turn out to be vertical, as in th
Sherrington-Kirkpatrick spin glass.11

Our main result is the behavior of the experimentally r
evant helicity modulus in the superconducting phases S
iS ~Fig. 2!. Although the original problem was formulated a
a short-ranged model, the mean-field analysis makes
range of interaction effectively infinite. The results therefo
have to be verified using more reliable methods, applica
to realistic short-ranged systems in two and three dim
at

ss.
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sions. The most interesting question of course is whethe
not the irreversible iS phase exists in a realistic system w
short-range interactions. When trying to answer this ques
one immediately runs into problems of interpretation. T
concept of replica symmetry breaking, so essential
infinite-ranged models, becomes ill-defined for short-rang
models. For instance, in systems amenable to a fi
theoretical treatment in 42e dimensions, replicas serv
merely as a mathematical device to organize the perturba
series28 ~in e disorder cannot be treated perturbatively!. In
this case there is no obvious mechanism that would br
replica symmetry. Instead, one looks for disorder-genera
renormalization group~RG! fixed points in order to identify
finite-temperature phase transitions~which give rise to weak
glasses!,29 or for RG flows running away towards strong
coupled, disorder-dominated phases~strong glasses!,30 while
replica symmetry remains unbroken. Although quite succe
ful, even this is not a universal tool, and one has to u
functional RG methods31,32 whenever there happens to be
zero-temperature disordered fixed point.

All of the above phases—weak glass, strong glass,
zero-temperature glass—are possible alternatives for th
phase of an actual disordered superconductor. Further w
along these lines is in progress and will be presented i
future publication.
e

APPENDIX A: CASE d<1 „WEAK DISORDER …

In order to obtain the leading behavior ofs1 , s0 , tc[c12c0 , andm for temperaturesT just belowTs , it is necessary to
expand the free-energy functional toO(ts

6), wherets[12T/Ts . We recall thatTs is given implicitly by Eq.~25!. SinceTs

,Tc , parametersg2, c1, and c̃ are O(1), and cannot be considered small. With a bit of hindsight we expects1

5O(ts), s05O(ts), tc5O(ts
2), and m5O(ts). The following expansion is based heavily on the identity*dzGj(z) f (z)

5exp@(j/2)d2/dz2# f (z)uz50 , which holds when the Taylor series of the functionf (z) has an infinite radius of convergenc
~otherwise the series on the rhs is only asymptotic!. After a fair amount of work we obtain

F
J0T

5
1

2Tg22S d2

2T 2D F1

2
c1

22mc1tc1
1

2
mtc

21
1

2
s1

2~12m!1
1

2
s0

2m2
1

4
~11 c̃!21

1

2G
2E dlGd2c1

~l!F f 2S d2

2T 2D 2

s1
2h2

21
8

3S d2

2T 2D 3

s1
3h2

3215S d2

2T 2D 4

s1
4h2

41
544

5 S d2

2T 2D 5

s1
5h2

5G
2mE dlGd2c1

~l!F S d2

2T 2D ~T]l f !2tc2S d2

2T 2D 2

~T 2]l]l f !2tc
21S d2

2T 2D 2

h2
2~s1

22s0
2!

22S d2

2T 2D 3

~T]l f !~T]lh2
2!tcs1

212S d2

2T 2D 3

~T]lh2!2tcs0
224S d2

2T 2D 3

h2
3~s1

32s1s0
2!

1
1

3S d2

2T 2D 4

~h429h2
2!2s1

414S d2

2T 2D 4

h2
2~h426h2

2!s1
2s0

22
1

3S d2

2T 2D 4

~h423h2
2!2s0

4G
2

m2

3 E dlGd2c1
~l!4S d2

2T 2D 3

h2
3~s1

323s1s0
212s0

3!1O~ts
6!.

Here

f [ f ~T,l!5 lnE
2p

p

du expH 1

T ~g1l!cosu1
d2

2T 2
~ c̃2c1!cos2uJ ~A1!

and
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hp[hp~T,l!5

E
2p

p

du sinpu exp$1/T~g1l!cosu1d2/~2T 2!~ c̃2c1!cos2u%

E
2p

p

du exp$1/T~g1l!cosu1d2/~2T 2!~ c̃2c1!cos2u%

, p52,4. ~A2!

This expansion can be most readily obtained when one first expands formally in Eq.~33! with respect tom to O(m3), then
expands the coefficients of all powers ofm in terms oftc , s1 , ands0 to appropriate order so that the entire expression foF
is accurate toO(ts

6). This is the lowest-order expansion necessary for determination ofs1 , s0 , tc , andm to leading order in
ts .

Algebraic saddle-point equations fors1 , s0 , tc , andm are not difficult to solve. The 1-RSB solution is

s15S T s
2

2d2D E dlGd2c1
~l!@h2

2~T,l!2h2
2~Ts ,l!#

E dlGd2c1
~l!h2

3~Ts ,l!

1O~ts
2!, ~A3!

s05O~ts!, ~A4!

tc52S d2

2T s
2D 2

~s1
22s0

2!
E dlGd2c1

~l!@Ts]lh2~Ts ,l!#2

12~d2/T s
2!E dlGd2c1

~l!@T s
2]l]l f ~Ts ,l!#2

1O~ts
3!, ~A5!

and

m5S d2

2T s
2D s1

3

~s12s0!2

E dlGd2c1
~l!h4~Ts ,l!@h4~Ts ,l!212h2

2~Ts ,l!#

E dlGd2c1
~l!h2

3~Ts ,l!

1S d2

2T s
2D s0~s11s0!

s12s0

E dlGd2c1
~l!@h4~Ts ,l!23h2

2~Ts ,l!#2

E dlGd2c1
~l!h2

3~Ts ,l!

1O~ts
2!. ~A6!

The equation fors0 is cubic and we do not include its explicit solution here, apart from the fact thats05O(ts).

APPENDIX B: CASE d>1 „STRONG DISORDER…

Again, in order to obtain the leading behavior of all variables,g2, c̃, c1 , c0 , s1 , s0 , and m, we have to expandF to
O(tc

6), wheretc[12T/Tc . We recall thatTc5d/2. The expansion of the free-energy functional is lengthy and we will
present it here. The saddle-point equations have a replica symmetry-broken solution

g50, c̃50, c15s15
1

2
tc1

25

72
tc

21O~tc
3!, c05s05

1

6
tc1O~tc

2!, andm5tc1O~tc
2!.

We note that the equation]F/]g50 actually does not have a solution. Nonetheless,F has a global minimum with respect t
g at g50, which is an endpoint of the definition interval.
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