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Magnetic penetration length and irreversibility of a disordered granular superconductor
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We calculate the magnetic penetration leng(f) of a disordered granular superconductor witfunctions
in zero magnetic field, using a mean-field replica method. The superconductor is modeled by an array of
Josephson junctions whose couplings are drawn randomly from a Gaussian distribution cerligre@ atith
width J. For disorder strengtld=J/Jy<1 there are three thermodynamical phases of the array separated by
continuous transitiondi) the high-temperature normal phasi) the reversible superconducting phase, and
(iii ) the low-temperature superconducting glass phase with broken ergodicity. For a range of diswrdei
there is a further possibility of reentry into a low-temperature normal glass phasé=Hothere are only two
phases{i) the high-temperature normal phase did the low-temperature normal glass phase with broken
ergodicity. In the superconducting glass phase we calculate both the Gibbs averaged and the single-state-
averaged magnetic penetration leng{t&0163-182609)04702-3

I. INTRODUCTION ground statesof the network contains phases which may not
all be the same, so there are permanent microscopic currents
Irreversibility of magnetic properties of type-ll supercon- flowing between the grains. These currents create micro-
ductors in external magnetic fields is characteristic of a sigscopic(local) magnetic moments, which may be aligned by a
nificant part of theT-H phase diagram. Because of it, it is Weak external magnetic field as the sample is being cooled
meaningless to speak of a “state” of the superconductor iflown from a high-temperature normal state to a low-
the thermodynamic sense, and quantities such as magnetiZgMperature superconducting state. This alignment of mag-

tion and magnetic penetration length can no longer be ggretic moments is then thought to cause the global paramag-

fined as equilibrium properties of the sample. The boundar{?€lic response of the sample. When the sample is being

between reversible and irreversible regions of the phase di&-OOIed n the absenqe of an exjernal magnetic f'e.ld’ local
gram came to be known as “the irreversibility line,” and magnetic moments will freeze with random orientation, and

the global response of the sample will be diamagnetic. These

much. experlmentfsl_l4and theoretical effort went into under-are the essential ingredients of the theory of Sigrist and
standing its naturd:

. Rice® who find titati t of their th ith
On the other hand, irreversibility of type-Il superconduct- Ice, Who find a quantitative agreement of heir theoty wi

: ) P e experiment. While their approach allows one to calculate the
ors inzeroapplied magnetic field is more surprising as well magnetic susceptibility, it does not give any information

as subtle. An astonishing manlfes.tatlon. of it is the sfo—.callecgbout the coherent superconducting properties of supercon-
Wohlleben effect, or paramagnetic Meissner efféttit is  qycting arrays, for they model the superconducting network
found that some otherwise diamagnetic samples becomgs a collection of independent, noninteracting, microscopic
paramagneticat low temperatures, depending on their his-cyrrent loops, while it is precisely the Josephson interaction
tory. This effect is observed primarily—although not among the grains, which is responsible for superconductivity
exclusively—on annealed granular samples with large supeif the whole sample in the first place.
conducting grains, with good contacts between the grains. In this work we calculate the magnetic penetration length
Soon after the experimental discovery of the Wohlleben efA(T) of a model granular superconductor withjunctions,
fect it was suggestédhat a possible explanation might in- as the defining property of a superconductor. A fiid)
volve the presence of the so-called junctions between indicates a superconductor with Meissner effglae bulk of
some of the superconducting grains. Regardless of the mihe sample is free of magnetic fiejggnd infinite\ (T) in-
croscopic mechanism, @& junction is phenomenologically dicates a sample in the normal state, unable to expel static
described as a Josephson junction with an effectinelga-  magnetic fields.
tive critical current: its energy is minimum when the phase Our model includes Josephson interaction between the
difference between the superconducting condensate wavgains, as well as randomness of the coupling strengths, with
functions at the opposite ends of the junctionmisin con-  the possibility of some couplings being negative—the key
trast with the regular Josephson junction, whose energy ithgredient leading to frustration and irreversibility of macro-
minimum when the two wave functions are in phase. scopic properties. The concepts of randomness and frustra-
When a fraction of all junctions in a network atejunc-  tion, as well as that of irreversibility, are familiar from the
tions, phases on grains are frustrated, and the ground(state theory of spin glasses.!tand we will apply the techniques
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developed there to the present problem of a disordered (T) is a macroscopic variable measuring the stiffness of
granular superconductor withr junctions. Electromagnetic the system to an externally imposed twist in the phases by
interaction between microscopic currents in the array is nemeans of antiperiodic boundary conditions. At zero tempera-

glected, and we assume zero applied magnetic field. ture, the difference in the right-hand si@is) of Eq. (5) is
just the domain-wall energy. At finite temperature it is the
Il. REPLICA FORMALISM free energy of a domain wall. Therefore a finkgT) indi-

) . cates a phase-coherent state, whereas a vanidhimy in-
We consider a model granular superconductor describegicates a phase incoherent, or thermally disordered, state.

by the Hamiltonian We adopt definition(5) even for systems with quenched
disorder, implicitly assuming that the disorder ensemble av-
—,BH=,32 J,(n)cosA ,¢(n), (1) eraging is performed within bot¥* and F~. This can be
nu done as in the previous section by going into the replica

space. In order to evaluat&~, we apply antiperiodic

where A#_¢(n)_z¢(r_1+,u)— ¢(n),p are unit vectors of a boundary conditions to every replica along all spatial direc-
hypercubic lattice, integer vectors label the nodes of the . . X
tions. This is merely for convenience. In any case, we are

lattice, ¢(n) are phases of the superconducting condensatesIIOWed to do so for isotropic systenfthe replica Hamil-

on individual grains, assumed to be placed on the lattice, angl, ;. )i isotropic, even though perhaps some disorder real-
J,(n) are Josephson coupling strengths between grains at izations are not

andnt . The coefficients], (n) are drawn randomly from In the ground state of the replica Hamiltonian the phases
a distribution ¢?(n) absorb the twist imposed by the boundary conditions
uniformly, i.e.,
21992
P[J,(n)]= ————e AIu(m—Jo/2%/2)", @
2 (27J%12)Y? $%(n)= o+ (n+ny+ny)e, ©6)

Bonds with negativel ,(n) represent ther junctions, and
> 13 1 H
Jo>0 so that “on average” the superconducting phase cozo. With this choice, cdai*(n)— (n+n,+n,)s]=1 and

herence is supported.is the number of nearest neighbors, . il
which appears here so that it would not appear explicitly insw[df"(n)—(nx+ny+nz)s]—0. We expect therefore that at

most of the following developments. any finite temperature( cosé?(n))=1vy and { sin#(n))=0,

. . ) — — where we defined®(n)= ¢%(n)—(ny+ny+n,)e to be the
Using the replica trick IZ=lim;,_o(1/n)(Z"—~1), where 5,016 measured in a rotating reference frame. Heiie a

the overline denotes disorder averaging, we write constant independent of the site indexwhich allows for a

standard mean-field treatment. After substitution the replica

Hamiltonian(4) becomes

wheree= /L. It is convenient to choose the constaby

Z—”=Tr¢f H P[JM(n)]dJM(n)e‘BazlHaETr¢e‘5H(n),
3)

the last equality being a definition of the replica Hamiltonian

—/aHgm:/aJoz-ll % ; cog A ,63(n)+&]

2
—BHM=pJ,z 1 E 2 cosA ,¢3(n) +J_BE 2 cog A ,6%(n)+¢]
hu @ : 2‘]0n,/.t a,b K
2
+\;TOE,U« 2 C0s8,9%(mcosh, ¢ . Xcos{%é’b(n)m]}- @

@ The usual mean-field ansatz~@A—(A))(B—(B)), where

A and B are arbitrary operators and - -) denotes thermal
Ill. HELICITY MODULUS IN THE MEAN-FIELD averaging, now leads to

APPROXIMATION

At this point it is useful to introduce the concept of the cod 63(n+ p)— 63(n) +¢]
helicity modulus—the straightforward connection between
the helicity modulus and the magnetic penetration length will ~[ ycos#?(n)+ ycose?*(n+ ,ZL) — vy?]cose,
be given at the end of this section. ®)

A definition best suited to our method is the original defi-

nition of Fisher, Barber, and Jasnd#: after which the first term becomes

LZ
Y(T)= lim—-[F (T;L)—F"(T;L)], (5) -
( Looe 772[ ( (T:L)] > > cod A(n+pm)— 63(n)+e]
nuw a
whereF " (T;L) [or F~(T;L)] is the free energy per particle
of an infinite system subject to periodior antiperiodi¢ %200582 2 y[cos63(n) — /2] (9)
boundary conditions of periodicity. along one direction. n ‘a '
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We further define c,p=( cos¢i(n)cosé(n)) and su,  vector potentiald, if such were applied to the system. The

=(sing(n)sin#(n)). Finally, the mean-field replica correspondence is— (27/ ¢o) [N *A-dl. Since in general
Hamiltonian corresponding to the system with a twist be-

comes ! 2 ’r
. a2 \amd) o
—BHE:”)=;E [COSSE y[cos#?(n) — /2] " ' n
n a we have
2 1
JR— a b A5 ’
+ 72 ( cos#*(n)cose°(n) 5 Cab I
Y(T). (16)
4m(T) 2w

X (C,p COSe + S, SiMPe)

In the following sections we will analyze the saddle-point
equations (12) in the limit n—0, first in the replica-
symmetric (RS ansatz, then in the replica symmetry-
breaking(RSB) ansatz.

1
+| sin63(n)sin #°(n) — > Sab

X (Cap SiPe + Sap, COSZS)) } , (10)
IV. REPLICA-SYMMETRIC SOLUTION
where 7=1/(8Jo) is the dimensionless temperature afid In this case we assume perfect permutational symmetry of
=J/J, is a dimensionless parameter, which we will refer toreplicas. The thermal averageg, ands,, are denoted as
as the disorder strength. follows:
DenotingLP the volume of the cube of linear exteht
the resulting free energy per particle Caa= 1/2+¢c/2,
1 1 =1/2—0
Ful v {Canh{San}) = — 5 lim —=[Tr,exp(— BH(™)— 1] Saa=1/2- €12, a0
B n—0 nL
Lo Cap=C, Sap=S a*b.

13

is a function ofe and variational parameterg {c,p}, and
{sap}, Which satisfy saddle-point equations

In the Hamiltonian (10) (with £=0) we complete the
squares as follows:

1
_0F, OF, dF, 12 > | cos6? cosg®— > Cab |Cab
"9y 9Cap S’ ab
2
which are equivalent to the mean-field self-consistency con- =c( S cost?| +(1/2+S2—¢)>, coLe?
ditions. In the thermodynamic limi¢—0, and the helicity a
modulus can be written as a partial derivative ~
1(1+c)? 1, L 18
2(&2&) "2 4 "TzeninTh 18
e’ -0 and likewise for the sines. Integration over the angles is
) made possible by a repeated use of the identity
2 d
= lim —Tr —exd —BH" , (13
T Bz, o 5p2 A-BH."]

1 -
=0 eax2: > f d)\e*)\zl2+ \e2a)\x. (19)
V&I

wheree is now regarded as a continuous variable, and the

factor 2¢ appears because we apply the twist in all spatlaro‘ﬁer taking then—0 limit we arrive at

directions instead of just one. 1 52 1 1 1 1
Performing the suggested differentiation, while holding Fldo==v?— 2+ $2— —(1+¢C)2—s+ =

v, {Cap}, and{s,;,} constant, we arrive at 2 272 4 2

L—oo

Y=t i 1S e (14 —Tf d)\Gazc()\)f doG (o) f(\,0), (20

T n—0 N “ab
_ whereG (u)=(27¢) " Y2exp(-u?2¢), and
Here the expectation valueg {c,,}, and{s,,} are to be

calculated a& =0, i.e., without any imposed twist. o 1
We now make a connection between the helicity modulus f(N,o)= Inf de exp{ 5_[()/-1— N)cosO+ o sind]
expressed above as a function of mean-field order parameters T
of the model, and the magnetic penetration length, which we 52
ultimately want to calculate. We note that the twist angle + —Z(E—c+s)co§6] _

Lo e ; (21
enters the Hamiltonian in the same way as a uniform external
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In order to locate the critical poifd and the mean-field 0.75
critical behavior of this system, we first assume that the order ]
parameters?, c, s, andc, are all small in the neighborhood N %
of a critical point. We next expand the free-energy functional 0.50 ] 7 N
(20) to third order in these variables. The critical temperature 1 -
7. is found as the temperature below which the free energy
has a saddle point for nontrividi.e., nonzerp values of ] S iN I
some or all of the order parameters. It turns out that we have 0.25 % In 2
to treat separately the casés:1 (weak disorderand 6=1 ] s I
(strong disorder Our results are summarized in the follow- ]
ing table (expansions are in the variabte=1—7/7,): 0.00 ]
5<1 5=1 0.0 0.5 s 1.0 1.5
7. | 12 ol2 ) )
) 5 5 5 FIG. 1. Mean-field phase diagram of a model granular supercon-
Yo | H(2—36°+ 54)/(1+25 - 54)"‘0(7' ) O ductor with 7r junctions. N is the normal phase, S is the reversible
c | n2- 52)/(1+252_ 54) +0( 7.2) 12+ O( 7.2) superconducting phase, iS is the irreversible superconducting glass
2 ) phase with broken ergodicity, and iN is the normal phase with
s | O(7) 72+ O(7°) broken ergodicity. TheZ,, phase boundary has been calculated in
T | (1= (1+28%— 6%+ 0O(2) 0. the RS ansatz, and is therefore approximate.
The reason why this transition line did not appear in our

This set of data reveals a peculiarity: if one were to imag-previous analysis is that nedg only the s order parameter
ine a process in which the disorder strengtfs being con-  can be considered small, while the othey3, c, andc, are
tinuously tuned from a value below 1 to a value above 1, the‘large.” Therefore, in order to obtain the functional form of
behavior of order parameters should continuously changg (s), we have to treat them exactly, and expand only with
from that in the left column to that in the right coluntan- respect tcs.
less there is a discontinuous phase transition associated with |t is somewhat more convenient to expand the saddle-
a discontinuous change of symmetryhes-order parameter point equationy.F/9s=0 to second order ig, than to expand
behaves differently at first sight. Its power-law expansion inf to third order ins and then differentiate. Either procedure
the neighborhood of the critical line changes from at leastjields the saddle-point equation far
quadratic in7 for §<1 to linear in7 for §=1. The obvious
escape is that the relatis= O(7?) is invalid exactly até 52
=1, but since it holds for any< 1, the region of its validity _ o 2 2
must be continuously shrinking to zero &sapproaches 1 O_S[ 1 2( 272> J- NG a2e(Mhz(T.N)
from below. This behavior follows naturally if, fo6<1,

there is another line of criticalitZg, lying below 7;, and 82 \? 3 )

which runs intoZ; exactly ats=1 (see Fig. 1 Continuing +8s o7 f dAGs2c(Mh(T M) +O(s%) 1.

this line of thought even further, 8= O(7s),7,=1— 717,

just below 7, we must haves=0 everywhere betweefi; (22
and7,. This is of course consistent with= O(7?) just be-

low 7. Here we have introduced a new function,

Jf d @ sin?6 exp{1/7( y+ \)cosh+ 5%/(27%)(c—c)cos 6}

ho(TN )= — , (23
fﬁ d@ exp{1/7( y+ \)coso+ 82/(27?)(c—c)co 6}

for brevity. In this expressiory, ¢, andc satisfy the saddle- Positive, the solution is trivials=0. The critical temperature
point equations 7T, is found as the point where this term vanishes, which

yields implicitly for Z:
dF dy=dFl dc=dFldc=0. (24)

52
1= —zf dAGrc(MNS(TN)  (6<1). (29
When the zeroth-order term in the brackets of E29) is T
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Equation(25) for 7, along with Eqs(24) ands=0, can be

solved numerically; the result is presented in Fig. 1.
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tional to small deviations away from the RS solutiSriThe
stability of the RS solution is indicated by the eigenvalues of

We can now determine the behavior of all order paramthe reduced Hessian,

eters just below theZg line, to first order in7s. To this
accuracy the order parameteys ¢, and ¢ will be deter-

mined by Eqs(24), with s=0. This is seen from the expan-

sion of the free-energy functiongt in powers ofs. this

expansion does not contain a term linearsjrsince 9./ ds

=0 at7;. Therefore, expression(@4), with s=0, will pro-

vide values ofy, ¢, andc correct toO(72) nearZ.
Combining Eq.(22) with Eq. (25), we find

721 | DGO T M)
s=(—s) +0O(7d).

2
20 [ aneaondizn

(26)

We have expressezin terms of known quantitiegecall that

y, ¢, and¢ are determinedhdependenthof s to O(72) ac-
curacyl.

2

Sij :mfs(%{cab}-{sab})v (30

whereX;=c,, Or S,,, a#b, ande=0. Differentiation and
eigenvalue calculation in Eq30) must be done before the
limit n—0 is taken. All eigenvalues of the Hessian must be
positive in order that the RS solution be stable.

Here we adopt a more pragmatiand not particularly
rigoroug approach, in which replica symmetry breaking is
allowed from the outset, by working with a larger set of
order parameters. In addition to the ubiquitous RS solution,
at low temperatures there will also appear a nontrivial RSB
solution. In such a case we simply assume that the RSB
solution is the stable one.

At first we allow one-step replica symmetry breaking
(1-RSB), known to produce quantitatively correct results for
a broad range of temperaturésxcept near zejoin the
theory of the Ising spin glasé.In this approach the repli-

Our ana'ysis Of the rep”ca_symmetric So|ution iS not Com_cas are d|V|ded |nt@/m bIOCkS Ofm I’ep|icas in eaCh bIOCk.
plete, however. At least in the RS ansatz there is anothef he thermal averages,, ands,;, then assume a small num-

reentrant, phase transitidrelowthe 7Zg line. This line, which

ber of values:

we denote7,, is the line of a reentrant phase transition back
into the normal state, where the primary order parameter

vanishes. In order to locatg,, we impose a stronger condi- Caa=1/2+C/2,

tion
1 0F Saa=1/2—¢/2,
lim ——=0, (27
yot? 9V
Cab=C1, Sip=S1 a#b, {a,b}eblock,
which explicitly excludes the trivial solutioe=0 from our
consideration. This condition, along with the usual
Cab=Co, Sap=S9 a#b, {a,b}eblock. (31
aFldc=9Flds=aFlic=0, (28
In the Hamiltonian(10) (with e=0) we now complete the
. squares as follows:
leads to a closed-form expression ffy: d
1
1 1 (= 2 1S TV12= TN 2 > (cosoacosab——cab> Cab
=—T,==| d\\e , (29 ab 2
2 2J)o lo( 8/ ToN1I2—To\)
2 n/m 2
— a _ a
where | 4(x) and 1,(x) are modified Bessel functions. For CO(; cosg™ | +(c CO)k:1 (ae;ock(k) cosd )
completnesss=c=1/2—7,,, andc=y=0 at7,. Equation - -~
(29) can be solved numerically fdf,,, with the result pre- 1+c a 1(1+c)
sented in Fig. 1. o a ; cos'6 2 4 "
~ c2n(m-1)- 52 ) (32)
— =cin(m—1)—=cgn(n—m),
V. REPLICA SYMMETRY-BROKEN SOLUTION 271 ( 270 (

It is a rule rather than an exception that in solving prob-
lems with quenched disorder with replicas, one ends umnd likewise for the sines. Integration over the angles is
breaking the replica symmetry in some region of the phasegain facilitated by the identity19). In the end, after taking
diagram. The reason is the instability of the free-energy functhe n—0 limit,
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2

. 1, 6
=37 " 57

(1+7¢)? 1
T_Sl+ —_

1. 1, 1, 1.
Ecl(l—m)+§c0m+§sl(l—m)+—som— >

2

1
_Tf d)\oGLsZcO()\o)f dO'OGb‘ZSO(O'O)EInJ d)\lesz(cl—co)()\l_)\o)j do1Gses,—sy) (01— oo)exdmfy(hy,09) ],

(33
|
where lution valid in the entire temperature range, an ingenious
scheme has been designed and used by Sommers and
(T 1 , Dupont*®
fi(N,0)=In Wdeex FL(y+\)cos+ asind] Here we content ourselves with the solution of a 1-RSB
model (33) and(34), by solving
5 -
+ —(c—c;+5s;)cosb}. (34 OF OF OF oF oF OF OF
272 O=—=F—=—=—"="="—=— (39

SOy e dc, oy s, s am’
The method just described can be used repeatedly to ir}o—\

clude multiple-step replica symmetry breaking, and general; gain, we can solve these equations only in the neighbor-
. P P rep ymmetry 9, 9 hood of the critical point, but this is to no detriment as this is
izes to a case of continuousr infinite-step replica symme-

try breaking'®>!® In this latter case thec and s order precisely where they are expected to be valid.

parameters become functionéx) ands(x) on the interval Lgaving computqti_onal details for_the Appendix, we sum-

[0,1], and provided these functions are continuous, the frednarize that a nqntrlwal 1-RSB solqﬂon exists \{vhenever the
en,er,gy acquires the form ’ ?epllca_-symmetrlc order parametens_nonzero, ie., pel_ow

the 7 line for §<1, and below the/; line for 6=1. This is

1 52 in qualitative agreement with the complete analysis of the
]-"/JO=§3/2— >7 Hessian for a similar, infinite-ranged-vector spin glass in a
field,1*%° according to which RSB is indicated simulta-

neously with the onset of the transverse order parameter.

Analytical results for the 1-RSB essential for the present

discussion are summarized below:

+¢)2

111 1 1
XEJde[cz(x)anz(x)]—( 2 —s(1)+§

_TJ d)\GgZC(O)()\)JdO'GgZS(O)(O')f(Ol)\,O'), !Cl_CO S1 So m
8<1|0O(r2) O(r) O(rs) O(s)

@9 5=1|0(r) O(ro) O(re) O(ro).

where functionf(x|\,o) satisfies a nonlinear partial differ-
ential equation

This table shows that the mathematical expression of the
1-RSB changes qualitatively @=1. This alone, however,
does not mean there must be another line of criticality below
75, as was the case in the previous section. Resultssfor

— = —+
IX 2 dx | g2

of 82 do(x)| 92t ( of )2
X

82 ds(x)[ o2

9f \ 2 <1 in this table were obtained assumi@yc,)=1, which
T3 A | 02 +X %) : (36)  breaks down ab=1 [the denominator in EJA5) vanished
Loo Nonetheless, th&, line obtained in the RS ansatz does have
and a boundary condition this bias, see Fig. 1. It is clear that such a line must be
present in the exact solution as well, separating the supercon-
f(1N,0)=F1(\,0). (37 ducting and the normal glass phases, although it may be
The free energy of the system at any temperature can b\éertwal.

found from Eq.(35), where the parameters satisfy the saddle-
point equations VI. HELICITY MODULUS AND IRREVERSIBILITY

The helicity modulug14) becomes, in the RS ansdi),

YRS Jy= 2+ ?[Ez—(c—s)z]. (40)

o PF_IF_ 8F _ oF
Ty g () 8s(x)

The set of equation$35)—(38) defies all attempts to a

closed-form solution, and approximations have to be madeA numerical solution ofY ?° as function of temperature and
As a rule, analytical results far(x) and s(x) can be ob- disorder is presented in Fig. 2. Immediately apparent are the
tained only in the neighborhood of the critical potAOn the  nonanalytical points i *S, which mark the transition be-
other hand, if one were to obtain an “exact” numerical so-tween the reversible superconductor and the superconducting
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1.0 |= : ! 52 ~
o~ i Y1Jo= "+ [~ m(Co—5o)°~ (L—m)(c;—51)?].
0.8 3 B (43
I This is the Gibbs-averaged value ¥f In the same ansatz
0.6 - the values entering the single-state average, é¢fl) and
&2 s(1), areapproximated by, ands,, respectively, and the
= 0.4 - A B single-state-averaged helicity modulus is
.6 52 ~
024 & L Y1/30=7"+ 7[(72_((31_51)2]- (44)
0.0 | s | One can see by inspection that bothand Y, vanish

0.00 0.10 0.20 0.30 0.40 0.50
g

whené=1. Therefore we have to classify both phases, N and
iN, see Fig. 1, asormal(nonsuperconductingPhase iN has
broken ergodicity, and must be irreversible in some sense,
FIG. 2. Helicity modulusYRY(7), parametrized by disorder although the helicity modulus is insensitive to it. This is
strengths. apparently a consequence of the fact thatulié) symmetry
is not broken atZ; (since y=0).
glass. This behavior resembles the nonanalyticity of mag- For §<1 the U1) symmetry is broken ;. The sample
netic susceptibility of spin glassé%'* Mathematically it fol- s in a superconducting state S with no trace of glassiness for
lows from the fact thas=0 aboveT;, ands=0(7;) below  7.<7<7; (replica symmetry is unbrokgnand the helicity
7. Another remarkable property is the positive slope ofmodulus is given by Eq40). Below 7;, howeverbothU(1)
YRS(7) within the reversible phase, in the neighborhood ofand replica symmetries are broken, and we have a noner-
the glass transition temperaturg. godic, irreversible, glassy superconductor iS. When measur-
In the continuous RSB scenario ing the helicity modulus of the iS phase, one can, in prin-

5 ciple, distinguish between the single-state averaged and the

o[~ ! Gibbs-averaged’. Near the7Z; line the differenceY;—Y
_ 24 %2 _ 2 - s 1
Y=+ T[C fo X e(x)=sx)] } “D =O(T§). More specifically,
This is the Gibbs average over the entire phase space, which 8° 3
is often designated as the field-cooled average in the context (Yl—Y)/JOZZiclm(Sl—SoH O(7s). (45

of spin glasses. There is a difference, however, between the

“field” in the spin_g|ass context, and the “field” in the con- The significance of this result is thdbe existence of the
text of superconductivity. While in the former case the mag-glassy superconducting state in granular superconductors
netic fieldH couples directly to the order parametaragne- ~ ¢an be probed by measuring the penetration leng(f):
tization), in the latter case the coupling to the the single-state average; and the Gibbs averag¥ will
superconducting order parameteomplex scalar wave func- appear as two branches of the\3(T) vs T curve. The
tion) is minimal through the vector potentidl. One there- ~ single-state average branch is the “stiffer” of the two, cor-
fore hesitates to use the term “field-cooled” for the Gibbsresponding to a shorter penetration length. Atthe two
average in the present context. In fact, cooling a disorderefiranches merge smoothly with the RS solution: by inspec-
superconductor in a magnetic field and subsequently turningon of the 1-RSB solution fors;, Eg. (A2), and the RS
off the field would lead to trapped magnetic flux and excessolution for s, Eq. (26), one can see thag, =s+O(72).
vortices inside the sample, which is out of equilibrium. By HenceYRS, Y,, andY are all equal tci?(rﬁ). The nonana-
contrast, a spin glass is a nonergodic sysierequilibrium lytical point in the temperature dependence of the helicity
In the next section we will discuss possible ways to measurenodulus remains the characteristic of the S-iS transition in
the Gibbs averaged helicity modulus of a granular superconthe 1-RSB solution, and we believe the same is true of the
ductor. exact solution.

In the phase with broken ergodicity, manifested math- At the reentrant transition af, the helicity modulus van-
ematically by the breaking of replica symmetry, the systemishes, and the sample becomes nortaad remains glassy
explores only one thermodynamic state—one “valley” of The RS analysis suggests that this is a continuous transition.
the complex free-energy landscape. Therefore, we also need
to calculate the single-state average as another experimen- VII. DISCUSSION AND CONCLUSIONS
tally relevant quantity. Following Parisi’'s interpretatioh,
the single-state averagé, is obtained when, instead of in- ~ We have analyzed a model disordered granular supercon-
tegrating over the entire interv@0,1] as in Eq.(41), one ductor with 7 junctions in a mean-field replica approxima-

uses only values at=1, i.e.,c(1) ands(1): tion. Quer_lched disorder as well as rar_ldomne_ss in the sig.n of
the couplings between superconducting grains are realized

5 52 ~5 ) by working with an ensemble, in which each coupling

Y1/do=y"+ Fic"—[c(1)=s(D]F} (42)  strength is drawn randomly from a Gaussian distribution.

The width-to-average ratié of this distribution serves as the
In the 1-RSB ansat#31), the analog of Eq(41) reads characteristic of disorder.



PRB 59 MAGNETIC PENETRATION LENGTH AND ... 1403

There is a close correspondence between the presetg@mperature. This is made possible by the interplay between
model and the previously mentionedvector spin glass in a thermal fluctuations, randomness of the effective coupling in
field 22-2*defined by the Hamiltonian the direction transverse to the direction of the primary order
parametery, and the fixed length constraint, which in the
language of phase variables reads simply €@
+sirfg(n) = 1. BelowZ; one, in principle, measures two val-
ues ofY; the Gibbs averaged and the single-state averaged.
In this Hamiltonian the first summation is over all pair,ﬂ’, A Simp|e slow Coo”ng of a Samp|e in zero magnetic field
and the distributionP(J,, ,/) is a zero-centered Gaussian. from the normal state to the superconducting state will pre-
Spins S(n) have m components and a fixed lengt8?(n)  pare a sample equilibratedthin its ergodicity spaceBelow
=m. Casem=2 is the random-bon¥Y model in a “field,” 7. a measurement on such a sample will produce the single-
and is relevant to our discussion. thermodynamic-state averadg . The Gibbs average is less

WhenS(n) represent magnetic moments, as understood iRtraightforward to obtain. In the case of a spin glass this is
the spin-glass context] is the usual external magnetic field. done by first aligning spins by an applied field, which is
If S(n) were to represent phases of a superconductor, as iyrned off when the sample is cooled. The system then
this work, H in Eq. (46) would represent a fictitious field, for breaks up into spatial domains, each domain adjusting to the
which there is no experimental realization. This is why thelocal disorder individually. Hopefully the domains will cover
second term in Eq46) does not appear in our Hamiltonian all the thermodynamic states, even the thermodynamicly rare
(1). In fact, we assumed zero applied magnetic field throughones. Measurement on this heterogeneous sample will yield
out this paper. This simply reflects our inability to solve anythe Gibbs averaged quantity. In analogy with this procedure,
XY-type models with minimal coupling to the field, since we are looking for a way to constrain the superconducting
infinitesimal changes of the field bring about qualitative sample in a state “most dissimilar” to the single thermody-
changes to the Hamiltonigr:*° namic state that would have been obtained by slow anneal-

The most interesting common feature of the presening, then to release the constraint and perform the measure-
model and them-vector model is the separate(1) and er-  ment after equilibration. Since this constraint cannot be
godicity breaking for weak disorder. In both models thd)J  imposed by the magnetic field, we have to turn to other
symmetry breaking occurs first: in tievector model45) it means of experimental preparation of the sample for Gibbs
is the external field, which is responsible for thélJJsym-  averaging. In the case of a granular superconductor we may
metry breaking, while in modell) this symmetry is broken think of preparing the sample at temperatdfe by slow
spontaneously when the “on average” ferromagnetic couannealing, then rapidly quenching %9<7,, and doing the
pling overcomes thermal effects. At a lower temperafli’fe  measurement af;. The slow annealing will prepare the
from within the ordered phase there emerges a phase witSample in a single thermodynamic state7,. Recall that it
broken ergodicity, a superconducting gld#e iS phasein s the nature of a spin glass that the free-energy landscape
the present model, and the “canted ferromagnet” in theeyolves chaotically as function of temperature. Therefore,

H==2 JppS(M)-S(n)=H-2> Sn). (49

dS3(n) | 3(S(n)- S(n)—m)

3 ¥
=3

mrvector model. The analog of th& line of the present the thermodynamic state in which the system igzis very
model is the Gabay-Toulouse lfffeof the mvector model.  dissimilar to the thermodynamic state that the system would
thesg two models are treated mathematically. In.the standarg . The rapid quench td; (the experimental challenge is in
solution of them-vector model one makes an, in general, the word “rapid”) will put the system into a new free-energy
nonequivalent substitution in the partition sum, landscape, to which it will have to adjust. The hope is that
different thermodynamic stat@ll individually equilibrated
at 7;). The subsequent measurement on this sample will
yield an approximation to the Gibbs averaged helicity modu-
- 1_:[1 dS‘;(n), (47) There appears to be a critical valdg~0.26 below which
. the superconducting glass does not exist, not evef=ad
plus a much weaker constraigg*(n)-S?(n))=m. In other  (see Fig. 1. We have been unable to further substantiate this
age, which may be justified for large, where there aren  the system with randomr bonds, which is not trivial, or to
—1 Euler angles per spin and the analysis becomes difficulgolve the mean-field equations in the singular lirfit:0.
but it is suspect fom=2 or 3. In this work m=2) we work  Vannimenuset al. investigated ground-state properties of a
thus always in place, not just on average. We believe thastrength —K is immersed in an infinite lattice of regular
this property is important for the calculation of the helicity junctions, it takes a supercritical strendgth~K.>0 to per-
modulus, which probes the response to a long-wavelengtturb the spins around the junction from perfect alignment.
We found that the iS phase of a granular superconductgpole, i.e., short ranged, one can expect that a dilute system of
is accessible for detection using a penetration length prober junctions of small but finite strength will have a pefectly
Y. At 7; there is a discontinuity of the first derivative of collinear ground state. Indeed, this is true as long assthe

There is one, we believe important, difference in howhave been in if the annealing had been continued down to
the sample will break up into spatial domains, each in a
Trsa(n)EJ’|:
lusy.
words, the fixed length constraint is enforced only on aver<laim, as one has to either characterize the ground state of
with the polar angle®®(n). The fixed length constraint is related modef’ They find that when a singler junction of
twist of the phase. Since the distortion field of such a junction is that of a di-
Y (7). Just aboveZ; the helicity modulusincreaseswith  junctions do not percolaté.The 7 bonds will be invisible to
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the order parametey, which will be 1. However, the elastic sions. The most interesting question of course is whether or
properties of this ground stateill be affected. This is why not the irreversible iS phase exists in a realistic system with
the zero-temperature helicity modulus—or phase stiffness—short-range interactions. When trying to answer this question
will be less than 1 for &£6< 6., even though the system is one immediately runs into problems of interpretation. The
clearly not a glasgsee Fig. 2, curved=0.2). This is also concept of replica symmetry breaking, so essential for
supported by our numerical results, which suggest that anfinite-ranged models, becomes ill-defined for short-ranged
zero temperaturg=1 for 0< < 4§.. Only for 6> 5. we see  models. For instance, in systems amenable to a field-
v detach from 1. Simultaneously, becomes nonzero, the theoretical treatment in 4¢ dimensions, replicas serve
replica symmetry is broken, and the system becomes a glassierely as a mathematical device to organize the perturbation
The apparent existence of a criticdl>0 in the present serie€® (in e disorder cannot be treated perturbatiyelyn
model is nonetheless surprising, since the Gaussian distribthis case there is no obvious mechanism that would break
tion (2) always allows forsr junctions of arbitrary strength. replica symmetry. Instead, one looks for disorder-generated
In our RS analysis there is a window 0.886<1, for  renormalization grougRG) fixed points in order to identify
which there is a reentrant transition into the normal glasdinite-temperature phase transitiofwghich give rise to weak
phase aff;, (see Fig. L This result is unreliable, as the exact glasses? or for RG flows running away towards strongly
solution with broken replica symmetry is needed in that re-coupled, disorder-dominated phagssong glasses® while
gion. The actuaf,, line may turn out to be vertical, as in the replica symmetry remains unbroken. Although quite success-
Sherrington-Kirkpatrick spin glass. ful, even this is not a universal tool, and one has to use
Our main result is the behavior of the experimentally rel-functional RG method$*? whenever there happens to be a
evant helicity modulus in the superconducting phases S anzero-temperature disordered fixed point.
iS (Fig. 2. Although the original problem was formulated as  All of the above phases—weak glass, strong glass, and
a short-ranged model, the mean-field analysis makes theero-temperature glass—are possible alternatives for the iS
range of interaction effectively infinite. The results thereforephase of an actual disordered superconductor. Further work
have to be verified using more reliable methods, applicabl@long these lines is in progress and will be presented in a
to realistic short-ranged systems in two and three dimenfuture publication.

APPENDIX A: CASE é6<1 (WEAK DISORDER)

In order to obtain the leading behavior ®f, sy, t;=c;—¢q, andm for temperatured just below7Zg, it is necessary to
expand the free-energy functional @(rg), wherer,=1-717,. We recall thatZ; is given implicitly by Eq.(25). Since7Z;
<7., parametersy? c;, and ¢ are O(1), and cannot be considered small. With a bit of hindsight we expgct
=0(1s), So=0(7g), tc=<9(T§), andm=0O(rs). The following expansion is based heavily on the idenfityzG,(z)f(z)
=exf(&2)d*/dZ?]f(2)|,—o, which holds when the Taylor series of the functitfz) has an infinite radius of convergence
(otherwise the series on the rhs is only asympjo#idter a fair amount of work we obtain

Fo1 , [ &)1, ol thr121 Lo 1o 1
37 277 "\ g7z |26 Matet pMEFsi(Immt osm= g (1+e)7 5
8 \? 8l 6% \° 82\ 544/ 6% \°
_ N 212 | T 33 _ . Apd T T 5,15
fd)\ngcl()\) f (ZTZ> slh2+3(272 s;h5—15 Py s;hs+ 5| 502 s;h3

5 \°
2,2 2
—mf d)\ngcl(k) ﬁ ﬁ) ha(s1—sp)

8 82 \?
( )(T&)\f)ztc—(ﬁ) (T20,0,F)%t2+

3
(79, F)(T9\h3)t s+ 2

2 2 2

&2 \° 2 \°
-2 ﬁ) (Ta)\hz)thSg_‘l(ﬁ) h3(s}—s159)

272

1 &2 \* 5 \° 1 &)
+§(ﬁ) <h4—9h§>2s1‘+4(ﬁ) h3(ha—8h3)sisi— 3| o3| (ha=3n3)7ss
2

m? ’
—?f dxeﬁzcl(xm( ) h3(s1— 38155+ 2s0) + O(73).

272

Here

ko

1 8 .
fEf(T,)\)=Inf d0exp{§,(7+)\)cos¢9+ ﬁ(c—cl)cosza} (A1)

and



PRB 59 MAGNETIC PENETRATION LENGTH AND ... 1405

J d @ sinP 6 exp{1/7( y+ \)cosO+ 6%/(27%)(c—c,)cos 6}

hy=hp(T,\) = . p=24. (A2)

fj d@ exp{1/7( y+\)coso+ 82/(27?)(c—c,)cos 6}

This expansion can be most readily obtained when one first expands formally (8 quith respect tam to O(m?®), then
expands the coefficients of all powersrofin terms oft., s;, andsy to appropriate order so that the entire expressionfor
is accurate tGO(rg). This is the lowest-order expansion necessary for determinatisp, &, t., andm to leading order in
Ts.
Algebraic saddle-point equations fef, sg, t;, andm are not difficult to solve. The 1-RSB solution is

(Tz)fdxe,szcl(wh%(mh%(?;,m
===

v +0(7d), (A3)

[EXTRENEAN

So=0(7s), (Ad)

+0(73), (A5)

|2 | axG e TN TN T
o= ( ) (si—s9)

1-(&8TY) f dNG s, (N[ T2dndrF(Ts, M) ]

and

_( 52) @ | G (T I(T - 12T, )]

o2 Y
275/ (1= %0) [ xG om0

_ 2 2
( 52>SO(81+50) | \G e, 0T ~30ET 01 o "

272 s1—5
2Ts) S fd)\ngcl()\)hg(Ts,)\)

The equation foisy is cubic and we do not include its explicit solution here, apart from the factsfraO( 7).

APPENDIX B: CASE 6=1 (STRONG DISORDER)

Again, in order to obtain the leading behavior of all variablgs, ¢, c;, ¢, S;, Sy, andm, we have to expancF to
(9(72), wherer.=1—7/7,. We recall thatZ.= 6/2. The expansion of the free-energy functional is lengthy and we will not
present it here. The saddle-point equations have a replica symmetry-broken solution

S, 3 _ _E 2 _ 2
T+ O(72), CO—SO—6TC+O(TC), andm= 7.+ O(7g).

y=0, ©=0, ¢1=81=5 7+ o5

We note that the equatiafiF/ dy=0 actually does not have a solution. Nonetheléshas a global minimum with respect to
vy at y=0, which is an endpoint of the definition interval.
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