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Linear geometrical magnetoresistance effect: Influence of geometry and material composition
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This work reports theorems on geometrical magnetoresistance effects in simply or multiply connected
surfaces. We consider planar or three-dimensional device geometries, and assume that the current/voltage
relations are linear. It is shown that the resistance of any two-wire device must be an even function of the
magnetic field. We further calculate the magnitude of the highest and lowest second-order geometrical mag-
netoresistance of a planar two-wire device, for given isotropic material parameters. The largest change in
magnetoresistance occurs when the boundaries of the device contain only electrically conducting leads and no
insulating components. When the Fermi surface and the mobility tensor are isotropic, as is the nagpdor
InAs and InSb, the magnetoresistance obtained in the Corbino geometry is the largest possible, but this
conclusion does not generalize to materials with anisotropic conductivity tensors. The presence of multiple
ellipsoidal carrier pockets in Bi also explains why the geometrical magnetoresistance effects are much smaller
in the trigonal plane of Bi than in InAs, even though these materials have similar mobilities at room tempera-
ture, and the conductivity of Bi is isotropic in that plafi80163-182@09)15421-3

[. INTRODUCTION tween the two edges. The Hall potential always counteracts
the effects of the Lorenz force. The change in resistance is
Semiconductor magnetoresistors have been known fdancreased by shorting out the Hall potential, allowing the
decade$,and are commonly used in magnetic position senseurrent between the leads to develop a transverse component
ing applicationg. Most of these devices make use of electri- due to the magnetic field. Two different technologies exist to
cally conducting inhomogeneities in or on top of a high-do this. One method takes advantage of surface recombina-
mobility semiconductor. For instance, Wéistescribed InSb  tion, if the active region of the device is an intrinsic semi-
magnetoresistors created by precipitating needles of metalligonductor. This allows the positive and negative carriers
NiSb inside an InSb host material. Planar thin-film InSbshown in Fig. 1a) to cancel each other out by recombining
magnetoresistors are commercially availgblEhey consist  at the device edge, creating a transverse current. This results
pf an InSb film grown on an insglating sgbstrate and etchegh, 3 class of devices called magnetodiofleshich have
in the shape of a mesa. Metallic “shorting bars” are thenmagnetic-field-dependent carrier densities and nonlinear

deposited on top of the mesa at select Iocat?o?ﬁht_a Prés-  current-voltage characteristics. The other method consists of
ence of inhomogeneities have also been found to increase ”’Ws

inserting inhomogeneities, such as “shorting bars” of highl
magnetoresistance of kig,Cd, Te (Ref. 3 over the intrinsic g g g gnty

maanetoresistance in th atertaighich is already ver conductive material in the device, to short out the Hall po-
agnetoresistance in these mate )en 1S alreéady Very — antial as shown in Fig.(d). In this paper we label “shorting
large due to the very high electron mobility in these materi- . . . ) ; .
. ...bars” regions in the device with zero resistance to which no
als and the presence of several carrier types. Inhomogeneitie . : ) . .
in Bi have been studi@and modeled but do not necessar- €lectrical contact is made; regions to which contact is made

ily result in a large geometrical magnetoresistahtghomo- are “leads.” Hypotheticglly, the mqst eﬁective_geometry in
geneities have even been suspected to cause the remarkaffdich the Hall voltage is shorted is the Corbino geometry
linear magnetoresistances observed in ,A§e and (Fig. 3. If_ tr_\e con_tact_s are Ohmic, these devices remain
Ag,. ;Se’ The problem of geometrical magnetoresistanceé’”_rely reS|st|\_/e, with linear current—voltage_ characteristics.
due to inhomogeneities in semiconductors thus has a lon his paper will solely treat such linear devices. It assumes
history&*° that all transport is diffusive, and ignores ballistic effects.
The geometrical magnetoresistance arises by virtue of thBergman and Strelnik&numerically modeled the influence
fact that a magnetic field exerts a Lorenz force on movingof various electrically conducting and nonconducting inclu-
charged particles, perpendicular to their direction of motionsions into semiconducting material, using a full three-
Such forces change the direction of current flow, as depictedimensional model. In contrast, this paper will focus mostly
for the rectangular semiconductor device in Figg)1If ei- on planar situations, but we will develop general theorems.
ther the positive or the negative charge carriers dominate ifhe goal of this paper is to answer the following questions.
the current, the change in current flow will cause charge (1) Given a certain semiconductor material system, what
buildup on the edge of the device pictured in Figg)luntil  is the optimal device geometry for a planar linear magnetore-
the electric field induced by the charge buildup negates thsistor? In particular, can one develop geometries that give
force from the magnetic field. Figurd& shows the current more change of resistance in a magnetic field than the
flow lines, along with the corresponding equipotential lines,Corbino geometry?
that result from this process. A side effect of this is that a (2) Is it at all possible to build a linear two-wire device
potential difference, called the Hall potential, develops bewith an asymmetric resistance curve? If not, why not? What
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FIG. 2. Current and equipotential lines for a rectangular, two-

FIG. 1. Positive and negative charge-carrier currents moving inead device in a magnetic field pointing out of the p&ajeor into
a semiconductor in the presence of a magnetic field. If these carriette paggb). Note that the transverse component of the current flow
recombine at the right edge of the device, as show@)ira current,  distorts the potential on the upper and lower edges of the device,
transverse to the direction between the leads at either end of thgeating a potential differencghe Hall potential between bound-
device, will flow. When one type of charge carrier is dominant, ary points on the same vertical line. When the sign of the magnetic
shorting bars can be used, as show(binto create these transverse field changes, the flow pattern is reflected, as show@jimnd (b),
currents, which, in turn, increase the resistance of the device.  but the total current flowing through the leads on either end remains
unchanged.
distinguishes the two-wire case from the three-wire case,
where an asymmetric response is known to be possible? number of suggestions have been made over the years for
(3) How does the choice of materials from which the disturbing this geometric symmetry. The simplest of these
magnetoresistor is made affect its response to magnetigas to build a trapezoidal device, thereby eliminating the
field? For example, why does the semimetal Bi, which hageflection symmetry of the rectangle. More complicated sug-
electron mobilities close to those of InAs, give a muchgestions involve multiply connected geometries, including
smaller geometrical magnetoresistance than InAs? device designs with holes placed asymmetrically, with

These questions may seem obvious at first glance. How:shorting bars” or patches of material with zero resistance
ever, most analytical treatments of the current distribution in

a slab of semiconductor in the presence of a perpendicular

magnetic field used conformal mappitfyand are thus not

obviously valid for multiply connected geometries, for three-

dimensional geometries, or for devices with inhomogeneous

material composition. The answer to questi@ starts with

the observation that the resistariR®f a rectangular magne-

toresistor, made from a material such as indium antimonide

(InSb), depends on the magnetic fieRl according to the

equationR(B)=R(—B). This fact follows easily from the

reflection symmetry of the rectangle about an axis through its

leads, and the isotropy of the conductivity tensor for InSh

(see Fig. 2 This implies that the resistor will have no first-

order response to small changes in magnetic fieBl=a0. It

may thus seem desirable to try to disturb the symmetry of the

rectangular shape in the hopes of producing an asymmetric

resistance curve with a nonvanishing first derivative at ——

B=0. The possibility of building in asymmetry is further -

motivated by the fact that it is possible to build three-lead FIG. 3. A Corbino disk, an annular magnetoresistor whose en-
linear devices, measuring Hall potential or transverse curtre boundary is covered by metal leads, holding each component of
rents, which in fact do have first-order responseBat0. A the boundary at constant potential.
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to establish asymmetric equipotential lines in the device, ofarger geometrical magnetoresistance than Bi, even though
designs that use different materials, with different magnethe average electron mobility is roughly the same in both

toresistive properties, in different regions of the device. Resmaterials, and the conductivity tensor of Bi is isotropic in the

cent experimental studi€s? on four-probe Hg ,Cd,Te. trigonal plane. This effect is due to the presence of multiple

Corbino disks have shown asymmetrical responses to magarrier pockets in the electron Fermi surface of Bi.

netic field. Such responses would contradict theorem 1 of Section Il of this paper presents the model equations for
this work unless the device contains an element that depart§e linear devices. Section Il gives the main results just

from one of the assumptions used in the present paper, sudiscussed, and Sec. IV contains some examples and discus-
as a nonlinear element. sion. Appendix A gives proofs of the theorems from Sec. Ill.

Under very general assumptions, two-wire linear deviceéo‘_ppend'x B describes how to use conformal mapping tech-
iques to calculate the response curves for some linear de-

will always have resistance curves which are invariant undel"

sign change of the magnetic field. The property is a conseYices. Appendix C gives derivations of the conductivity ten-

guence of a general transformation principle, which holdsS0'™S for InSb, InAs, and Bi.
not only for arbitrary device geometries and conductivity
tensors, but also for devices with more than two leads, such Il. THE MODEL EQUATIONS
as the three-wire Hall sensor or magnetotransfst®his

transformation principle, stated in theorem 1 of Sec. Il is in

turn a consequence of a relationship from no%equi_libriun\mth a magnetic fieldB perpendicular to the plane of the
thermodynamics, known as the Onsager relatrdnshich device. As suchB is characterized by the scalar quantiy

describe a property of the conductivity tensor. In AppendixwhiCh is its component in the direction
A, we give a proof of theorem 1, based only on the model Under the assumption that the carrier densities remain in-

equations and the Onsager relations. This propf can be u'Efependent of both position and magnetic field, the vector
derst_ood as a restatement of the Onsager relations in MaCTirrentJ in the device is related to the gradient of the po-
scopic terms. All that is needed to go from the tensor formus

. . . ) tential V¢ via a conductivity tensoo, such that
lation to the macroscopic form is the conservation of charge
and the fact that the electric field is the gradient of a potential J=0-Vi. (2.1)
function. The main contribution of this result is to remind us

of some practical macroscopic consequences of the Onsagéhe matrix notation used here assumes that Boémd V¢
relations. are column vectors, withV</;=(¢X,¢y)T, where i,

The invariance under sign change of magnetic field im-=dy/dx, ,=dyldy, and the superscripl denotes trans-
plies that no linear two-wire device can exhibit a first-orderpose. The matrixo will be a function of magnetic fields,
response to magnetic field. It is, however, still of interest tosuch that
know how the second-order response can be maximized, in T
particular, what effects the shape of the magnetoresistor and o(—B)=a(B)".
the configuration of its leads will have on its response. FOFis is the tensor form of the Onsager relatiohs.
planar devices made of materials whose conductivity tensors . currents can be obtained frof s by first multiply-
are isotropic in the pIanebof theddg:vice, we will SEOW tratéheg g Vi by a scale factor and then rotating it through some
strongest response is obtaine a resistor whose leads
the egntire bopundary of the devi)(/:e leaving no insulatingg- glea. In general, the values af and a depend on the

' . . 2direction of the vectoV ¢, and in this case the conductivity
boundary components. An example of such a device confiQuy s is anisotropic. However, in many situations, the values
ration is the Corbino disk, shown in Fig. 3, but our resultsof r and « are independent of the direction 8y, a fact
imply that, for a device of homogeneous material propertieswhich will simplify many of our calculations. If this is so,

any device geometry having no insulating boundary compog,e ¢onquctivity tensor is referred to as isotropic, and takes
nents will exhibit the same sensitivity to magnetic field aSthe form

the Corbino disk. All such planar shapes must, however,

contain holes. On the other end of the scale, the worst sen-

sitivity is obtained by devices with short leads and large o=

insulating components on their boundaries. These statements

are made more precise by explicit theoretical bounds for dein what follows, it will be useful to identify the vectos,y)

vice response, given in terms of the intrinsic conductivityin the plane with complex numbers=x+iy, so thatV ¢

tensor of the resistive material. One can define the geometri= i, +i, andJ=J;+iJ,. If the conductivity tensor is iso-

cal magnetoresistance as the difference between the best afdpic, one can writer= o, +ioy,, S0 that the matrix mul-

worst response curves. tiplication in Eq.(2.1) can be interpreted as a multiplication
The above results also provide us with a means of answepf the two complex numbers and V. The complex num-

ing question(3), since the theoretical bounds for device re-ber o now has the fornte'®, and the Onsager relation can

sponse are given in terms of the conductivity tensor of thenow be written as

resistive material. In Sec. IV we plot the response curves for

three different materials: InSb, InAs, and Bi. It can be seen o(—B)=a(B).

that InSb has on the order of a five times better response than

InAs. This effect is due to the difference in electron mobility =~ Assuming that there are two leads placed on the device, in

between InSb and InAs. It can also be seen that InAs has a fashion shown in Fig. 2, we would like to calculate the

The models to be described are two dimensional. The
device to be modeled will be assumed to lie in ¥ag plane,

Oxx — ny}

Oxy Oxx
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resistanceV/l of the device, as a function of the magnetic however, exceptions to this. These include Ohmic metal-
field B. To do this, we solve the partial differential equation. semiconductor interfaces, in particular, situations where it is
desirable to model shorting bars as having a small, finite

V-(o(B)V#)=0, (2.2 resistance, and it will also be convenient to model linear

subject to the boundary conditions, contact re;sistances which occur along me_tal leads as thin,
highly resistant layers of material, surrounding the lead, hav-

=V on the left lead, ing no sensitivity to magnetic field. Such models are also of
use for Ohmic semiconductor-semiconductor contacts.
=0 on the right lead, Boundary conditions are specified for the device by giv-
ing either current or voltage conditions along each lead. A
J-n=0 on the rest of the boundary, voltage condition specifies a constant potentiahlong the

entire lead. A current condition also requires that the poten-

wheren is a normal vector to the boundary at the point intjal along the lead remain constant, but its value is deter-
question. The total current through either lead is then givemnined by the equation

as

=[an =[an

wherel is the total current flowing through the lead, and the
where the integral is taken over the entire lead. integral is taken over the entire lead. Note that, although, in
If the conductivity tensor is isotropic, lemma 1 of Appen- general, current will be flowing through shorting bars in the
dix A implies that Eq.(2.2) is equivalent to Laplace’s equa- device, the current flows in one side of the slit and out the
tion, and the potential is a harmonic function on the interiorother side, so that the total current is always zero. Thus
of the device region. shorting bars are to be treated as leads on which zero current
The model generalizes to multilead devices having an arconditions are imposed.
bitrary planar geometry. Assume that the device occupies The inverse to the conductivity tensor is the resistivity
some bounded subsé& of the plane, whose boundary is tensor
given by smooth curves, possibly with a finite number of
corners. This boundary is divided up into segments which p(B)=0c(B) 1,
are leads and segments which are insulating arcs. The leads
can be thought of as infinitely conducting metal strips placecf;O that one has
along a segment of the boundary, and holding that entire Vi=pJ
boundary segment at a constant potential. Along the insulat- p:
ing arcs, the normal component to the current must alway$Vhen the conductivity tensor is isotropic, so is the resistivity
vanish. As such, the boundary conditidm=0 specifies on tensor, and we will write
insulating arcs thaV ¢y makes either an angle« or an angle
7—a to the boundary. The device regidh may have a P=PxxTipxy,
finite number of holes in it, and leads may be placed on par&vhere
or all of the boundaries of these holes.
To maximize the geometrical magnetoresistance it is use- o —
ful to include shorting bars in the device as shown in Fig. pXXZl(Z and pxyz—?'.
1(b), i.e., metal bars placed along the interior of the device to ] ]
prevent the buildup of Hall potential in the presence of mag-Of the theorems stated in Sec. I, theorem 1 is valid in the
netic fields. Such shorting bars can be thought of as slitmore general context of three-dimensional device geom-
shaped holes in the device region. The entire hole is fillegtries. In such situations, the conductivity tensor is>33
with metal, so that the entire boundary of the hole becomesatrix, still satisfying the Onsager relations. Equati@rp),

one lead, held at a constant potential. and the boundary conditions given below it, are still valid.
We will also consider devices in which is divided up
into subregions, each having its own conductivity tensor. In IIl. MAIN RESULTS

general, the conductivity tensor in each subregion may vary

continuously, but across the boundary between subregions The theorems stated in this section are proven in Appen-
the conductivity tensor is allowed to jump discontinuously,dix A. Consider the first-order response to the magnetic field
symbolizing a discrete change in the materials in the twaof the rectangular three-wire device shown in Figr)4Both
regions. This boundary may be a shorting bar, in which casef the leads on one side of the device are grounded, and the
a constant voltage condition will be placed along the interdead on the opposite side is held at a constant voltage. Note
face. If no shorting bar is used, we will require that both thethat the two leads on one side are placed asymmetrically, so
potential and the normal component to the current be conas to destroy the symmetry which previously existed in the
tinuous along the interface between regions. It should béwo-wire device. Appendix B shows how to calculate the
noted that, in general, when two regions with different con-current curves through each of the leads, as a function of the
ductivity tensors come in contact with each other, diffusionangle « of deflection due to the magnetic field, and the re-
currents and charge buildup will occur along the interfacesults are depicted in Fig.(d). It is apparent that both of the
causing the model equations to become nonlinear. There areyo grounded leads have asymmetric current responses. Note
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FIG. 4. (a) A three-lead magnetoresistor need not have current curves which are invariant under sign change of the magnetic field. When
two of the leads are grounded, these leads can be thought of as being connected by a metal bridge, represented by the dotted lines. The
resulting device can be thought of as a two-lead device with a hole in it. Part of the hole is bounded by semiconductor material, and part of
it is bounded by the metal bridge. For materials such as InSb or lipAshows plots of dimensionless quantities which are proportional to
the current curves through each of the three leads, as a functiehmpfwhere « is the angle of deflection due to magnetic fie(d@he
proportionality constants are material dependent, and are described at the end of AppeAéthoBgh each of the two grounded leads has
an asymmetric current curve, the sum of the currents, which flows through lead 1, is symmetric under sign change of the magnetic field, i.e.,
of a. When lead 3 is set at half the voltage of lead 1, with lead 2 grounded, all three current responses become asymmetric, ag)shown in
which again shows dimensionless quantities proportional to the current.

further that, if any reflections of this device existed of thereflections can demonstrate symmetry under sign reversal of
type used to prove symmetry in the two-lead case, theyhe magnetic field, but the current which can be measured is
would be observable in the current curves for the individuainow the sum of the currents in the two joined end leads,
leads. For example, if it were possible to reflect the devicavhich must be equal to the current flowing through the lead
onto itself, permuting the three leads so that lead re-  on the opposite end. As one can see from Fi@p) 4this
flected onto lead, this would imply that the current§(B)  current curve is symmetrical, so that somehow, in spite of all
=1;(—B). Since Fig. 4b) shows that no such symmetries the puilt in asymmetried,(B) will be equal tol (—B).

exist in the current curves, the geometric reflections cannot pjore generally, one can consider devices with arbitrary

exist either. numbers of holes, regions with zero resistance built into the

b lt:]S te_mptikr:g to colnvzrt this ﬂevice intz a two-vr\:ire deVi.C%,device in various ways to create equipotential lines, and ma-
y shorting the two leads on the one side together, as Ind, o5 with different magnetoresistive properties, all used in
cated by the dotted line in Fig(@. The resulting device can

order to disturb the geometric symmetry of the device. Al-

be thought of as a two-lead device with a hole in it. One paréhou h the numerical simulation of such a linear two-wire
of the hole is bounded by the metal of the shorting bar, an 19n . : . L
cliewce is potentially very complicated, it turns out that it will

the remainder of the boundary is bounded by semiconducto | h i h d this fact
material. The previous arguments still show that no analyticaways ave a Symmetric current response, and this fact con-
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tinues to be true, even if the conductivity tensors are anisothe product of voltage and current from this lead will always
tropic. be zero, so that the above argument generalizes to two-wire
To understand why this is so, let us first assume that thelevices containing regions with zero resistance as well.
device in question has an arbitrary number of leads,rsay ~ One also gains some insight into the behavior of the three-
+1. In this context, we will regard regions with zero resis-wire device in Fig. 4a). If both leads on one side are
tance built into the device as leads, on which we impose @arounded ¥;=0), then EQq.(3.1 only yields information
zero current condition. Some of the leads may be placed oabout the current flowing through the lead on the other side,
part, or all, of the boundaries of the holes. Note that the sunand it implies that this current must be invariant to sign
of the currents from the different leads must be zero, so thathanges in magnetic field. On the other hand, if each of the
the current through then(+ 1)st lead is equal to minus the three leads has a different voltage applied to it, one arrives at
sum of the currents through the finstleads. Since we can a more complicated symmetry. Assuming, say, gt 0,
choose the zero potential arbitrarily, we will also assume thabne then finds that
the (n+1)st lead is always at zero voltage. We denote by
V=(Vy,....V,)" an n vector of voltages which are to be Vil1(B)+ V3l o(B)=Vil1(=B) +V,l(=B). (3.2

applied at each of the remaining leads, and byl |, general, none of the currents will respond symmetrically
=(l1,....1n)" the currents through these leads which resulty the magnetic field. Only the sum from E@.2) will have
when the voltage¥ are applied. The linearity of the model this property. Figure @) shows the current responses of the
equations implies that there is a matRXB), such that three-wire device, when the third lead is at half the voltage of
V=R(B)-I the first lead, and the second lead is grounded.
’ Note that the dot produdi{B)V is the power dissipated

where, as indicated by the notation, the maRixlepends on by the resistor, in the magnetic fieRland with the voltage
the magnetic field. conditionsV. As such, Eq(3.2) states that the power dissi-

We remark that the determination of the matRxfor a  pation under constant voltage conditions is invariant under
given device involves solving the partial differential equationsign change of the magnetic field.
(2.2) for nlinearly independent sets of current boundary con- There are some other consequences of theorem 1 which
ditions and determining the voltages associated to them, andre worth noting. As shown in Fig.(é), when each of the
in general, this is a nontrivial undertaking. For simply con-leads of a three-lead device have different fixed voltages,
nected device regions, conformal mapping technitft’€s® none of the current curves will, in general, be symmetric
can produce solutions in the form of integrals which must baunder sign reversal of magnetic field. One way to try to make
evaluated numerically. These techniques, as discussed in Apll the leads have different voltages is to place a resistor
pendix B, were used to calculate the various simulation rebetween the second and third lead, as shown in Fg. 5
sults presented here. Such configurations can be produced by appropriate manu-

Theorem 1:Let D be any device region, two or three facturing processes, so that no extra wires must be soldered
dimensional, with a finite number of holépossibly nong  to the leads, and the result would still constitute a two-wire
containing any number of regions with zero resistance andevice. Unfortunately, the resistor will not hold the third lead
leads, and subregions with different conductivity tensorsat a fixed voltage, as the magnetic field varies. In fact, the
which need not be isotropic and which may vary as a funcconfiguration in Fig. ) can be modeled as the device in
tion of position. The matriR(B) for such a linear device is Fig. 5b), where two different materials are used in the de-
equal to the transpose of the matRX —B). vice, separated by a shorting bar. The second material repre-

Remark: Unless physical symmetries are present in theents the resistor, and has no sensitivity to magnetic fields.
device regiorD, as in the case of a rectangular device, thereThis can be modeled by using a conductivity tensor with no
is no simple way to transform the current flow pattern assoB dependence. Theorem 1 now implies that the resistor con-
ciated withB to that associated with-B. Thus, while the figuration will also produce a response which is invariant
above theorem is, in some sense, an integrated version of thumder sign reversal of the magnetic field. In fact, the same
Onsager relation, the proof given for rectangular two-leacconclusion follows for any composite of different devices,
devices does not generalize. In fact, it does not even geneconnected together in arbitrary ways with linear resistors.
alize to the case of a rectangular device with an anisotropic On the other hand, the above analysis becomes invalid if

conductivity tensor. the resistor used in Fig.(& is nonlinear, for instance if it
Assuming now that the voltag&sare held constant as we were replaced by a diode. Since holding all three leads at
vary the magnetic field, the theorem implies that different constant voltages produces an asymmetric response,
any two-wire electronic component which comes close to
I(=B)T-V=I(-B)"-R(B)-1(B) maintaining such conditions over the range of currents going

_ T BRI —B)— T through it for practical values d8 will produce asymmetry

=1(B)"-R(=B)-I(=B)=1(B) -V. (3.9 in the current curves. Although it is conceivable to design
For a device with only two leads, one of the leads is at zermonlinear devices to produce this type of response, this ap-
voltage, so that the vectolsand V are one dimensional. proach is not further considered here.
Equation(3.1) thus implies that the current through the de- The conclusion to be drawn from all of this is that it will
vice is invariant under the sign change of the magnetic fieldnot be possible to obtain a first-order response to magnetic
If the device in question also has regions with zero resisfield from a linear two-wire device. We now turn our atten-
tance, as already noted, these regions can be treated as ledits) to calculating the strength of the second-order response
on which zero current conditions are imposed. In such casesom such a device: in particular, how the geometry of the
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ber of regions with zero resistance and leads, and assume
tead 1 lead 2 that the conductivity tensor is isotropic and constant through-
out the entire device region. Define boundary conditions by
specifying either a fixed voltage or zero current conditions
on the leads and regions with zero resistance. Then

(a)

O~ VTI(B)= %(OE;)VTI(O).

If the boundary of the device contains only leads and no
|| insulating components, then the inequality becomes an

equality.

lead 3 Theorem 3:For the same device region as in theorem 2,

define boundary conditions by specifying current conditions

on each lead and region with zero resistance of the device.
Then

(b)
lead 1

T >pxx(B) T
V(B) |/—p(0) V(0)'l.

Corollary: For a planar, linear two-wire device, having an
arbitrary geometry with a finite number of hol@sossibly
none and containing an arbitrary number of regions with

zero resistance, assume that the conductivity tensor is isotro-
pic and constant throughout the device region. Define

lead 3 01(B)=0y(B)/a(0)
. . and

FIG. 5. A three-lead device can be used as a two-lead device by
connecting two of the Ieads_with a resistor, agan This_ can be p1(B)=py(B)/p(0).
modeled as a magnetoresistor composed of two different sub- ) ) ] ) .
stances, as shown iib), where the shaded substance will have no Then the resistance of the device must satisfy the inequalities
sensitivity to magnetic field. As such, the analysis of theorem 1
applies, and the device will perform invariantly under sign change p1(B)R(0)<R(B)<R(0)/o4(B).
of magnetic field. If the boundary of the device contains only leads and no
insulating parts, the upper bound B{B) becomes an equal-

device influences this response. Our goal is to determin8Y- _ _

what physical device configurations produce the best, and Proof. Applying theorem 2 to the resistor, only two leads
worst, responses to magnetic field, and to derive explicit exWill have nonzero total currents flowing through them, and
pressions for these responses, in terms of the conductivitgyn€ of these leads can be assumed to be grounded. The prod-
tensor of the semiconductor material, or materials, involveddcts V1(B) thus become products of scalars, and

We will start by assuming that only one type of material,

with an isotrop)i/c conduct?vity tensgr, is toyge used in the R(B)=V/I(B)=V?/(VI(B))=<V?/(c1(B)VI(0))
device, and state the results for this case. The modifications =R(0)/04(B).

to the more general situation will then be discussed. . ) .
The bounds on resistance that we seek are equivalent fpplying theorem 3 to the resistor, again, the total currents

bounds on the power dissipation of the device, i.e., the scaldfrough all but “"40 of the leads can be assumed to be zero,
product1TV. The results can best be proven in this form, the products/(B) I have only one term in the sum, and one

because the power dissipation can be expressed as an integ?af

over the device region, whereas the resistance cannot. It _ 2 2_

should, however, be remarked that the power dissipation is R(B)=V(B)I/1°=p1(B)V(0)I/17=p1(B)R(0).

assumed to be small enough so that the device remains @he corollary is thus proven.

uniform temperature. Specifically, the temperature gradients The significance of this corollary is that it determines the

are small enough so that they do not contribute to currentnaximum and minimum possible geometrical magnetoresis-

flow in the device through a Peltier effect, or create spatiatance in terms of the intrinsic properties of conductivity and

variations in the conductivity tensor. Note that, if the con-resistivity, and no calculations involving the geometry of the

ductivity or resistivity tensor is isotropic, then the Onsagerdevice are involved. Examples of this are given in Sec. IV.

relation implies that-(0) andp(0) have no imaginary parts in One can show that the lower bound on resistance is at-

their representation, i.e., the potential gradient will point intained, for example, in the limiting case of a rectangular

the same direction as the current. two-lead device, as the lengths of the insulating sides of the
Theorem 2:Let D be any planar device region with a device go to infinity. More generally, an examination of the

finite number of holegpossibly nong containing any num- proofs of theorems 2 and 3, in Appendix A, shows that the
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resistance of any device shows more sensitivity to magnetic BE
field as the leads on the device are made larger and the in- 30
sulating arcs along the device boundary become smaller. S % =
For theorem 2, these results can be generalized to the cast T 20F
of devices whose conductivity tensors vary as a function of o 15E
position, but remain isotropic, and they are proven in Appen- g
dix A in this form. The factorsr,(B) must be generalized to 5 E
take on their minimum value over any region in the device, 0 E
and the inequality of theorem 2 cannot become an equality, if
there are different values far,(B) in different regions of 5T T
the device. Even in the case of anisotropic conductivity ten- S 4 InAs —
sors, theorem 2 generalizes to yield an upper bound on the T ;5 J
resistance of two-wire devices. The bound is, however, no o
longer sharp, i.e., it may not actually be attained by any T - N
device. Furthermore, it seems likely that devices such as the 1
Corbino disk will no longer provide the best response to 2st—+——+—F—+—F—+—F—+—
magnetic field in such situations. The analysis in theorem 3 - .
does not seem to generalize at all to anisotropic conductivity —_ : Bi :
tensors. A discussion of the details of both theorems, pertain- E:Ci zor i
ing to the anisotropic case, is given at the end of Appen- = B ]
dix A. x 15 C -
In situations with varying conductivity tensors, the C ]
bounds on power dissipation are of some interest in their C A ]
own right, because they help us understand how these differ- 0 o2 04 06 08 10

ent conductivity tensors influence the behavior of the device. B(T)
For example, normally a magnetoresistor will also have a
contact resistance along the leads. As already noted in Sec. FIG. 6. Relative resistance for the best and worst geometries of
I1, this contact resistance can be modeled as a thin subregidi¢vices made from InSb, InAs, and Bi. Note that, for Bi, there is
along the leads, having a conductivity tensor which is inde-almost no difference in r_esistance at low-field strengths between the
pendent of the magnetic field. However, the addition of this?€st and worst geometries.
extra subregion can substantially change the functioii8)
andp,(B), and thus the sharpness of the above estimates dggistance, derived in Sec. Ill look like for these materials. The
magnetoresistivity. Sharper estimates can be obtained by ekesults indicate that InSb will produce a five times better
amining the proofs of these theorems. In these proofs, thgeometrical magnetoresistance than InAs, which is consis-
total power dissipation is evaluated as the sum of the poweient with the difference in mobilities between the two mate-
dissipation over each subregion. For the case of contact réials. However, InAs produces a much larger response than
sistance, this power dissipation should be very small in comBi, even though the electron mobility used for InAs is com-
parison to the total power dissipated by the magnetoresistoparable to the average in-plane electron mobility used for Bi.
If this is the case, the conductivity tensor for this subregionThe presence of multiple carrier pockets for electrons in the
can be ignored in the definition f, (B), with little effect on  Brillouin zone of Bi lowers its average geometrical magne-
the integrals and the above estimates. toresistance.
Theorem 2 states that the largest change in magnetoresis-
tance occurs when the leads of a device cover its entire
IV. SOME EXAMPLES AND DISCUSSION boundary, so that no insulating components are present. This
is the case for a Corbino disc, and it is worth noting that any

The explicit dependence of the conductivity tensode- lanar region whose leads can be placed in this way must
pends on the detailed shape of the Fermi surface of the senf:anar reg oo pla y
contain holes. This is because the region must have at least

conductor. We consider the case of o classes of SOIId%WO different boundary components held at different volt-

narrow-gap I1l-V compounds, and bismuth. The choice Of%ges, in order not to short out the leads, and the second

these materials is motivated by the fact that these are thb q i t bound a hole. Devi f this t
solids that have the highest mobilities at high electron den; oundary component must bound a hole. Devices ot this type

sities where the materials are degenerate and the contacts %?V?c:; ,'228fg“@gm-LZf'eséaQC?haengetgg t% r%gig'g%ﬁ;iﬁg
ohmic® Numerical values for these conductivity tensors are Vi Y Pl y

given in Appendix C. InSb and InAs have isotropic conduc-the [ead in the hol_e. The bounds given In the corollary still
tivity tensors. We have used room-temperature electron mdgrowde useful guidelines for assessing the responses of

bilities for these materials that are characteristic of thinp_racnca? bUt. suboptimal _de3|gns, Wh'Ch can, in tu_rn, be
films,}” not of bulk material. The tensor for Bi is isotropic, simulated using the techniques described in Appendix B.

when restricted to the plane perpendicular to the trigonal axis

(see Appendix ¢ even though it is anisotropic in all of ACKNOWLEDGMENTS
three-dimensional space. The mobility values used for Bi are
bulk values:® The authors would like to acknowledge useful conversa-

Figure 6 shows a graph of what the bounds on magnetordions with Dr. D. L. Partin and Thaddeus Schroeder.
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APPENDIX A: PROOFS OF THE THEOREMS Since this equation holds for arbitrary, andl,, it follows
Theorem 1:Let D be any device region, two or three that
dimensional, with a finite number of holépossibly nong R(-B)=R(B)".

containing any number of regions with zero resistance and
leads, and subregions with different conductivity tensors, If the device is composed of several regions with discon-
which need not be isotropic and which may vary as a functinuities in the conductivity tensors across the boundaries
tion of position. The matriR(B) for such a linear device is between regions, equatigAl) will still hold in each region,
equal to the transpose of the matRX — B). but there is no reason to assume constant potential along the
Proof: We will first prove the case where only one mate-interface between two regions. Still, both the potential and
rial is used in the device with one conductivity tense(B), the normal component of the currents will be continuous
which may vary as a function of position. The Onsager rela-across such an interface, and as integfally are performed
tion on each region, and then summed together, the interface
T terms must cancel each other. Thus E43) will still be
o(—B)=0(B) valid for such devices, and the conclusion of the theorem still
implies that the dot products of vectovs andv, obey a  follows.
transformation law We turn now to the proof of theorems 2 and 3. Recall
from Sec. Il that we are thinking of vectors in the plane as
V- (0(B)Vo)=(o(—B)Vy)- Vy. complex numbers, so that isotropic conductivity and resistiv-
, ) ) . ity tensors can be viewed as complex numbers which are
Consider now two functiong;(x,y), i=1 and 2, which are

: i T multiplied by V¢ andJ. For vectorsv; andv,, and a com-
to b.e thought of as pqtentlal functions on the interior of theglex numberz, the following identity will be used:
device region. Associated to these potential functions ar
vector currents);, satisfying the identities V1-(ZgVo) = (ZgV1) - Vo,

Ji=a(—B)Vy; and J,=0(B)Viy,. wherez, is the conjugate of,. The following lemma will
be useful in the proofs of the theorems.

Lemma 1:SupposeV2y=0, and letzy=a+ib be any
complex number. Then

In particular, we assume that

v "Ji :0,
so that V- (z,V¢)=0.
V- (4135)=Vih1- o=V iy - (0(B)V i) Proof. Using vector cross products, we can Weg¥ o as

=(0(=B)Vi1)- Vip=V - (4h2d1). aVvVy+bkx Vi,
Letting D be the device region, with bounda#sp, the di-  wherek is the unit vector in the direction, perpendicular to
vergence theorem now implies that the x-y plane. The lemma now follows from the identities

VXVy=0,
J_ 1,01J2-n=J V'(‘/’132)=J V'(lﬂle):J_ h2d1-n.
dD D D dD
(Al) V(VlXVZ):Vz(VXVl)_Vl(VXVZ)

Let us now pick two sets of current conditions for the The version of theorem 2 stated below allows different

device,l; andl,. Let y; be the potential function which regions with varying_ conducti\_/ity tensors, but it is assumed
determines the conditionis in the presence of a magnetic that each conductivity tensor is isotropic. Theorem 2 can be
field —B, with corresponding voltage conditiong,. The generalized to the case of anisotropic conductivity tensors,

potential functiony, is likewise chosen to determine the and a discu_ssion of this gengralization is given at thg end of
conditionsl, in the presence of a fielB, with voltage con- the Appendix. In order to facilitate the treatment of this more

ditions V. One then has the equations general case, lemma 2, Which is used in_ t_he proof of theore_m
2, does not assume isotropic conductivity tensors. At this
V;=R(-B)-1; and V,=R(B)-l,. (A2)  time we do not know how to generalize theorem 3 to the case
of anisotropic conductivity tensors or of tensors that vary as
On the boundary components of the device which are no function of position. A discussion of the problems involved
|ead5, the CurrentSi -n will VaniSh, and the integrals from is also given at the end of this appendix_

Eq. (A1) above will vanish on these boundary components as  |n what follows, the functions(B) will be the solution to
well. On the leads, the potential functiogs will have the

constant values given by; . Equation(Al) now implies that V-(a(B)V#(B))=0, (A4)
1T-Vi=11-V,. (A3)  satisfying given boundary conditions, in the presence of the
magnetic fieldB. Noting that Eq(A4) is a special case of the
Substituting Eq(A2) into the above equation yields so-called quasiharmonic equation, the following lemma

T T gives the standard interpretation of this equation as a mini-
I2-R(=B)-1;=11-R(B)- 5. mization problem, as stated, e.g., in Chapter 10.5 of Ref. 19.
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The interpretation is of particular interest wh&ns=0, and In cases where different regions have different conductiv-
lemma 2 is stated only for this case. ity tensors, the divergence theorem will contain boundary
Lemma 2:Let D be any planar device region, containing terms along the interfaces between regions of the form

regions with zero resistance and leads, and subregions with
different conductivity tensors, which need not be isotropic
and may vary as a function of position. Define boundary
conditions by specifying either a fixed voltage, or zero total
current on each lead and shorting bar of the device. The
#(0) minimizes

f go(O)Vw(O)-n=ng(0)~n-

Both ¢ and ¢, and henceg, will be continuous across the

interface, and so will the current terd{0)-n, so that these

interface terms will all cancel, and the lemma still holds.

Theorem 2:Let D be any planar device region with a
J’D(U(O)V )V finite number of holegpossibly nong containing any num-
ber of regions with zero resistance and leads, and subregions

over all functionsy, continuously differentiable on the inte- with different isotropic conductivity tensors, which may vary

rior of D, continuous on the boundary &, and satisfying as a function of position, and define boundary conditions by

the same boundary conditions &) on the leads oD. No specifying either a fixed voltage or zero current conditions

conditions at all are imposed on the functianslong insu-  on the leads and regions with zero resistance. Let

lating arcs on the boundary. The mattix0) may vary as a

function of position in each subregion, and may have discon- o1(B) = min{ Uxx(B)]

tinuities across the boundaries between regions. ! o(0) |’

Proof: Suppose first that the device is composed of only S o )
one region, so that the matriX0) has no discontinuities. Let whert_a the m|n|r‘_n|zat|on is over the conductivity tensors in
¢ satisfy the voltage conditions d, and letg= o — (0), the different regions of the device. Then
so thate=¢(0)+g. Defining the operator

VTI(B)=0(B)VTI(0).

E(¢1a¢2):f (a(0)V y)-(Vby), If' only one constant conductivity tensor appears in the de-
D vice, and the boundary of the device contains only leads and
no insulating components, then the inequality becomes an
equality. This conclusion holds when there are regions with
zero resistance inside the device.

fD(U(O)V@-V¢=E(t//(0),l/f(0))+E(g,g) Proof:

it follows that

+2E[g,4(0)]. VTI(B)= LDw(B)J(B)ﬂ: vaw(B)-J(B)

Since the symmetric matrig(0) must have positive eigen-
values, it is not difficult to show that, for any functiof

E(¢,4)=0

and, to complete the proof, it suffices to show that the las
term on the right side of the above expression vanished!
From Eq.(A4) and the Onsager relation, it follows that

V-(ga(0)Vy(0))=0(0)Vg- Vi(0),

and the divergence theorem implies that

- | rcosalivue)IP (a0

Yvhere o(B)=re'® Noting thatr cos@)=o,(B), lemma 2
ow implies that

vTI(B>=fDaxx(B)IIW(B)lI2

zal(B)fD(U(O)Vlﬁ(B))'Vlﬂ(B)

fDo(O)Vng(O):LDgo(O)Vw(O)n, (A5)
=0,(8) | o(OITUOIP=0uBVTI(0).
wheredD is the boundary oD, andn is the outward normal D

vector field along the boundary. By assumpti@=0 on  This demonstrates the inequality.
each lead where voltage is specified, and, on leads with the Suppose now that the same conductivity tensor applies

zero current conditiong is still constant, so that throughout the device. We will show that, when the bound-
ary contains no insulating arcs, the inequality becomes an
f 90(0)V¢(0)-n=ng(O)-n=0, equality:

where the integral is taken over the entire lead. Furthermore\m(B):f #(0)J(B)- n:f V4(0)-J(B)
on insulating parts of the boundaryg;(0)V ¢(0)-n=0. It D D

then follows that the integral in EA5) must vanish, and

the lemma is proven in the case wher@®) has no disconti- :f V(B)- (o(—B)V(0))
nuities. D
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' ~
=JD¢(B)(U(—B)V¢(0))-n using lemma 1
J!

=5 #(B)(o(=B)V(0))-n

) #(B)(a(=B)V#(0))-n,
2

wheredD has been broken up into two different components
the leaddD; and the insulating par®,. On the leads of the (ii)
device Vi{0) points in the same direction as so that one E
has

o(—B)Vi¢(0)-n=r coda)Vi(0)-n=0(B)V(0)-n
=0(B)V¢(0)-n=0y(B)o(0)Vy(0)-n

=041(B)J(0)-n, FIG. 7. The different classes of closed loops in a device region.
Either the loop bounds a region, shaded a8)iror the boundary of
the region is given as the union of the closed loop with some holes
in the region, as shown ifii).

implying that

f $(B)(a(~B)V(0))-n=01(B)VTI(0). )
D1 closed path, and belongs to the tyfi® paths, where the
It now follows that, if there are no insulating boundary com- SubregionC is infinitely thin and is mapped entirely onto the

ponents, the integral ovéd, vanishes and the inequality of Poundary.

the theorem becomes an equality. This completes the proof N c@se(i), since V-J(B)=V-J(0)=0, the divergence
of theorem 2. theorem implies that

Lemma 3:Let D be any planar device region, containing

regions with zero resistance and leads, and assume a constant _ _ _ _
isotropic conductivity tensor throughoDt Define boundary dc(‘](B) 3(0))-n= CV'(‘](B) J4(0))=0.
conditions by specifying fixed total currentshrough each

of the leads of the device. Then which is the desired conclusion.

In case(ii) the divergence theorem again shows that
po<0>||J<B)||2> po<0>||J<0>||2,
| a®-a0p-n-o,
where the boundary conditions on the leads are held constant aC
and only the magnetic field is allowed to vary.

Proof. Because the resistivity is isotropic, the Onsagef0 the integral over the given closed curve must vanish once
relation implies thatp(0) reduces to scalar multiplication. We show that the integral over the boundary of every hole in
The factorp(0) appearing in the integrals is constant and carthe regionD vanishes. The boundary of any such hole con-
be ignored. To prove the lemma, we must define a functiorfists of some set of lead3; joined by some set of insulating

arcs, C,. Along the insulating arcs, botlI(B)-n and

*(x.y) f(x,w 3(B)—3(0)) J(0)-n are zero, so the integral ovéX, vanishes. Since
g X,y = —_ . n’
(X0.Yo0)

where the integral is taken over any pathDnbetween the f J(B)-n
fixed base pointXg,yo) and the pointx,y). To make sense ©

of this definition, one must show that the integral is indepen-_ . :
dent of which path irD we choose. This will follow if we Is just the total current flowing through the leads(lp, and

show that the integral over any closed path, i.e., with thethIS total current is, by assumption, the same J(B) and

. . . J(0), the integral oveC; vanishes also, and we have shown
same starting and end points, must be zero. A rigoroug. S .
. . . . ; at the functiong™ is well defined.
method for doing calculations like this, using a homology We note that
basis, can be found in Ref. 20, Chap. 4. The main ideas are
given as follows. ) )

In general, the closed paths I fall into two different *(x :f g *-dx=f Y BY=3(0))-n
classes, as depicted in Fig. 7. EitliBrthe closed path is the " (x.y) (X0:Yo) g (xo,yo)( (B)=3(0)-n,
boundary of some subregidhin D (shaded in Fig. ) or (ii)
some subregiol in D is bounded by the union of the given wheren=—idx, i.e., the outward normal is just the unit
closed path with the boundaries of some of the holes in théangent vector to the curve, rotated clockwise by 90°. From
region D. Note that the boundary of a hole D is also a this it follows that
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Vg*=i(J(B)—-J(0)).
Returning to the proof of the lemma, we write
J(B)=3(0)+((B)—J(0)),

so that

[ 131 | o+ lae) -0 P
D D

+2(J3(B)—J3(0))-J(0)],

so we must show that

fD(J(B)—J(O))J(O):fD[i(J(B)—J(O))]~[iJ(0)]=0-
(A7)
But, again, sincev - (iJ(0))=0, one finds that

V-[g*(i3(0)]=Vg* - (iJ(0)),

and the divergence theorem shows that

f[i(J(B)—J(O))]'[iJ(O)Ff g*(i3(0))-n
D dD
=J g*J(0)-(—in)
dD

=J g*3(0)- (—dx).
dD

Let C be one of the connected componentsibf, i.e.,C is
either the boundary of one of the holeshor C is the
outside boundary ob. Again, we can writeC as the union
of C; andC,, whereC, are the leads an@, are the insu-
lating segments which join them. The produd¢€0)- dx will
be zero onC,, whereas orC,

J(0)-dx=a(0)V (0) - dx=0(0)d(0),

so that

fg*J(O)-(—dXF—f g*o(0)dy(0).
C C

Sinced#(0)=0 on C,, if we show thatg* is constant on
C,, we can pull it andr(0) out of the integral, and since we
will be integratingd(0) around a closed loop, the result
will be zero, implying that the integral in EGA7) vanishes.
To show thaig* is constant orC,, note that)(B)-n and
J(0)-n vanish onC,, so that the integrand in the definition
of g* vanishes orC,. Thusg* must be constant on each
connected component @f,. All that remains is to show that
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boundary conditions by specifying current conditions on
each lead and region with zero resistance of the device. Let

pxx(B)
p(0) ~

p1(B)=
Then
V(B)TI=p,(B)V(0)I.
Proof: Writing p(B)=re'® andp(0)=r,, one has
V§(B)-I(B)=(p(B)J(B))-I(B)=r cod a)||I(B)||?

= BII(B)IP=pa(B)p(0)[|I(B).

From lemma 3 it follows that

VB)TI=py(B) [ p(138)IP=pu(B) | po)la0)IP

=p1(B)V(0)TI.

This completes the proof of theorem 3.

As already mentioned, it is possible to generalize theorem
2 to situations where the conductivity tensor is not necessar-
ily isotropic. The proof already given does not use the iso-
tropic property until Eq(A6). At this point, if the conduc-
tivity tensor is anisotropic, the factar cos() will vary
according to the direction of the potential gradient. It will,
however, always be larger than

min  {a(B)v-v},
[IVll=1.e(B)

where the minimization is over all unit tangent vecterand
over all the conductivity tensors in the different regions of
the device. By defining

min
(IVl|=1,0(B)

o1(B)= [”(B)V'V].

ag(0)v-v
the inequality
VTI(B)=04(B)VTI(0)

will still hold. It is, however, no longer clear that this in-
equality ever becomes an equality, and, in particular, it
seems likely that device configurations such as the Corbino
disk, having no insulating boundary components, may no
longer have the best possible response curve. In particular, if
a very thin rectangular device with long leads is designed so
that current flows mostly in the directiom in which the
minimum in the definition ofa;(B) is attained, the resis-
tance at field strengtB should be higher than that of the

g* will take the same value on two different connected com-annular Corbino disk, in which substantial amounts of cur-

ponents ofC, which are separated by a lead. But the differ-

ence in the values @* on the end points of this lead is just
the difference in currents fromd(B) and J(0) flowing

rent will be flowing in directions other than
Such generalizations of theorem 3 do not, at this time,
seem possible. The difficulty occurs already in lemma 3,

through the lead, and this difference is zero by assumptionwhose proof requires tha& - (0(0)J(B))=0. If p(0) is an-

Thusg* is constant orC, and the proof is complete.

isotropic, or even ifp(0) varies as a function of position, this

Theorem 3:For the same device region as in theorem 2,may not be the case, and we do not know if lemma 3 remains
assume a constant, isotropic conductivity tensor, and definieue in this generality.
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APPENDIX B: RESISTANCE MATRIX _ -V
FOR A THREE-LEAD DEVICE V=0 ¥= max A4

e

In this appendix we will outline how to calculate the re-
sistance matribR(B) for the three-wire device discussed in
Sec. lll assuming an isotropic conductivity tensor. The meth-
ods are based on conformal mapping techniques, as de®
scribed in Refs. 10 and 20. To calcul&éB), it suffices to
calculate the current$(B) associated to any set of three
linearly independent voltage conditioNg, j=1, 2, and 3.

We will take V; to specify a voltage of 1 on leadand a
voltage of zero on the other two leads. Since the calculations
for all three voltage conditions are basically the same, we
will just do the calculation foV; .

The solution whenB=0 is obtained by constructing a ®
conformal mappingv(z) from the device region pictured in
Fig. 4(a), thought of as lying in the plane, to the region
pictured in Fig. 8a), lying in thew plane. Both the real and
the imaginary parts of the functiow(z) will be harmonic
functions, and we writev=s(z) +i7(2). In Ref. 10 it was
shown thaty(z) is, in fact, the desired potential function H
whenB=0. Suppose now that(B)=re'?, for somer anda ©
and thatw(z,B) is a conformal mapping from the device
region in Fig. 4a) to the region depicted in Fig.(8). Then, Uk -1
writing w(z,B)=#(z,B) +in(z,B), ¢(z,B) is the potential
functlon when the magr_1et|c field is given Byt was further conformably onto the regions shown (@ and(b). In (a), the real
shown in Ref. 21 that, iz andz, are the end points of any part of the mapping gives the potential when no magnetic field is
lead in Fig. 4a), say lead, then present. In(b) the real part of the mapping gives the potential when
the magnetic field deflects the current through an amgl8oth
mappings are obtained by factoring through the upper half-gtgne
shown in(c). This reduces the problem of finding the potential to
that of finding the parameterskl/—Kk,, ko, andk,.

-1/k

ky ko k, 1 1/k

FIG. 8. The three-lead device shown in Figajican be mapped

|77(21,B)—77(Zo,|3)|:U Vi(z,B)-n

where the integral is taken over lepdSinceJ=re'*- V , it

follows that the total current through the lead is given by ping from the region in Fig. @) to the upper half-planél,

as shown in Fig. &), andg({¢) is a conformal mapping from

Ijzdf J-n=+d|79(z;,B)— 5(z5,B)|r cog a), H to the region in Fig. ). As we shall see, it is not nec-
essary to know the exact form &{z) in order to calculate
whered is the thickness of the planar device. the current-voltage relations we are seeking. A specific form

The functionw(z,B) can be expressed as the compositionfor g({) can be given in terms of definite integrals via the
of two functions,g(f(z)), wheref(z) is a conformal map- Schwarz-Christoffel formuldsee Ref. 2D

({—ko)dg
{= 1K) (L=kp) ] M OL(L= 1) (& + 1K) (LK) 27

4

The real line in the, plane is mapped to the boundary of the  All that remains is to determine the as yet unknown pa-
region in Fig. &b), and the corners of this region are the rameters ofZ,, k, kg, ki, andk,. Note that the function
images of the points- 1k, —1, —kq, ko, K,, 1, and 1k, as  f(2) is independent oB, but the functiong(¢) is not. The
shown in Fig. &). The values o%,, k, ko, k;, andk, must  values* 1k, k;, andk, are the images of the end points of

still be determined. leads under the maf{z). As such, their values will be the
The currents through the three leads in the device aréame for any value dB. The valuesZ, andko, in contrast,
given by will vary with B. In particular,k, determines the maximum
value of the potential function on the boundary between the
I,(a)=d|9(—kq,a)— n(—1,a)|r cof a), leads 2 and 3, and this dependsBiThe values for all these
parameters can be determined from a set of three physical
I3(a@)=d|7(1,a)— n(ky,a)|r coq a), parameters for the device performanc@®at0 with the pre-

scribed voltage conditions, namely, the curreitsand I 5,
li(a@)=—1(a)—15(a). (B1) and the maximum valu¥ ., of the potential between leads
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TABLE |. Room-temperature electron and hole densities and mobilities for InSb, InAs, and Bi, as used
for calculating the results in Fig. 6. For Bi, the quantity in the rpwis w,;, and that in the rowu, it

IS ,LLpl.
Units InSb InAs Bi
n cm 3 5.21x 1016 3.29< 10'° (Ref. 17) 2.45<10'® (Ref. 18
(Ref. 17
M eV ist 56 100 (Ref. 17 22 000(Ref. 17 32000 (Ref. 18
p cm 2.54x 10 (Ref. 17 n.a. 2.45%10'® (Ref. 18
Kp eV st 8000 (Ref. 22 n.a. 6000(Ref. 18
2 and 3. Noting that the Onsager relations imply théd) APPENDIX C: CONDUCTIVITY TENSORS
has no imaginary part, one then has the equations FOR InSb, InAs, AND Bi
_ _ e The narrow-gap IlI-V compounds that are most useful in
12(0)=d]7(~ky,0) = 7(=1,0]o(0), galvanomagnetic devices are InSb and InAs, because of their
B high electron mobilities. Since we considetype doped ma-
13(0)=d|7(1,0— 7(~kz,0[a(0), terial, the electron properties matter most. The electron
and Fermi surfaces are spheres centered around'theint (the
centej of the Brillouin zone, and dispersion relation is char-
V= | #(Ko,0) — (—k1,0)|. acterized by one isotropic effective mas$. It is reasonable
to assume that the electron relaxation time and hence the
In addition, there are the voltage conditions electron mobility(u) are also isotropic. The conductivity in
zero field is
J(—1K,0)—y(—1,0=V,;=1,
o(0)=nqu,
#(K2,0) = h(—Kky,00=V,—V3=0. wheren is the density of the carrier angl is the electron

parge. In the presence of a magnetic fiBlgherpendicular
0 the x-y plane and of magnitudB, the current density
due to an electric field, with no z component, is

These five equations can be used to determine the values f
of Zy, k, Kg, kq, andk, atB=0. To determine the valueg,
andk, at some other value d, the potential equations

JXB
(= 1k, a)— p(—La)=V, =1, J=0a(0) 8+W . (CD
P(ky,a)—p(—ky,@)=V,—V3=0 If we compare this equation to that defining the magnetocon-

ductivity tensor, namely,
are again used.

The integrals in the definition of({) were numerically J=0(B)e,
evaluated. Using EqB1), the currents can then be evalu-

ated. The scale factarcos(x) is material dependent, but, for where

materials such as InSb or InAs, where the current is carried Oy — Oy
primarily by one type of charge carriésee Appendix @ r U(B):[U o y},
can be expressed as a function af Equation(C1) from Xy xx
Appendix C implies that then

[13]P=0(0)3-£=0(0)3- V=3[l V 4| o(0) cod ) . L

14 u’B?’
wheree is the electric field, so that
Oxy=F uBoyy,
r=o(0)coq ). ) o . ,

where the sign choice iwr,, is negative when the charge
Since the currents have been determined for unit voltage atarriers are electrons, and positive when the charge carriers
lead 1, the quantities in equatioiBl) carry the units of are holes.
current per volt, determined as a function of the angl&@he In the following example, we consider the InSb and InAs
scale factord (the thickness of the devigend o(0) (the  thin-film samples described by KataoKarather than bulk
real-valued conductivity when no magnetic field is presentInSb and InAs which have much higher mobilities, because
multiply together to have precisely these units. Dividing Eq.thin-film material is more likely to be used in planar galva-
(B1) by these two scale factors, one arrives at the dimensiomomagnetic devices. Their electron densitgnd mobility
less quantity which is plotted in Figs.l®} and 4c). The at 300 K have been estimated from Fig. 17 of Ref. 17 using
valuesk=0.5, k;=—0.1, andk,=0.9 were used to do the the low-field one-carrier approximations=1/Ryq and w
calculations. =0¢(0)/ng. Values forn and u are given in Table I.
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For InSb at 300 K the contributions of the light and heavy The calculation of the conductivity tensor elements is
holes must be estimated. The holes also occupy Fermi sudone in the same way as for the 1llI-V compounds. We limit
faces centered at tHépoint of the Brillouin zone. Since they our example to the case where the magnetic field is aligned
are minority carriers in the material we consider, and sincealong the trigonal axis. The magnetoconductivity tensor ele-
their densities and mobilities are low, we treat the hole transments for the single hole ellipsoid, which is isotropic in the
port properties as isotropic. The relevant densities of staté—2 plane, then becorhe
can be calculated from the effective masSeknowing the
electron density, one can estimate the location of the Fermi

level, the hole Fermi energy, and the densities of light and o UPup
heavy holesp, and py,, respectively. The density of light Uxx:—1+leBz,
P

holes is negligible; the density of heavy holes is given in
Table I. The estimated hole mobility, also given in Table I, is
taken from Ref. 22.

The Fermi surfaces of the electrons and holes in bismuth

are more complicatéd because of the low symmetry of the The anisotropic el_ectron ellipses have to be treatec_i each
material. We use the trigonal axis system notation, with in-Separately. As there is threefold symmetry along the trigonal

dex 1 along the binary axis, index 2 along the bisectrix, and¥ids, there are three possiplg choices of coordinate sets, ro-
index 3 along the trigonal axis. Holes have ellipsoidal Fermit2ted by 120°. The conductivity tensor elements for all three
surfaces centered at the point of the Brillouin zone(the  €l€ctron pockets then can be added to Bive

intercept of the zone with the trigonal axighese are ellip-

soids of revolution around the trigonal axis. The hole density an(mng+ o)

is labeledp. Electrons fill three ellipsoids centered at the UQX=21+—82),

points, rotated 120° from each other. In the trigonal axis (1 Kn1bnz

system, we can describe one of these ellipsoids as follows:

the shortest axis of the ellipsoids is along the binéty — QN fnoB

direction. The longest axis of the electron Fermi surface is Ugy:ﬁ-

tilted by angleg,=7° away from the bisectrix2) toward Mn1kn2
the trigonal(3) axis. The total electron density, summed over ) ) "
all three ellipsoids, is labeleal The mobility tensors of elec- ASSUMIng a ratiqun; / a2 =50,
trons u, and holesu, have the same symmetry as the effec-

tive mass tensors: o 0.51g Ny
ug O 0 X 1+0.02u5,B%’
mn= 0 Mn2  Mna
O Mg Mn3 . —0.02ynu},B
and %y~ 14 0.02u7,B2"
0 0
_ Mgl P 0 The values fom, w1, p, and up, that are used in the con-
Hp 0 C;)l ductivity tensors above, and in Sec. IV and Fig. 6 were taken
Hp3 from Ref. 18 and are summarized in Table I. The total con-

Values for the tensor components are given, between 4.2 ardlictivity tensor is now given as
17 K, in Ref. 24, and from 77 to 300 K values for all com-
ponents bufu,; are reported in Ref. 18. o=c"+oP.
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