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Linear geometrical magnetoresistance effect: Influence of geometry and material composition

Daniel R. Baker and Joseph P. Heremans
Department of Physics and Physical Chemistry, General Motors Research and Development Center, Warren, Michigan 48090

~Received 8 December 1998!

This work reports theorems on geometrical magnetoresistance effects in simply or multiply connected
surfaces. We consider planar or three-dimensional device geometries, and assume that the current/voltage
relations are linear. It is shown that the resistance of any two-wire device must be an even function of the
magnetic field. We further calculate the magnitude of the highest and lowest second-order geometrical mag-
netoresistance of a planar two-wire device, for given isotropic material parameters. The largest change in
magnetoresistance occurs when the boundaries of the device contain only electrically conducting leads and no
insulating components. When the Fermi surface and the mobility tensor are isotropic, as is the case forn-type
InAs and InSb, the magnetoresistance obtained in the Corbino geometry is the largest possible, but this
conclusion does not generalize to materials with anisotropic conductivity tensors. The presence of multiple
ellipsoidal carrier pockets in Bi also explains why the geometrical magnetoresistance effects are much smaller
in the trigonal plane of Bi than in InAs, even though these materials have similar mobilities at room tempera-
ture, and the conductivity of Bi is isotropic in that plane.@S0163-1829~99!15421-3#
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I. INTRODUCTION

Semiconductor magnetoresistors have been known
decades,1 and are commonly used in magnetic position se
ing applications.2 Most of these devices make use of elect
cally conducting inhomogeneities in or on top of a hig
mobility semiconductor. For instance, Weiss1 described InSb
magnetoresistors created by precipitating needles of met
NiSb inside an InSb host material. Planar thin-film InS
magnetoresistors are commercially available.2 They consist
of an InSb film grown on an insulating substrate and etc
in the shape of a mesa. Metallic ‘‘shorting bars’’ are th
deposited on top of the mesa at select locations.2 The pres-
ence of inhomogeneities have also been found to increas
magnetoresistance of Hg12xCdxTe ~Ref. 3! over the intrinsic
magnetoresistance in these materials,4 which is already very
large due to the very high electron mobility in these mate
als and the presence of several carrier types. Inhomogene
in Bi have been studied5 and modeled,6 but do not necessar
ily result in a large geometrical magnetoresistance.5 Inhomo-
geneities have even been suspected to cause the remar
linear magnetoresistances observed in Ag21dTe and
Ag21dSe.7 The problem of geometrical magnetoresistan
due to inhomogeneities in semiconductors thus has a
history.8,9

The geometrical magnetoresistance arises by virtue of
fact that a magnetic field exerts a Lorenz force on mov
charged particles, perpendicular to their direction of moti
Such forces change the direction of current flow, as depic
for the rectangular semiconductor device in Fig. 1~a!. If ei-
ther the positive or the negative charge carriers dominat
the current, the change in current flow will cause cha
buildup on the edge of the device pictured in Fig. 1~a!, until
the electric field induced by the charge buildup negates
force from the magnetic field. Figure 2~a! shows the curren
flow lines, along with the corresponding equipotential lin
that result from this process. A side effect of this is tha
potential difference, called the Hall potential, develops
PRB 590163-1829/99/59~21!/13927~16!/$15.00
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tween the two edges. The Hall potential always countera
the effects of the Lorenz force. The change in resistanc
increased by shorting out the Hall potential, allowing t
current between the leads to develop a transverse compo
due to the magnetic field. Two different technologies exist
do this. One method takes advantage of surface recomb
tion, if the active region of the device is an intrinsic sem
conductor. This allows the positive and negative carri
shown in Fig. 1~a! to cancel each other out by recombinin
at the device edge, creating a transverse current. This re
in a class of devices called magnetodiodes,2 which have
magnetic-field-dependent carrier densities and nonlin
current-voltage characteristics. The other method consist
inserting inhomogeneities, such as ‘‘shorting bars’’ of high
conductive material in the device, to short out the Hall p
tential as shown in Fig. 1~b!. In this paper we label ‘‘shorting
bars’’ regions in the device with zero resistance to which
electrical contact is made; regions to which contact is m
are ‘‘leads.’’ Hypothetically, the most effective geometry
which the Hall voltage is shorted is the Corbino geome
~Fig. 3!. If the contacts are Ohmic, these devices rem
purely resistive, with linear current-voltage characteristi
This paper will solely treat such linear devices. It assum
that all transport is diffusive, and ignores ballistic effec
Bergman and Strelniker9 numerically modeled the influenc
of various electrically conducting and nonconducting inc
sions into semiconducting material, using a full thre
dimensional model. In contrast, this paper will focus mos
on planar situations, but we will develop general theorem
The goal of this paper is to answer the following questio

~1! Given a certain semiconductor material system, w
is the optimal device geometry for a planar linear magneto
sistor? In particular, can one develop geometries that g
more change of resistance in a magnetic field than
Corbino geometry?

~2! Is it at all possible to build a linear two-wire devic
with an asymmetric resistance curve? If not, why not? W
13 927 ©1999 The American Physical Society
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distinguishes the two-wire case from the three-wire ca
where an asymmetric response is known to be possible?

~3! How does the choice of materials from which th
magnetoresistor is made affect its response to magn
field? For example, why does the semimetal Bi, which h
electron mobilities close to those of InAs, give a mu
smaller geometrical magnetoresistance than InAs?

These questions may seem obvious at first glance. H
ever, most analytical treatments of the current distribution
a slab of semiconductor in the presence of a perpendic
magnetic field used conformal mapping,10 and are thus no
obviously valid for multiply connected geometries, for thre
dimensional geometries, or for devices with inhomogene
material composition. The answer to question~2! starts with
the observation that the resistanceR of a rectangular magne
toresistor, made from a material such as indium antimon
~InSb!, depends on the magnetic fieldB according to the
equationR(B)5R(2B). This fact follows easily from the
reflection symmetry of the rectangle about an axis through
leads, and the isotropy of the conductivity tensor for In
~see Fig. 2!. This implies that the resistor will have no firs
order response to small changes in magnetic field atB50. It
may thus seem desirable to try to disturb the symmetry of
rectangular shape in the hopes of producing an asymm
resistance curve with a nonvanishing first derivative
B50. The possibility of building in asymmetry is furthe
motivated by the fact that it is possible to build three-le
linear devices, measuring Hall potential or transverse c
rents, which in fact do have first-order responses atB50. A

FIG. 1. Positive and negative charge-carrier currents movin
a semiconductor in the presence of a magnetic field. If these car
recombine at the right edge of the device, as shown in~a!, a current,
transverse to the direction between the leads at either end o
device, will flow. When one type of charge carrier is domina
shorting bars can be used, as shown in~b!, to create these transvers
currents, which, in turn, increase the resistance of the device.
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number of suggestions have been made over the years
disturbing this geometric symmetry. The simplest of the
was to build a trapezoidal device, thereby eliminating t
reflection symmetry of the rectangle. More complicated s
gestions involve multiply connected geometries, includi
device designs with holes placed asymmetrically, w
‘‘shorting bars’’ or patches of material with zero resistan
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FIG. 2. Current and equipotential lines for a rectangular, tw
lead device in a magnetic field pointing out of the page~a! or into
the page~b!. Note that the transverse component of the current fl
distorts the potential on the upper and lower edges of the dev
creating a potential difference~the Hall potential! between bound-
ary points on the same vertical line. When the sign of the magn
field changes, the flow pattern is reflected, as shown in~a! and~b!,
but the total current flowing through the leads on either end rem
unchanged.

FIG. 3. A Corbino disk, an annular magnetoresistor whose
tire boundary is covered by metal leads, holding each compone
the boundary at constant potential.
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to establish asymmetric equipotential lines in the device
designs that use different materials, with different mag
toresistive properties, in different regions of the device. R
cent experimental studies11,12 on four-probe Hg12xCdxTe.
Corbino disks have shown asymmetrical responses to m
netic field. Such responses would contradict theorem 1
this work unless the device contains an element that dep
from one of the assumptions used in the present paper,
as a nonlinear element.

Under very general assumptions, two-wire linear devi
will always have resistance curves which are invariant un
sign change of the magnetic field. The property is a con
quence of a general transformation principle, which hol
not only for arbitrary device geometries and conductiv
tensors, but also for devices with more than two leads, s
as the three-wire Hall sensor or magnetotransistor.2 This
transformation principle, stated in theorem 1 of Sec. III is
turn a consequence of a relationship from nonequilibri
thermodynamics, known as the Onsager relations,13 which
describe a property of the conductivity tensor. In Appen
A, we give a proof of theorem 1, based only on the mo
equations and the Onsager relations. This proof can be
derstood as a restatement of the Onsager relations in ma
scopic terms. All that is needed to go from the tensor form
lation to the macroscopic form is the conservation of cha
and the fact that the electric field is the gradient of a poten
function. The main contribution of this result is to remind
of some practical macroscopic consequences of the Ons
relations.

The invariance under sign change of magnetic field
plies that no linear two-wire device can exhibit a first-ord
response to magnetic field. It is, however, still of interest
know how the second-order response can be maximized
particular, what effects the shape of the magnetoresistor
the configuration of its leads will have on its response. F
planar devices made of materials whose conductivity ten
are isotropic in the plane of the device, we will show that t
strongest response is obtained by a resistor whose lead
the entire boundary of the device, leaving no insulat
boundary components. An example of such a device confi
ration is the Corbino disk, shown in Fig. 3, but our resu
imply that, for a device of homogeneous material propert
any device geometry having no insulating boundary com
nents will exhibit the same sensitivity to magnetic field
the Corbino disk. All such planar shapes must, howev
contain holes. On the other end of the scale, the worst
sitivity is obtained by devices with short leads and lar
insulating components on their boundaries. These statem
are made more precise by explicit theoretical bounds for
vice response, given in terms of the intrinsic conductiv
tensor of the resistive material. One can define the geom
cal magnetoresistance as the difference between the bes
worst response curves.

The above results also provide us with a means of answ
ing question~3!, since the theoretical bounds for device r
sponse are given in terms of the conductivity tensor of
resistive material. In Sec. IV we plot the response curves
three different materials: InSb, InAs, and Bi. It can be se
that InSb has on the order of a five times better response
InAs. This effect is due to the difference in electron mobil
between InSb and InAs. It can also be seen that InAs h
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larger geometrical magnetoresistance than Bi, even tho
the average electron mobility is roughly the same in b
materials, and the conductivity tensor of Bi is isotropic in t
trigonal plane. This effect is due to the presence of multi
carrier pockets in the electron Fermi surface of Bi.

Section II of this paper presents the model equations
the linear devices. Section III gives the main results j
discussed, and Sec. IV contains some examples and dis
sion. Appendix A gives proofs of the theorems from Sec.
Appendix B describes how to use conformal mapping te
niques to calculate the response curves for some linear
vices. Appendix C gives derivations of the conductivity te
sors for InSb, InAs, and Bi.

II. THE MODEL EQUATIONS

The models to be described are two dimensional. T
device to be modeled will be assumed to lie in thex-y plane,
with a magnetic fieldB perpendicular to the plane of th
device. As such,B is characterized by the scalar quantityB,
which is its component in thez direction.

Under the assumption that the carrier densities remain
dependent of both position and magnetic field, the vec
currentJ in the device is related to the gradient of the p
tential“c via a conductivity tensors, such that

J5s•“c. ~2.1!

The matrix notation used here assumes that bothJ and“c
are column vectors, with“c5(cx ,cy)

T, where cx
5]c/]x, cy5]c/]y, and the superscriptT denotes trans-
pose. The matrixs will be a function of magnetic fieldB,
such that

s~2B!5s~B!T.

This is the tensor form of the Onsager relations.13

The currentJ can be obtained from“c by first multiply-
ing “c by a scale factorr and then rotating it through som
angle a. In general, the values ofr and a depend on the
direction of the vector“c, and in this case the conductivit
tensor is anisotropic. However, in many situations, the val
of r and a are independent of the direction of“c, a fact
which will simplify many of our calculations. If this is so
the conductivity tensor is referred to as isotropic, and ta
the form

s5Fsxx

sxy

2sxy

sxx
G .

In what follows, it will be useful to identify the vectors~x,y!
in the plane with complex numbersw5x1 iy , so that“c
5cx1 icy andJ5J11 iJ2 . If the conductivity tensor is iso-
tropic, one can writes5sxx1 isxy , so that the matrix mul-
tiplication in Eq.~2.1! can be interpreted as a multiplicatio
of the two complex numberss and“c. The complex num-
ber s now has the formreia, and the Onsager relation ca
now be written as

s~2B!5s~B!.

Assuming that there are two leads placed on the device
a fashion shown in Fig. 2, we would like to calculate t
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13 930 PRB 59DANIEL R. BAKER AND JOSEPH P. HEREMANS
resistanceV/I of the device, as a function of the magne
field B. To do this, we solve the partial differential equatio

“•„s~B!“c…50, ~2.2!

subject to the boundary conditions,

c5V on the left lead,

c50 on the right lead,

J•n50 on the rest of the boundary,

wheren is a normal vector to the boundary at the point
question. The total current through either lead is then gi
as

I 5E J•n,

where the integral is taken over the entire lead.
If the conductivity tensor is isotropic, lemma 1 of Appe

dix A implies that Eq.~2.2! is equivalent to Laplace’s equa
tion, and the potential is a harmonic function on the inter
of the device region.

The model generalizes to multilead devices having an
bitrary planar geometry. Assume that the device occup
some bounded subsetD of the plane, whose boundary
given by smooth curves, possibly with a finite number
corners. This boundary is divided up into segments wh
are leads and segments which are insulating arcs. The l
can be thought of as infinitely conducting metal strips plac
along a segment of the boundary, and holding that en
boundary segment at a constant potential. Along the insu
ing arcs, the normal component to the current must alw
vanish. As such, the boundary conditionJ•n50 specifies on
insulating arcs that“c makes either an angle2a or an angle
p2a to the boundary. The device regionD may have a
finite number of holes in it, and leads may be placed on p
or all of the boundaries of these holes.

To maximize the geometrical magnetoresistance it is u
ful to include shorting bars in the device as shown in F
1~b!, i.e., metal bars placed along the interior of the device
prevent the buildup of Hall potential in the presence of m
netic fields. Such shorting bars can be thought of as
shaped holes in the device region. The entire hole is fi
with metal, so that the entire boundary of the hole becom
one lead, held at a constant potential.

We will also consider devices in whichD is divided up
into subregions, each having its own conductivity tensor
general, the conductivity tensor in each subregion may v
continuously, but across the boundary between subreg
the conductivity tensor is allowed to jump discontinuous
symbolizing a discrete change in the materials in the t
regions. This boundary may be a shorting bar, in which c
a constant voltage condition will be placed along the int
face. If no shorting bar is used, we will require that both t
potential and the normal component to the current be c
tinuous along the interface between regions. It should
noted that, in general, when two regions with different co
ductivity tensors come in contact with each other, diffusi
currents and charge buildup will occur along the interfa
causing the model equations to become nonlinear. There
.
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however, exceptions to this. These include Ohmic me
semiconductor interfaces, in particular, situations where i
desirable to model shorting bars as having a small, fin
resistance, and it will also be convenient to model line
contact resistances which occur along metal leads as
highly resistant layers of material, surrounding the lead, h
ing no sensitivity to magnetic field. Such models are also
use for Ohmic semiconductor-semiconductor contacts.

Boundary conditions are specified for the device by g
ing either current or voltage conditions along each lead
voltage condition specifies a constant potentialV along the
entire lead. A current condition also requires that the pot
tial along the lead remain constant, but its value is de
mined by the equation

I 5E J•n,

whereI is the total current flowing through the lead, and t
integral is taken over the entire lead. Note that, although
general, current will be flowing through shorting bars in t
device, the current flows in one side of the slit and out
other side, so that the total current is always zero. T
shorting bars are to be treated as leads on which zero cu
conditions are imposed.

The inverse to the conductivity tensor is the resistiv
tensor

r~B!5s~B!21,

so that one has

“c5rJ.

When the conductivity tensor is isotropic, so is the resistiv
tensor, and we will write

r5rxx1 irxy ,

where

rxx5
sxx

usu2
and rxy5

2sxy

usu2 .

Of the theorems stated in Sec. III, theorem 1 is valid in
more general context of three-dimensional device geo
etries. In such situations, the conductivity tensor is a 333
matrix, still satisfying the Onsager relations. Equation~2.2!,
and the boundary conditions given below it, are still valid

III. MAIN RESULTS

The theorems stated in this section are proven in App
dix A. Consider the first-order response to the magnetic fi
of the rectangular three-wire device shown in Fig. 4~a!. Both
of the leads on one side of the device are grounded, and
lead on the opposite side is held at a constant voltage. N
that the two leads on one side are placed asymmetrically
as to destroy the symmetry which previously existed in
two-wire device. Appendix B shows how to calculate t
current curves through each of the leads, as a function of
anglea of deflection due to the magnetic field, and the r
sults are depicted in Fig. 4~b!. It is apparent that both of the
two grounded leads have asymmetric current responses.
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FIG. 4. ~a! A three-lead magnetoresistor need not have current curves which are invariant under sign change of the magnetic fie
two of the leads are grounded, these leads can be thought of as being connected by a metal bridge, represented by the dotted
resulting device can be thought of as a two-lead device with a hole in it. Part of the hole is bounded by semiconductor material, an
it is bounded by the metal bridge. For materials such as InSb or InAs,~b! shows plots of dimensionless quantities which are proportiona
the current curves through each of the three leads, as a function ofa/p, wherea is the angle of deflection due to magnetic field.~The
proportionality constants are material dependent, and are described at the end of Appendix B.! Although each of the two grounded leads h
an asymmetric current curve, the sum of the currents, which flows through lead 1, is symmetric under sign change of the magnetic
of a. When lead 3 is set at half the voltage of lead 1, with lead 2 grounded, all three current responses become asymmetric, as sh~c!,
which again shows dimensionless quantities proportional to the current.
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further that, if any reflections of this device existed of t
type used to prove symmetry in the two-lead case, t
would be observable in the current curves for the individ
leads. For example, if it were possible to reflect the dev
onto itself, permuting the three leads so that leadi is re-
flected onto leadj, this would imply that the currentsI i(B)
5I j (2B). Since Fig. 4~b! shows that no such symmetrie
exist in the current curves, the geometric reflections can
exist either.

It is tempting to convert this device into a two-wire devi
by shorting the two leads on the one side together, as i
cated by the dotted line in Fig. 4~a!. The resulting device can
be thought of as a two-lead device with a hole in it. One p
of the hole is bounded by the metal of the shorting bar, a
the remainder of the boundary is bounded by semicondu
material. The previous arguments still show that no anal
y
l
e

ot

i-

rt
d
or
ic

reflections can demonstrate symmetry under sign reversa
the magnetic field, but the current which can be measure
now the sum of the currents in the two joined end lea
which must be equal to the current flowing through the le
on the opposite end. As one can see from Fig. 4~b!, this
current curve is symmetrical, so that somehow, in spite of
the built in asymmetries,I (B) will be equal toI (2B).

More generally, one can consider devices with arbitra
numbers of holes, regions with zero resistance built into
device in various ways to create equipotential lines, and m
terials with different magnetoresistive properties, all used
order to disturb the geometric symmetry of the device. A
though the numerical simulation of such a linear two-w
device is potentially very complicated, it turns out that it w
always have a symmetric current response, and this fact
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13 932 PRB 59DANIEL R. BAKER AND JOSEPH P. HEREMANS
tinues to be true, even if the conductivity tensors are an
tropic.

To understand why this is so, let us first assume that
device in question has an arbitrary number of leads, san
11. In this context, we will regard regions with zero res
tance built into the device as leads, on which we impos
zero current condition. Some of the leads may be placed
part, or all, of the boundaries of the holes. Note that the s
of the currents from the different leads must be zero, so
the current through the (n11)st lead is equal to minus th
sum of the currents through the firstn leads. Since we can
choose the zero potential arbitrarily, we will also assume t
the (n11)st lead is always at zero voltage. We denote
V5(V1 ,...,Vn)T an n vector of voltages which are to b
applied at each of the remainingn leads, and by I
5(I 1 ,...,I n)T the currents through these leads which res
when the voltagesV are applied. The linearity of the mode
equations implies that there is a matrixR(B), such that

V5R~B!•I ,

where, as indicated by the notation, the matrixR depends on
the magnetic fieldB.

We remark that the determination of the matrixR for a
given device involves solving the partial differential equati
~2.2! for n linearly independent sets of current boundary co
ditions and determining the voltages associated to them,
in general, this is a nontrivial undertaking. For simply co
nected device regions, conformal mapping techniques14,15,10

can produce solutions in the form of integrals which must
evaluated numerically. These techniques, as discussed in
pendix B, were used to calculate the various simulation
sults presented here.

Theorem 1:Let D be any device region, two or thre
dimensional, with a finite number of holes~possibly none!,
containing any number of regions with zero resistance
leads, and subregions with different conductivity tenso
which need not be isotropic and which may vary as a fu
tion of position. The matrixR(B) for such a linear device is
equal to the transpose of the matrixR(2B).

Remark: Unless physical symmetries are present in
device regionD, as in the case of a rectangular device, th
is no simple way to transform the current flow pattern as
ciated withB to that associated with2B. Thus, while the
above theorem is, in some sense, an integrated version o
Onsager relation, the proof given for rectangular two-le
devices does not generalize. In fact, it does not even ge
alize to the case of a rectangular device with an anisotro
conductivity tensor.

Assuming now that the voltagesV are held constant as w
vary the magnetic field, the theorem implies that

I ~2B!T
•V5I ~2B!T

•R~B!•I ~B!

5I ~B!T
•R~2B!•I ~2B!5I ~B!T

•V. ~3.1!

For a device with only two leads, one of the leads is at z
voltage, so that the vectorsI and V are one dimensional
Equation~3.1! thus implies that the current through the d
vice is invariant under the sign change of the magnetic fie
If the device in question also has regions with zero re
tance, as already noted, these regions can be treated as
on which zero current conditions are imposed. In such ca
o-
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the product of voltage and current from this lead will alwa
be zero, so that the above argument generalizes to two-
devices containing regions with zero resistance as well.

One also gains some insight into the behavior of the thr
wire device in Fig. 4~a!. If both leads on one side ar
grounded (V i50), then Eq.~3.1! only yields information
about the current flowing through the lead on the other s
and it implies that this current must be invariant to si
changes in magnetic field. On the other hand, if each of
three leads has a different voltage applied to it, one arrive
a more complicated symmetry. Assuming, say, thatV350,
one then finds that

V1I 1~B!1V2I 2~B!5V1I 1~2B!1V2I 2~2B!. ~3.2!

In general, none of the currents will respond symmetrica
to the magnetic field. Only the sum from Eq.~3.2! will have
this property. Figure 4~c! shows the current responses of t
three-wire device, when the third lead is at half the voltage
the first lead, and the second lead is grounded.

Note that the dot productI (B)TV is the power dissipated
by the resistor, in the magnetic fieldB and with the voltage
conditionsV. As such, Eq.~3.2! states that the power diss
pation under constant voltage conditions is invariant un
sign change of the magnetic field.

There are some other consequences of theorem 1 w
are worth noting. As shown in Fig. 4~c!, when each of the
leads of a three-lead device have different fixed voltag
none of the current curves will, in general, be symmet
under sign reversal of magnetic field. One way to try to ma
all the leads have different voltages is to place a resis
between the second and third lead, as shown in Fig. 5~a!.
Such configurations can be produced by appropriate ma
facturing processes, so that no extra wires must be sold
to the leads, and the result would still constitute a two-w
device. Unfortunately, the resistor will not hold the third le
at a fixed voltage, as the magnetic field varies. In fact,
configuration in Fig. 5~a! can be modeled as the device
Fig. 5~b!, where two different materials are used in the d
vice, separated by a shorting bar. The second material re
sents the resistor, and has no sensitivity to magnetic fie
This can be modeled by using a conductivity tensor with
B dependence. Theorem 1 now implies that the resistor c
figuration will also produce a response which is invaria
under sign reversal of the magnetic field. In fact, the sa
conclusion follows for any composite of different device
connected together in arbitrary ways with linear resistors

On the other hand, the above analysis becomes inval
the resistor used in Fig. 5~a! is nonlinear, for instance if it
were replaced by a diode. Since holding all three leads
different constant voltages produces an asymmetric respo
any two-wire electronic component which comes close
maintaining such conditions over the range of currents go
through it for practical values ofB will produce asymmetry
in the current curves. Although it is conceivable to desi
nonlinear devices to produce this type of response, this
proach is not further considered here.

The conclusion to be drawn from all of this is that it wi
not be possible to obtain a first-order response to magn
field from a linear two-wire device. We now turn our atte
tion to calculating the strength of the second-order respo
from such a device: in particular, how the geometry of t
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device influences this response. Our goal is to determ
what physical device configurations produce the best, a
worst, responses to magnetic field, and to derive explicit e
pressions for these responses, in terms of the conductiv
tensor of the semiconductor material, or materials, involve
We will start by assuming that only one type of materia
with an isotropic conductivity tensor, is to be used in th
device, and state the results for this case. The modificatio
to the more general situation will then be discussed.

The bounds on resistance that we seek are equivalen
bounds on the power dissipation of the device, i.e., the sca
product ITV. The results can best be proven in this form
because the power dissipation can be expressed as an inte
over the device region, whereas the resistance cannot
should, however, be remarked that the power dissipation
assumed to be small enough so that the device remain
uniform temperature. Specifically, the temperature gradie
are small enough so that they do not contribute to curre
flow in the device through a Peltier effect, or create spat
variations in the conductivity tensor. Note that, if the con
ductivity or resistivity tensor is isotropic, then the Onsag
relation implies thats~0! andr~0! have no imaginary parts in
their representation, i.e., the potential gradient will point
the same direction as the current.

Theorem 2:Let D be any planar device region with a
finite number of holes~possibly none!, containing any num-

FIG. 5. A three-lead device can be used as a two-lead device
connecting two of the leads with a resistor, as in~a!. This can be
modeled as a magnetoresistor composed of two different s
stances, as shown in~b!, where the shaded substance will have n
sensitivity to magnetic field. As such, the analysis of theorem
applies, and the device will perform invariantly under sign chan
of magnetic field.
e
d
-

ity
.

,

ns

to
lar
,
gral
It

is
at

ts
nt
l

-
r

ber of regions with zero resistance and leads, and ass
that the conductivity tensor is isotropic and constant throu
out the entire device region. Define boundary conditions
specifying either a fixed voltage or zero current conditio
on the leads and regions with zero resistance. Then

VTI ~B!>
sxx~B!

s~0!
VTI ~0!.

If the boundary of the device contains only leads and
insulating components, then the inequality becomes
equality.

Theorem 3:For the same device region as in theorem
define boundary conditions by specifying current conditio
on each lead and region with zero resistance of the dev
Then

V~B!TI>
rxx~B!

r~0!
V~0!TI .

Corollary: For a planar, linear two-wire device, having a
arbitrary geometry with a finite number of holes~possibly
none! and containing an arbitrary number of regions w
zero resistance, assume that the conductivity tensor is iso
pic and constant throughout the device region. Define

s1~B!5sxx~B!/s~0!

and

r1~B!5rxx~B!/r~0!.

Then the resistance of the device must satisfy the inequal

r1~B!R~0!<R~B!<R~0!/s1~B!.

If the boundary of the device contains only leads and
insulating parts, the upper bound onR(B) becomes an equal
ity.

Proof. Applying theorem 2 to the resistor, only two lea
will have nonzero total currents flowing through them, a
one of these leads can be assumed to be grounded. The
uctsVTI (B) thus become products of scalars, and

R~B!5V/I ~B!5V2/„VI~B!…<V2/„s1~B!VI~0!…

5R~0!/s1~B!.

Applying theorem 3 to the resistor, again, the total curre
through all but two of the leads can be assumed to be z
the productsV(B)TI have only one term in the sum, and on
has

R~B!5V~B!I /I 2>r1~B!V~0!I /I 25r1~B!R~0!.

The corollary is thus proven.
The significance of this corollary is that it determines t

maximum and minimum possible geometrical magnetore
tance in terms of the intrinsic properties of conductivity a
resistivity, and no calculations involving the geometry of t
device are involved. Examples of this are given in Sec. I

One can show that the lower bound on resistance is
tained, for example, in the limiting case of a rectangu
two-lead device, as the lengths of the insulating sides of
device go to infinity. More generally, an examination of t
proofs of theorems 2 and 3, in Appendix A, shows that

by
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resistance of any device shows more sensitivity to magn
field as the leads on the device are made larger and the
sulating arcs along the device boundary become smaller

For theorem 2, these results can be generalized to the
of devices whose conductivity tensors vary as a function
position, but remain isotropic, and they are proven in App
dix A in this form. The factorss1(B) must be generalized to
take on their minimum value over any region in the devi
and the inequality of theorem 2 cannot become an equalit
there are different values fors1(B) in different regions of
the device. Even in the case of anisotropic conductivity t
sors, theorem 2 generalizes to yield an upper bound on
resistance of two-wire devices. The bound is, however,
longer sharp, i.e., it may not actually be attained by a
device. Furthermore, it seems likely that devices such as
Corbino disk will no longer provide the best response
magnetic field in such situations. The analysis in theorem
does not seem to generalize at all to anisotropic conducti
tensors. A discussion of the details of both theorems, pert
ing to the anisotropic case, is given at the end of App
dix A.

In situations with varying conductivity tensors, th
bounds on power dissipation are of some interest in th
own right, because they help us understand how these di
ent conductivity tensors influence the behavior of the dev
For example, normally a magnetoresistor will also have
contact resistance along the leads. As already noted in
II, this contact resistance can be modeled as a thin subre
along the leads, having a conductivity tensor which is in
pendent of the magnetic field. However, the addition of t
extra subregion can substantially change the functionss1(B)
andr1(B), and thus the sharpness of the above estimate
magnetoresistivity. Sharper estimates can be obtained by
amining the proofs of these theorems. In these proofs,
total power dissipation is evaluated as the sum of the po
dissipation over each subregion. For the case of contac
sistance, this power dissipation should be very small in co
parison to the total power dissipated by the magnetoresis
If this is the case, the conductivity tensor for this subreg
can be ignored in the definition ofr1(B), with little effect on
the integrals and the above estimates.

IV. SOME EXAMPLES AND DISCUSSION

The explicit dependence of the conductivity tensors de-
pends on the detailed shape of the Fermi surface of the s
conductor. We consider the case of two classes of so
narrow-gap III-V compounds, and bismuth. The choice
these materials is motivated by the fact that these are
solids that have the highest mobilities at high electron d
sities where the materials are degenerate and the contac
ohmic.16 Numerical values for these conductivity tensors a
given in Appendix C. InSb and InAs have isotropic condu
tivity tensors. We have used room-temperature electron
bilities for these materials that are characteristic of t
films,17 not of bulk material. The tensor for Bi is isotropic
when restricted to the plane perpendicular to the trigonal a
~see Appendix C!, even though it is anisotropic in all o
three-dimensional space. The mobility values used for Bi
bulk values.18

Figure 6 shows a graph of what the bounds on magnet
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sistance, derived in Sec. III look like for these materials. T
results indicate that InSb will produce a five times bet
geometrical magnetoresistance than InAs, which is con
tent with the difference in mobilities between the two ma
rials. However, InAs produces a much larger response t
Bi, even though the electron mobility used for InAs is com
parable to the average in-plane electron mobility used for
The presence of multiple carrier pockets for electrons in
Brillouin zone of Bi lowers its average geometrical magn
toresistance.

Theorem 2 states that the largest change in magnetor
tance occurs when the leads of a device cover its en
boundary, so that no insulating components are present.
is the case for a Corbino disc, and it is worth noting that a
planar region whose leads can be placed in this way m
contain holes. This is because the region must have at l
two different boundary components held at different vo
ages, in order not to short out the leads, and the sec
boundary component must bound a hole. Devices of this t
have an inherently low resistance and the processing of s
devices may be complicated by the need to make contac
the lead in the hole. The bounds given in the corollary s
provide useful guidelines for assessing the responses
practical2 but suboptimal designs, which can, in turn, b
simulated using the techniques described in Appendix B
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FIG. 6. Relative resistance for the best and worst geometrie
devices made from InSb, InAs, and Bi. Note that, for Bi, there
almost no difference in resistance at low-field strengths between
best and worst geometries.



e

an
rs
nc

te

la

he
a

e

ic

e

n

a

n-
ries

the
nd
us

face

still

all
as
tiv-
are

nt
ed
be

ors,
of

re
rem
his
ase
as

ed

the

a
ini-
19.
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APPENDIX A: PROOFS OF THE THEOREMS

Theorem 1:Let D be any device region, two or thre
dimensional, with a finite number of holes~possibly none!,
containing any number of regions with zero resistance
leads, and subregions with different conductivity tenso
which need not be isotropic and which may vary as a fu
tion of position. The matrixR(B) for such a linear device is
equal to the transpose of the matrixR(2B).

Proof: We will first prove the case where only one ma
rial is used in the device with one conductivity tensor,s(B),
which may vary as a function of position. The Onsager re
tion

s~2B!5s~B!T

implies that the dot products of vectorsv1 and v2 obey a
transformation law

v1•„s~B!v2…5„s~2B!v1…•v2 .

Consider now two functionsc i(x,y), i 51 and 2, which are
to be thought of as potential functions on the interior of t
device region. Associated to these potential functions
vector currentsJi , satisfying the identities

J15s~2B!“c1 and J25s~B!“c2 .

In particular, we assume that

“•Ji50,

so that

“•~c1J2!5“c1•J25“c1•„s~B!“c2…

5„s~2B!“c1…•“c25“•~c2J1!.

Letting D be the device region, with boundary]D, the di-
vergence theorem now implies that

E
]D

c1J2•n5E
D
“•~c1J2!5E

D
“•~c2J1!5E

]D
c2J1•n.

~A1!

Let us now pick two sets of current conditions for th
device, I1 and I2 . Let c1 be the potential function which
determines the conditionsI1 in the presence of a magnet
field 2B, with corresponding voltage conditionsV1 . The
potential functionc2 is likewise chosen to determine th
conditionsI2 in the presence of a fieldB, with voltage con-
ditions V2 . One then has the equations

V15R~2B!•I1 and V25R~B!•I2 . ~A2!

On the boundary components of the device which are
leads, the currentsJi•n will vanish, and the integrals from
Eq. ~A1! above will vanish on these boundary components
well. On the leads, the potential functionsc i will have the
constant values given byV i . Equation~A1! now implies that

I2
T
•V15I1

T
•V2 . ~A3!

Substituting Eq.~A2! into the above equation yields

I2
T
•R~2B!•I15I1

T
•R~B!•I2 .
d
,
-

-

-

re

ot

s

Since this equation holds for arbitraryI1 , andI2 , it follows
that

R~2B!5R~B!T.

If the device is composed of several regions with disco
tinuities in the conductivity tensors across the bounda
between regions, equation~A1! will still hold in each region,
but there is no reason to assume constant potential along
interface between two regions. Still, both the potential a
the normal component of the currents will be continuo
across such an interface, and as integrals~A1! are performed
on each region, and then summed together, the inter
terms must cancel each other. Thus Eq.~A3! will still be
valid for such devices, and the conclusion of the theorem
follows.

We turn now to the proof of theorems 2 and 3. Rec
from Sec. II that we are thinking of vectors in the plane
complex numbers, so that isotropic conductivity and resis
ity tensors can be viewed as complex numbers which
multiplied by“c andJ. For vectorsv1 andv2 , and a com-
plex numberz0 , the following identity will be used:

v1•~z0v2!5~ z̄0v1!•v2 ,

where z̄0 is the conjugate ofz0 . The following lemma will
be useful in the proofs of the theorems.

Lemma 1:Suppose“2c50, and letz05a1 ib be any
complex number. Then

“•~z0“c!50.

Proof. Using vector cross products, we can writez0“c as

a“c1bk3“c,

wherek is the unit vector in thez direction, perpendicular to
the x-y plane. The lemma now follows from the identities

“3“c50,

“•~v13v2!5v2•~“3v1!2v1•~“3v2!.

The version of theorem 2 stated below allows differe
regions with varying conductivity tensors, but it is assum
that each conductivity tensor is isotropic. Theorem 2 can
generalized to the case of anisotropic conductivity tens
and a discussion of this generalization is given at the end
the Appendix. In order to facilitate the treatment of this mo
general case, lemma 2, which is used in the proof of theo
2, does not assume isotropic conductivity tensors. At t
time we do not know how to generalize theorem 3 to the c
of anisotropic conductivity tensors or of tensors that vary
a function of position. A discussion of the problems involv
is also given at the end of this appendix.

In what follows, the functionc(B) will be the solution to

“•„s~B!“c~B!…50, ~A4!

satisfying given boundary conditions, in the presence of
magnetic fieldB. Noting that Eq.~A4! is a special case of the
so-called quasiharmonic equation, the following lemm
gives the standard interpretation of this equation as a m
mization problem, as stated, e.g., in Chapter 10.5 of Ref.
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The interpretation is of particular interest whenB50, and
lemma 2 is stated only for this case.

Lemma 2:Let D be any planar device region, containin
regions with zero resistance and leads, and subregions
different conductivity tensors, which need not be isotro
and may vary as a function of position. Define bounda
conditions by specifying either a fixed voltage, or zero to
current on each lead and shorting bar of the device. T
c~0! minimizes

E
D
„s~0!“c…•“c

over all functionsc, continuously differentiable on the inte
rior of D, continuous on the boundary ofD, and satisfying
the same boundary conditions asc~0! on the leads ofD. No
conditions at all are imposed on the functionsc along insu-
lating arcs on the boundary. The matrixs~0! may vary as a
function of position in each subregion, and may have disc
tinuities across the boundaries between regions.

Proof: Suppose first that the device is composed of o
one region, so that the matrixs~0! has no discontinuities. Le
f satisfy the voltage conditions onD, and letg5w2c(0),
so thatw5c(0)1g. Defining the operator

E~f1 ,f2!5E
D
„s~0!“f1…•~“f2!,

it follows that

E
D
„s~0!“f…•“f5E„c~0!,c~0!…1E~g,g!

12E@g,c~0!#.

Since the symmetric matrixs~0! must have positive eigen
values, it is not difficult to show that, for any functionc,

E~c,c!>0

and, to complete the proof, it suffices to show that the
term on the right side of the above expression vanish
From Eq.~A4! and the Onsager relation, it follows that

¹•„gs~0!“c~0!…5s~0!“g•“c~0!,

and the divergence theorem implies that

E
D

s~0!“g•“c~0!5E
]D

gs~0!“c~0!•n, ~A5!

where]D is the boundary ofD, andn is the outward norma
vector field along the boundary. By assumption,g50 on
each lead where voltage is specified, and, on leads with
zero current condition,g is still constant, so that

E gs~0!“c~0!•n5gE J~0!•n50,

where the integral is taken over the entire lead. Furtherm
on insulating parts of the boundary,s(0)“c(0)•n50. It
then follows that the integral in Eq.~A5! must vanish, and
the lemma is proven in the case wheres~0! has no disconti-
nuities.
ith
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In cases where different regions have different conduc
ity tensors, the divergence theorem will contain bound
terms along the interfaces between regions of the form

E gs~0!¹c~0!•n5E gJ~0!•n.

Both c and f, and henceg, will be continuous across the
interface, and so will the current termJ(0)•n, so that these
interface terms will all cancel, and the lemma still holds.

Theorem 2:Let D be any planar device region with
finite number of holes~possibly none!, containing any num-
ber of regions with zero resistance and leads, and subreg
with different isotropic conductivity tensors, which may va
as a function of position, and define boundary conditions
specifying either a fixed voltage or zero current conditio
on the leads and regions with zero resistance. Let

s1~B!5minH sxx~B!

s~0! J ,

where the minimization is over the conductivity tensors
the different regions of the device. Then

VTI ~B!>s1~B!VTI ~0!.

If only one constant conductivity tensor appears in the
vice, and the boundary of the device contains only leads
no insulating components, then the inequality becomes
equality. This conclusion holds when there are regions w
zero resistance inside the device.

Proof:

VTI ~B!5E
]D

c~B!J~B!•n5E
D
“c~B!•J~B!

5E
D

r cos~a!zu¹c~B!uz2 ~A6!

where s(B)5reia. Noting that r cos(a)5sxx(B), lemma 2
now implies that

VTI ~B!5E
D

sxx~B!zu“c~B!uz2

>s1~B!E
D
„s~0!“c~B!…•“c~B!

>s1~B!E
D

s~0!zu¹c~0!uz25s1~B!VTI ~0!.

This demonstrates the inequality.
Suppose now that the same conductivity tensor app

throughout the device. We will show that, when the boun
ary contains no insulating arcs, the inequality becomes
equality:

VTI ~B!5E
]D

c~0!J~B!•n5E
D
“c~0!•J~B!

5E
D
“c~B!•„s~2B!“c~0!…
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5E
]D

c~B!„s~2B!“c~0!…•n using lemma 1

5E
D1

c~B!„s~2B!“c~0!…•n

1E
D2

c~B!„s~2B!“c~0!…•n,

where]D has been broken up into two different componen
the leadsD1 and the insulating partsD2 . On the leads of the
device“c~0! points in the same direction asn, so that one
has

s~2B!“c~0!•n5r cos~a!“c~0!•n5s~B!“c~0!•n

5sxx~B!¹c~0!•n5s1~B!s~0!¹c~0!•n

5s1~B!J~0!•n,

implying that

E
D1

c~B!„s~2B!“c~0!…•n5s1~B!VTI ~0!.

It now follows that, if there are no insulating boundary com
ponents, the integral overD2 vanishes and the inequality o
the theorem becomes an equality. This completes the p
of theorem 2.

Lemma 3:Let D be any planar device region, containin
regions with zero resistance and leads, and assume a con
isotropic conductivity tensor throughoutD. Define boundary
conditions by specifying fixed total currentsI through each
of the leads of the device. Then

E
D

r~0!zuJ~B!uz2>E
D

r~0!zuJ~0!uz2,

where the boundary conditions on the leads are held cons
and only the magnetic field is allowed to vary.

Proof. Because the resistivity is isotropic, the Onsa
relation implies thatr~0! reduces to scalar multiplication
The factorr~0! appearing in the integrals is constant and c
be ignored. To prove the lemma, we must define a funct

g* ~x,y!5E
~x0,y0!

~x,y!

„J~B!2J~0!…•n,

where the integral is taken over any path inD between the
fixed base point (x0 ,y0) and the point~x,y!. To make sense
of this definition, one must show that the integral is indep
dent of which path inD we choose. This will follow if we
show that the integral over any closed path, i.e., with
same starting and end points, must be zero. A rigor
method for doing calculations like this, using a homolo
basis, can be found in Ref. 20, Chap. 4. The main ideas
given as follows.

In general, the closed paths inD fall into two different
classes, as depicted in Fig. 7. Either~i! the closed path is the
boundary of some subregionC in D ~shaded in Fig. 7!, or ~ii !
some subregionC in D is bounded by the union of the give
closed path with the boundaries of some of the holes in
region D. Note that the boundary of a hole inD is also a
,
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closed path, and belongs to the type~ii ! paths, where the
subregionC is infinitely thin and is mapped entirely onto the
boundary.

In case~i!, since“•J(B)5“•J(0)50, the divergence
theorem implies that

E
]C
„J~B!2J~0!…•n5E

C
“•„J~B!2J~0!…50,

which is the desired conclusion.
In case~ii ! the divergence theorem again shows that

E
]C
„J~B!2J~0!…•n50,

so the integral over the given closed curve must vanish on
we show that the integral over the boundary of every hole i
the regionD vanishes. The boundary of any such hole con
sists of some set of leadsC1 joined by some set of insulating
arcs, C2 . Along the insulating arcs, bothJ(B)•n and
J(0)•n are zero, so the integral overC2 vanishes. Since

E
C1

J~B!•n

is just the total current flowing through the leads inC1 , and
this total current is, by assumption, the same forJ(B) and
J~0!, the integral overC1 vanishes also, and we have shown
that the functiong* is well defined.

We note that

g* ~x,y!5E
~x0,y0!

~x,y!

“g* •dx5E
~x0,y0!

~x,y!

„J~B!2J~0!…•n,

where n52 i dx, i.e., the outward normal is just the unit
tangent vector to the curve, rotated clockwise by 90°. From
this it follows that

FIG. 7. The different classes of closed loops in a device regio
Either the loop bounds a region, shaded as in~i!, or the boundary of
the region is given as the union of the closed loop with some hole
in the region, as shown in~ii !.
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“g* 5 i „J~B!2J~0!….

Returning to the proof of the lemma, we write

J~B!5J~0!1„J~B!2J~0!…,

so that

E
D

zuJ~B!uz25E
D

@ zuJ~0!uz21 zuJ~B!2J~0!uz2

12„J~B!2J~0!…•J~0!#,

so we must show that

E
D
„J~B!2J~0!…•J~0!5E

D
@ i „J~B!2J~0!…#•@ iJ~0!#50.

~A7!

But, again, since“•„iJ(0)…50, one finds that

“•@g* „iJ~0!…#5“g* •~ iJ~0!…,

and the divergence theorem shows that

E
D

@ i „J~B!2J~0!…#•@ iJ~0!#5E
]D

g* „iJ~0!…•n

5E
]D

g* J~0!•~2 in!

5E
]D

g* J~0!•~2dx!.

Let C be one of the connected components of]D, i.e., C is
either the boundary of one of the holes inD or C is the
outside boundary ofD. Again, we can writeC as the union
of C1 andC2 , whereC1 are the leads andC2 are the insu-
lating segments which join them. The productJ(0)•dx will
be zero onC1, whereas onC2

J~0!•dx5s~0!“c~0!•dx5s~0!dc~0!,

so that

E
C
g* J~0!•~2dx!52E

C
g* s~0!dc~0!.

Sincedc(0)50 on C1 , if we show thatg* is constant on
C2 , we can pull it ands~0! out of the integral, and since w
will be integratingdc(0) around a closed loop, the resu
will be zero, implying that the integral in Eq.~A7! vanishes.

To show thatg* is constant onC2 , note thatJ(B)•n and
J(0)•n vanish onC2 , so that the integrand in the definitio
of g* vanishes onC2 . Thus g* must be constant on eac
connected component ofC2 . All that remains is to show tha
g* will take the same value on two different connected co
ponents ofC2 which are separated by a lead. But the diffe
ence in the values ofg* on the end points of this lead is jus
the difference in currents fromJ(B) and J~0! flowing
through the lead, and this difference is zero by assumpt
Thusg* is constant onC2 and the proof is complete.

Theorem 3:For the same device region as in theorem
assume a constant, isotropic conductivity tensor, and de
-
-

n.

,
ne

boundary conditions by specifying current conditions
each lead and region with zero resistance of the device.

r1~B!5
rxx~B!

r~0!
.

Then

V~B!TI>r1~B!V~0!TI .

Proof: Writing r(B)5reia andr(0)5r 0 , one has

“c~B!•J~B!5„r~B!J~B!…•J~B!5r cos~a!zuJ~B!uz2

5rxx~B!zuJ~B!uz25r1~B!r~0!zuJ~B!uz2.

From lemma 3 it follows that

V~B!TI5r1~B!E
D

r~0!zuJ~B!uz2>r1~B!E
D

r~0!zuJ~0!uz2

5r1~B!V~0!TI .

This completes the proof of theorem 3.
As already mentioned, it is possible to generalize theor

2 to situations where the conductivity tensor is not neces
ily isotropic. The proof already given does not use the is
tropic property until Eq.~A6!. At this point, if the conduc-
tivity tensor is anisotropic, the factorr cos(a) will vary
according to the direction of the potential gradient. It wi
however, always be larger than

min
zuvuz51,s~B!

$s~B!v•v%,

where the minimization is over all unit tangent vectorsv and
over all the conductivity tensors in the different regions
the device. By defining

s1~B!5 min
zuvuz51,s~B!

H s~B!v•v

s~0!v•vJ ,

the inequality

VTI ~B!>s1~B!VTI ~0!

will still hold. It is, however, no longer clear that this in
equality ever becomes an equality, and, in particular
seems likely that device configurations such as the Corb
disk, having no insulating boundary components, may
longer have the best possible response curve. In particula
a very thin rectangular device with long leads is designed
that current flows mostly in the directionv, in which the
minimum in the definition ofs1(B) is attained, the resis
tance at field strengthB should be higher than that of th
annular Corbino disk, in which substantial amounts of c
rent will be flowing in directions other thanv.

Such generalizations of theorem 3 do not, at this tim
seem possible. The difficulty occurs already in lemma
whose proof requires that“•„r(0)J(B)…50. If r~0! is an-
isotropic, or even ifr~0! varies as a function of position, thi
may not be the case, and we do not know if lemma 3 rema
true in this generality.
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APPENDIX B: RESISTANCE MATRIX
FOR A THREE-LEAD DEVICE

In this appendix we will outline how to calculate the r
sistance matrixR(B) for the three-wire device discussed
Sec. III assuming an isotropic conductivity tensor. The me
ods are based on conformal mapping techniques, as
scribed in Refs. 10 and 20. To calculateR(B), it suffices to
calculate the currentsI (B) associated to any set of thre
linearly independent voltage conditionsV j , j 51, 2, and 3.
We will take V j to specify a voltage of 1 on leadj and a
voltage of zero on the other two leads. Since the calculati
for all three voltage conditions are basically the same,
will just do the calculation forV1 .

The solution whenB50 is obtained by constructing
conformal mappingw(z) from the device region pictured in
Fig. 4~a!, thought of as lying in thez plane, to the region
pictured in Fig. 8~a!, lying in thew plane. Both the real and
the imaginary parts of the functionw(z) will be harmonic
functions, and we writew5c(z)1 ih(z). In Ref. 10 it was
shown thatc(z) is, in fact, the desired potential functio
whenB50. Suppose now thats(B)5reia, for somer anda
and thatw(z,B) is a conformal mapping from the devic
region in Fig. 4~a! to the region depicted in Fig. 8~b!. Then,
writing w(z,B)5c(z,B)1 ih(z,B), c(z,B) is the potential
function when the magnetic field is given byB. It was further
shown in Ref. 21 that, ifz0 andz1 are the end points of an
lead in Fig. 4~a!, say leadj, then

uh~z1 ,B!2h~z0 ,B!u5U E “c~z,B!•nU,
where the integral is taken over leadj. SinceJ5reia

•“c, it
follows that the total current through the lead is given by

I j5dE J•n56duh~z1 ,B!2h~z0 ,B!ur cos~a!,

whered is the thickness of the planar device.
The functionw(z,B) can be expressed as the composit

of two functions,g„f (z)…, where f (z) is a conformal map-
e
e

a

-
e-

s
e

ping from the region in Fig. 4~a! to the upper half-planeH,
as shown in Fig. 8~c!, andg(z) is a conformal mapping from
H to the region in Fig. 8~b!. As we shall see, it is not nec
essary to know the exact form off (z) in order to calculate
the current-voltage relations we are seeking. A specific fo
for g(z) can be given in terms of definite integrals via th
Schwarz-Christoffel formula~see Ref. 20!

FIG. 8. The three-lead device shown in Fig. 4~a! can be mapped
conformably onto the regions shown in~a! and ~b!. In ~a!, the real
part of the mapping gives the potential when no magnetic field
present. In~b! the real part of the mapping gives the potential wh
the magnetic field deflects the current through an anglea. Both
mappings are obtained by factoring through the upper half-planeH,
shown in~c!. This reduces the problem of finding the potential
that of finding the parameters 1/k, 2k1 , k0 , andk2 .
g~z!5c~z,a!1 ih~z,a!5Z0E
0

z ~z2k0!dz

@~z11!~z21/k!~z2k2!#~1/21a!@~z21!~z11/k!~z1k1!#~1/22a! .
a-

of

the

ical

s

The real line in thez plane is mapped to the boundary of th
region in Fig. 8~b!, and the corners of this region are th
images of the points21/k, 21, 2k1 , k0 , k2 , 1, and 1/k, as
shown in Fig. 8~c!. The values ofZ0 , k, k0 , k1 , andk2 must
still be determined.

The currents through the three leads in the device
given by

I 2~a!5duh~2k1 ,a!2h~21,a!ur cos~a!,

I 3~a!5duh~1,a!2h~k2 ,a!ur cos~a!,

I 1~a!52I 2~a!2I 3~a!. ~B1!
re

All that remains is to determine the as yet unknown p
rameters ofZ0 , k, k0 , k1 , and k2 . Note that the function
f (z) is independent ofB, but the functiong(z) is not. The
values61/k, k1 , andk2 are the images of the end points
leads under the mapf (z). As such, their values will be the
same for any value ofB. The valuesZ0 andk0 , in contrast,
will vary with B. In particular,k0 determines the maximum
value of the potential function on the boundary between
leads 2 and 3, and this depends onB. The values for all these
parameters can be determined from a set of three phys
parameters for the device performance atB50 with the pre-
scribed voltage conditions, namely, the currentsI 2 and I 3 ,
and the maximum valueVmax of the potential between lead
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TABLE I. Room-temperature electron and hole densities and mobilities for InSb, InAs, and Bi, as
for calculating the results in Fig. 6. For Bi, the quantity in the rowmn is mn1 , and that in the rowmp it
is mp1 .

Units InSb InAs Bi

n cm23 5.2131016 3.2931016 ~Ref. 17! 2.4531018 ~Ref. 18!
~Ref. 17!

mn cm2 V21 s21 56 100 ~Ref. 17! 22 000~Ref. 17! 32 000 ~Ref. 18!
p cm23 2.5431015 ~Ref. 17! n.a. 2.4531018 ~Ref. 18!
mp cm2 V21 s21 8000 ~Ref. 22! n.a. 6000~Ref. 18!
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2 and 3. Noting that the Onsager relations imply thats~0!
has no imaginary part, one then has the equations

I 2~0!5duh~2k1,0!2h~21,0!us~0!,

I 3~0!5duh~1,0!2h~2k2,0!us~0!,

and

Vmax5uc~k0,0!2c~2k1,0!u.

In addition, there are the voltage conditions

c~21/k,0!2c~21,0!5V151,

c~k2,0!2c~2k1,0!5V22V350.

These five equations can be used to determine the value
of Z0 , k, k0 , k1 , andk2 at B50. To determine the valuesZ0
andk0 at some other value ofB, the potential equations

c~21/k,a!2c~21,a!5V151,

c~k2 ,a!2c~2k1 ,a!5V22V350

are again used.
The integrals in the definition ofg(z) were numerically

evaluated. Using Eq.~B1!, the currents can then be eval
ated. The scale factorr cos(a) is material dependent, but, fo
materials such as InSb or InAs, where the current is car
primarily by one type of charge carrier~see Appendix C!, r
can be expressed as a function ofa. Equation~C1! from
Appendix C implies that

zuJuz25s~0!J•«5s~0!J•“c5 zuJuzzu“cuzs~0!cos~a!

where« is the electric field, so that

r 5s~0!cos~a!.

Since the currents have been determined for unit voltag
lead 1, the quantities in equations~B1! carry the units of
current per volt, determined as a function of the anglea. The
scale factorsd ~the thickness of the device! and s~0! ~the
real-valued conductivity when no magnetic field is prese!
multiply together to have precisely these units. Dividing E
~B1! by these two scale factors, one arrives at the dimens
less quantity which is plotted in Figs. 4~b! and 4~c!. The
valuesk50.5, k1520.1, andk250.9 were used to do the
calculations.
for

d

at

t
.
n-

APPENDIX C: CONDUCTIVITY TENSORS
FOR InSb, InAs, AND Bi

The narrow-gap III-V compounds that are most useful
galvanomagnetic devices are InSb and InAs, because of
high electron mobilities. Since we considern-type doped ma-
terial, the electron properties matter most. The elect
Fermi surfaces are spheres centered around theG point ~the
center! of the Brillouin zone, and dispersion relation is cha
acterized by one isotropic effective massm* . It is reasonable
to assume that the electron relaxation time and hence
electron mobility~m! are also isotropic. The conductivity in
zero field is

s~0!5nqm,

where n is the density of the carrier andq is the electron
charge. In the presence of a magnetic fieldB perpendicular
to the x-y plane and of magnitudeB, the current densityJ
due to an electric field«, with no z component, is

J5s~0!F«1
J3B

qn G . ~C1!

If we compare this equation to that defining the magnetoc
ductivity tensor, namely,

J5s~B!«,

where

s~B!5Fsxx

sxy

2sxy

sxx
G ,

then

sxx5
qnm

11m2B2 ,

sxy56mBsxx ,

where the sign choice insxy is negative when the charg
carriers are electrons, and positive when the charge car
are holes.

In the following example, we consider the InSb and InA
thin-film samples described by Kataoka,17 rather than bulk
InSb and InAs which have much higher mobilities, becau
thin-film material is more likely to be used in planar galv
nomagnetic devices. Their electron densityn and mobilitym
at 300 K have been estimated from Fig. 17 of Ref. 17 us
the low-field one-carrier approximationsn51/RHq and m
5s(0)/nq. Values forn andm are given in Table I.
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For InSb at 300 K the contributions of the light and hea
holes must be estimated. The holes also occupy Fermi
faces centered at theG point of the Brillouin zone. Since they
are minority carriers in the material we consider, and sin
their densities and mobilities are low, we treat the hole tra
port properties as isotropic. The relevant densities of s
can be calculated from the effective masses.21 Knowing the
electron density, one can estimate the location of the Fe
level, the hole Fermi energy, and the densities of light a
heavy holes,p1 and ph , respectively. The density of ligh
holes is negligible; the density of heavy holes is given
Table I. The estimated hole mobility, also given in Table I,
taken from Ref. 22.

The Fermi surfaces of the electrons and holes in bism
are more complicated23 because of the low symmetry of th
material. We use the trigonal axis system notation, with
dex 1 along the binary axis, index 2 along the bisectrix, a
index 3 along the trigonal axis. Holes have ellipsoidal Fer
surfaces centered at theT point of the Brillouin zone~the
intercept of the zone with the trigonal axis!. These are ellip-
soids of revolution around the trigonal axis. The hole dens
is labeledp. Electrons fill three ellipsoids centered at theL
points, rotated 120° from each other. In the trigonal a
system, we can describe one of these ellipsoids as follo
the shortest axis of the ellipsoids is along the binary~1!
direction. The longest axis of the electron Fermi surface
tilted by anglewe57° away from the bisectrix~2! toward
the trigonal~3! axis. The total electron density, summed ov
all three ellipsoids, is labeledn. The mobility tensors of elec
tronsmn and holesmp have the same symmetry as the effe
tive mass tensors:

mn5Fmn1

0
0

0
mn2

mn4

0
mn4

mn3

G
and

mp5Fmp1

0
0

0
mp1

0

0
0

mp3

G .

Values for the tensor components are given, between 4.2
17 K, in Ref. 24, and from 77 to 300 K values for all com
ponents butmp3 are reported in Ref. 18.
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The calculation of the conductivity tensor elements
done in the same way as for the III-V compounds. We lim
our example to the case where the magnetic field is alig
along the trigonal axis. The magnetoconductivity tensor e
ments for the single hole ellipsoid, which is isotropic in th
1–2 plane, then become6

sxx
p 5

qpmp1

11mp1
2 B2 ,

sxy
p 56mp1Bsxx

p .

The anisotropic electron ellipses have to be treated e
separately. As there is threefold symmetry along the trigo
aids, there are three possible choices of coordinate sets
tated by 120°. The conductivity tensor elements for all th
electron pockets then can be added to give6

sxx
n 5

qn~mn11mn2!

2~11mn1mn2B2!
,

sxy
n 5

2qnmn1mn2B

11mn1mn2B2 .

Assuming a ratiomn1 /mn2550,24

sxx
n 5

0.51qnmn1

110.02mn1
2 B2 ,

sxy
n 5

20.02qnmn1
2 B

110.02mn1B2 .

The values forn, mn1 , p, andmp1 that are used in the con
ductivity tensors above, and in Sec. IV and Fig. 6 were tak
from Ref. 18 and are summarized in Table I. The total co
ductivity tensor is now given as

s5sn1sp.
.
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