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Magnetic susceptibility due to disorder-induced neutral solitons in interacting polymer chains

Marc Thilo Figge, Maxim Mostovoy, and Jasper Knoester
Institute for Theoretical Physics and Materials Science Center, University of Groningen, Nijenborgh 4,

9747 AG Groningen, The Netherlands
~Received 16 November 1998!

We study the magnetic response due to neutral solitons induced by disorder in polymer materials. We
account for interchain interactions, which, if sufficiently strong, result in a bond-ordered phase, in which the
neutral solitons are bound into pairs. We analytically calculate the corresponding pair-size distribution. As the
spins of the solitons have a distance-dependent antiferromagnetic coupling, this allows us to calculate the
magnetic susceptibility in the ordered phase. At low temperatures, the result deviates from the usual Curie
behavior in a way that depends on the relative strength of the disorder and the interchain interactions. We
compare our results to the observed magnetic susceptibility oftranspolyacetylene and we suggest experiments
extending towards lower temperatures.@S0163-1829~99!02721-6#
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I. INTRODUCTION

In recent papers we have studied the effect of off-diago
disorder on the lattice configuration of a half-filled Peier
Hubbard chain with a doubly degenerate ground state.1,2 An
example is thep-conjugated polymertranspolyacetylene,
which in the absence of disorder has a uniformly dimeriz
ground state. As the energy does not depend on the sig
the lattice dimerization~which determines whether even o
odd bonds are short!, this ground state is doubly degenera
For a single Peierls-Hubbard chain, we showed that a
trarily weak off-diagonal disorder induces neutral solito
~kinks! in the lattice dimerization, which interpolate betwe
the two degenerate bond alternations. Even though the
ation energy of a neutral soliton is rather large~of the order
of the gap intranspolyacetylene!, the energy loss is compen
sated by allowing the sign of the dimerization to adjust to
electronic disorder fluctuations. Off-diagonal disorder
conjugated polymers~i.e., disorder in the hopping ampli
tudes of thep electrons! may originate from random chai
twists, which decrease the overlap between thep orbitals of
neighboring carbon atoms. The density of disorder-indu
neutral solitons in a single chain is proportional to the dis
der strength.1,2

In transpolyacetylene the disorder strength is presuma
rather large, as the average conjugation length in this m
rial is of the order of several tens of carbon atoms only.3 One
would then expect the neutral solitons to contribute sign
cantly to the polymer’s magnetic and optical properties,
they carry spin1

2 and result in the appearance of electron
states inside the Peierls gap.

There is, however, no direct evidence for the existence
a high density of solitons in undopedtranspolyacetylene.
Electron spin resonance~ESR! experiments report only abou
one free spin per 3000 carbon atoms.4–7 Moreover, it appears
difficult to observe neutral solitons in optical-absorption e
periments, as, contrary to what is expected from the
Schrieffer-Heeger~SSH! model,8 they seem not to give rise
to a clear midgap absorption peak.9 This may be explained
by assuming that the on-site Coulomb repulsionU is strong
enough to shift the midgap peak towards the absorption e
PRB 590163-1829/99/59~21!/13882~10!/$15.00
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resulting from interband transitions.10,11 Since both the peak
and the absorption edge are significantly broadened by
quantum lattice motion,12 there may be no clear distinctio
between them.

X-ray scattering data do yield some indirect evidence
disorder-induced kinks. There still is considerable disagr
ment whether neighboring carbon chains are dimerized
phase (P21/a space group! or in antiphase (P21 /n space
group!.13,14 While this may originate from different prepara
tion methods leading to different space groups, it has a
been pointed out that the disagreement may result from
high density~of the order of several percent! of kinks that
locally change the relative sign of the dimerization in neig
boring chains.15,16 Yet, it is not clear how such random
changes would lead to sharp peaks in the x-ray spectra.

From the above it appears that a clear signature of
effect of disorder-induced solitons is still to be found. Th
has motivated us to study the magnetic response of disor
induced solitons in more detail. A proper modeling of t
magnetic susceptibility involves more than a calculation
the density of solitons in an isolated chain. As we noted
Refs. 1 and 2, the actual density of neutral solitons~and thus
of spins! is determined by the competition between disord
and interchain interactions, as the latter lead to confinem
of soliton-antisoliton pairs and may restore the long-ran
bond order. Moreover, at low temperature, the exchange
tween the spins of neighboring solitons on a single ch
tends to bind them into a singlet state,17 which has no mag-
netic response. Thus, the magnetic susceptibility and, in
ticular, its temperature dependence should be expecte
depend strongly on the interplay between disorder and in
chain interactions.

In this paper, we focus on the magnetic susceptibility
disorder-induced solitons in the phase with long-range b
order. In this case, solitons occur in isolated pairs of rand
size dictated by the disorder realization. We study the sta
tics of these pairs by mapping the problem on the anisotro
random-field Ising model, which is treated in the cha
mean-field approximation.18 This mapping is analogous t
what we did in Refs. 1 and 2 for isolated chains. We brie
explain the mapping in Sec. II and discuss the phase diag
13 882 ©1999 The American Physical Society
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PRB 59 13 883MAGNETIC SUSCEPTIBILITY DUE TO DISORDER- . . .
of this model. In Sec. III, we express the magnetic susce
bility of an ensemble of soliton-antisoliton pairs in terms
the, as yet unknown, distribution of exchange interactions
Sec. IV, we calculate the distribution of soliton-pair siz
using the saddle-point method. From the pair-size distri
tion we derive in Sec. V the distribution of exchange co
stants. The latter is used in Sec. VI to calculate the magn
susceptibility of transpolyacetylene. We find that the low
temperature behavior of this susceptibility deviates from
Curie law and we fit our results to the experimental d
obtained in Ref. 7. In Sec. VII, we summarize and conclu

II. SOLITONS IN INTERACTING DISORDERED PEIERLS
CHAINS

In Ref. 2, we have shown that the statistics of neu
solitons in isolated weakly disordered Peierls chains can
studied using the one-dimensional random-field Ising mo
~RFIM!. In this mapping, Ising variablessm561 (m
51, . . . ,M ) are defined on the sites of a lattice with latti
constantd. These variables play the role of the sign of t
dimerization in the Peierls chain, while the random ‘‘ma
netic’’ field hm at sitem represents the off-diagonal disorde
which locally lifts the degeneracy between the two dimeri
tion phases in the Peierls chain. Two neighboring sites on
lattice having different Ising variable, correspond to the o
currence of a soliton in the Peierls chain. Therefore, the
ation energym of a soliton in the Peierls chain is equivale
to the exchange interaction between neighboring Ising sp
In the SSH model of transpolyacetylene m52D0 /p
.0.5 eV (D0 is the dimerization!. We emphasize, howeve
that this mapping is not limited to the SSH model, but a
holds in the presence of electron-electron interactions
which case the value ofm is smaller.19,20

Our approach may easily be extended to account
three-dimensional effects: interchain interactions~electron
hopping, elastic forces, or Coulomb interactions! tend to fa-
vor a coherence of the dimerization pattern on neighbor
chains, which in Ising language translates into an interac
2W between spins or neighboring chains. As for quasi-o
dimensional materials, like conjugated polymers,W!m, we
are thus dealing with a strongly anisotropic random-fi
Ising model.18 The anisotropy allows one to treat the inte
chain interactions in a mean-field way, an approach kno
as the chain-mean-field approximation. The energy of
resulting Ising model is given by

E$sm%5 (
m51

M Fm2 ~12smsm11!2hmsm2BsmG . ~1!

Here, the first term describes the energy cost for crea
1
2 (m51

M (12smsm11) kinks and the second term describ
the interaction energy with the random-magnetic field. T
latter is assumed to have a Gaussian distribution with z
mean (̂ hm&50) and correlator

^hmhn&5edm,n , ~2!

where e is the disorder strength. We consider the case
weak disorder:e!m2. Finally, the third term in Eq.~1! de-
scribes the interchain interactions in the mean-field appr
ti-
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mation, where the homogeneous ‘‘magnetic’’ fieldB is pro-
portional to the average order parameter

B5W^^s&&. ~3!

The double brackets denote both the thermal and
random-field average.

To end the explanation of our model, a few remarks are
place. First, by replacing the dimerization by a discrete Is
variable, we have neglected the true dimerization profile
sociated with a soliton. As the extent of this profile is giv
by the correlation lengthj0, our ‘‘sudden-kink approxima-
tion’’ is valid as long as the soliton density is small com
pared to 1/j0, as is the case for weak disorder. Taking in
account the true dimerization profile results in an effect
increase of the kink creation energy of the orderAej0 /a
~with a the average carbon-carbon distance intranspoly-
acetylene! and, thus, in a small reduction of the soliton de
sity. This has recently been confirmed explicitly in numeric
simulations, which do account for the true profile.21 Second,
it should be kept in mind that the RFIM Eq.~1! is an effec-
tive model, obtained by integrating out small lattice fluctu
tions. As a result, the kink creation energym weakly depends
on the temperature.2 Third, above we have not specified th
value of the Ising lattice constantd ~which should not be
confused with the lattice constanta of the polymer chain!. It
should be noted that both the disorder strengthe and the
interchain interaction energyW scale proportional tod. In
Sec. V, we show that all physical observables ared indepen-
dent in thed→0 limit.

The temperature versus disorder strength phase diag
of the model Eq.~1! contains two phases: the ordered pha
characterized by a nonzero value of the average dimer
tion, ^^s&&D0, and the disordered phase, in which the lon
range bond order~LRBO! is destroyed by thermal an
disorder-induced kinks. The two phases are separated
second-order transition. Figure 1 shows the phase diag

FIG. 1. The phase diagram of the RFIM Eq.~1! captures the
essential physics of weakly disordered Peierls systems and is sh
as a function of the disorder strengthe/m2 and the temperature
T/m. The long-range bond order~LRBO! phase corresponds to a
average dimerization̂̂ s&&D0Þ0. The numerical calculation of the
critical curve ~stars! agrees well with the analytical result~solid
curve! obtained in Ref. 18. The dashed curve indicates the bre
down of the continuum approximation in the analytical calculati
below T5T0(e) ~Ref. 18!.
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13 884 PRB 59FIGGE, MOSTOVOY, AND KNOESTER
calculated forW/m50.008, a typical value oftranspoly-
acetylene if the interchain interactions are dominated by
terchain electron hopping.22 The stars in Fig. 1 denote th
phase boundary, which we obtained by numerical simula
of the model Eq.~1! using an algorithm based on th
transfer-matrix approach~cf. Ref. 2!. The order paramete
^^s&& was found from a self-consistent calculation of t
mean fieldB and the critical curve was then obtained
requiring that ^^s&&→0. The smooth temperature depe
dence of the phase boundary was obtained by averaging
free energy over 104 random-field realizations for a chai
with 103 sites. The solid curve in Fig. 1 indicates the pha
boundary, which was calculated in Ref. 18 from an analyti
expression for the average free energy of the continuum
sion of the model Eq.~1!. With the exception of a smal
temperature regionT,T0(e),18 the results of the continuum
and the discrete models agree well.

At low temperature, the phase transition results from
competition between the disorder and the interchain inte
tions. In fact, the critical disorder strength, which separa
the phases with and without LRBO at zero temperat
reads18

ec'
2

3
Wm. ~4!

In the disordered phase,̂^s&&50, the density of
disordered-induced neutral solitons~spin flips! is to lowest
order ine given by18

ns5
1

d

e

m2 , ~5!

as is the case for a single disordered chain (W50).23 On the
other hand, fore,ec the order parameter^^s&& is observed
to increase rapidly18 with a slope that is proportional to th
ratio m/W@1. Thus, in the overwhelming part of the order
phase the system is nearly perfectly ordered with an o
parameter close to unity,̂^s&&.1, and the solitons are
bound into pairs by the interchain interactions. Well with
the ordered phase (e!ec) their density is exponentially sup
pressed. The distance between the soliton-antisoliton pai
much larger than the typical pair size and the number
soliton-antisoliton pairs per unit length reads18

np5
1

d

2W2

e
expS 22

Wm

e D ~6!

~for W2!e!2Wm/3).
In the following, we will focus on the LRBO phase an

calculate the magnetic susceptibility due to the spins of
bound pairs of neutral solitons.

III. MAGNETIC SUSCEPTIBILITY
IN THE ORDERED PHASE

Apart from the interchain interaction discussed in the p
vious section, there is also an intrachain interaction betw
kinks. The latter interaction is strong only when the distan
between kinks is of the order of their size,j0. Thus, for weak
disorder, when the density of kinks is small, it has lit
effect on the statistics of the kinks. It may, however,
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important for the magnetic properties of disordered Peie
systems, as it results in an antiferromagnetic exchange
tween the spins of neutral kinks.17 This exchange can bind
the spins of neighboring kinks into nonmagnetic single
thus reducing the magnetic susceptibility of the system.

As argued in the previous section, for a nearly perfec
ordered system the typical distance between disord
induced soliton-antisoliton pairs is much larger than the ty
cal pair size. We may then neglect the spin exchange
tween kinks from different pairs. The Hamiltonia
describing the interactions of soliton and antisoliton spinsSW 1

andSW 2 within one pair reads

Ĥpair5J~SW 1•SW 22 1
4 !2gmBH~S1

z1S2
z!, ~7!

where J is the exchange constant in the pair andH is the
external magnetic field. The free energy of the pair is giv
by

f ~J,H !52J2
1

b
ln$11e2bJ@112 cosh~bgmBH !#%

~8!

and the zero-field magnetic susceptibility of the pair is

x~T,J!52
]2f ~J,H !

]H2 U
H50

52g2mB
2b

e2bJ

113e2bJ
. ~9!

The coupling J decreases with the soliton-antisolito
separationR. Quite generally, the large-R behavior is

J5J0 expS 2
R

r D , ~10!

wherer5j0 /d (R is measured in units ofd) and J0 is of
the order of the spin gap. For the SSH model, in wh
Coulomb interactions are neglected and the spin gap eq
the charge gap,J054D0.17

As R is a random quantity that is imposed by the disord
realization, alsoJ is random. If we know the pair-size distri
butionp(R) the distribution of exchange valuesw(J) can be
obtained using Eq.~10!. We normalize the latter to the tota
density of spin pairs

np5E
0

`

dJ w~J!. ~11!

The system’s magnetic susceptibility is then given by

x~T!5E
0

`

dJ w~J!x~T,J!, ~12!

with x(T,J) as in Eq.~9!.
Clearly, the temperature dependence of the magnetic

ceptibility is determined by the pair-size distribution. As w
will show in detail in Secs. IV and V, in the LRBO phas
p(R) is sharply peaked at someR* , while for R@R*

p~R@R* !}expS 2a
R

r D ~13!

with a a constant determined by the strength of the disor
and interchain interactions. Equation~13! in a straightfor-
ward way yields a power-law exchange distribution
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w~J!}S J0

J D 12a

~14!

for J!J(R* ). This part ofw(J) dictates the behavior of th
magnetic susceptibility at low temperature,T!J(R* ). Pairs
with J@J(R* ) ~or: R!R* ) are in the nonmagnetic single
state at these low temperatures. We thus find

x@T!J~R* !#}S J0

T D 12a

, ~15!

which deviates from the high-temperature Curie behavio
We note that, in order to describe the anomalous temp

ture dependence of the magnetic susceptibility of char
transfer salts, Clarket al.24 also introduced pairs of spin
with a random antiferromagnetic coupling. These pairs, ho
ever, were introduced in a purely phenomenological w
whereas in our model they naturally emerge as disord
induced soliton-antisoliton pairs with a distribution of e
change constants that follows from the pair-size distributi

IV. CALCULATION OF THE PAIR-SIZE DISTRIBUTION

The pair-size distributionp(R) is defined as the numbe
of soliton-antisoliton pairs of sizeR per site of the Ising
chain. For a given disorder realization$hm% one finds from
Eq. ~1! that the energy of a configuration (m1 ,m2), with the
soliton located betweenm1 and m111 and the antisoliton
betweenm2 andm211, reads

E@m1 ,m2#5E02DE@m1 ,m2#, ~16!

whereE0 denotes the energy for a configuration without so
tons and

DE@m1 ,m2#522m22 (
m5m111

m2

~B1hm! ~17!

is the energy change due to the creation of the solit
antisoliton pair. As we restrict ourselves to isolated solito
antisoliton pairs, it is sufficient to consider a segment of
chain that contains one such pair located far away from
endpoints. Furthermore, because the sequence of soliton
antisolitons along the chain is determined by fixed bound
conditions for the lattice dimerization, we may, without lo
of generality, assume thatm2.m1. Then, the pair sizeR ~in
units of the Ising lattice constantd) is given by

R5m22m1 . ~18!

The soliton-antisoliton pair configuration (m1 ,m2) is only
energetically favorable if

DE@m1 ,m2#>0. ~19!

This is, however, not sufficient to calculate the pair-size d
tribution p(R), as we also have to impose the condition th
this pair configuration has lower energy than any other p
in the considered chain segment. Thus, simultaneously,
energy of the pair configuration has to satisfy the inequali

DE@m1 ,m2#>DE@m18 ,m28#, ~20!
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for all other possible pair configurations (m18 ,m28). There-
fore, the desired pair-size distribution takes the form:

p~R!5K Q~DE@m1 ,m2# ! )
(m18 ,m28)

Q~DE@m1 ,m2#

2DE@m18 ,m28# !L , ~21!

whereQ(x) is the step function

Q~x!5H 1 for x>0

0 for x,0
~22!

and the brackets,̂ . . . &, denote the Gaussian average ov
disorder realizations$hm%. The definition Eq.~21! ensures
that, in accordance with Eq.~11!, p(R)/d is normalized to
the density of soliton-antisoliton pairs

np5
1

dE0

`

dR p~R!. ~23!

It is easy to see thatp(R) factorizes into two independen
parts, pout and pin , that account for the soliton-antisolito
pairs with a size that is, respectively, larger and smaller t
R

p~R!5poutpin , ~24!

with

pout5^Q~z1sm1
!Q~2z1sm1

1sm121!

3Q~3z1sm1
1sm1211sm122! . . . &

3^Q~z1sm211!Q~2z1sm2111sm212!

3Q~3z1sm2111sm2121sm213! . . . &, ~25!

and

pin5K QS 2I 2Rz2 (
m5m111

m2

smDPLPRL . ~26!

Here, we have defined the dimensionless variablessm

5hm /Ae, z5B/Ae, I 5m/Ae, while

PL[Q~2z2sm11!Q~22z2sm1112sm112! . . .

3Q~2Rz2sm1112 . . . 2sm2
! ~27!

and

PR[Q~2z2sm2
!Q~22z2sm2

2sm221! . . .

3Q~2Rz2sm2
2 . . . 2sm111!. ~28!

Note thatpout itself also consists of two independent fa
tors: the first factor excludes the pairs with the soliton
cated to the left ofm1, while the second one excludes an
soliton positions larger thanm211. Both these factors can
be written in the form
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Y~z!5 )
m51

` H E
2`

1`

dsmf ~sm!QF (
k51

m

~z1sk!G J , ~29!

where

f ~s!5
exp~2 1

2 s2!

A2p
~30!

is the Gaussian weight. As a result, for the outer factor
obtain

pout5@Y~z!#2. ~31!

The functionY(z) will be calculated later in this section.
The calculation of the inner factor is complicated by t

presence of the extraQ function in Eq.~26!, which precludes
the factorization ofpin in two independent averages. How
ever, considerable simplification is possible, because we
cus on the bond-ordered phase where^^s&&.1. Then the
density of disorder-induced soliton-antisoliton pairs is sm
and the main suppression factor inp(R) is the probability of
the disorder realization necessary to create a pair.25,26 In
other words, the most important contribution topin @and
p(R)] comes from averaging the firstQ function in Eq.~26!

K QF2I 2 (
m5m111

m2

~z1sm!G L 5
1

2
erfc@g~R!#

'
exp@2g~R!2#

A4pg~R!
, ~32!

where

g~R![
I 1Rz

A2R
. ~33!

Here, the asymptotic expression for the complementary e
function erfc@g(R)# was used because the minimal value
its argument is easily shown to begmin5A3ec /e, so that for
e<ec/2 the relative error becomes already less than sev
percent.

The interpretation of this result is that the optimal diso
der fluctuation~i.e., the disorder realization with the large
weight! that can induce a soliton-antisoliton pair of sizeR
has a constant value2hR in the interval of lengthR and is
zero outside the interval. The amplitudehR is determined by
the energy balance@see Eqs.~17! and ~19!#

hRR5m1WR. ~34!

The weight of the optimal fluctuation,w5exp@2RhR
2/(2e)#,

is precisely the exponential factor appearing in Eq.~32!. At

R* 5
I

z
5

m

W
@1 ~35!

the weight reaches its maximal value, exp(22Wm/e). For e
!ec , the maximal weight is small@as was also found in Eqs
~32! and ~33!# and the soliton-antisoliton pairs are su
pressed. In that case, all disorder realizations that contri
significantly top(R) are close to the optimal fluctuation.
e
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Bearing this in mind, we now calculate the inner fact
Eq. ~26!. First, we can rewrite Eq.~26! in the form

pin5E
zR1I

`

dSE
2 i`

1 i` dl

2p i
e2lS

3 )
m5m111

m2 E
2`

1`

dsme2lsmf ~sm!PLPR , ~36!

where the integration overl ensures that

S52 (
m5m111

m5m2

sm ~37!

and the limits of the integration overS follows from the first
Q function in Eq.~26!.

Since the typical pair sizeR* @1 @see Eq.~35!#, we can
use the canonical formalism, in which Eq.~37! for the sum
of R random variables is satisfied only in average. We do t
by ‘‘shifting’’ the argument of the random-field distributio
on each site byl

f ~s!→ f ~s1l!5e2
1
2 l22lsf ~s!, ~38!

so that the average value now becomess52l and Eq.~36!
reads

pin5E
zR1I

`

dSE
2 i`

1 i` dl

2p i
e2lS1

1
2 Rl2

3 )
m5m111

m2 E
2`

1`

dsmf ~sm1l!PLPR . ~39!

The integral over l comes from the small vicinity
(;1/AR) of l05S/R, where the exponential in Eq.~39! has
its maximum. Saddle-point integration overl then gives

pin5E
zR1I

` dS

A2pR
e2

S2

2R )
m5m111

m2 E
2`

1`

dsmf S sm1
S

RDPLPR .

~40!

Next, we note that if the condition imposed by the firstQ
function in Eq.~26! is satisfied, the arguments of the lastQ
functions inPL andPR also almost certainly are positive. I
other words, because the relevant disorder realizations
close to the optimal fluctuations, only the first fewQ func-
tions in PL and PR are really restrictive. This implies tha
the disorder averages ofPL andPR in Eq. ~40! are decou-
pled. Furthermore, it is easily seen from Eq.~29! that then
^PL&5^PR&5Y@(S/R)2z#, so that Eq.~40! becomes

pin5E
zR1I

` dS

A2pR
e2(1/2R)S2FYS S

R
2zD G2

. ~41!

The integral overS comes from the vicinity of the lower
limit, S5zR1I @cf. Eq. ~34! for the optimal fluctuation#.
The result of the integration is

pin5A R

2p

expF2
~ I 1Rz!2

2R G
~ I 1Rz! FYS I

RD G2

, ~42!
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where forS in the argument ofY we took its value at the
lower limit of the integration.

From Eqs.~24!, ~31!, and ~42! we finally obtain for the
pair-size distribution

p~R!5
exp@2g~R!2#

A4pg~R!
FYS I

RD G2

@Y~z!#2, ~43!

where the functiong(R) is defined by Eq.~33!.
What is left now, is the calculation of the functionY(v).

To this end we introduce the functionY(suv), satisfying the
integral equation

Y~suv !5E
0

`

ds8 f ~s1v2s8!Y~s8uv !. ~44!

Comparing the iterative solution of this equation to Eq.~29!,
one finds

Y~v !5Y~0uv !. ~45!

The integral equation~44! can be easily solved numerically
The result is shown as stars in Fig. 2. The solid line rep
sents the best fit to these points by a function of the form

Y~v !5tanh~cv !. ~46!

The fit yields c.1.14. For smallv, the best linear fit
@Y(v)5c8v# yieldsc8.A2, with a precision of several per
cent.

We conclude this section by a brief analysis of the pa
size distribution Eq.~43!. First, integratingp(R)/d over R
gives the density of soliton-antisoliton pairs@cf. Eq. ~23!#.
For e!ec , the exponential factor in Eq.~43! has a sharp
peak atR* given by Eq.~35!. UsingB.W, the saddle-point
integration around the peak gives

np'
1

d

e

2W2FYS W

Ae
D G 4

expS 22
Wm

e D . ~47!

Furthermore, we note that knowledge of the pair-size dis
bution Eq.~43! allows us to derive the long- and short-ran
bond order parameter of the RFIM Eq.~1!. For a dilute gas
of soliton-antisoliton pairs it is sufficient to consider a cha
segment ofN11 sites containing a single pair of sizeR

FIG. 2. The functionY(v) obtained from a numerical solutio
~stars! of the integral equation~44!. The best fit of this solution by
a function of the formY(v)5tanh(cv) yields c.1.14 ~solid line!.
-

-

i-

s~m!5122Q~m2m1!Q~m22m!, ~48!

wherem1 and m25m11R denote the positions of, respec
tively, the soliton and the antisoliton. Replacing summatio
by integrations, the LRBO parameter averaged over all p
sible pair sizes is easily calculated

^^s&&5E
0

`

dR p~R!E
2

N
2

1
N
2dms~m!5122E

0

`

dR p~R!R.

~49!

For a nearly perfectly ordered system,^^s&&.1, we thus
find from Eq.~49! the condition that the typical pair sizeR*
is much smaller than the typical number of sites 1/(dnp)
between soliton-antisoliton pairs. Similarly, we calculate t
correlation function̂ ^s(0)s( l )&&, which yields the sum of
the square of the LRBO parameter Eq.~49!,

^^s&&2.124E
0

`

dR p~R!R, ~50!

and the connected correlator

^^s~0!s~ l !&&c54E
0

`

dR p~R1u l u!R. ~51!

The scale for the decay of short-range correlations is ob
ously set by the typical pair sizeR* , as ^^s(0)s( l )&&c→0
for u l u@R* .

V. THE EXCHANGE DISTRIBUTION
IN THE CONTINUUM LIMIT

In the previous sections we described disordered Pe
systems using the effective RFIM Eq.~1!. The values of the
interchain interactionW and the disorder strengthe in this
model are proportional to the lengthd, which we choose for
the unit cell of the Ising chain and which plays the role o
short-distance cutoff. On the other hand, physical obse
ables, such as the density of soliton-antisoliton pairs and
magnetic susceptibility, should not depend ond. Thus, be-
fore comparing our results to the experimental data
transpolyacetylene, we show thatd drops out from the ex-
pressions for the observables in thed→0 limit.

To this end, we introduce as physically meaningful qua
tities the disorder strengthē and the interchain interactionW̄
per unit length

e5 ēd, ~52!

and

W5W̄d. ~53!

Furthermore, from now on we will work with the physica
pair sizer 5Rd. In terms of these new variables, the arg
ments of bothY functions in Eq.~43! for the pair-size distri-
bution are}Ad. Therefore, ford→0, the arguments are
small and we can useY(v).A2v @see below Eq.~45!#, giv-
ing the pair-size distribution

p̄~r !54
m2W̄2

ē2r 2

exp@2g~r !2#

A4pg~r !
, ~54!
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where

g~r !5
m1W̄r

A2ēr
. ~55!

Similarly, from Eq.~47!, the total density of neutral soliton
antisoliton pairs in the limitd→0 is found to be

np'
2W̄2

ē
expS 22

W̄m

ē
D , ~56!

which coincides with Eq.~6! obtained in Ref. 18 within the
continuum approximation for the RFIM Eq.~1!.

Furthermore, in terms of continuum variables, the e
change coupling Eq.~10! reads

J~r !5J0expS 2
r

j0
D . ~57!

Thus, in the continuum limit the distribution of exchang
constants becomes

w~J!5E
0

`

dr p̄~r !d@J2J~r !#

54
1

J

1

j0

m2W̄2

ē2@ ln~J/J0!#2

exp@2g~J!2#

A4pg~J!
, ~58!

with g(J)[g@r 5j0ln(J0 /J)# @cf. Eq. ~55!#.
In Fig. 3, we plot the distributionw(J) for four different

parameter sets (ē,W̄,J0) chosen such that the density
soliton-antisoliton pairs is fixed atnp51/6000a21 ~with a
the average carbon-carbon distance intranspolyacetylene!.
Our choice of parameters is summarized in Table I and

FIG. 3. The distributionw(J) of exchange constants as a fun
tion of J/J0 for the four parameter sets given in Table I. The curv
correspond toa51.5 ~dots!, 1.0 ~dash-dot!, 0.75 ~dashes!, and 0.5
~solid!. For a>1.0 the distribution has a pronounced peak at so
J5J* and tends to zero forJ→0. In contrast, fora,1.0, w(J)
diverges whenJ→0.
-

ll

become clear in Sec. VI. Depending on the parameters,
observes two qualitatively very different behaviors:w(J) ei-
ther has a pronounced peak atJ* .J(r * ) @with r * 5R* d
andR* as in Eq.~35!# and tends to zero forJ→0, or w(J)
diverges for smallJ. The distinction between these two b
haviors is dominated by only one parameter combination

a5
W̄2

2ē
j0 . ~59!

In fact, Eq.~58! for J!J* yields

w~J!}S J0

J D 12a

, ~60!

which shows that the relative strength of the interchain int
actions and the disorder determines whetherw(J) diverges
(a,1) or approaches zero (a.1) for J→0.

The behavior of Eq.~60! agrees with Eq.~14! in Sec. III
and can indeed be traced back to the fact that for larger the
pair-size distribution is exponential

p̄~r @r * !}expS 2
W̄2r

2ē
D 5S J0

J D 2a

. ~61!

This exponential dependence can be understood as follo
For r @r * , the energy of the string between soliton and a
tisoliton exceeds the kink creation energy:W̄r 5WR@m.
Thus, the amplitude of the optimal fluctuation Eq.~34! is
hRR.WR. The Gaussian weight exp@2RhR

2/(2e)# of this
fluctuation is the exponential in Eq.~61!. Similar arguments
were used to explain the power-law dependence of the d
sity of states in the fluctuating gap model of disorder
systems.26 The power-law dependence ofw(J) at small J
gives rise to a characteristic low-temperature behavior of
magnetic susceptibility, as we will see in the next section

VI. MAGNETIC SUSCEPTIBILITY
OF TRANSPOLYACETYLENE

In this section we considertranspolyacetylene as a disor
dered Peierls system and calculate its magnetic susceptib
due to disorder-induced soliton-antisoliton pairs as a funct
of temperature. The temperature dependence of the mag
susceptibility is determined by the distribution of exchan
constants Eq.~58!. For temperaturesT much larger than the
typical singlet-triplet energy splittingJ* , almost all spin
pairs are thermally excited. Thus, we have, essentially, 2np

TABLE I. The four sets of parameters used in the numeri
calculations for a fixed density of spin pairs,np51/6000a21. The
value fora as defined in Eq.~59! is obtained using the SSH param
eterj057a for the correlation length.

W̄ (m/a) ē (m2/a) J0 (K) a

0.038 0.010 400 0.5
0.055 0.014 130 0.75
0.070 0.017 72 1.0
0.100 0.023 39 1.5
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free spins, which give rise to a Curie susceptibility. Inde
Eqs.~9! and ~12! yield

x~T@J* !.
1

2
g2mB

2bE
0

`

dJ w~J!5
1

2
g2mB

2 np

T
, ~62!

where the density of soliton-antisoliton pairsnp is given by
Eq. ~56!. In the opposite limit,T!J* , however, most of the
spin pairs are in the singlet state and do not contribute to
magnetic susceptibility. Under these conditions Eqs.~12! and
~58! yield

x~T!J* !5C~T!S J0

T D 12a

, ~63!

with a as in Eq.~59! and logarithmic temperature corre
tions given by

C~T!'
4g2mB

2

9J0a S npj0

p D
1
2 m2

ēj0
2

G~11a!Lia~2 1
3 !

@ ln~J0 /T!#5/2
~64!

@Li n(z)5(k51
` zk/kn is the polylogarithm function#. The

dominant factor in Eq.~63! is (J0 /T)12a, which basically
gives the density of spin pairs with singlet-triplet splittin
;T @cf. Eq. ~60!#.

We thus find that the low-temperature behavior of t
magnetic susceptibility differs from the Curie law and is d
tated by the relative strengtha of interchain interactions and
disorder. Fora,1, the susceptibility diverges asT→0,
while for a.1 it approaches zero.

A low-temperature (T,30 K) deviation from Curie be-
havior has indeed been observed by Foot, Billingham,
Calvert in ESR experiments on Durhamtranspolyacetylene.7

These authors already suggested pairing of spins as pos
reason for this behavior. To see whether our model of sp
associated with disorder-induced soliton-antisoliton pairs
fers a microscopic explanation, we compared our result
x(T) @numerically calculated from Eqs.~12! and~58!# to the
experimental data. In our fit procedure there are, in princip
three free parameters:W̄, ē, and J0 ~for the correlation
length we take the SSH valuej057a). We require, how-
ever, that our parameters are also consistent with the
density of spin pairs, which is reported to be approximat
np51/6000a21. 4–7 This requirement imposes a relation b
tweenW̄ and ē, reducing the number of free parameters
two.

In practice, we chose various values fora @Eq. ~59!#. For
eacha value,W̄ and ē are uniquely determined bynp , and
J0 is left as free parameter to fit the temperature depende
of the magnetic susceptibility. This procedure yielded the
shown in Fig. 4, with parameter sets given in Table I. F
convenience, we will refer to each parameter set by itsa
value. We note that our values forJ0 are much smaller than
the valueJ054D0;104 K, which is obtained within the
SSH model.17 We point out, however, that Coulomb intera
tions result in a reduction of the value forJ0 .

The important point is now that, while all four paramet
sets give rise to reasonable fits of the experimental data,
predict totally different behaviors forT<5 K, where experi-
ments have not been performed. This is shown in Fig
where we extend the four theoretical fits to 1 K. The qua
,
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tative differences in the low-temperature behavior, dicta
by the value ofa, are clearly visible below 5 K. This sug
gests that extending the experiments to lower temperat
may yield more information on the relative strength of inte
chain interactions and disorder intranspolyacetylene.

We conclude this section by noting that, within the co
text of our model, it is possible to determine the strength
the interchain interactions and the disorder independen
the fitting parameterJ0. For this purpose, the densitynp of
soliton-antisoliton pairs is to be obtained experimenta
from the Curie tail of the magnetic susceptibility, while fo
the same samplea is to be determined from the asymptot
zero-temperature behavior of the magnetic susceptibi
Then, using Eqs.~56! and~59!, the strength of the interchain
interactions,

W̄'4a
m

j0
F lnS 4a

npj0
D G21

, ~65!

FIG. 4. Fits of our theory~solid curve! to the experimental data
~dots! for the magnetic susceptibility of Durhamtranspolyacetylene
obtained in Ref. 7. The four parameter sets given in Table I w
used to fit the same experimental data points~see text for details!.
The deviation from Curie behavior~straight line! belowT530 K is
clearly seen and reasonably reproduced by each fit down tT
55 K, below which experimental data are not available.

FIG. 5. As Fig. 4, but now the four theoretical curves are sho
down to T51 K. It is clearly observed that different values ofa
~the relative strength of disorder and interchain interactions! lead to
qualitatively different low-T (,5 K) behavior of the magnetic
susceptiblity.



y
ri-
H

r

p
ou
th
re

th

n
o
in
n
u
b
n
ve
As
r
f
av

b

l-
,

res,
epti-

re
e

he
a

ng-
in

re,
ng-
ted
two
tra

to
ain
d
rgy
s,

ced

er-
ec-
harp
ur

the
ns-

es
due
.

ng

oor

13 890 PRB 59FIGGE, MOSTOVOY, AND KNOESTER
and the disorder strength,

ē'8a
m2

j0
F lnS 4a

npj0
D G22

, ~66!

can be calculated as a function ofnp and a. For typical
values of the densitynp the logarithmic factor depends onl
weakly ona;O(1) and can be approximated by a nume
cal constant. Ifnp51/6000a21 and choosing again the SS
parameter j057a, one obtains W̄'0.07am/a and ē
'0.02am2/a. It is important to realize that Eqs.~65! and
~66! do not depend on the maximal exchange constantJ0,
which may be used as a fitting parameter for temperatu
around the typical exchangeJ* .

VII. CONCLUDING REMARKS

To summarize, we have calculated the magnetic susce
bility of quasi-one-dimensional Peierls systems with a d
bly degenerate ground state. We have related
temperature-dependent part of the susceptibility to the p
ence of neutral solitons and antisolitons with spin1

2 induced
by disorder in the electron hopping amplitudes along
chain. We have assumed the interchain interactions to
sufficiently strong to bind the disorder-induced solitons a
antisolitons into pairs and thus establish long-range bond
der in the system. Using a mapping on the random-field Is
model, we have calculated the distribution of the solito
antisoliton pair size. This allowed us to obtain the distrib
tion of exchange constants describing the interaction
tween the spins of the soliton and the antisoliton within o
pair. Both distributions strongly depend on the relati
strengtha of the disorder and the interchain interactions.
a result, the magnetic susceptibility deviates from the Cu
law: below T5J* , whereJ* is the most probable value o
the exchange constant, the magnetic susceptibility beh
as (1/T)12a.

Our results explain the deviation from Curie behavior o
served in Durhamtranspolyacetylene,7 though from the ex-
perimental data it is difficult to find unambiguously the va
ues ofa andJ* for this conjugated polymer. It is, therefore
.G
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ti-
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e
be
d
r-
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e
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important to extend the measurements to lower temperatu
where the temperature dependence of the magnetic susc
bility is extremely sensitive to the choice of parameters.

Our theory is only applicable when the low-temperatu
behavior of the susceptibility is an intrinsic property of th
material and is not governed by spins of impurities. T
latter situation may, in fact, be realized in Shirakaw
transpolyacetylene, which shows Curie behavior down toT
51.5 K.27 Furthermore, we assumed the existence of lo
range order in the system. Whether this is the case
transpolyacetylene is an open question. It would, therefo
be interesting to extend our studies to the case without lo
range order. At the same time, however, it should be no
that in substituted polyacetylenes, the degeneracy of the
dimerized configurations may be lifted. This leads to an ex
~intrachain! source of soliton-antisoliton confinement28 and
favors long-range bond order. Our theory may be applied
these substituted polymers by simply adding to the interch
interaction per bond (Wa), the energy difference per bon
between the two dimerized configurations. As this ene
difference may be controlled by varying the substitution
this opens interesting possibilities to study disorder-indu
solitons in more detail.

We finally mention that in the ordered phase, the disord
induced soliton-antisoliton pairs show up in the x-ray sp
trum as a broad incoherent peak associated with each s
elastic peak arising from the bond length alternation. O
result for the pair-size distribution allows one to calculate
shape of this incoherent peak: it simply is the Fourier tra
form squared of the connected correlator Eq.~51!. Thus, one
immediately finds that the peak width is;1/r * 'W̄/m. It
should be kept in mind, however, that this calculation do
not account for other broadening mechanisms, e.g., those
to the complicated morphology of polyacetylene samples
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