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Magnetic susceptibility due to disorder-induced neutral solitons in interacting polymer chains
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We study the magnetic response due to neutral solitons induced by disorder in polymer materials. We
account for interchain interactions, which, if sufficiently strong, result in a bond-ordered phase, in which the
neutral solitons are bound into pairs. We analytically calculate the corresponding pair-size distribution. As the
spins of the solitons have a distance-dependent antiferromagnetic coupling, this allows us to calculate the
magnetic susceptibility in the ordered phase. At low temperatures, the result deviates from the usual Curie
behavior in a way that depends on the relative strength of the disorder and the interchain interactions. We
compare our results to the observed magnetic susceptibilivangpolyacetylene and we suggest experiments
extending towards lower temperatur€S0163-182€09)02721-9

. INTRODUCTION resulting from interband transitiort8! Since both the peak
and the absorption edge are significantly broadened by the
In recent papers we have studied the effect of off-diagonafjuantum lattice motio’ there may be no clear distinction
disorder on the lattice configuration of a half-filled Peierls-between them.
Hubbard chain with a doubly degenerate ground stan X-ray scattering data do yield some indirect evidence for
example is thew-conjugated polymetrangpolyacetylene, disorder-induced kinks. There still is considerable disagree-
which in the absence of disorder has a uniformly dimerizednent whether neighboring carbon chains are dimerized in
ground state. As the energy does not depend on the sign phase P2,/a space groupor in antiphase P2,/n space
the lattice dimerizatior(which determines whether even or group.**While this may originate from different prepara-
odd bonds are shortthis ground state is doubly degenerate.tion methods leading to different space groups, it has also
For a single Peierls-Hubbard chain, we showed that arbibeen pointed out that the disagreement may result from a
trarily weak off-diagonal disorder induces neutral solitonshigh density(of the order of several percentf kinks that
(kinks) in the lattice dimerization, which interpolate between locally change the relative sign of the dimerization in neigh-
the two degenerate bond alternations. Even though the créoring chaing®!® Yet, it is not clear how such random
ation energy of a neutral soliton is rather laf@é the order changes would lead to sharp peaks in the x-ray spectra.
of the gap intranspolyacetyleng the energy loss is compen- From the above it appears that a clear signature of the
sated by allowing the sign of the dimerization to adjust to theeffect of disorder-induced solitons is still to be found. This
electronic disorder fluctuations. Off-diagonal disorder inhas motivated us to study the magnetic response of disorder-
conjugated polymergi.e., disorder in the hopping ampli- induced solitons in more detail. A proper modeling of the
tudes of thewr electron$ may originate from random chain magnetic susceptibility involves more than a calculation of
twists, which decrease the overlap betweensherbitals of  the density of solitons in an isolated chain. As we noted in
neighboring carbon atoms. The density of disorder-inducedRefs. 1 and 2, the actual density of neutral solittarsd thus
neutral solitons in a single chain is proportional to the disor-of sping is determined by the competition between disorder
der strengtt: and interchain interactions, as the latter lead to confinement
In trangolyacetylene the disorder strength is presumablyof soliton-antisoliton pairs and may restore the long-range
rather large, as the average conjugation length in this matdsond order. Moreover, at low temperature, the exchange be-
rial is of the order of several tens of carbon atoms drfBne  tween the spins of neighboring solitons on a single chain
would then expect the neutral solitons to contribute signifi-tends to bind them into a singlet stafewhich has no mag-
cantly to the polymer's magnetic and optical properties, asietic response. Thus, the magnetic susceptibility and, in par-
they carry spins and result in the appearance of electronicticular, its temperature dependence should be expected to

states inside the Peierls gap. depend strongly on the interplay between disorder and inter-
There is, however, no direct evidence for the existence o€hain interactions.
a high density of solitons in undopedanspolyacetylene. In this paper, we focus on the magnetic susceptibility of

Electron spin resonand&SR experiments report only about disorder-induced solitons in the phase with long-range bond
one free spin per 3000 carbon atofnéMoreover, it appears order. In this case, solitons occur in isolated pairs of random
difficult to observe neutral solitons in optical-absorption ex-size dictated by the disorder realization. We study the statis-
periments, as, contrary to what is expected from the Sutics of these pairs by mapping the problem on the anisotropic
Schrieffer-HeegetSSH model® they seem not to give rise random-field Ising model, which is treated in the chain-
to a clear midgap absorption pehRhis may be explained mean-field approximatiotf This mapping is analogous to
by assuming that the on-site Coulomb repulsidiis strong  what we did in Refs. 1 and 2 for isolated chains. We briefly
enough to shift the midgap peak towards the absorption edgexplain the mapping in Sec. Il and discuss the phase diagram
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of this model. In Sec. lll, we express the magnetic suscepti-

bility of an ensemble of soliton-antisoliton pairs in terms of 7
the, as yet unknown, distribution of exchange interactions. In

Sec. IV, we calculate the distribution of soliton-pair sizes o,
using the saddle-point method. From the pair-size distribu- ~5 LRBO
tion we derive in Sec. V the distribution of exchange con- o
stants. The latter is used in Sec. VI to calculate the magnetic =
susceptibility oftranspolyacetylene. We find that the low- v
temperature behavior of this susceptibility deviates from the LRBO
Curie law and we fit our results to the experimental data

obtained in Ref. 7. In Sec. VI, we summarize and conclude. 1

NO

Il. SOLITONS IN INTERACTING DISORDERED PEIERLS 0 0.1 02 0.3
CHAINS Tu

In Ref. 2, we have shown that the statistics of neutral FlG.‘ L Th.e phase d'agr?‘m of the RFIM B4) captures .the
. - . . . essential physics of weakly disordered Peierls systems and is shown
solitons in isolated weakly disordered Peierls chains can b

tudied using th di . | d field Isi d s a function of the disorder streng#hu? and the temperature
studied using . € one- _|menS|(_)na ran_ om-hieid Ising mo /. The long-range bond ordét RBO) phase corresponds to an
(RFIM). In this mapping, Ising variablesr,==1 (m

: z ] . . average dimerizatiof{ o))A,# 0. The numerical calculation of the
=1,... M) are defined on the sites of a lattice with lattice ¢yitical curve (stars agrees well with the analytical resulsolid

constantd. These variables play the role of the sign of thecyrye obtained in Ref. 18. The dashed curve indicates the break-

dimerization in the Peierls chain, while the random “mag- down of the continuum approximation in the analytical calculation
netic” field hy, at sitemrepresents the off-diagonal disorder, pelow T=T,(€) (Ref. 18.

which locally lifts the degeneracy between the two dimeriza-
tion phaseS in the Peierls chain. Two neighboring sites on thﬁ]ation, where the homogeneous “magnetic” fi®ds pro-
lattice haVing different |Sing variable, Correspond to the 0C'portiona| to the average order parameter
currence of a soliton in the Peierls chain. Therefore, the cre-
ation energyu of a soliton in the Peierls chain is equivalent B=W((c)). 3)
to the exchange interaction between neighboring Ising spins.
In the SSH model of trangpolyacetylene u=2A¢/m  The double brackets denote both the thermal and the
=0.5 eV (A is the dimerization We emphasize, however, random-field average.
that this mapping is not limited to the SSH model, but also T end the explanation of our model, a few remarks are in
holds in the presence of electron-electron interactions, ihlace. First, by replacing the dimerization by a discrete Ising
which case the value qf is smaller:®*° variable, we have neglected the true dimerization profile as-
Our approach may easily be extended to account fogpciated with a soliton. As the extent of this profile is given
three-dimensional effects: interchain interactiom$ectron by the correlation lengtt,, our “sudden-kink approxima-
hopping, elastic forces, or Coulomb interactiptend to fa-  tjon” is valid as long as the soliton density is small com-
vor a coherence of the dimerization pattern on neighboringbared to 1Z,, as is the case for weak disorder. Taking into
chains, which in Ising language translates into an interactioRccount the true dimerization profile results in an effective
2W between spins or neighboring chains. As for quasi-oneicrease of the kink creation energy of the ordrgola
dimensional materials, like conjugated polyméié<u, We  (with a the average carbon-carbon distancetrianspoly-
are thus dﬁg‘"”g with a strongly anisotropic random-fieldacetyleng and, thus, in a small reduction of the soliton den-
Ising model.” The anisotropy allows one to treat the inter- sjty This has recently been confirmed explicitly in numerical
chain interactions in a mean-field way, an approach knowmimyiations, which do account for the true profileSecond,
as the chain-mean-field approximation. The energy of thg should be kept in mind that the RFIM E€) is an effec-
resulting Ising model is given by tive model, obtained by integrating out small lattice fluctua-
M tions. As a result, the kink creation energyweakly depends
M on the temperatureThird, above we have not specified the
E{‘Tm}:gfl 2 (1= 0mome1) =hmom=Bom|. (1) yaiue of the Ising lattice constaut (which should not be
confused with the lattice constaatf the polymer chain It
Here, the first term describes the energy cost for creatinghould be noted that both the disorder strengtand the
%EM=1(1_0—m0—m+1) kinks and the second term describesinterchain interaction energW scale proportional tal. In
the interaction energy with the random-magnetic field. TheSec. V, we show that all physical observablesdedepen-
latter is assumed to have a Gaussian distribution with zerdent in thed—0 limit.

mean (h,,)=0) and correlator The temperature versus disorder strength phase diagram
of the model Eq(1) contains two phases: the ordered phase
(hhp) = €8 (2)  characterized by a nonzero value of the average dimeriza-

tion, ((o))A,, and the disordered phase, in which the long-
where € is the disorder strength. We consider the case ofange bond ordeLRBO) is destroyed by thermal and
weak disordere<u?. Finally, the third term in Eq(1) de-  disorder-induced kinks. The two phases are separated by a
scribes the interchain interactions in the mean-field approxisecond-order transition. Figure 1 shows the phase diagram
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calculated forW/u=0.008, a typical value otranspoly- important for the magnetic properties of disordered Peierls
acetylene if the interchain interactions are dominated by inSyStéms, as it results in an antiferromagnetic exchange be-
terchain electron hopping. The stars in Fig. 1 denote the tween the spins of neutral kinké.This exchange can bind
phase boundary, which we obtained by numerical simulatiod® Spins of neighboring kinks into nonmagnetic singlets,
of the model Eq.(1) using an algorithm based on the thus reducing _the magnetic susceptlbmty of the system.
transfer-matrix approactcf. Ref. 2. The order parameter ~ AS argued in the previous section, for a nearly perfectly
{((o)) was found from a self-consistent calculation of theOrdered system the typical distance between disorder-
mean fieldB and the critical curve was then obtained bylnduce.d s_ollton—antlsollton pairs is much Iarggr than the typi-
requiring that((a))—0. The smooth temperature depen- cal pair size. We may 'then negle(_:t the spin exch'ang_e be-
dence of the phase boundary was obtained by averaging ti@een kinks from different pairs. The Hamiltonian
free energy over T0random-field realizations for a chain describing the interactions of soliton and antisoliton siBps
with 10° sites. The solid curve in Fig. 1 indicates the phaseand S, within one pair reads
boundary, which was calculated in Ref. 18 from an analytical
expression for the average free energy of the continuum ver- Hoair=J(S1- S~ §) —gueH(SE+SD), @)
sion of the model Eq(1). With the exception of a small
temperature regiof < T(¢),'® the results of the continuum
and the discrete models agree well.

At low temperature, the phase transition results from aby
competition between the disorder and the interchain interac- 1
tions. In fact, the critical disorder strength, which separates f(J,H)=—J— —In{1+e #[1+2 costiBgugH)]}
the phases with and without LRBO at zero temperature B

where J is the exchange constant in the pair adds the
external magnetic field. The free energy of the pair is given

8 (8)
reads
and the zero-field magnetic susceptibility of the pair is
2
€.~ §W,u, (4) ﬁzf(J,H) ) 2 efﬁJ
X(TM)=-—— =29 Msﬁm- 9)
In the disordered phase({(c))=0, the density of H=0
disordgred-_induceds neutral solitotspin flips is to lowest The couplingJ decreases with the soliton-antisoliton
order ine given by separatiorR. Quite generally, the largB-behavior is
L€ 5) 3=3 p( R (10
Ne=— —>, =Joexp — —|,
S d M 0 p

as is the case for a single disordered ch#h<0) > Onthe wherep=¢,/d (R is measured in units af) andJ, is of
other hand, fore< ¢, the order parametek o)) is observed the order of the spin gap. For the SSH model, in which
to increase rapidh? with a slope that is proportional to the Coulomb interactions are neglected and the spin gap equals
ratio u/W=1. Thus, in the overwhelming part of the ordered the charge gaplo,=4A4,.""

phase the system is nearly perfectly ordered with an order As Ris a random quantity that is imposed by the disorder
parameter close to unity(o))=1, and the solitons are realization, alsd is random. If we know the pair-size distri-
bound into pairs by the interchain interactions. Well within butionp(R) the distribution of exchange valuegJ) can be

the ordered phases&e€.) their density is exponentially sup- obtained using Eq10). We normalize the latter to the total
pressed. The distance between the soliton-antisoliton pairs @ensity of spin pairs

much larger than the typical pair size and the number of

soliton-antisoliton pairs per unit length redfis np= fo dJ wJ). (11)
12w? Wu _ L .
np=a Tex _ZT (6)  The system’s magnetic susceptibility is then given by
(for W?< e<2Wpu/3). T =deJ DHx(T,I 12
In the following, we will focus on the LRBO phase and (™ 0 MIXTD, (12

calculate the magnetic susceptibility due to the spins of th%\/ith ¥(T.J) as in Eq.(9)

bound pairs of neutral solitons. Clearly, the temperature dependence of the magnetic sus-

ceptibility is determined by the pair-size distribution. As we

IIl. MAGNETIC SUSCEPTIBILITY will show in detail in Secs. IV and V, in the LRBO phase
IN THE ORDERED PHASE p(R) is sharply peaked at soni, while for R>R*
Apart from the interchain interaction discussed in the pre- R
vious section, there is also an intrachain interaction between p(R>R* )oce)([{ - a—) (13
P

kinks. The latter interaction is strong only when the distance

between kinks is of the order of their sizg, Thus, for weak with o a constant determined by the strength of the disorder
disorder, when the density of kinks is small, it has little and interchain interactions. Equatigh3) in a straightfor-
effect on the statistics of the kinks. It may, however, beward way yields a power-law exchange distribution
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o\l e for all other possible pair configurationsn{,m;). There-
W)= 5 (149 fore, the desired pair-size distribution takes the form:

for J<J(R*). This part ofw(J) dictates the behavior of the
magnetic susceptibility at low temperatuiiegJ(R*). Pairs p(R)=<
with J>J(R*) (or: R<R*) are in the nonmagnetic singlet
state at these low temperatures. We thus find

O(AE[my,m;]) I] ©(AE[my,m,]

! !
(my,my)

—AE[mi,mé])>, (21)

1-«a
x[T<J<R*>]o<($) , (15)
where®(x) is the step function

which deviates from the high-temperature Curie behavior.

We note that, in order to describe the anomalous tempera- @(x)=[
ture dependence of the magnetic susceptibility of charge-
transfer salts, Clarlet al?* also introduced pairs of spins .
with a random antiferromagnetic coupling. These pairs, howf"_nd the brac_kets(, . -}, denote th(_a _Gaussmn average over
ever, were introduced in a purely phenomenological Waydlsort_jer reahzaﬂons{hm}. The definition _Eq.(21) ensures
whereas in our model they naturally emerge as disordert-hat' In apcordanpe W'th.Eq;Ll)’ p(R)/d is normalized to
induced soliton-antisoliton pairs with a distribution of ex- "€ density of soliton-antisoliton pairs
change constants that follows from the pair-size distribution.

1 for x=0

0 for x<0 (22

1 (>
np=af dR p(R). 23)
IV. CALCULATION OF THE PAIR-SIZE DISTRIBUTION 0

The pair-size distributiop(R) is defined as the number It is easy to see thai(R) factorizes into two independent
of soliton-antisoliton pairs of siz&® per site of the Ising parts, po, and p;,, that account for the soliton-antisoliton
chain. For a given disorder realizati¢h,,} one finds from pairs with a size that is, respectively, larger and smaller than
Eg. (1) that the energy of a configuratiomg,m,), with the R
soliton located betweem; and m;+1 and the antisoliton

betweenm, andm,+ 1, reads P(R) = Poutin» (24)
with
E[ml,m2]=E0—AE[m1,m2], (16)
whereE, denotes the energy for a configuration without soli- Pou=(© (2+ i) O(22+ Sy, + S, 1)
tons and
XO(3z+Sy, +Sm 1+ Sm,-2) - - .)
m;
AE[my,my]=—2u—2 2, (B+h,) (17) X(O(z+ Sy, +1)O(22+ Sy, 1+ 11 S, +2)
m=m;+1

. . _ ><®(3z+sm2+l+sm2+2+sm2+3) )y (25
is the energy change due to the creation of the soliton-

antisoliton pair. As we restrict ourselves to isolated soliton-and
antisoliton pairs, it is sufficient to consider a segment of the
chain that contains one such pair located far away from its 2
endpoints. Furthermore, because the sequence of solitons and Pin= < ®( —I-Rz- _2 Sm) HLHR> . (26
antisolitons along the chain is determined by fixed boundary memy

conditions for the lattice dimerization, we may, without lossHere, we have defined the dimensionless varialdgs
of generality, assume that,>m;. Then, the pair siz® (in =h,,/\e, z=Bl\e, | =pul e, while

units of the Ising lattice constanl) is given by

HLE®(_Z_Sm+1)®(_Zz_sml+1_sml+2) s

R= my,—myq. (18)
x@)(—Rz—smlH— ---—sz) (27
The soliton-antisoliton pair configuratiomg ,m,) is only
energetically favorable if and
AE[m;,m,]=0. (19 HREG)(_Z_SmZ)(_Zz_smz_smz—l) ce
This is, however, not sufficient to calculate the pair-size dis- XO(—Rz- Sm,™ - - - —smlﬂ). (28

tribution p(R), as we also have to impose the condition that

this pair configuration has lower energy than any other pair Note thatp,,, itself also consists of two independent fac-
in the considered chain segment. Thus, simultaneously, thgys: the first factor excludes the pairs with the soliton lo-
energy of the pair configuration has to satisfy the inequalitiegated to the left ofn,, while the second one excludes anti-

. soliton positions larger tham,+ 1. Both these factors can
AE[myg,mp]=AE[my,m;], (200 pe written in the form
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o

v2)=T1 [ f wdsmf(smm[;l (z+5)

m= — o

Bearing this in mind, we now calculate the inner factor
, (29 Eq. (26). First, we can rewrite Eq26) in the form

- +is (N
where = ™ -\S
Pin sz+Ide—iw 2mi
eXF(_%SZ) ma + o
=5 (30 x 1 | dsenf(s)ldlg, (36

m=m{+1 J -

iosbigfn Gaussian weight. As a result, for the outer factor wgyare the integration over ensures that
m=my
Pour=[Y(2)]% (3D S=- > S (37)
m=m;+
The functionY(z) will be calculated later in this section. o ) ) ' )
The calculation of the inner factor is complicated by thea@nd the'l|m|'ts of the integration ov&follows from the first
presence of the exti@ function in Eq.(26), which precludes © function in Eq.(26). )
the factorization ofp,, in two independent averages. How-  Since the typical pair siz&*>1 [see Eq(35)], we can
ever, considerable simplification is possible, because we fd#S€ the canonical formalism, in which E@®7) for the sum
cus on the bond-ordered phase whéfe))=1. Then the of Rrandom variables is satisfied only in average. We dp this
density of disorder-induced soliton-antisoliton pairs is small 0y “shifting” the argument of the random-field distribution
and the main suppression factoritR) is the probability of ~ 0N €ach site by
the disorder realization necessary to create a Pak.In 12,
other words, the most important contribution pg, [and f(s)—=f(s+N)=e 2% "*M(s), (38)

p(R)] comes from averaging the firét function in Eq.(26) so that the average value now becorses— \ and Eq.(36)

m, reads
<®[—| — > (z+sy) > = Eerfo[g(R)]
m=my+d ) 2 Pin= fm ds +md_)‘_efxs+%R)\2
oH-oR e
~— my Tt
v4mg(R) x I ds, f(s,+ M TR, (39
where momrL Joe
The integral over A comes from the small vicinity
_I+Rz (~1/JR) of A\g=S/R, where the exponential in E¢39) has
9(R)= 2R’ (33 its maximum. Saddle-point integration overthen gives
m
Here, the asymptotic expression for the complementary error ds & = Tt S
function erf¢g(R)] was used because the minimal value for Pin™ | _ 277Re 2Rm:£[1+1 » dspf| smt R IT, 1.
its argument is easily shown to log,,= v3e€./€, so that for (40)
e<€./2 the relative error becomes already less than several
percent. Next, we note that if the condition imposed by the fiest

The interpretation of this result is that the optimal disor-function in Eq.(26) is satisfied, the arguments of the &t
der fluctuation(i.e., the disorder realization with the largest functions inll, andIly also almost certainly are positive. In
weight that can induce a soliton-antisoliton pair of siRe other words, because the relevant disorder realizations are
has a constant value hg in the interval of lengttR and is  close to the optimal fluctuations, only the first fevfunc-
zero outside the interval. The amplitutig is determined by tions inII, andIlg are really restrictive. This implies that

the energy balandesee Eqs(17) and (19)] the disorder averages 0f, andIly in Eq. (40) are decou-
pled. Furthermore, it is easily seen from Eg9) that then
hgR=u+WR (34 (II.)=(IIg)=Y[(S/R)—z], so that Eq(40) becomes

The weight of the optimal fluctuationy = exg — Rh?/(2¢)],

: ; : M = dS S 2
is precisely the exponential factor appearing in B9). At Pin= e(llm)sz[y(__z) (41)
zR+1\27R R
I
R* =— = ﬁ>1 (35)  The integral overS comes from the vicinity of the lower
z W limit, S=zR+1 [cf. Eq. (34) for the optimal fluctuatioh
the weight reaches its maximal value, exg@Wule). Fore  1he result of the integration is
<¢€., the maximal weight is smaJls was also found in Egs. (1 +R2)?
(32 and (33)] and the soliton-antisoliton pairs are sup- ex;{—— 5
pressed. In that case, all disorder realizations that contribute o /R 2R Y i 42)
significantly top(R) are close to the optimal fluctuation. Pin 27 (I1+R2 R/|’
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FIG. 2. The functionY(v) obtained from a numerical solution
(starg of the integral equatiof44). The best fit of this solution by
a function of the formY(v) =tanhgv) yields c=1.14(solid line).

where forS in the argument ofY we took its value at the
lower limit of the integration.

From Egs.(24), (31), and (42) we finally obtain for the
pair-size distribution

_exd~g(R)?]
Jamg(R)

where the functiom(R) is defined by Eq(33).

What is left now, is the calculation of the functiof(v).
To this end we introduce the functiof(s|v), satisfying the
integral equation

P(R) (43

112 )
Y(g” [Y(2)]%,

Y(s|v)=J:ds’f(s+v—s’)Y(s’|v). (44

Comparing the iterative solution of this equation to Ezp),
one finds
Y(v)=Y(0|v). (45)

The integral equatiod4) can be easily solved numerically.
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o(m)=1-260(m—m;)0®(m,—m), (48)

wherem; and m,=m; +R denote the positions of, respec-
tively, the soliton and the antisoliton. Replacing summations
by integrations, the LRBO parameter averaged over all pos-
sible pair sizes is easily calculated

o N w
<<o>>=f0 dR p(R)ijdma(m)zl—Zfo dR pR)R.

2
(49)

For a nearly perfectly ordered systef{o))=1, we thus
find from Eq.(49) the condition that the typical pair si&

is much smaller than the typical number of sitesdhif)
between soliton-antisoliton pairs. Similarly, we calculate the
correlation function({o(0)a(l))), which yields the sum of
the square of the LRBO parameter E49),

(<U>>221—4J;dR PR)R, (50)
and the connected correlator
(o004 [ dRpR+IDR 5D

The scale for the decay of short-range correlations is obvi-
ously set by the typical pair sizZe*, as{{o(0)ca(l))).—0
for [I|>R*.

V. THE EXCHANGE DISTRIBUTION
IN THE CONTINUUM LIMIT

In the previous sections we described disordered Peierls
systems using the effective RFIM E(.). The values of the
interchain interactiolWW and the disorder strength in this
model are proportional to the length which we choose for
the unit cell of the Ising chain and which plays the role of a
short-distance cutoff. On the other hand, physical observ-
ables, such as the density of soliton-antisoliton pairs and the

The result is shown as stars in Fig. 2. The solid line repreMagnetic susceptibility, should not depend @nThus, be-

sents the best fit to these points by a function of the form

Y(v)=tanhcv). (46)

The fit yields c=1.14. For smallv, the best linear fit
[Y(v)=c'v] yieldsc’'= /2, with a precision of several per-
cent.

We conclude this section by a brief analysis of the pair-

size distribution Eq(43). First, integratingp(R)/d over R
gives the density of soliton-antisoliton pairsf. Eq. (23)].
For e<e., the exponential factor in Eq43) has a sharp
peak atR* given by Eq.(35). UsingB=W, the saddle-point
integration around the peak gives

w

ﬁ rex —2@).

Furthermore, we note that knowledge of the pair-size distri

1 €

P~dawg "

n

(47

bution Eq.(43) allows us to derive the long- and short-range

bond order parameter of the RFIM E({.). For a dilute gas
of soliton-antisoliton pairs it is sufficient to consider a chain
segment oN+ 1 sites containing a single pair of sike

fore comparing our results to the experimental data on
trangpolyacetylene, we show that drops out from the ex-
pressions for the observables in tthe>0 limit.

To this end, we introduce as physically meaningful quan-
tities the disorder strengthand the interchain interactio
per unit length
(52)

e=e€d,

and

W=Wd. (53

Furthermore, from now on we will work with the physical
pair sizer=Rd. In terms of these new variables, the argu-
ments of bothY functions in Eq.(43) for the pair-size distri-
bution arex+/d. Therefore, ford—0, the arguments are
small and we can usé(v)=+2v [see below Eq(45)], giv-

ing the pair-size distribution

p2W2 exd —g(r)?]

€r? \Jamg(r)

p(r=4= (54)
er
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TABLE I. The four sets of parameters used in the numerical
calculations for a fixed density of spin pair§,=1/600(h’l. The
6 ',.-" "-.__ value fora as defined in Eq(59) is obtained using the SSH param-
f i eter ¢y=7a for the correlation length.

W (u/a) € (u2/a) Jo (K) @
= 0.038 0.010 400 0.5
N 0.055 0.014 130 0.75
=1 0.070 0.017 72 1.0
s 0.100 0.023 39 1.5
z

become clear in Sec. VI. Depending on the parameters, one
observes two qualitatively very different behaviong.J) ei-

\ ther has a pronounced peak Ht=J(r*) [with r*=R*d
NN andR* as in Eq.(35)] and tends to zero fai—0, or w(J)
AN diverges for small. The distinction between these two be-
7 06 08 1 haviors is dominated by only one parameter combination
1o
W2
FIG. 3. The distributiorw(J) of exchange constants as a func- a=—=4§&,. (59)
tion of J/J, for the four parameter sets given in Table I. The curves 2e

correspond tax= 1.5 (dot9, 1.0 (dash-doyx, 0.75(dasheg and 0.5 .
(solid). For a=1.0 the distribution has a pronounced peak at somen fact, Eq.(58) for J<J* yields
J=J* and tends to zero fad—0. In contrast, fora<<1.0, w(J)

. l1-«a
diverges wherl—0. W(J)m(?) , (60)
where
which shows that the relative strength of the interchain inter-
M+V_Vf actions and the disorder determines whetwéd) diverges
g(r)=——. (55  (a<1) or approaches zerar>1) for J—0.
\/; The behavior of Eq(60) agrees with Eq(14) in Sec. llI

and can indeed be traced back to the fact that for laripe

Similarly, from Eq.(47), the total density of neutral soliton- pair-size distribution is exponential

antisoliton pairs in the limid—0 is found to be

. J— o V_VZr Ja\ @
2W? W Sk _ _[Jo
Ny~ — exp( —2—, (56) p(r=r )“exp( 2:) 3 ) . (62
€ €
which coincides with Eq(6) obtained in Ref. 18 within the This exponential dependence can be understood as follows.
continuum approximation for the RFIM E¢L). Forr>r*, the energy of the string between soliton and an-
Furthermore, in terms of continuum variables, the ex-tisoliton exceeds the kink creation energir=WR> u.
change coupling Eq.10) reads Thus, the amplitude of the optimal fluctuation E&4) is
hgkR=WR. The Gaussian weight eEqaRkﬁ/(Za)] of this
Ir)=1J ex% _r (57) fluctuation is the exponential in E¢61). Similar arguments
0 &)’ were used to explain the power-law dependence of the den-

sity of states in the fluctuating gap model of disordered
system€® The power-law dependence wof(J) at smallJ
gives rise to a characteristic low-temperature behavior of the
magnetic susceptibility, as we will see in the next section.

Thus, in the continuum limit the distribution of exchange
constants becomes

W(J)=f drp(r)é[J—J(r)]

0 VI. MAGNETIC SUSCEPTIBILITY

1 sz_vz exf — g(J)z] OF TRANSPOLYACETYLENE

&0 €N VAmgd) (58) In this section we considd@ranspolyacetylene as a disor-

. dered Peierls system and calculate its magnetic susceptibility

with g(J)=g[r = &In(Jp/J)] [cf. Eq. (59)]. due to disorder-induced soliton-antisoliton pairs as a function
In Fig. 3, we plot the distributionv(J) for four different  of temperature. The temperature dependence of the magnetic

parameter setse(W,Jy) chosen such that the density of susceptibility is determined by the distribution of exchange

soliton-antisoliton pairs is fixed atp=1/60001‘1 (with a  constants Eq(58). For temperature$ much larger than the

the average carbon-carbon distancetrengpolyacetyleng typical singlet-triplet energy splitting*, almost all spin
Our choice of parameters is summarized in Table | and willpairs are thermally excited. Thus, we have, essentialty, 2

_41
S|
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free spins, which give rise to a Curie susceptibility. Indeed, Z 5 5
Eqgs.(9) and(12) yield g
=l
X(T>J%)=>g?ulp f dIw)=59°ui <, (62 3
2 0 2 T =0 a=05] @=075
0 10 20 0 10 20

where the density of soliton-antisoliton pairg is given by
Eq. (56). In the opposite limitT<J*, however, most of the

spin pairs are in the singlet state and do not contribute to the é 2 2
magnetic susceptibility. Under these conditions E#g) and £ :
(58) yield S 1 1
Jo\ 17 ¢ EQO e=10] a=15
x(T<J*)=C(T) T , (63 0 10 20 0 10 20
100/T (1/K) 100/T (1/K)
V.Vlth a.as Irl; Eq.(59) and logarithmic temperature correc- FIG. 4. Fits of our theorysolid curve to the experimental data
tions given by (dot9 for the magnetic susceptibility of Durhatranspolyacetylene
5 1 ) ) obtained in Ref. 7. The four parameter sets given in Table | were
c(T) 492MB( np50)7 w? T(1+a)li(—3) 64 used to fit the same experimental data poistse text for details
9 | ?53 [In(Jo/T)]5’2 The deviation from Curie behavigstraight ling belowT=30 K is

clearly seen and reasonably reproduced by each fit dowm to
[Li ,,(z)=2°k°:12k/k” is the polylogarithm function The =5 K, below which experimental data are not available.

dominant factor in Eq(63) is (Jo/T)*~ ¢, which basically _ _ _ _ _
gives the density of spin pairs with singlet-triplet splitting tative differences in the low-temperature behavior, dictated

~T [cf. Eq. (60)]. by the value ofa, are clearly visible below 5 K. This sug-

We thus find that the low-temperature behavior of thegests that extending the experiments to lower temperatures
magnetic susceptibility differs from the Curie law and is dic- may yield more information on the relative strength of inter-
tated by the relative strength of interchain interactions and chain interactions and disorder franspolyacetylene.

disorder. Fora<1, the susceptibility diverges as—O0, We conclude this section by noting that, within the con-
while for a>1 it approaches zero. text of our model, it is possible to determine the strength of

A low-temperature T<30 K) deviation from Curie be- the interchain interactions and the disorder independent of

havior has indeed been observed by Foot, Billingham, anéhe fitting parameted,. For this purpose, the density, of
Calvert in ESR experiments on Durharanspolyacetylend. ~ soliton-antisoliton pairs is to be obtained experimentally
These authors already suggested pairing of spins as possitif@m the Curie tail of the magnetic susceptibility, while for
reason for this behavior. To see whether our model of spin§1€ same sample is to be determined from the asymptotic
associated with disorder-induced soliton-antisoliton pairs ofZero-temperature behavior of the magnetic susceptibility.
fers a microscopic explanation, we compared our result fof hen, using Eqs(56) and(59), the strength of the interchain
x(T) [numerically calculated from Eqé12) and(58)] to the  Interactions,
experimental data. In our fit procedure there are, in principle,

three free parameterddV, e, and J, (for the correlation W~4a L
length we take the SSH valug=7a). We require, how- &o
ever, that our parameters are also consistent with the total
density of spin pairs, which is reported to be approximately
n,=1/600G . *~" This requirement imposes a relation be-

tweenW and e, reducing the number of free parameters to
two.
In practice, we chose various values tofEg. (59)]. For

eacha value,W and e are uniquely determined lry,, and

Jo is left as free parameter to fit the temperature dependence
of the magnetic susceptibility. This procedure yielded the fits
shown in Fig. 4, with parameter sets given in Table I. For 1
convenience, we will refer to each parameter set byuits

value. We note that our values fdg are much smaller than

the valueJo=4A,~10* K, which is obtained within the 0
SSH modet’ We point out, however, that Coulomb interac- 0 20 40 60 80 100

tions result in a reduction of the value fdg. 100/T - (1/K)

The important point is now that, while all four parameter |G, 5. As Fig. 4, but now the four theoretical curves are shown
sets give rise to reasonable fits of the experimental data, theyown to T=1 K. It is clearly observed that different values of
predict totally different behaviors foF<5 K, where experi- (the relative strength of disorder and interchain interacjiteed to
ments have not been performed. This is shown in Fig. Squalitatively different lowT (<5 K) behavior of the magnetic
where we extend the four theoretical fits to 1 K. The quali-susceptiblity.

: (65

w

[\

X(T) (arb. units)




13 890 FIGGE, MOSTOVOY, AND KNOESTER PRB 59
and the disorder strength, important to extend the measurements to lower temperatures,
o 2
e~8a—

4 _2 where the temperature dependence of the magnetic suscepti-
43

In(—)

€o Npéo

66) bility is extremely sensitive to the choice of parameters.
' Our theory is only applicable when the low-temperature
. . behavior of the susceptibility is an intrinsic property of the
can be calculated_as a funcﬂo_n Dt? and a. For typical material and is not governed by spins of impurities. The
values of the density,, the logarithmic factor depends only. latter situation may, in fact, be realized in Shirakawa
weakly ona~0O(1) and ca_nlbe approxw_nated b_y a numer- trangolyacetylene, which shows Curie behavior dowriTto
cal constant. I, =1/600G "~ and choosing again the SSH _ 5427 £y ithermore, we assumed the existence of long-
parameter £{,=7a, one obtains W~0.07au/a and €  range order in the system. Whether this is the case in
~0.02¢p%/a. It is important to realize that Eq$65) and  trangpolyacetylene is an open question. It would, therefore,
(66) do not depend on the maximal exchange consfgnt pe interesting to extend our studies to the case without long-
which may be used as a fitting parameter for temperaturegange order. At the same time, however, it should be noted

around the typical exchang¥ . that in substituted polyacetylenes, the degeneracy of the two
dimerized configurations may be lifted. This leads to an extra
VIl. CONCLUDING REMARKS (intrachain source of soliton-antisoliton confinemé&hand

favors long-range bond order. Our theory may be applied to
Yhese substituted polymers by simply adding to the interchain
interaction per bondWa), the energy difference per bond

etween the two dimerized configurations. As this energy

To summarize, we have calculated the magnetic suscep
bility of quasi-one-dimensional Peierls systems with a dou
bly degenerate ground state. We have related th

temperature-dependent part of the susceptibility to the PreYifference may be controlled by varying the substitutions,

ence of ”e“tfa' solitons and antlsqlltons W't.h spimduced this opens interesting possibilities to study disorder-induced
by disorder in the electron hopping amplitudes along the__ : -
chain. We have assumed the interchain interactions to b%olltons in more detail,

: We finally mention that in the ordered phase, the disorder-

sufficiently strong to bind the disorder-induced solitons and, e sojiton-antisoliton pairs show up in the x-ray spec-
antisolitons into pairs and thus establish long-range bond or:

der in the svstem. Using a maoping on the random-field ISintrum as a broad incoherent peak associated with each sharp
Y ' 9 pping Ylastic peak arising from the bond length alternation. Our

mnot?ell,itwr? h?rveizcalc_lyr:?ted” t\k/]ve ddlstrltl:)utlg? i(r)1f tLhe d?otlr'itgn_'result for the pair-size distribution allows one to calculate the
antisofifon pair size. 1his aliowed us 1o obta € distribu shape of this incoherent peak: it simply is the Fourier trans-

tion of exchange constants describing the interaction bef
; . L . rm r f th nn rrelator Exi). Th n
tween the spins of the soliton and the antisoliton within one_0 squared of the connected correlato ) nus, one

pair. Both distributions strongly depend on the relativelMmediately finds that the peak width is 1/r* ~W/. It
strengtha of the disorder and the interchain interactions. AsShould be kept in mind, however, that this calculation does

a result, the magnetic susceptibility deviates from the Curi0t account for other broadening mechanisms, e.g., those due
law: belowT=J*, whereJ* is the most probable value of to the complicated morphology of polyacetylene samples.

the exchange constant, the magnetic susceptibility behaves
as (1m)t-«

Our results explain the deviation from Curie behavior ob-  This work is part of the research program of the Stichting
served in Durhanirangpolyacetylen€, though from the ex- Fundamenteel Onderzoek der MatefeOM), which is fi-
perimental data it is difficult to find unambiguously the val- nancially supported by the Nederlandse Organisatie voor
ues ofa andJ* for this conjugated polymer. It is, therefore, Wetenschappelijk OnderzoghWO).
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