PHYSICAL REVIEW B VOLUME 59, NUMBER 2 1 JANUARY 1999-11

Phase transition in a chain of quantum vortices
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We consider interacting vortices in a quasi-one-dimensional array of Josephson junctions with small capaci-
tance. If the charging energy of a junction is of the order of the Josephson energy, the fluctuations of the
superconducting order parameter in the system are considerable, and the vortices behave as quantum particles.
Their density may be tuned by an external magnetic field, and therefore one can control the commensurability
of the one-dimensional vortex lattice with the lattice of Josephson junctions. We show that the interplay
between the quantum nature of a vortex and the long-range interaction between the vortices leads to the
existence of a specific commensurate-incommensurate transition in a one-dimensional vortex lattice. In the
commensurate phase an elementary excitation is a soliton with energy separated from the ground state by a
finite gap. This gap vanishes in the incommensurate phase. Each soliton carries a fraction of a flux quantum;
the propagation of solitons leads to a finite resistance of the array. We find the dependence of the resistance
activation energy on the magnetic field and parameters of the Josephson array. This energy consists of the
above-mentioned gap, and also of a boundary pinning term, which is different in the commensurate and
incommensurate phases. The developed theory allows us to explain quantitatively the available experimental
data.[S0163-18209)00402-6

I. INTRODUCTION =<1 at which the global phase coherence is preserved, their
interaction energy,.,>E; is larger than the bandwidth for
The interest in Josephson junction arrays in the last dea single vortex. A finite magnetic field applied perpendicu-
cade was to a large degree prompted by the fact that thedarly to the array, creates a lattice with a vortex density pro-
systems are suitable as a testing ground for various predigortional to the field strength. Depending on the magnetic
tions of quantum many-body theofjor an overview see, field flux per plaquette, the vortex lattice is commensurate or
e.g., Refs. 1 and)2 If the charging energy of a junction incommensurate with the junction arrajfthe commensura-
Ec=e?/2C is comparable with its Josephson enefgyy, the  bility effect exists of course even for classical vortices in an
phase of the superconducting order parameter is subject trray withEc/E;— 0. The array acts like a periodic potential
quantum fluctuationghere C is the capacitance of a junc- with an amplitudeU,~0.2E; and some period (the period
tion). At some critical value oE/E; the global phase co- of the Josephson arr}aﬁor each vorte® In a classical sys-
herence is destroyed, and the array becomes an instilatotem, this is expected to be a source of strong pinnind) as
This transition apparently is driven by proliferation of spon-andU,_, are of the same order. Quantum fluctuations bring
taneously created vortices, i.e., topological excitations of themew physics into the problem. The period of the pinning
array, in which the phase of the order parameter varies bpotential is relatively small, and therefore its amplitude is
21 on going around a plaquette. At smaller ratigg/E; suppressed readily by quantum fluctuations. On the contrary,
vortices induced by an external magnetic field still possesslepending on the magnetic field, the vortex lattice period
guantum properties. The vortex dynamics is particularly senmay be significantly larger thaa, thus making the vortex
sitive to the quantum fluctuations of the phase: the vorteXattice robust against quantum fluctuations.
mass, for example, is finite entirely due to these Commensurability effects in a chain of quantum vortices
fluctuations®® were investigated in the recent experiments of van Oude-
A single vortex in a Josephson junction array behaves as maardenet al® There a number of two-dimensional arrays
ballistically propagating quantum partidieThese particles with various ratiosEc/E;, and various widths of the order
are strongly interacting, however: for the valueskpf/E;  of ten cells were studied. All arrays were quasi-one-
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+ I also expects a gap in the excitation spectrum of the array that
¢ diminishes as a function dB—B,| within the commensu-
e A rate phasdwhich is the analog of the insulating phaskn-
| deed, in the experiment a cusplike dependence of the resis-
XTI I} W tance activation energy dB— B,| was observedsee Ref. 9
‘ and Sec. VI of this papgr At some critical value of/B

—B,| the observed temperature dependence of the resistance
. becomes considerably weaker. This may indicate that a tran-
*I sition to a gaples$‘conducting”) phase occurs, accompa-
L nied by the creation of discommensuration solitons.
In this paper, we present a quantitative theory of the
mmensurate-incommensurate transition for a chain of
lantum vortices in a quasi-one-dimensional Josephson ar-
ay (see Ref. 11 for another type of commensurate-
incommensurate transition in Josephson anayke transi-
fion to the incommensurate state occurs by proliferation of
the discommensuration solitons through the vortex chain.
We are able to develop a theory by analytical means because
of a special feature of the system we consider. It turns out
dimensional in fact, their length varying between 100 andkhat the range of the interaction between the vortices is much
1000 cells. Superconducting contacts parallel to the longonger than the intervortex distance. Therefore, the solitons
sides of the array were providing a potential confining theconsist of many vortices, and possess a large effective mass.
vortices to the central row of the array; see Fig. 1. ApplyingThus the theory for the commensurate-incommensurate tran-
a current through the leadgperpendicular to the one- sition is essentially classical. However, to relate the param-
dimensional vortex chajnand measuring the resistance of eters of this theory to the generic properti&:(andE;) of
the system as a function of the magnetic field, van Oudethe Josephson array, we need to consider a single vortex as a
naardenet al. found almost zero resistance in the regionsquantum particle: the amplitude of the periodic pinning po-
centered around the commensurate values of the ongential depends on the bandwidth of the vortex. After that,
dimensional vortex density. This was interpreted as an indiwe are able to find analytically the excitation gap existing in
cation of a finite-gap stat¢'Mott insulator” phase, induced  the commensurate phase and the boundaries of this phase in
by the vortex-vortex interaction in the presence of a periodighe (B,Ec/E;) plane.
potential. If the magnetic field was tuned away from these e relate the characteristics of the commensurate and in-
special regions, a transition to a resistive state was observeggmmensurate phases to an observable quantity, the activa-
indicating moving vorticeg*“conducting” phase. tion energy of the resistané. In the commensurate phase,
The analogy between the observed transition in the syshe transfer of one flux quantum between the edges of the
tem of vortices and the textbook Mott transition in electronarray occurs via a sequence of solitons propagating through
systems can be made more explid#/E; here plays the it. The number of solitons necessary to transfer one vortex is
role of the ratiot/U of the electron bandwidth to the on-site equal to the ratio of the periods of the vortex lattice and the
repulsion potential; the magnetic fieRl creating vortices, junction array; typically this ratio is large. At any time dur-
plays the role of the electron chemical potential The ing the vortex transfer, there is no more than one soliton
phase diagram in the variables/d,u) consists of two present in the chain. We demonstrate tEat depends not
phases. The insulating phase occurs at relatively small valuesnly on the properties of the “bulk” one-dimensional sys-
of t/U=1. In this phase, the electron density is constant as &m, but also reflects boundary pinning effects, accompany-
function of u, and fixed by the commensurability condition ing the passage of vortices through the ends of the array. One
(one electron per lattice sjteOne can assign the valye  soliton changes the length of the vortex chain only by one
=0 to the line of particle-hole symmetry in this phase dia-period of the junction array, which is less than the intervor-
gram. Deviation from this symmetry line makes the excita-tex spacing. Hence, in the commensurate phase, the process
tion gap in the insulating phase smaller; the gap width is af vortex flow through the array can be viewed as motion of
nonanalytical function ofu, reflecting the violation of the a rigid vortex chain. Because of the rigidity, the vortex chain
particle-hole symmetry gt # 0. At a certain critical value of cannot adjust itself to the boundary pinning potential. The
|u|, which depends oYU, the gap disappears and a transi- potentials produced by the two ends of the array adBgo
tion to a “conducting” phase occurs. This conventional pic-the relative phase of these two contributions depends on
ture is modified somewhat in the one-dimensional case, buthether the total flux piercing the junction array equals an
qualitatively remains valid. A similar description applies to integer number of flux quanta. Thus, in the commensurate
Mott transitions in Bose systems with repulsin. state, there are two major termshg. The first term is the
The line of particle-hole symmetry in the case of vorticesactivation energy of a soliton, and the second term is the sum
corresponds to a special valig, of the magnetic field, of the boundary pinning energies. This sec¢smalle) term
which induces a vortex lattice commensurate with the periodscillates with the magnetic flux piercing the array. In the
of the junction array. The analogy to the electronic case deincommensurate state, the vortex chain is compressible, and
scribed in the last paragraph suggests that the vortex densityan adjust to the boundaries of the array, if the latter is suf-
remains constant in a finite interval & aroundB,. One ficiently long. As a result, the main term Ey is the bound-

plaquette corresponds to a single Josephson junction. Crosses
note vortices located in the central row of the array. The propertie?
of the vortex chain are probed by passing a curdefiom one
superconducting contact to the other and measuring the voltage b
tween them. The array width & and the size of a single plaquette
isaxa.

FIG. 1. Quasi-one-dimensional Josephson array. Each side of(g
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ary pinning potential, which a vortex has to overcome tostant: the chain is virtually rigid in the incommensurate
enter the array. A correction is provided by the finite com-phase. Our theory explains consistently the main experimen-
pression energy of the chain. Its average value depends dal observations reported in this paper and in Ref19the
the compressibility of the chain, renormalized by the soli-cusplike dependence of the activation energy on the mag-
tons, and is inversely proportional to the length of the arrayhetic field in the commensurate pha®); the large value of
This term oscillates with the flux threading the system.  this activation energycompared toE; and Ec), and (3)

The paper is organized as follows. In Sec. II, we introducePScillations of the resistance with the applied magnetic field,
a model of classical vortices in the quasi-one-dimensionayVith & period corresponding to one flux quantum through the
Josephson array. Here we neglect the discreteness of the ghtire array, in the incommensurate phase. We conclude with

ray, and the screening of the vortex-vortex interaction. Thig discussion in Sec. VII.
approximation means that the vortex chain is entirely incom-
pressible. We establish the stability criterion for a one- IIl. RIGID VORTEX CHAIN

dimensional vortex chain against formation of a zigzag struc- \ye consider a two-dimensional Josephson array of lattice
ture. We calculate the equilibrium number of vortices as Sonstant, lengthL, and widthW whereL>W: see Fig. 1.
function of the magnetic field and determine the boundaryrpg «sjtes of this array are superconducting islands, linked
pinning caused by the interaction of the vortices with theby Josephson junctions that are characterized by a capaci-
ends of the array. For an incompressible chain, this gives UsinceC and a critical current. . The phases, of the order

the equilibrium position for each vortex. In the following parameter of the islandaumbered by vectori§ are the only

part, Sec. lll, we discuss bulk pinning by reintroducing the 4 namical degrees of freedom of the system. For an infinite

d|s_cretenes_s of the junction array. The array creates a Peflio-dimensional system, the Lagrangian can be written in
odic potential for each vortex, which behaves as a quantu

potentia _ : "the standartiway,
particle in this potential. We demonstrate that typically the

amplitude of the quantum fluctuations of a vortex exceeds #2 IPi 2

the period of the array(This justifies, in fact, the approxi- L=2 [f T) —Ej[1—cog¢;))];- 1)
mations made in Sec. JIWe calculate the residual pinning (il 1==¢C

potential, suppressed by quantum and thermal fluctuationgjere the sum is taken over the nearest neighborsgane
acting on a single vortex. the phase difference across a link of the arrdy;

The results of the Secs. Il and Il are directly applicable to=1.® /27 andEc=e%/2C are the Josephson and charging
short arrays, i.e., arrays that are shorter than the range of tlemergy, respectivelyd,=hc/2e is the flux quantum. The
vortex-vortex interaction. The main goal of these sectiond.agrangian(1) describes quantum fluctuations of the phase
though is to provide us with the coefficients necessary tdn the array. At a certain critical valtieof the ratioEc/E,
write down the effective Hamiltonian describing a compress—~ 1, the proliferation of spontaneous vortices and antivorti-
ible chain in a long array. We start the next section, Sec. IVges through the system destroys the long-range order. We
with an estimate of the vortex-vortex interaction range. It isconsider smaller values &g/E;, and neglect the existence
defined by two mechanismsl) the effect of the magnetic of spontaneous topological excitations. Vortices in the spa-
field induced by the vortices, an@) the interaction of the tial distribution of the phase are then induced only by an
vortices in the Josephson array with the Abrikosov lattice inexternal magnetic field. A vortex is characterized by a
the contacts to the array. The estimate demonstrates that fphase change of2 on going around a plaquette. The effec-
the conditions of the experimefitthe range indeed exceeds tive Lagrangian in terms of the vortex positions,
greatly the intervortex distance, but still may be smaller than
the system length, making it necessary to account for a finite M
compressibility of the vortex chain. We therefore derive the L= E 2
long-wavelength theory for the compressible vortex chain.

This theory enables us to describe, in Sec. V, thecan be derivetifrom Eq.(1). Here M = 7?42/4a%E is the
commensurate-incommensurate transition. We determine thertex massU,_,(r;,rj) is the interaction energy between
boundaries of the commensurate phase, and find the depeifie vortices, andJ,(r;) is the pinning potential that repre-
dence of the activation energy for elementary excitations ogents the effect of a discrete lattice of junctions on the vortex
the parameters of the system. Also in this section, we discuggotion. In an infinite array, the enerdy, , depends only on

the behavior of the resistivity following from the picture we the distance between vortices, and can be approximated by
developed. We compare our results with the existing experithe standard expressions valid for vortices induced in a thin
ment in Sec. VI. Using the experimental values of the vortexsuperconducting film3 For a geometrically restricted array,
density at the commensurate-incommensurate transition arfdg. 1, the form of the interaction potenti&l, , depends

the maximum of the activation energy of the resistance, werucially on the boundary conditions for the phase that are
are able to give parameter-free estimates of the range of trget by the massive superconducting contacts. The superfluid
vortex-vortex interaction and of the elastic constant of thedensity in these superconducting strips exceeds greatly the
vortex chain. The effective pinning potential turns out to beeffective superfluid density in the array. Therefore, each vor-
at least an order of magnitude smaller than the bare potentiéXx in the array is repelled from the boundarjéss is rep-

due to quantum fluctuation@s calculated in Sec. )lIThe resented by the terms,_,(r;,r;)=U,_,(y;) in the Lagrang-
soliton length is extremely large and of the order of theian]. At a sufficiently weak magnetic fiel=<®,/W?, the
length of the array. The long-range nature of the vortexdintervortex distance is large enough, and vortices occupy
vortex interaction leads to a large value of the elastic conenly the central row of the array.

dri\? 1
a) _Z,j EUU-U(rilrj)_Ei Up(ri)y (2)
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The pinning potential in this one-dimensional case may be 1.0
modeled by a function ofx only,

Up(x)=0.1E,[1—cog2mx/a)]. 3

We will see in the next section that quantum fluctuations of !
the vortex positions strongly diminish the role of pinning by
the periodic lattice of Josephson junctions. For now, we will
ignore the contribution of the pinning potential, given by the
third term in the Lagrangian, Eq2).

Because of the large superfluid density in the contacts, the -1.0 .
phase of the order parameter varies only slightly along each 05 S}E 05
of the long boundaries of the array. Currents induced by a
vortex in the array flow through it almost perpendicularly to  FIG. 2. Currentin arbitrary unit$ across the array as a function
the boundaries. In the limit of infinite superfluid density andof the coordinatex along the array. Note the jumps at the vortex
infinite London-Pearl penetration depifin the contacts, the POsitionsx; . FornL=integer(solid line), we can identify the two
currents within the array do not decay with the distance fronfd9es attL/2, and shifting the vortex chain along thalirection
a vortex. As a result, the range of the vortex-vortex interac90es not change the energy, H). In contrast to that, fonL
tion is infinite. The interaction potential, up to an arbitrary 7 Nteger(dashed ling the energy depends on the position of the
constant, has the following form: chain(boundary pinning

At first we will consider the caske=0 and will determine
the equilibrium numbeN and positionsxio, i=1,... N of
at |x;—x;|=W. Because of this form, the vortex chain is VOrtices in the array. Solving Eq?), we obtairl

absolutely rigid at small wave vectors. N=17(nL) ®)
If the smallest intervortex distance exceeds the array '

width, one can use the limiting form of the potent{d) to = whereZ(x) is the integer part ok. We will consider only

calculate the contribution of the vortex-vortex interactionpositive values of the magnetic field>0. The equilibrium

[the second term in E@2)] to the energy of the vortex chain. positions are given by

It is more convenient, however, to write down this energy

U,., = —2m°E4|x; — Xj| /W (4)

directly in terms of the phase distribution in the array: XO_2i —-1-N ©
i o2n
J 1 N
_(p(x)z W 2 mnX— 772 sgnx—x;)+ @g | . (5) which means that the vortices are equidistaxft, ;, — x?
% =1 =1/n. The first and the last vortex of the chain are located at

_ a distance[nL—Z(nL)+1]/(2n)=1/(2n) away from the
Here, we have replaced the phasgsof the islands by a = gnqs of the array. On increasing the flux, they move towards
continuous variable(r). The form(5) of the phase gradient ha center.
is valid at distance$x—x;|=W away from the vortex cen-  qr geviations of the vortex coordinates from their equi-

tersx;. The magnetic field enters via the one-dimensionaliprium positions, the energy E46) may be expressed as
densityn=BW/®,. The phasep, has the meaning of the

average phase difference between the contacts, and will be 2E n N
used as a Lagrange multiplier to enforce the condition of E=Ey+ W ?]-"(nL)Jrz (xi—x)?|, (10
fixed currentl in they direction through the array. The typi- =1

cal shape of the phase gradient is illustrated in Fig. 2. Th‘%vhere7=2ixi/N is the center of mass of the vortex chain;
energy in the presence of a currdnbetween the contacts {oy previty, hereafter we use the notation

can be written as

F(nL)=nL—-Z(nL). (11

E. W (L2 dp\2 @ o . . .
E({Xi}, ¢o)= J—f dx<—(P) -9 ©0- (6) Each individual vortex resides in a parabolic well, centered
2 L/ % 2m at the vortex equilibrium position; this is the result of the
infinite-range interaction between the vortices.

The equilibrium positions of the vortices ang, for a The term proportional t&? is caused by the interaction of
given value of the curreritare defined by the set of condi- the vortices with the two boundaries atl/2: if nL is inte-
tions ger, shifting the vortex chain along thedirection does not

change the energy, E¢f); see Fig. 2. For general values of
JE({Xi}, ®0) nL, the energy depends on the position of the chain. That
T =0, means that the boundaries pin the vortex chain.
(7) The activation energy of the system is given by the dif-
JE(X} o) ference in ground-state energigg of the N+ 1 andN vor-
=R $o) =0. tex chains at a given value of the flux dengityA straight-

deo forward calculation starting with Eq6) at | =0 yields
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Ey(nL) In other words, the vortex distance has to be larger than
1.0 - - ' 0.68W for the one-dimensional approximation to be valid.
08 1 I1l. PINNING BY THE PERIODIC POTENTIAL

In the last section, the discreteness of the system was
06 1 neglected completely. At first sight, this seems to be an
unreasonable approximation. Indeed, only atWw>
04 | 1 (0.4/%) (W/a)? the amplitude 0.8, of the pinning potential
(3) is smaller than the variatioAE of the energy(10) if a
02 1 single vortex is displaced kg/2 (a/2 is the distance between
the minimum and maximum of the pinning potentidllote
0.0 that for the stability of a single-row vortex chain, the condi-
0 1 2 3 4 tion NW<1.62 must be satisfiefsee Eq.(15)]. The two

nL restrictions omW are incompatible except for quite narrow

FIG. 3. Activation energyin units of 7?E L/2W) of the rigid ~ arrays,W/a<6. In this section, we demonstrate that the ef-
chain as a function ofiL=BWL/®,. The critical current is given fective pinning potential is reduced significantly by quantum
by the same curvd2™=4E,(nL)/®,; see Eq(14) and also Ref.  fluctuations of the vortex coordinates, which makes the

15. above restriction irrelevant, even at relatively small ratios
Ec/E;.
W2EJ Forgetting the interactions with the other vortices for a
Ep(nL) = Sy~ F(nL)]A(nL). (12 moment, each vortex is described by a Hamiltonian
2
The boundary pinning energyl2) vanishes for integer val- _ b _ _
ues ofnL; the maxima between two zeros aréE;/(8nW), H=om T O-1E L1~ cos2m; fa)l. (16

and decay with the magnetic field asrlkee Fig. 3. . . .
It is also possible to calculate the critical current of the?rhat means, it is a delocalized quantum particle character-

array,| ™. We define it as the current at which the stability ized by a band structure(k). In the limit of small quanium

—. . — 7 fluctuations of the phas&-=<0.4E;, the problem can be
of the center of mass is lost. The relation betweenandx . . I o )
can be found from EQ(6), treated in the tight-binding approximatidfThis leads to the

following expression for the dispersion relation:

| ZWEJJLIZ o\ Am’Ey;x

- = W(nu. (13 e(k)=— %cos(ka), (17

—L/2

The center-of-mass stability requires that no vortex is to enwhere the bandwidth is given by

ter or leave the system; this restriction leads to
8
Ep=;\/0.1EJECexp( —240.1E;/E), (18

and the effective mass of the vortices in the periodic poten-

This functional dependence of the critical currentrdn for tial by
the array coincides with the one obtained in Ref. 15 for a a2E
thin-film bridge. Mg = -, (19)

It is clear that the one-dimensional approximation breaks h
down for large magnetic fields, i.e., if the vortex-vortex dis- ot stronger fluctuations the tight-binding approximation is
tance becomes considerably less than the wilitiof the  j5qequate, and the bandwidth becomes of the ord&rof
array. To obtain a quantitative value of the critical field, weyy/a note thaE . can be interpreted as a transition amplitude.
studied the instability of the vortex chain towards formation-l-he exponentpof this amplitude can be also extracted from
of a zigzag deformation. For that purpose, we derive the fullpet 4 “\yhere the rate of transitions between two adjacent
formula forU,,(r;,rj), which requires properly taking into  minima of the pinning potential was estimated. According to

account the infinite number of image vortices necessary et 4 thi ti imately 2.85/8E~. which
fulfill the boundary conditions at the superconducting Con'iseaboht ig(;ixﬁi(;]?]irr] tLSaﬁaﬁgoz%iﬁe%t in étﬁ) ¢, Whic

tacts. After that, we replace E) by its two-dimensional In Eq. (10) we showed that each vortex moves in a para-

analog, which depends on the two-dimensional vectors OE)olic potential produced by the interaction with the other

d|spl_acements of each vortex. An analy3|§ of the dEpend.en%rtices. The corresponding oscillation frequency of a par-
of this energy on the transverse vortex displacements yleldﬁ;Cle having effective massl is
(5]

the value of the critical field at which the zigzag pattern
forms: 47°E;n 1

= —\2m’E;Epna®/W,  (20)

P e
(DO 0sC Wn’bff h
BcritZW- (15

4Eb ’7T|C
aray_ - 0 __ 7 Cro
12 o, nW[l F(nL)]A(nL) . (149

and the mean-square oscillation amplitude is
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3 E-W At finite temperaturel =% w5, We have to consider the
(xi—x0)2)= =a\/g SE : (21)  averaging of the periodic potential by quantamd thermal
Mefi@osc e fluctuations; these further reduce the pinning. Summing the
geometric series, we obtain

The quantum fluctuations implied by E(R1) lead to a
reduction of the effective pinning potential, which becomes
now a (periodig function of xio. Estimating the effective USﬁ(T):USﬁlJrexp(—hw M (25
pinning, we assume that the intervortex interaction on the ose
scale of the lattice constaatis weak compared t&,. In We will now calculate the pinning of the rigid vortex
accordance with the standard prescription of solid-stat@n5in. Each vortex is subject to the potential E28). Sum-
physics,® we replace théquas) wave vector in the disper- ming over the members of the chdimhich are located at the

sion relation, Eq(17), by an operatop/#, and consider the positions shifted by from the equilibrium value¢9)] leads
Schralinger equation for a quasiparticle with Hamiltonian to

N

~ 1 - <) X)

H=¢ 7 + Emeﬁwﬁs(,(x—xi())z. (22 Upin(X):; Ugﬁ(XiO-FX)
Here|6 and>A<A are canonically conjugate variables. But now = —US“(T)COS(ZWY/a)M- (26)
we can viewx as the momentum of some particle, moving in sin(m/na)

the potentiale(p/#) that is periodic in the coordinate of

the particle. Therefore, eigenstates of the Hamiltor{iz®)

with various values of the “quasimomentums’ form

bgnds. For each band, the energy is a periqdic functioﬁ? of Upin(X)=— Ugﬁ(T)c032w7/a)N; 27)

with perioda. At zero temperature, we are interested in the

lowest band, with the energy the pinning barrier is proportional to the total number of
vortices, i.e., the pinning is strong. In the immediate neigh-

Ugﬁ(xio) = Ugﬁcos{waiO/a). (23)  borhood of the commensurate points, however, there are val-

ues ofn for which

The value ofugff depends on the magnitude and form of the

For commensurate values of the flux, i.e., ihd/is inte-
ger, we get

periodic potentiak(p/%). Using(17) and (18), we find n= Z(nL) _ (28)
a
uef=g a /2nWEexp( _ 2‘/5 V_V E i) . At these vortex densities, the numerator of Exf) vanishes,
P lw E; m a YE;nW i.e., there is no pinning. The spacing between these zeros is

(24 approximately given byra/L, which may be less than I/
The rapid oscillations are caused by the fact that we are
considering a completely rigid vortex chain. If we neglect
the oscillations, and just look at the maximalsf;,, it turns
out that the pinning strength behaves gs4/ny| close to
commensurate densities .

The activation energy for the resistance can be estimated

Equation (23) gives the effective pinning potential for a
single vortex. It is worth noting that the pinning strength
diminishes with the increase of the equilibrium intervortex
distance 1.

The approximations we employed in deriving the form
[Eq. (23)] and amplituddEq. (24)] of the pinning potential as the sum of the amplitude &f,;(x), Eq. (26), and the

require a sufficiently wide band for the motion of a vortex in L . :
the periodic potential. In other words, the exponential factorboundary pinning terni,(nL); see Eq(12). The resuilt is

in Eq. (24) must be small. In the opposite limit of negligible shown in Fig. 4.

quantum fluctuations, the magnitude of the effective potené treAsl,tsh: du%rt] t?]aecge\;?sﬁi):]éso? ?ﬁ:@g&gﬁg'gi;{‘&? ag?\
tial is 0.2;, and the functiorU&"(x) has cusps ax co- Y

o ) . ! vortex permutations may be safely neglected: for each vor-
inciding with the maxima of the bare potentla},(x) defined tex <(X._Xp)2><n_2 i.e., the oscillation amplitude is much
in Eq. (3). Each cusp inJ(x?) corresponds to a jump of |\l S o

. ) 2= less than the intervortex distance.
the coordinate of &lassicalvortex between the minima of
the potentiall p(x).

One may get an idea of how effective the quantum smear- IV. COMPRESSIBLE VORTEX CHAIN

ing is by estimatingJ}" atW/a= 10 andEc=0.4E,, which In the last section we considered the case of the infinitely
is close to the limit of applicability of Eq.18). Substitution |ong-range vortex-vortex interaction with the consequence
of these values in Eq24) yields that the vortex chain was completely rigid. We will now
discuss the importance of screening and the resulting com-
US™=0.056/nWE;exp( —3.58KnW). pressibility of the chain.

Screening of the vortex-vortex interaction in the Joseph-
In this example, the effective pinning potential gets smallerson array is due to two effectét) screening by the magnetic
than its bare value ati&W/40, which is always the case in field created by currents flowing around the Josephson vor-
practice. tices (Meissner effegt and (2) interaction with the vortex
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Er anisotropic. In thex direction, the screening length ks,

4 while in they direction the currents are confined to the thin-
film penetration depth, which depends on the properties of
the leads. Typically the sheet superfluid dengityin the
n,=1/3 ] contacts exceeds greatly the effective superfluid depsity
the Josephson junction array, which leada\te\g.

The electrodynamic effect limiting the radius of interac-
tion considered above exists for any geometry of the con-
tacts. The estimaté31) does not depend on the characteris-
tics of the contact material. However, the numerical
coefficient in Eq.(31) is geometry dependent. In Sec. VI we
will further refine the estimaté31) for the specific geometry
%00 0.01 of the experiment.

n-n, In the above consideration, we have completely ignored
the existence of Abrikosov vortices in the contacts. This is

FIG. 4. Activation energy entering the resistance as a functioracceptable only if their currents do not overlap with the cur-
of n=BW/®,. The energy plotted here is the sum of the boundaryrents created by Josephson vortices. The two current density
pinning term Eq.(12), and twice the absolute value of the bulk fields are spatially separated if the distawicef the last row
pinning term Eq.(26). Energy units as in Fig. 3, and, ny are  of the Abrikosov lattice to the edge of the junction arfage
measured in units of &/ Fig. 1) exceeds\. In the opposite casg=<\, the Abrikosov

o ) i lattice effectively truncates the currents created in the contact
medium in the contact pads. To start with, we consider thgyy, 5 josephson vortex. Indeed, a small shift of the lattice in
first of these two effects. _ the direction perpendicular to the edge of the array is suffi-

The distribution of currents flowing around a vortex de-cjent to compensate these weak currents. To estimate the

pends on the dimensionality of the system. The currentgyeraction potential rangks in this case, it is sufficient to
around a vortex line in a three-dimensional superconductogieg| with the energy of the supercurrents,

drop off exponentially fast, the characteristic length being
the London penetration depth . For a vortex in a super-
conducting film of small thickness<\,, the screening 4mPEN,  @id
lengtht” is thickness dependent,=\?%/s. At a sufficiently E=—w 160N
large distance from the center of a single vortex,\, the
spatial distribution of these currents is controlled by the
Meissner effect,

L=1000

(32

and neglect the magnetic fields the supercurrents create. In
Eq. (32), the first term corresponds to the energy of currents

®yc in the array that flow in the regidx| <\ ¢ around the vortex.
ji(r)=—==. (299  The second term is the energy of the supercurrents in the
4er -
contacts. These currents are truncated at the posiion
Note, that the distribution29) is insensitive to the short- =.®,/B of the first row of the Abrikosov lattice, which

scale structure of the two-dimensional vortex: it may be anumerically turns odf to be a sound approximation.
Josephson vortex in the array, as well as an Abrikosov vortex Minimization of the energy equatiof82) with regard to
in the contacts. In both cases, the currents induced by a voixg yields

tex fall off as 12 at sufficiently large distancesfrom its

center, resulting in a vortex-vortex interaction with a finite

range\. In the specific case of a quasi-one-dimensional EN / g E 33
Josephson junction array contacted by superconducting W 327%E;W N 33
films, we may estimatg ¢ by matching the current density

with the densityj, of the current flowing around a vortex in

This expression is valid fad<\, and atd~\ it reasonably
the array,

well matches the estimaf81). For typical experimental val-

272 ¢ ues, Egs(31) and (33) yield a screening length for which

j2= DW (300 n '<\g<L. In other words, the vortex-vortex interaction
0 has long, but finite range, and the vortex chain is not com-

The current density, corresponds to a single-vortex contri- Pletely rigid.

bution to the phase gradief®). Equatingj;(\¢)~j, leads We will now develop a continuum description of the com-
us to the estimate pressible vortex chain, i.e., we will express the energy of the
chain in terms of the deviationg(x") =x;—x?, and then go
Ns 3 over to a deformation field(x?) —u(x). The energy of the
w=V B7E W (31)  chain will be the sum of a bulk pinning term and a boundary

pinning term as before. In addition to that, there will be an
At distancesr =\ ¢, the anisotropy of the system is not im- elastic energy term.
portant for the current distribution, and E(R9) is appli- It is straightforward to express the bulk pinning term in
cable. At smaller distances, the current distribution is highlyterms ofu(x):
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N 2

2 % 4 EJ 2
Upin=—US"> cog2mx;/a) K=n®| dxU,.,(x)=—5—(M\y)*. (41
i:l — o0
L2 o (The real interaction potential in the planar geometry of the
~— nU,‘iff f L/decos(?(qu ax)), (34 contacts considered above falls offxas?, rather than expo-

nentially. However, this should not significantly alter the es-
where timate) We complete the estimate &fby adopting Eq(31)
for the value of\ 4, which yields

1 1 Ng—n 35
= _ — | | = 2
*=Naha na No (35 _ dgn? (42)
S
is a dimensionless measure of the deviation from the com- 2m
mensurate value aja=Z(1/na). The elastic constant becomes softer if the period of the Abri-

The ends of a long arrayL &) act on the compressible osov lattice in the contacts is smaller thansee Eq(33).
vortex chain as two independent sources of boundary pin- varying E=U .+ U, With respect tou(x) leads to the
ning. In the case of an almost rigid chain>1/n, we can  gtatic sine-Gordon equation
find the pinning potential created by a single disdy, the
one corresponding = L/2) by a slight modification of Eq. d%u
(6). Namely, we introduce an exponential factor jeyE K(é—xz
—L/2)] into the integrand, and replace the lower limit of
integration by—cc. After that, we find the extremal value of This equation has been studied in many contexts, e.g.,
®o as a function of the position of, say, the last vortex in thecommensurate-discommensurate transitions in adsorbate

chainxy, and take the limity— +0. This procedure yields layerst® here « is the difference of the lattice constants of
the substrate and the adsorbate. Another example is the

e 2muU 3 _
nUg'sin — —ax|=0. (43
a

2

~ 1 E; ~g o~ theory of long Josephson junctidfisvhere« is proportional
Up(u) = & —yl4(nu)”—nu]. (36) {0 the magnetic field threading the junction.
6 nW
Here for convenience we have introduced a new variable V. PHASES
instead of the coordinate,, ) ) ) o
The behavior of a one-dimensional vortex chain is closely
~ L 1 related to that of an adsorbate lay@if the magnetic field is
USXNT15 7 5q) 37 commensuraten=ng,, the vortex chain is commensurate

. . . with the junction array. The activation energy of an elemen-
and the coordinat®y is no more than one half period away tary excitation ain=n, is given by the energy to push one
from the end of the arrayn|<1/2n. The top of the bound- soliton into the system. The length of such a soliton is given
ary barrier is anu= —1/y12, and its amplitude is approxi- PY
mately 0.64&;/nW.

The elastic energy of vortices, which interact by long- sti K ’ (44)
range forces, in the long-wavelength limit takes the form 21 HUS
K (L2 au\ 2 and its energy is
I 39

4a
Esz?\/Knug . (45

The elastic constariK can be expressed through the vortex-

vortex interaction potential as A comparison ofxg with the interaction radius, Eq31),
. yields X¢/\g=(a/W)/nWy/0.47°E;/US" here we have
K=n2f dxU,_,(x). (399  used the estimat&?) for the elastic constari{. The appli-

cability of Eq.(43) requiresxs= X\, and therefore Eqg44)

Note, that the potentiall, ,(x) here is defined differently and(45) are valid only if the pinning potential is reduced by

from Eq.(4). Unlike in Eq.(4), we remove the uncertainty in duantum fluctuations compared to its classical value.
the definition of the potential by requiring,_, (x— =) On movingn away fromng, the magnetic field tries to
=0. enforce a period of the vortex lattice that is different from the

period of the pinning potential. The chain stays locked to a
commensurate state up to a critical value/f-ng|, or, in
other terms, untila| is less than some critical value: .
2m2E, IX| Below the threshold, dth—ng|<ng|a¢|, the activation en-

WM p(— 7), (400 ergy will diminish linearly with increasinga|. This can be

s seen immediately from the analogous situation in a long ho-

which correctly reproduces the cugpf. Eq. (4)] at |x| mogeneous Josephson junction where quantized fluxons play
<)\, and reaches zero &|—c. Within this model, we the role of solitons. The energy to create the first fluxon in
find the junction has some value dt=0, and decreases linearly

In order to estimat&, we adopt the following model for
the interaction potential:

Uy (X) =
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like —M|H| with |H|; hereM >0 is the magnetization of a activation energy. In the incommensurate phase, there are
single fluxon, i.e., a constant. In a complete analogy withmobile solitons in the system even at zero temperature. If
this, in our case the energy to create a soliton in the comene neglects the existence of boundary effects, the activation
mensurate phase is of the form energyEg of the observable quantity, viz., resistance, would
coincide with the activation energy of a single soliton.
Hence, one would exped&r=E,(n) in the commensurate
phase, and&Eg=0 in the incommensurate phase.

It turns out, however, that boundary pinning modifies this
picture. First of all, it may affect the ground state of the
vortex chain. In the incommensurate phase, even weak
%oundary pinning will lead to a deformation of a long com-
pressible chain. In the commensurate phase, the structure of
the ground state starts to depend on the ratio of the boundary
pinning energyE,~E;/nW, and the soliton energi4(n);
this ratio depends on the bare parameters of the system, and
. may be small or large. Second, the set of excited states the
given by chain goes through during the elementary act of a vortex
transfer also depends on the boundary pinning. These two

E(n)= [n—no|
(M=E{1-——— (46)

Noac

Note that the energis(n) has a cusplike dependence on
—ng. The pointn=ng is special: the creation of a soliton or

the line of particle-hole symmetry for a Mott insulator. De-
viation from the symmetry point makes creation of solitons
or antisolitons preferable. This violation of the symmetry is
the origin of the nonanalytic dependence&f on n. The

critical values ofa at which the soliton energy turns zero are

€
la|=ac= i nUp = %_ (47 factors determine the dependenceEgfon the characteristic
™ K Xs energiesEg andE,. We will analyze the activation energy
i i Eg for both cases of small and large value of this ratio.
Above the threshold, afa|>ac, discommensurations "y, the commensurate phase, and in the presence of strong

will exist: the chain is strained in the discommensurationsboundary pinningE, > E(n)/2na, the vortex chain in the
.. . 53 ]
,bUt this IS pffset by the. fac_:t that the rest of the.cham can Sta){;round state will adjust itself to the length of the array to
in the minima of the pinning potential. In this incommMensu- yinimize the pinning energy. This means there are solitons
rate phase, the concentration of solitons is finite. Due to the, the ground state, unlesd. is an integer. The largest num-
solitons, the vortex chain regains a finite compressibiity e of solitons in the ground state occurs at a half-integer
which depends on how far the system is tuned away from th@alue of nL, and equals 1f2a. In this particular case
critical pointsa=* ac . Without giving the details here, we o chain without solitons is the configuration with the
note that the dependence of the renormalized elastic constalrl\itghest energy that the system passes through during a vor-
on the control parameter can be presented in a parametric ey transfer. In this state, the chain is not adjusted to the
form,” as follows: boundary of the array, and the boundary pinning energy at-
d tains its maximum valu&, . The difference of this energy
4 d—[E( Y] fr.om the groupd state iEg=E,— E¢(n)/2na. I_n the oppo-
_+ 9y site case of integenL, there are 1/2a solitons in the
m2 d ' “saddle-point” state, and the activation energy reaches its
ﬂ[l/VK(V)] maximum,Eg=E,+ E(n)/2na; see Fig. 5a).
(48) If Ep<E4(n), there are no solitons in the ground state of
la] E(y) a commensurate chain. Moreover, during the process of a
o vortex transfer through the array, there is at most one soliton
¢ Y in the chain. Since a soliton changes the length of the vortex
Here K(y) andE(y) are the complete elliptic integrals of chain only bya, the chain remains rigid on the scale of the
the first and second kind, respectively. The chain softenintervortex distance b/ Therefore, we arrive at the follow-
near the critical points, where the proper expanSiaf Eq.  ing picture of the vortex transfer. The passage of each soliton

Ks
K

(48) yields shifts the chain bya. The transfer of a vortex requires the
sequential passing ofria solitons. In this process, the chain
Ks 8 |a] —ac[ ac  |? moves as a rigid object in the presence of boundary pinning.
?:; ac [r"|a|_aC ' (49 Thus, Eg is the sum ofE¢(n) and the boundary pinning

energy equatioril2) for a rigid chain,
The softening occurs, because the solitons in the chain are

rare, and the pair potential acting between them is exponen- Er=Es(n)+Ep(nL); (50)
tially small, U~ Esexp(—x/xy). Far away from the transition,
at|n—ng|>acng, the solitons overlap, and =K. see Fig. ). The soliton energy46) vanishes at the bound-

A finite voltage between the contacts to the ar(sge Fig. aries of the commensurate phase. Before it vanishes, we
1) is related, by the Josephson relation, to the average velocross over to the case described in the previous paragraph.
ity of vortices moving along the array. The transport of a We will now discuss the incommensurate phasen:.
vortex through the system can be viewed as propagation ¢kt the phase transition, the soliton formation energy van-
solitons through the vortex chain. The availability of solitonsishes, and solitons will start to form spontaneously. Corre-
in the chain will clearly affect the resistance of the array. Inspondingly, the physics of the incommensurate phase will be
the commensurate phase, the soliton density is exponentialljetermined by boundary pinning and by the elastic energy,
small at low temperatureg,(n) being the corresponding and the behavior of the activation energy will be identical for
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= =

L=1000 L=1000

0 ns—N, 0 ne—N,
(a) n-n,  (b) n-n,

FIG. 5. Phase diagram of the compressible vortex chain: activation energy as a funatiemgf (a) E,>E;, i.e., boundary pinning
dominates Es=0.5). (b) E,<Eg, i.e., soliton formation energy dominateE,&5). Energy units as in Fig. 3, and the one-dimensional
vortex densitiesn, ny, ne are measured in units of &/ On the incommensurate side of the transitiom; ne, solitons will form
spontaneously. The physics of the incommensurate phase is therefore determined by boundary pinning and the elastic energy and is the sam:
for (@) and (b).

the two panels of Fig. 5. The chain is compressible; thesamples was about 1 K, with the rafig/E varying within
elastic constanKg(n) is renormalized down by solitons; see the limits 0.7 to 2.8(The details of sample preparation as
Eq. (48). The adjustment of the vortex chain to the length ofwell as the experimental techniques can be found in Ref. 9
the array leads to a finite deformation. The corresponding’he main qualitative feature of the field dependenceRof
elastic energy can be found with the help of E2f) with K consists in the existence of a finite region of magnetic flux
replaced byKy(n). The maximum value of the deformation densitiesn around the commensurate valug= 1/3a, where
duldx=1/2nL corresponds to half integerl, and the elas-  tne resistance is strongly suppres¢iibtt phase for the sys-

tic energy associated with it I§4(n)/8n°L. For largeL, this  tem of quantum vorticas The width of this region becomes
energy is inevitably smaller than the boundary pinning po-smaller with the increase of the “quantum parameter”

tential (36). To initiate an elementary act of vortex transport_ Ec/E,, see Ref. 9, in agreement with the notion of the Mot
through the array, a shift of the end vortex through the maxXiy, -~ sition

mum of the potentia(36) should occur. This varies the de- Within the Mott phase, the resistance clearly displays an

formation of the chain by 843, or by (1-1//3)/n. The . iyated behavior, with the activation enerBy strongly
corresponding elastic energy in both cases is the same, anddﬁpending on the deviatiom—n,| from the point of exact
equal toK(n)(1—2/y3)?/8n’L. The net variation of the commensurability. In Fig. 6 we present new data for the
elastic energy involved in the described shift of the vortex isytivation energy for our longest sample=100Ga, with
2 parametersW=7a, Ec=0.7K, andE;=0.9K. For each
(1_ i) 1l~—0 12Ks(”) (51) value ofn, the activation energ¥g was determined from
J3 T2 the measured temperature dependence of the array resistance.
The measurement was performed in the linear regime, at a
To obtain the activation energy for the resistafigeat this  small transport current. For this sample, the commensurate
particular value ohL, one should adéU,, to the boundary phase around the poimty=1/3a exists in the domair«/|
pinning amplitude. At some other valuesrif, the variation  <«-~0.009. The maximal value of the activation energy,
in the elastic energy involved in the process of passing th&g~12K, is reached at the commensurability point. Outside
boundary barrier attains its maximum valaedU. Thus, the Mott phase region, the resistance exhibits strong oscilla-
the resistance activation energy oscillates between two vations; the activation energy vanishes almost periodically with

ues, the periodAn=1/L. We find two aspects of this data strik-
ing.
E; Kg(n) First, the regions of corresponding to the Mott phase are
ER%O'64_nWiO'12—n2|_ ' (52) extremely narrow ¢c=10"2). In the conventional picture,
this would imply a weak interaction between the particles
with the periodAn=1/L. (compared to the one-particle band-structure energ&mn-

sequently, within the Mott phase the activation energies for

particle transport must be also small. Quite contrary, the ob-

served value of the resistance activation energy is about one
The resistanc® of a number of arrays of Josephson junc-order of magnitude larger than the energies and E;,

tions was measured in the geometry depicted in Fig. 1 in th&hich determine the single-vortex band spectrum.

presence of a magnetic field. Arrays with lengthsarying Second, the resistand®(n) exhibits strong oscillations

between 108 and 100@, and widthsW of 7a and 3a were  with the periodAn=1/L outside the Mott region. These os-

studied. The characteristic Josephson energy for all theillations would not be expected in a model of almost-free

VI. COMPARISON WITH THE EXPERIMENT
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proximations. In contrast with this, E(R4) for the effective
pinning cannot be used for the quantitative comparison with

L = 1000
W=7 the experiment: The tight-binding approximation we have
oL n=13 9 P S used in Section Ill to estimate the suppression of the pinning
E/E.=13 f}"’ P gﬁ ﬁéﬁg & 3 potential ig not applicable to the caBg~E;. [We note that
ER/kB %’20 — L 0010%? ¥ Eq. (23 still allows one to reproduce the correct trend in the
(K) | £ 33 ' ' variation of a¢ with the ratioEc/E;.] Therefore, we pro-

ceed in the following way. First, we find the soliton length
51 ie a from the experimental values a@fc. Then, using the theo-

H retical value ofaK and the value okg extracted from the
data, we find the renormalized pinning potent‘.i@ﬂ and the
soliton activation energ¥s. We will check that the renor-
© ¥ LAt malized pinning potential is indeed substantially lower than
001 0.00 0.01 its bare value O&;. Finally, we will relate the found value
of E4 to the activation energy of the resistance for the ex-
perimental sample.

FIG. 6. Activation energy of the resistance of an array consist- The values ofac anda~10"*cm found experimentally
ing of 1000<7 cells with parameter&;=0.9K andEc=0.7K.  allow us to estimate the soliton length from E47):
The one-dimensional vortex densitiesn, are measured in units of 8
1/a. The dashed line is a fit to the data to extract the width of the a
Mott region. The cusplike part of the figure corresponds to the Mott XS:a_c =890a~0.09.cm. (59)

phase. Additional wiggles on that part may be related to boundar%_ ) ) . .
effects: see Sec. V and Figlth. Inset: activation energy outside the | NiS length is really large. In fack is about three times the

Mott phase. The zeros dEx(n) at n—ny>0.006 indicate the re- length of the array. =300a used in Ref. 9 to extract the

stored rigidity of the vortex chain. Note that in qualitative agree-activation energyEg. This may explain why the valugs O_f
ment with Fig. 4 the maxima oEg(n) decrease with increasing Eg found there are systematically lower than the activation

[n—ng|; the dotted line in the inset is a guide to the eye. energy for the longest array; see Fig. 6. A single soliton
consists of about 300 vortices, and therefore its activation
quasiparticles within the delocalized phase. energy may exceed easily the single-vortex energy scales.

These two observations find a natural explanation in ouNote also thak, exceeds considerably the interaction radius
model, which explicitly accounts for the long-range interac-(53) that gives us confidence in the applicability of the sine-
tion forces between the vortices. Gordon equation43). The effective pinning potential, ac-

In order to perform a detailed quantitative comparisoncording to Eq.(44), can be found as
of the theory and experiment, first we improve the esti-
mates (31) and (42) for the interaction ranger; and eff
the elastic constar, respectively. In the experimehthe Up'=
contact bars were made by shorting the junctions at the lowey, . . _
and upper border of the array. We therefore model the bar his energy is at I_east one order of mag*?"”‘?'e smaller than
by superconducting strips of average widtk 104 cm (the its bare value O&;; see Eq(3). The.reductllon_ is apparently
lattice constant of the arrayThe condition\ ;W allows us due'to the quantum zero-point motion pf |nd|V|duaI vortices.
to neglect nonlocal effects in the solution of the magneto-Agam' the strong suppression of 'ghe_pmnlng energy guaran-
static problen?! and to express\. in terms of the self- (€S the harmonic form of the pinning potentiad), and

hence allows us to use the sine-Gordon equation for the soli-

inductancef of the two-wire system. In addition, as the - . ! .
distanceW between the wires exceeds significantly their 1ONS- Finally, using Eqsi44) ‘.”‘.nd (45.)’ .We find the soliton
energy at the commensurability point:

width a, we can use the textbotfiformula £=4In(W/a). As
a result, Eq(31) is replaced by

a 2

27X

aK
—=3.4x10 %K. (56)
na

ac
5 Es=——aK=8 K. (57)
A —w\/ o 270a (53) 4
= . = )
° 167°E,Win(W/a) This energy exceeds significantly the boundary pinning en-

(The resulting numerical value here refers to the paramete®'gy. According to Eqs(12) and(50), the latter contributes
of the sample of Fig. 6.In the same approximation, the to Er less than 0.5 K. We neglect this contribution, and
model form of the potentia(40) becomes exact. With the therefore identifyEg with the energyE; of the formation of
help of Eq.(53), the estimaté4?) of the elastic constant can @ soliton. The calculated valu&7) is somewhat lower than
also be refined. For convenience, we give here the value ghe measureéy. Still, we find the agreement quite impres-

the productaK, instead of the value of the elastic constant: Sive, having in mind the huge value of the elastic constant
(54), calculated without any adjustable parameters.

d3nZ%a The large value of the elastic constdb#) results from
%4In(—W/a):3'5X 10°K. 54 the long-range nature of the intervortex interaction forces.
In fact, the vortex chain in the incommensurate phase is

The theoretical resultés3) and (54) do not have any ad- so rigid that Eq.(52) is inapplicable in the case of a sample
justable parameters, and are obtained within controllable apnly a thousand cells long. Away from the transition point

aK
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(Ja|=a¢), the elastic term in E(52), which is supposed to vortex chain. These parameters are the elastic constant and
be a small correction, is about 70 times larger than theahe pinning potential existing due to the discreteness of the
“main” boundary pinning term. Therefore, for the condi- array of Josephson junctions. The long-range nature of the
tions of the experiment, the incommensurate phase is wellortex-vortex interaction leads to a large value of the elastic
described by the model of a rigid vortex chain; see Sec. liconstant. On the other hand, the zero-point motion of each
This immediately explains the strong oscillations of the ac-quantum vortex leads to a considerable suppression of the
tivation energy with the periodn=1/L in the incommen- pinning potential. As a result, the size of the solitons turns
surate phase, see Eq$2) and(26). out to be extremely large, about 300 vortices under the con-
There is a clear resemblance between the experimentallyitions of the experiments reported in this paper and in Ref.
measured curve dEg(n) (inset in Fig. 6, and the curve in 9. This enables us to treat the transition in the framework of
Fig. 4, simulated with the help of Eq$12) and (26). In  the classical theory® Our theory explains quantitatively the
agreement with the model of a rigid chain, the minima ofmain experimental observations.
Er(n) reach zero afn—ny|=0.005, and the maxima of We would like to conclude with the following remark: a
Er(n) decrease with increasiig—no|. The boundary term quasi-one-dimensional array of small superconducting is-
Eg. (12) has a maximum of<0.5 K and accounts for the lands connected by Josephson junctions can be used to study
main contribution to the maxima &z atn—ny>0.006. The quantum phase transitions in two complementary ways. The
vortex chain softens up only in a very narrow region aroundirst way relies on the control of the charge state of the is-
the transition point, so that the crossover region is of thdands by an external gate. In this case, a transition between
order of An; see the inset in Fig. 6. the charge-localized and charge-delocalized phases can be
To end this section, we reiterate that in the experiment th@bserved in principle. The localized phase is a Mott insula-
commensurability poinh,=1/3a was reached in the sample tor, with a finite gap for charge solitons, which play the role
with W=7a, which means the chain is stable against theof elementary excitations. The delocalized phase behaves as
formation of a zigzag structure atrW=0.43. According to & one-dimensional Luttinger liquiésee, e.g., Ref. 23 and
Eq. (15), for a continuous system, the zigzag instability references thereinThe experimental observation of the two
would already occur at @W=0.65, i.e., before the density Phases and the transition is difficult, as it is virtually impos-
no=1/3a is reached. Since the experimental data show n&ible to avoid the existence of random offset charges, which
indication of a qualitative difference between the arrays withintroduce strong disorder into the system. The other way is to
W=3a and W=7a, we conclude that the array widwy  Study the commensurate-incommensurate transition in a sys-

=7a is narrow enough to allow suppression of the instabilitytem of vortices induced in the array by an external magnetic

by the effects of discreteness. field (the case studied in this papeThis transition belongs
to the same universality class as the Mott transition for
VII. DISCUSSION charge delocalization. A great advantage of the vortex sys-

tem is that it is virtually disorder free. However, due to the
An external magnetic field applied to an array of Josephiarge size of the solitons driving the transition, the critical
son junctions allows one to introduce vortices into it. A suf-region around the phase transition point is extremely narrow
ficiently weak field creates a linear chain of vortices in thefor the arrays studied experimentally. To widen the critical
guasi-one-dimensional array. The ratio between the periodggion, one should find a way to reduce the vortex-vortex
of the vortex chain and the array of Josephson junctions iteraction strength. That would open new possibilities of
controlled by the value of the magnetic field. The commen-experimental investigations of the Luttinger liquid that is
surate phase corresponds to the vortex analog of a Mott irformed on the incommensurate side of the transition. The
sulator. Within this phase, the elementary excitation is a soliproperties of the liquid are expected to depend cruciabn
ton consisting of a number of individual vortices. The finite- the value of the fractional flux carried by the solitons.
gap energy for the soliton translates into a finite activation
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