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Phase transition in a chain of quantum vortices
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We consider interacting vortices in a quasi-one-dimensional array of Josephson junctions with small capaci-
tance. If the charging energy of a junction is of the order of the Josephson energy, the fluctuations of the
superconducting order parameter in the system are considerable, and the vortices behave as quantum particles.
Their density may be tuned by an external magnetic field, and therefore one can control the commensurability
of the one-dimensional vortex lattice with the lattice of Josephson junctions. We show that the interplay
between the quantum nature of a vortex and the long-range interaction between the vortices leads to the
existence of a specific commensurate-incommensurate transition in a one-dimensional vortex lattice. In the
commensurate phase an elementary excitation is a soliton with energy separated from the ground state by a
finite gap. This gap vanishes in the incommensurate phase. Each soliton carries a fraction of a flux quantum;
the propagation of solitons leads to a finite resistance of the array. We find the dependence of the resistance
activation energy on the magnetic field and parameters of the Josephson array. This energy consists of the
above-mentioned gap, and also of a boundary pinning term, which is different in the commensurate and
incommensurate phases. The developed theory allows us to explain quantitatively the available experimental
data.@S0163-1829~99!00402-6#
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I. INTRODUCTION

The interest in Josephson junction arrays in the last
cade was to a large degree prompted by the fact that t
systems are suitable as a testing ground for various pre
tions of quantum many-body theory~for an overview see,
e.g., Refs. 1 and 2!. If the charging energy of a junction
EC5e2/2C is comparable with its Josephson energyEJ , the
phase of the superconducting order parameter is subje
quantum fluctuations~here C is the capacitance of a junc
tion!. At some critical value ofEC /EJ the global phase co
herence is destroyed, and the array becomes an insula3

This transition apparently is driven by proliferation of spo
taneously created vortices, i.e., topological excitations of
array, in which the phase of the order parameter varies
2p on going around a plaquette. At smaller ratiosEC /EJ
vortices induced by an external magnetic field still poss
quantum properties. The vortex dynamics is particularly s
sitive to the quantum fluctuations of the phase: the vor
mass, for example, is finite entirely due to the
fluctuations.4,5

A single vortex in a Josephson junction array behaves
ballistically propagating quantum particle.6 These particles
are strongly interacting, however: for the values ofEC /EJ
PRB 590163-1829/99/59~2!/1383~13!/$15.00
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&1 at which the global phase coherence is preserved, t
interaction energyUv-v}EJ is larger than the bandwidth fo
a single vortex. A finite magnetic field applied perpendic
larly to the array, creates a lattice with a vortex density p
portional to the field strength. Depending on the magne
field flux per plaquette, the vortex lattice is commensurate
incommensurate with the junction array.7 The commensura-
bility effect exists of course even for classical vortices in
array withEC /EJ→0. The array acts like a periodic potenti
with an amplitudeUp;0.2EJ and some perioda ~the period
of the Josephson array! for each vortex.8 In a classical sys-
tem, this is expected to be a source of strong pinning, asUp
andUv-v are of the same order. Quantum fluctuations br
new physics into the problem. The period of the pinni
potential is relatively small, and therefore its amplitude
suppressed readily by quantum fluctuations. On the contr
depending on the magnetic field, the vortex lattice per
may be significantly larger thana, thus making the vortex
lattice robust against quantum fluctuations.

Commensurability effects in a chain of quantum vortic
were investigated in the recent experiments of van Ou
naardenet al.9 There a number of two-dimensional arra
with various ratiosEC /EJ , and various widths of the orde
of ten cells were studied. All arrays were quasi-on
1383 ©1999 The American Physical Society
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1384 PRB 59C. BRUDERet al.
dimensional in fact, their length varying between 100 a
1000 cells. Superconducting contacts parallel to the lo
sides of the array were providing a potential confining
vortices to the central row of the array; see Fig. 1. Applyi
a current through the leads~perpendicular to the one
dimensional vortex chain! and measuring the resistance
the system as a function of the magnetic field, van Ou
naardenet al. found almost zero resistance in the regio
centered around the commensurate values of the
dimensional vortex density. This was interpreted as an in
cation of a finite-gap state~‘‘Mott insulator’’ phase!, induced
by the vortex-vortex interaction in the presence of a perio
potential. If the magnetic field was tuned away from the
special regions, a transition to a resistive state was obser
indicating moving vortices~‘‘conducting’’ phase!.

The analogy between the observed transition in the s
tem of vortices and the textbook Mott transition in electr
systems can be made more explicit:EC /EJ here plays the
role of the ratiot/U of the electron bandwidth to the on-si
repulsion potential; the magnetic fieldB, creating vortices,
plays the role of the electron chemical potentialm. The
phase diagram in the variables (t/U,m) consists of two
phases. The insulating phase occurs at relatively small va
of t/U&1. In this phase, the electron density is constant a
function of m, and fixed by the commensurability conditio
~one electron per lattice site!. One can assign the valuem
50 to the line of particle-hole symmetry in this phase d
gram. Deviation from this symmetry line makes the exci
tion gap in the insulating phase smaller; the gap width i
nonanalytical function ofm, reflecting the violation of the
particle-hole symmetry atmÞ0. At a certain critical value of
umu, which depends ont/U, the gap disappears and a tran
tion to a ‘‘conducting’’ phase occurs. This conventional p
ture is modified somewhat in the one-dimensional case,
qualitatively remains valid. A similar description applies
Mott transitions in Bose systems with repulsion.10

The line of particle-hole symmetry in the case of vortic
corresponds to a special valueB0 of the magnetic field,
which induces a vortex lattice commensurate with the per
of the junction array. The analogy to the electronic case
scribed in the last paragraph suggests that the vortex de
remains constant in a finite interval ofB aroundB0 . One

FIG. 1. Quasi-one-dimensional Josephson array. Each side
plaquette corresponds to a single Josephson junction. Crosse
note vortices located in the central row of the array. The proper
of the vortex chain are probed by passing a currentI from one
superconducting contact to the other and measuring the voltag
tween them. The array width isW and the size of a single plaquet
is a3a.
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also expects a gap in the excitation spectrum of the array
diminishes as a function ofuB2B0u within the commensu-
rate phase~which is the analog of the insulating phase!. In-
deed, in the experiment a cusplike dependence of the re
tance activation energy onuB2B0u was observed~see Ref. 9
and Sec. VI of this paper!. At some critical value ofuB
2B0u the observed temperature dependence of the resist
becomes considerably weaker. This may indicate that a t
sition to a gapless~‘‘conducting’’! phase occurs, accompa
nied by the creation of discommensuration solitons.

In this paper, we present a quantitative theory of t
commensurate-incommensurate transition for a chain
quantum vortices in a quasi-one-dimensional Josephson
ray ~see Ref. 11 for another type of commensura
incommensurate transition in Josephson arrays!. The transi-
tion to the incommensurate state occurs by proliferation
the discommensuration solitons through the vortex cha
We are able to develop a theory by analytical means beca
of a special feature of the system we consider. It turns
that the range of the interaction between the vortices is m
longer than the intervortex distance. Therefore, the solit
consist of many vortices, and possess a large effective m
Thus the theory for the commensurate-incommensurate t
sition is essentially classical. However, to relate the para
eters of this theory to the generic properties (EC andEJ) of
the Josephson array, we need to consider a single vortex
quantum particle: the amplitude of the periodic pinning p
tential depends on the bandwidth of the vortex. After th
we are able to find analytically the excitation gap existing
the commensurate phase and the boundaries of this pha
the (B,EC /EJ) plane.

We relate the characteristics of the commensurate and
commensurate phases to an observable quantity, the ac
tion energy of the resistanceER . In the commensurate phas
the transfer of one flux quantum between the edges of
array occurs via a sequence of solitons propagating thro
it. The number of solitons necessary to transfer one vorte
equal to the ratio of the periods of the vortex lattice and
junction array; typically this ratio is large. At any time du
ing the vortex transfer, there is no more than one soli
present in the chain. We demonstrate thatER depends not
only on the properties of the ‘‘bulk’’ one-dimensional sy
tem, but also reflects boundary pinning effects, accompa
ing the passage of vortices through the ends of the array.
soliton changes the length of the vortex chain only by o
period of the junction array, which is less than the interv
tex spacing. Hence, in the commensurate phase, the pro
of vortex flow through the array can be viewed as motion
a rigid vortex chain. Because of the rigidity, the vortex cha
cannot adjust itself to the boundary pinning potential. T
potentials produced by the two ends of the array add toER :
the relative phase of these two contributions depends
whether the total flux piercing the junction array equals
integer number of flux quanta. Thus, in the commensur
state, there are two major terms inER . The first term is the
activation energy of a soliton, and the second term is the s
of the boundary pinning energies. This second~smaller! term
oscillates with the magnetic flux piercing the array. In t
incommensurate state, the vortex chain is compressible,
can adjust to the boundaries of the array, if the latter is s
ficiently long. As a result, the main term inER is the bound-
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PRB 59 1385PHASE TRANSITION IN A CHAIN OF QUANTUM VORTICES
ary pinning potential, which a vortex has to overcome
enter the array. A correction is provided by the finite co
pression energy of the chain. Its average value depend
the compressibility of the chain, renormalized by the so
tons, and is inversely proportional to the length of the arr
This term oscillates with the flux threading the system.

The paper is organized as follows. In Sec. II, we introdu
a model of classical vortices in the quasi-one-dimensio
Josephson array. Here we neglect the discreteness of th
ray, and the screening of the vortex-vortex interaction. T
approximation means that the vortex chain is entirely inco
pressible. We establish the stability criterion for a on
dimensional vortex chain against formation of a zigzag str
ture. We calculate the equilibrium number of vortices a
function of the magnetic field and determine the bound
pinning caused by the interaction of the vortices with t
ends of the array. For an incompressible chain, this give
the equilibrium position for each vortex. In the followin
part, Sec. III, we discuss bulk pinning by reintroducing t
discreteness of the junction array. The array creates a p
odic potential for each vortex, which behaves as a quan
particle in this potential. We demonstrate that typically t
amplitude of the quantum fluctuations of a vortex exce
the period of the array.~This justifies, in fact, the approxi
mations made in Sec. II.! We calculate the residual pinnin
potential, suppressed by quantum and thermal fluctuati
acting on a single vortex.

The results of the Secs. II and III are directly applicable
short arrays, i.e., arrays that are shorter than the range o
vortex-vortex interaction. The main goal of these sectio
though is to provide us with the coefficients necessary
write down the effective Hamiltonian describing a compre
ible chain in a long array. We start the next section, Sec.
with an estimate of the vortex-vortex interaction range. It
defined by two mechanisms:~1! the effect of the magnetic
field induced by the vortices, and~2! the interaction of the
vortices in the Josephson array with the Abrikosov lattice
the contacts to the array. The estimate demonstrates tha
the conditions of the experiments9 the range indeed exceed
greatly the intervortex distance, but still may be smaller th
the system length, making it necessary to account for a fi
compressibility of the vortex chain. We therefore derive t
long-wavelength theory for the compressible vortex cha
This theory enables us to describe, in Sec. V,
commensurate-incommensurate transition. We determine
boundaries of the commensurate phase, and find the de
dence of the activation energy for elementary excitations
the parameters of the system. Also in this section, we disc
the behavior of the resistivity following from the picture w
developed. We compare our results with the existing exp
ment in Sec. VI. Using the experimental values of the vor
density at the commensurate-incommensurate transition
the maximum of the activation energy of the resistance,
are able to give parameter-free estimates of the range o
vortex-vortex interaction and of the elastic constant of
vortex chain. The effective pinning potential turns out to
at least an order of magnitude smaller than the bare pote
due to quantum fluctuations~as calculated in Sec. III!. The
soliton length is extremely large and of the order of t
length of the array. The long-range nature of the vort
vortex interaction leads to a large value of the elastic c
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stant: the chain is virtually rigid in the incommensura
phase. Our theory explains consistently the main experim
tal observations reported in this paper and in Ref. 9:~1! the
cusplike dependence of the activation energy on the m
netic field in the commensurate phase;~2! the large value of
this activation energy~compared toEJ and EC), and ~3!
oscillations of the resistance with the applied magnetic fie
with a period corresponding to one flux quantum through
entire array, in the incommensurate phase. We conclude
a discussion in Sec. VII.

II. RIGID VORTEX CHAIN

We consider a two-dimensional Josephson array of lat
constanta, lengthL, and widthW whereL@W; see Fig. 1.
The ‘‘sites’’ of this array are superconducting islands, link
by Josephson junctions that are characterized by a cap
tanceC and a critical currentI C . The phasesw i of the order
parameter of the islands~numbered by vectorsi) are the only
dynamical degrees of freedom of the system. For an infin
two-dimensional system, the Lagrangian can be written
the standard4 way,

L5(̂
i,j &

H \2

8EC
S ]w i,j

]t D 2

2EJ@12cos~w i,j !#J . ~1!

Here the sum is taken over the nearest neighbors, andw i,j is
the phase difference across a link of the array,EJ
5I CF0/2p andEC5e2/2C are the Josephson and chargi
energy, respectively;F05hc/2e is the flux quantum. The
Lagrangian~1! describes quantum fluctuations of the pha
in the array. At a certain critical value12 of the ratioEC /EJ
;1, the proliferation of spontaneous vortices and antivo
ces through the system destroys the long-range order.
consider smaller values ofEC /EJ , and neglect the existenc
of spontaneous topological excitations. Vortices in the s
tial distribution of the phasew are then induced only by an
external magnetic fieldB. A vortex is characterized by a
phase change of 2p on going around a plaquette. The effe
tive Lagrangian in terms of the vortex positions,

L5(
i

M

2 S dr i

dt D
2

2(
i , j

1

2
Uv-v~r i ,r j !2(

i
Up~r i ! , ~2!

can be derived4 from Eq. ~1!. HereM5p2\2/4a2EC is the
vortex mass,Uv-v(r i ,r j ) is the interaction energy betwee
the vortices, andUp(r i) is the pinning potential that repre
sents the effect of a discrete lattice of junctions on the vor
motion. In an infinite array, the energyUv-v depends only on
the distance between vortices, and can be approximate
the standard expressions valid for vortices induced in a
superconducting film.13 For a geometrically restricted array
Fig. 1, the form of the interaction potentialUv-v depends
crucially on the boundary conditions for the phase that
set by the massive superconducting contacts. The super
density in these superconducting strips exceeds greatly
effective superfluid density in the array. Therefore, each v
tex in the array is repelled from the boundaries@this is rep-
resented by the termsUv-v(r i ,r i)[Uv-v(yi) in the Lagrang-
ian#. At a sufficiently weak magnetic field,B&F0 /W2, the
intervortex distance is large enough, and vortices occ
only the central row of the array.
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The pinning potential in this one-dimensional case may
modeled8 by a function ofx only,

Up~x!50.1EJ@12cos~2px/a!#. ~3!

We will see in the next section that quantum fluctuations
the vortex positions strongly diminish the role of pinning
the periodic lattice of Josephson junctions. For now, we w
ignore the contribution of the pinning potential, given by t
third term in the Lagrangian, Eq.~2!.

Because of the large superfluid density in the contacts,
phase of the order parameter varies only slightly along e
of the long boundaries of the array. Currents induced b
vortex in the array flow through it almost perpendicularly
the boundaries. In the limit of infinite superfluid density a
infinite London-Pearl penetration depth13 in the contacts, the
currents within the array do not decay with the distance fr
a vortex. As a result, the range of the vortex-vortex inter
tion is infinite. The interaction potential, up to an arbitra
constant, has the following form:

Uv-v522p2EJuxi2xj u/W ~4!

at uxi2xj u*W. Because of this form, the vortex chain
absolutely rigid at small wave vectors.

If the smallest intervortex distance exceeds the ar
width, one can use the limiting form of the potential~4! to
calculate the contribution of the vortex-vortex interacti
@the second term in Eq.~2!# to the energy of the vortex chain
It is more convenient, however, to write down this ener
directly in terms of the phase distribution in the array:

]w

]y
~x!5

1

WS 2pnx2p(
i 51

N

sgn~x2xi !1w0D . ~5!

Here, we have replaced the phasesw i of the islands by a
continuous variablew(r ). The form~5! of the phase gradien
is valid at distancesux2xi u*W away from the vortex cen
ters xi . The magnetic field enters via the one-dimensio
densityn5BW/F0 . The phasew0 has the meaning of the
average phase difference between the contacts, and wi
used as a Lagrange multiplier to enforce the condition
fixed currentI in they direction through the array. The typ
cal shape of the phase gradient is illustrated in Fig. 2. T
energy in the presence of a currentI between the contact
can be written as

E~$xi%,w0!5
EJW

2 E
2L/2

L/2

dxS ]w

]y D 2

2
F0

2p
Iw0 . ~6!

The equilibrium positions of the vortices andw0 for a
given value of the currentI are defined by the set of cond
tions

]E~$xi%,w0!

]xi
50,

~7!

]E~$xi%,w0!

]w0
50.
e

f

ll

e
ch
a

-

y

l

be
f

e

At first we will consider the caseI 50 and will determine
the equilibrium numberN and positionsxi

0 , i 51, . . . ,N of
vortices in the array. Solving Eqs.~7!, we obtain14

N5I~nL!, ~8!

whereI(x) is the integer part ofx. We will consider only
positive values of the magnetic field,n.0. The equilibrium
positions are given by

xi
05

2i 212N

2n
, ~9!

which means that the vortices are equidistant,xi 11
0 2xi

0

51/n. The first and the last vortex of the chain are located
a distance@nL2I(nL)11#/(2n)>1/(2n) away from the
ends of the array. On increasing the flux, they move towa
the center.

For deviations of the vortex coordinates from their eq
librium positions, the energy Eq.~6! may be expressed as

E5E01
2p2EJn

W S x̄2F~nL!1(
i 51

N

~xi2xi
0!2D , ~10!

wherex̄5( ixi /N is the center of mass of the vortex chai
for brevity, hereafter we use the notation

F~nL![nL2I~nL!. ~11!

Each individual vortex resides in a parabolic well, center
at the vortex equilibrium position; this is the result of th
infinite-range interaction between the vortices.

The term proportional tox̄2 is caused by the interaction o
the vortices with the two boundaries at6L/2: if nL is inte-
ger, shifting the vortex chain along thex direction does not
change the energy, Eq.~6!; see Fig. 2. For general values o
nL, the energy depends on the position of the chain. T
means that the boundaries pin the vortex chain.

The activation energy of the system is given by the d
ference in ground-state energiesE0 of the N11 andN vor-
tex chains at a given value of the flux densityn. A straight-
forward calculation starting with Eq.~6! at I 50 yields

FIG. 2. Current~in arbitrary units! across the array as a functio
of the coordinatex along the array. Note the jumps at the vorte
positionsxi . For nL5 integer~solid line!, we can identify the two
edges at6L/2, and shifting the vortex chain along thex direction
does not change the energy, Eq.~6!. In contrast to that, fornL
Þ integer~dashed line!, the energy depends on the position of t
chain ~boundary pinning!.
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Eb~nL!5
p2EJ

2Wn
@12F~nL!#F~nL!. ~12!

The boundary pinning energy~12! vanishes for integer val
ues ofnL; the maxima between two zeros arep2EJ /(8nW),
and decay with the magnetic field as 1/n; see Fig. 3.

It is also possible to calculate the critical current of t
array,I C

array. We define it as the current at which the stabil
of the center of massx̄ is lost. The relation betweenI and x̄
can be found from Eq.~6!,

I 5
2pEJ

F0
E

2L/2

L/2

dxS ]w

]y D5
4p2EJ

F0

x̄

W
F~nL!. ~13!

The center-of-mass stability requires that no vortex is to
ter or leave the system; this restriction leads to

I C
array5

4Eb

F0
[

pI C

nW
@12F~nL!#F~nL! . ~14!

This functional dependence of the critical current onnL for
the array coincides with the one obtained in Ref. 15 fo
thin-film bridge.

It is clear that the one-dimensional approximation bre
down for large magnetic fields, i.e., if the vortex-vortex d
tance becomes considerably less than the widthW of the
array. To obtain a quantitative value of the critical field, w
studied the instability of the vortex chain towards formati
of a zigzag deformation. For that purpose, we derive the
formula for Uv-v(r i ,r j ), which requires properly taking into
account the infinite number of image vortices necessary
fulfill the boundary conditions at the superconducting co
tacts. After that, we replace Eq.~6! by its two-dimensional
analog, which depends on the two-dimensional vectors
displacements of each vortex. An analysis of the depende
of this energy on the transverse vortex displacements yi
the value of the critical field at which the zigzag patte
forms:

Bcrit5
F0

0.65W2 . ~15!

FIG. 3. Activation energy~in units of p2EJL/2W) of the rigid
chain as a function ofnL5BWL/F0 . The critical current is given
by the same curve:I C

array54Eb(nL)/F0 ; see Eq.~14! and also Ref.
15.
-

a

s

ll

to
-

of
ce
ds

In other words, the vortex distance has to be larger th
0.65W for the one-dimensional approximation to be valid

III. PINNING BY THE PERIODIC POTENTIAL

In the last section, the discreteness of the system
neglected completely. At first sight, this seems to be
unreasonable approximation. Indeed, only atnW.
(0.4/p2)(W/a)2 the amplitude 0.2EJ of the pinning potential
~3! is smaller than the variationdE of the energy~10! if a
single vortex is displaced bya/2 (a/2 is the distance betwee
the minimum and maximum of the pinning potential!. Note
that for the stability of a single-row vortex chain, the cond
tion nW,1.62 must be satisfied@see Eq.~15!#. The two
restrictions onnW are incompatible except for quite narro
arrays,W/a<6. In this section, we demonstrate that the
fective pinning potential is reduced significantly by quantu
fluctuations of the vortex coordinates, which makes
above restriction irrelevant, even at relatively small rat
EC /EJ .

Forgetting the interactions with the other vortices for
moment, each vortex is described by a Hamiltonian

H5
pi

2

2M
10.1EJ@12cos~2pxi /a!#. ~16!

That means, it is a delocalized quantum particle charac
ized by a band structuree(k). In the limit of small quantum
fluctuations of the phase,EC&0.4EJ , the problem can be
treated in the tight-binding approximation.16 This leads to the
following expression for the dispersion relation:

e~k!52
Ep

2
cos~ka!, ~17!

where the bandwidth is given by

Ep5
8

p
A0.1EJECexp~22A0.1EJ /EC!, ~18!

and the effective mass of the vortices in the periodic pot
tial by

meff
215

a2Ep

\2 . ~19!

At stronger fluctuations the tight-binding approximation
inadequate, and the bandwidth becomes of the order ofEC .
We note thatEp can be interpreted as a transition amplitud
The exponent of this amplitude can be also extracted fr
Ref. 4, where the rate of transitions between two adjac
minima of the pinning potential was estimated. According
Ref. 4, this exponent is approximately 2.25AEJ/8EC, which
is about 10% higher than the exponent in Eq.~18!.

In Eq. ~10! we showed that each vortex moves in a pa
bolic potential produced by the interaction with the oth
vortices. The corresponding oscillation frequency of a p
ticle having effective massmeff is

vosc5A4p2EJn

Wmeff
5

1

\
A2p2EJEpna2/W, ~20!

and the mean-square oscillation amplitude is
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^~xi2xi
0!2&5

\

meffvosc
5aA EpW

8p2EJn
. ~21!

The quantum fluctuations implied by Eq.~21! lead to a
reduction of the effective pinning potential, which becom
now a ~periodic! function of xi

0 . Estimating the effective
pinning, we assume that the intervortex interaction on
scale of the lattice constanta is weak compared toEp . In
accordance with the standard prescription of solid-s
physics,16 we replace the~quasi! wave vector in the disper
sion relation, Eq.~17!, by an operatorp̂/\, and consider the
Schrödinger equation for a quasiparticle with Hamiltonian

H̃5eS p̂

\
D 1

1

2
meffvosc

2 ~ x̂2xi
0!2. ~22!

Here p̂ and x̂ are canonically conjugate variables. But no
we can viewx̂ as the momentum of some particle, moving
the potentiale(p/\) that is periodic in the coordinatep of
the particle. Therefore, eigenstates of the Hamiltonian~22!
with various values of the ‘‘quasimomentum’’xi

0 form
bands. For each band, the energy is a periodic function oxi

0

with perioda. At zero temperature, we are interested in t
lowest band, with the energy

Up
eff~xi

0!5Up
effcos~2pxi

0/a!. ~23!

The value ofUp
eff depends on the magnitude and form of t

periodic potentiale(p/\). Using ~17! and ~18!, we find

Up
eff5EJ

a

W
A2nW

Ep

EJ
expS 2

2A2

p

W

a
AEp

EJ

1

nWD .

~24!

Equation ~23! gives the effective pinning potential for
single vortex. It is worth noting that the pinning streng
diminishes with the increase of the equilibrium intervort
distance 1/n.

The approximations we employed in deriving the for
@Eq. ~23!# and amplitude@Eq. ~24!# of the pinning potential
require a sufficiently wide band for the motion of a vortex
the periodic potential. In other words, the exponential fac
in Eq. ~24! must be small. In the opposite limit of negligibl
quantum fluctuations, the magnitude of the effective pot
tial is 0.2EJ , and the functionUp

eff(xi
0) has cusps atxi

0 co-
inciding with the maxima of the bare potentialUp(x) defined
in Eq. ~3!. Each cusp inUp

eff(xi
0) corresponds to a jump o

the coordinate of aclassicalvortex between the minima o
the potentialUp(x).

One may get an idea of how effective the quantum sme
ing is by estimatingUp

eff at W/a510 andEC.0.4EJ , which
is close to the limit of applicability of Eq.~18!. Substitution
of these values in Eq.~24! yields

Up
eff.0.056AnWEJexp~23.58/AnW!.

In this example, the effective pinning potential gets sma
than its bare value at 1/n*W/40, which is always the case i
practice.
s

e

te

r

-

r-

r

At finite temperatureT*\vosc, we have to consider the
averaging of the periodic potential by quantumand thermal
fluctuations; these further reduce the pinning. Summing
geometric series, we obtain

Up
eff~T!5Up

eff 1

11exp~2\vosc/T!
. ~25!

We will now calculate the pinning of the rigid vorte
chain. Each vortex is subject to the potential Eq.~23!. Sum-
ming over the members of the chain@which are located at the
positions shifted byx̄ from the equilibrium values~9!# leads
to

Upin~ x̄!5(
i 51

N

Up
eff~xi

01 x̄!

52Up
eff~T!cos~2p x̄/a!

sin~Np/na!

sin~p/na!
. ~26!

For commensurate values of the flux, i.e., if 1/na is inte-
ger, we get

Upin~ x̄!52Up
eff~T!cos~2p x̄/a!N; ~27!

the pinning barrier is proportional to the total number
vortices, i.e., the pinning is strong. In the immediate neig
borhood of the commensurate points, however, there are
ues ofn for which

n5
I~nL!

a
. ~28!

At these vortex densities, the numerator of Eq.~26! vanishes,
i.e., there is no pinning. The spacing between these zero
approximately given byna/L, which may be less than 1/L.
The rapid oscillations are caused by the fact that we
considering a completely rigid vortex chain. If we negle
the oscillations, and just look at the maxima ofUpin , it turns
out that the pinning strength behaves as 1/un2n0u close to
commensurate densitiesn0 .

The activation energy for the resistance can be estima
as the sum of the amplitude ofUpin( x̄), Eq. ~26!, and the
boundary pinning termEb(nL); see Eq.~12!. The result is
shown in Fig. 4.

Although each vortex is a quantum particle~as we have
stressed at the beginning of this section!, the possibility of
vortex permutations may be safely neglected: for each v
tex, ^(xi2xi

0)2&!n22, i.e., the oscillation amplitude is muc
less than the intervortex distance.

IV. COMPRESSIBLE VORTEX CHAIN

In the last section we considered the case of the infinit
long-range vortex-vortex interaction with the consequen
that the vortex chain was completely rigid. We will no
discuss the importance of screening and the resulting c
pressibility of the chain.

Screening of the vortex-vortex interaction in the Jose
son array is due to two effects:~1! screening by the magneti
field created by currents flowing around the Josephson
tices ~Meissner effect!, and ~2! interaction with the vortex
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medium in the contact pads. To start with, we consider
first of these two effects.

The distribution of currents flowing around a vortex d
pends on the dimensionality of the system. The curre
around a vortex line in a three-dimensional supercondu
drop off exponentially fast, the characteristic length be
the London penetration depthlL . For a vortex in a super
conducting film of small thicknesss!lL , the screening
length17 is thickness dependent,l5lL

2/s. At a sufficiently
large distance from the center of a single vortex,r *l, the
spatial distribution of these currents is controlled by t
Meissner effect,

j 1~r !5
F0c

4p2r 2 . ~29!

Note, that the distribution~29! is insensitive to the short
scale structure of the two-dimensional vortex: it may be
Josephson vortex in the array, as well as an Abrikosov vo
in the contacts. In both cases, the currents induced by a
tex fall off as 1/r 2 at sufficiently large distancesr from its
center, resulting in a vortex-vortex interaction with a fin
rangels . In the specific case of a quasi-one-dimensio
Josephson junction array contacted by superconduc
films, we may estimatels by matching the current densityj 1
with the densityj 2 of the current flowing around a vortex i
the array,

j 25
2p2EJc

F0W
. ~30!

The current densityj 2 corresponds to a single-vortex contr
bution to the phase gradient~5!. Equating j 1(ls)' j 2 leads
us to the estimate

ls

W
'A F0

2

8p4EJW
. ~31!

At distancesr *ls , the anisotropy of the system is not im
portant for the current distribution, and Eq.~29! is appli-
cable. At smaller distances, the current distribution is hig

FIG. 4. Activation energy entering the resistance as a func
of n5BW/F0 . The energy plotted here is the sum of the bound
pinning term Eq.~12!, and twice the absolute value of the bu
pinning term Eq.~26!. Energy units as in Fig. 3, andn, n0 are
measured in units of 1/a.
e

ts
or
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anisotropic. In thex direction, the screening length isls ,
while in they direction the currents are confined to the thi
film penetration depthl, which depends on the properties
the leads. Typically the sheet superfluid densityrs in the
contacts exceeds greatly the effective superfluid densityrJ in
the Josephson junction array, which leads tol!ls .

The electrodynamic effect limiting the radius of intera
tion considered above exists for any geometry of the c
tacts. The estimate~31! does not depend on the character
tics of the contact material. However, the numeric
coefficient in Eq.~31! is geometry dependent. In Sec. VI w
will further refine the estimate~31! for the specific geometry
of the experiment.9

In the above consideration, we have completely igno
the existence of Abrikosov vortices in the contacts. This
acceptable only if their currents do not overlap with the c
rents created by Josephson vortices. The two current den
fields are spatially separated if the distanced of the last row
of the Abrikosov lattice to the edge of the junction array~see
Fig. 1! exceedsl. In the opposite cased&l, the Abrikosov
lattice effectively truncates the currents created in the con
by a Josephson vortex. Indeed, a small shift of the lattice
the direction perpendicular to the edge of the array is su
cient to compensate these weak currents. To estimate
interaction potential rangels in this case, it is sufficient to
deal with the energy of the supercurrents,

E.
4p2EJls

W
1

F0
2d

16lsl
, ~32!

and neglect the magnetic fields the supercurrents create
Eq. ~32!, the first term corresponds to the energy of curre
in the array that flow in the regionuxu&ls around the vortex.
The second term is the energy of the supercurrents in
contacts. These currents are truncated at the positiod
.AF0 /B of the first row of the Abrikosov lattice, which
numerically turns out18 to be a sound approximation.

Minimization of the energy equation~32! with regard to
ls yields

ls

W
;A F0

2

32p2EJW

d

l
. ~33!

This expression is valid ford&l, and atd;l it reasonably
well matches the estimate~31!. For typical experimental val-
ues, Eqs.~31! and ~33! yield a screening length for which
n21!ls&L. In other words, the vortex-vortex interactio
has long, but finite range, and the vortex chain is not co
pletely rigid.

We will now develop a continuum description of the com
pressible vortex chain, i.e., we will express the energy of
chain in terms of the deviationsu(xi

0)5xi2xi
0 , and then go

over to a deformation fieldu(xi
0)→u(x). The energy of the

chain will be the sum of a bulk pinning term and a bounda
pinning term as before. In addition to that, there will be
elastic energy term.

It is straightforward to express the bulk pinning term
terms ofu(x):

n
y
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Upin52Up
eff(

i 51

N

cos~2pxi /a!

'2nUp
effE

2L/2

L/2

dxcosS 2p

a
~u1ax! D , ~34!

where

a5naF 1

na
2IS 1

naD G5
n02n

n0
~35!

is a dimensionless measure of the deviation from the c
mensurate value 1/n0a5I(1/na).

The ends of a long array (L@ls) act on the compressibl
vortex chain as two independent sources of boundary
ning. In the case of an almost rigid chain,ls@1/n, we can
find the pinning potential created by a single end~say, the
one corresponding tox5L/2) by a slight modification of Eq.
~6!. Namely, we introduce an exponential factor exp@g(x
2L/2)# into the integrand, and replace the lower limit
integration by2`. After that, we find the extremal value o
w0 as a function of the position of, say, the last vortex in t
chainxN , and take the limitg→10. This procedure yields

Ub~ ũ!5
p2

6

EJ

nW
@4~nũ!32nũ#. ~36!

Here for convenience we have introduced a new variablũ
instead of the coordinatexN ,

ũ[xN2S L

2
2

1

2nD , ~37!

and the coordinatexN is no more than one half period awa
from the end of the array,uũu<1/2n. The top of the bound-
ary barrier is atnũ521/A12, and its amplitude is approxi
mately 0.64EJ /nW.

The elastic energy of vortices, which interact by lon
range forces, in the long-wavelength limit takes the form

Uel5
K

2E2L/2

L/2

dxS ]u

]xD 2

. ~38!

The elastic constantK can be expressed through the vorte
vortex interaction potential as

K5n2E
2`

`

dxUv-v~x!. ~39!

Note, that the potentialUv-v(x) here is defined differently
from Eq.~4!. Unlike in Eq.~4!, we remove the uncertainty in
the definition of the potential by requiringUv-v(x→6`)
50.

In order to estimateK, we adopt the following model for
the interaction potential:

Uv-v~x!5
2p2EJ

W
lsexpS 2

uxu
ls

D , ~40!

which correctly reproduces the cusp@cf. Eq. ~4!# at uxu
!ls , and reaches zero atuxu→`. Within this model, we
find
-

n-

-

-

K'n2E
2`

`

dxUv-v~x!5
4p2EJ

W
~nls!

2. ~41!

~The real interaction potential in the planar geometry of
contacts considered above falls off asx22, rather than expo-
nentially. However, this should not significantly alter the e
timate.! We complete the estimate ofK by adopting Eq.~31!
for the value ofls , which yields

K'
F0

2n2

2p2
. ~42!

The elastic constant becomes softer if the period of the A
kosov lattice in the contacts is smaller thanl; see Eq.~33!.

Varying E5Uel1Upin with respect tou(x) leads to the
static sine-Gordon equation

KS ]2u

]x2D2nUp
effsinS 2pu

a
2axD50. ~43!

This equation has been studied in many contexts, e
commensurate-discommensurate transitions in adsor
layers,19 herea is the difference of the lattice constants
the substrate and the adsorbate. Another example is
theory of long Josephson junctions20 wherea is proportional
to the magnetic field threading the junction.

V. PHASES

The behavior of a one-dimensional vortex chain is clos
related to that of an adsorbate layer:19 if the magnetic field is
commensurate,n5n0 , the vortex chain is commensura
with the junction array. The activation energy of an eleme
tary excitation atn5n0 is given by the energy to push on
soliton into the system. The length of such a soliton is giv
by

xs5
a

2p
A K

nUp
eff , ~44!

and its energy is

Es5
4a

p
AKnUp

eff. ~45!

A comparison ofxs with the interaction radius, Eq.~31!,
yields xs /ls.(a/W)AnWA0.4p2EJ /Up

eff; here we have
used the estimate~42! for the elastic constantK. The appli-
cability of Eq. ~43! requiresxs*ls , and therefore Eqs.~44!
and~45! are valid only if the pinning potential is reduced b
quantum fluctuations compared to its classical value.

On movingn away fromn0 , the magnetic field tries to
enforce a period of the vortex lattice that is different from t
period of the pinning potential. The chain stays locked to
commensurate state up to a critical value ofun2n0u, or, in
other terms, untiluau is less than some critical valueaC .
Below the threshold, atun2n0u<n0uaCu, the activation en-
ergy will diminish linearly with increasinguau. This can be
seen immediately from the analogous situation in a long
mogeneous Josephson junction where quantized fluxons
the role of solitons. The energy to create the first fluxon
the junction has some value atH50, and decreases linearl
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like 2M uHu with uHu; hereM.0 is the magnetization of a
single fluxon, i.e., a constant. In a complete analogy w
this, in our case the energy to create a soliton in the co
mensurate phase is of the form

Es~n!5EsF12
un2n0u
n0aC

G . ~46!

Note that the energyEs(n) has a cusplike dependence onn
2n0 . The pointn5n0 is special: the creation of a soliton o
antisoliton costs the same energy. This situation is simila
the line of particle-hole symmetry for a Mott insulator. D
viation from the symmetry point makes creation of solito
or antisolitons preferable. This violation of the symmetry
the origin of the nonanalytic dependence ofEs on n. The
critical values ofa at which the soliton energy turns zero a
given by

uau5aC[
4

p
AnUp

eff

K
5

8a

xs
. ~47!

Above the threshold, atuau.aC , discommensurations
will exist: the chain is strained in the discommensuratio
but this is offset by the fact that the rest of the chain can s
in the minima of the pinning potential. In this incommens
rate phase, the concentration of solitons is finite. Due to
solitons, the vortex chain regains a finite compressibilityKs ,
which depends on how far the system is tuned away from
critical pointsa56aC . Without giving the details here, w
note that the dependence of the renormalized elastic con
on the control parametera can be presented in a paramet
form,20 as follows:

Ks

K
5

4

p2

d

dg
@E~g!/g#

d

dg
@1/gK~g!#

,

~48!
uau
aC

5
E~g!

g
.

Here K(g) and E(g) are the complete elliptic integrals o
the first and second kind, respectively. The chain soft
near the critical points, where the proper expansion19 of Eq.
~48! yields

Ks

K
5

8

p2

uau2aC

aC
F ln

aC

uau2aC
G2

. ~49!

The softening occurs, because the solitons in the chain
rare, and the pair potential acting between them is expon
tially small,Us;Esexp(2x/xs). Far away from the transition
at un2n0u@aCn0 , the solitons overlap, andKs5K.

A finite voltage between the contacts to the array~see Fig.
1! is related, by the Josephson relation, to the average ve
ity of vortices moving along the array. The transport of
vortex through the system can be viewed as propagatio
solitons through the vortex chain. The availability of solito
in the chain will clearly affect the resistance of the array.
the commensurate phase, the soliton density is exponent
small at low temperatures,Es(n) being the corresponding
h
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-
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activation energy. In the incommensurate phase, there
mobile solitons in the system even at zero temperature
one neglects the existence of boundary effects, the activa
energyER of the observable quantity, viz., resistance, wou
coincide with the activation energy of a single solito
Hence, one would expectER5Es(n) in the commensurate
phase, andER50 in the incommensurate phase.

It turns out, however, that boundary pinning modifies th
picture. First of all, it may affect the ground state of th
vortex chain. In the incommensurate phase, even w
boundary pinning will lead to a deformation of a long com
pressible chain. In the commensurate phase, the structu
the ground state starts to depend on the ratio of the boun
pinning energyEb;EJ /nW, and the soliton energyEs(n);
this ratio depends on the bare parameters of the system
may be small or large. Second, the set of excited states
chain goes through during the elementary act of a vor
transfer also depends on the boundary pinning. These
factors determine the dependence ofER on the characteristic
energiesEs and Eb . We will analyze the activation energ
ER for both cases of small and large value of this ratio.

In the commensurate phase, and in the presence of st
boundary pinning,Eb.Es(n)/2na, the vortex chain in the
ground state will adjust itself to the length of the array
minimize the pinning energy. This means there are solit
in the ground state, unlessnL is an integer. The largest num
ber of solitons in the ground state occurs at a half-inte
value of nL, and equals 1/2na. In this particular case
the chain without solitons is the configuration with th
highest energy that the system passes through during a
tex transfer. In this state, the chain is not adjusted to
boundary of the array, and the boundary pinning energy
tains its maximum valueEb . The difference of this energy
from the ground state isER5Eb2Es(n)/2na. In the oppo-
site case of integernL, there are 1/2na solitons in the
‘‘saddle-point’’ state, and the activation energy reaches
maximum,ER5Eb1Es(n)/2na; see Fig. 5~a!.

If Eb,Es(n), there are no solitons in the ground state
a commensurate chain. Moreover, during the process
vortex transfer through the array, there is at most one sol
in the chain. Since a soliton changes the length of the vo
chain only bya, the chain remains rigid on the scale of th
intervortex distance 1/n. Therefore, we arrive at the follow
ing picture of the vortex transfer. The passage of each sol
shifts the chain bya. The transfer of a vortex requires th
sequential passing of 1/na solitons. In this process, the cha
moves as a rigid object in the presence of boundary pinn
Thus, ER is the sum ofEs(n) and the boundary pinning
energy equation~12! for a rigid chain,

ER5Es~n!1Eb~nL!; ~50!

see Fig. 5~b!. The soliton energy~46! vanishes at the bound
aries of the commensurate phase. Before it vanishes,
cross over to the case described in the previous paragra

We will now discuss the incommensurate phase,n.nC .
At the phase transition, the soliton formation energy va
ishes, and solitons will start to form spontaneously. Cor
spondingly, the physics of the incommensurate phase wil
determined by boundary pinning and by the elastic ener
and the behavior of the activation energy will be identical
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FIG. 5. Phase diagram of the compressible vortex chain: activation energy as a function ofn2nC . ~a! Eb@Es , i.e., boundary pinning
dominates (Es50.5). ~b! Eb!Es , i.e., soliton formation energy dominates (Es55). Energy units as in Fig. 3, and the one-dimensio
vortex densitiesn, n0 , nC are measured in units of 1/a. On the incommensurate side of the transition,n.nC , solitons will form
spontaneously. The physics of the incommensurate phase is therefore determined by boundary pinning and the elastic energy and
for ~a! and ~b!.
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the two panels of Fig. 5. The chain is compressible;
elastic constantKs(n) is renormalized down by solitons; se
Eq. ~48!. The adjustment of the vortex chain to the length
the array leads to a finite deformation. The correspond
elastic energy can be found with the help of Eq.~38! with K
replaced byKs(n). The maximum value of the deformatio
]u/]x51/2nL corresponds to half integernL, and the elas-
tic energy associated with it isKs(n)/8n2L. For largeL, this
energy is inevitably smaller than the boundary pinning p
tential ~36!. To initiate an elementary act of vortex transpo
through the array, a shift of the end vortex through the ma
mum of the potential~36! should occur. This varies the de
formation of the chain by 1/nA3, or by (121/A3)/n. The
corresponding elastic energy in both cases is the same, a
equal toKs(n)(122/A3)2/8n2L. The net variation of the
elastic energy involved in the described shift of the vortex

dUel5
Ks~n!

8n2L
F S 12

2

A3
D 2

21G'20.12
Ks~n!

n2L
. ~51!

To obtain the activation energy for the resistanceER at this
particular value ofnL, one should adddUel to the boundary
pinning amplitude. At some other values ofnL, the variation
in the elastic energy involved in the process of passing
boundary barrier attains its maximum value2dUel . Thus,
the resistance activation energy oscillates between two
ues,

ER'0.64
EJ

nW
60.12

Ks~n!

n2L
, ~52!

with the periodDn51/L.

VI. COMPARISON WITH THE EXPERIMENT

The resistanceR of a number of arrays of Josephson jun
tions was measured in the geometry depicted in Fig. 1 in
presence of a magnetic field. Arrays with lengthsL varying
between 100a and 1000a, and widthsW of 7a and 3a were
studied. The characteristic Josephson energy for all
e

f
g

-
t
i-

is

s

e

l-

e

e

samples was about 1 K, with the ratioEJ /EC varying within
the limits 0.7 to 2.8.~The details of sample preparation a
well as the experimental techniques can be found in Ref.!.
The main qualitative feature of the field dependence oR
consists in the existence of a finite region of magnetic fl
densitiesn around the commensurate valuen051/3a, where
the resistance is strongly suppressed~Mott phase for the sys-
tem of quantum vortices!. The width of this region become
smaller with the increase of the ‘‘quantum paramete
EC /EJ , see Ref. 9, in agreement with the notion of the M
transition.

Within the Mott phase, the resistance clearly displays
activated behavior, with the activation energyER strongly
depending on the deviationun2n0u from the point of exact
commensurability. In Fig. 6 we present new data for t
activation energy for our longest sample,L51000a, with
parametersW57a, EC50.7 K, and EJ50.9 K. For each
value of n, the activation energyER was determined from
the measured temperature dependence of the array resist
The measurement was performed in the linear regime,
small transport current. For this sample, the commensu
phase around the pointn051/3a exists in the domainuau
,aC'0.009. The maximal value of the activation energ
ER'12 K, is reached at the commensurability point. Outs
the Mott phase region, the resistance exhibits strong osc
tions; the activation energy vanishes almost periodically w
the periodDn51/L. We find two aspects of this data strik
ing.

First, the regions ofn corresponding to the Mott phase a
extremely narrow (aC.1022). In the conventional picture
this would imply a weak interaction between the partic
~compared to the one-particle band-structure energies!. Con-
sequently, within the Mott phase the activation energies
particle transport must be also small. Quite contrary, the
served value of the resistance activation energy is about
order of magnitude larger than the energiesEC and EJ ,
which determine the single-vortex band spectrum.

Second, the resistanceR(n) exhibits strong oscillations
with the periodDn51/L outside the Mott region. These os
cillations would not be expected in a model of almost-fr
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quasiparticles within the delocalized phase.
These two observations find a natural explanation in

model, which explicitly accounts for the long-range intera
tion forces between the vortices.

In order to perform a detailed quantitative comparis
of the theory and experiment, first we improve the es
mates ~31! and ~42! for the interaction rangels and
the elastic constantK, respectively. In the experiment,9 the
contact bars were made by shorting the junctions at the lo
and upper border of the array. We therefore model the b
by superconducting strips of average widtha'1024 cm ~the
lattice constant of the array!. The conditionls@W allows us
to neglect nonlocal effects in the solution of the magne
static problem,21 and to expressls in terms of the self-
inductanceL of the two-wire system. In addition, as th
distanceW between the wires exceeds significantly th
width a, we can use the textbook22 formulaL54ln(W/a). As
a result, Eq.~31! is replaced by

ls5WA F0
2

16p2EJW ln~W/a!
.270a. ~53!

~The resulting numerical value here refers to the parame
of the sample of Fig. 6.! In the same approximation, th
model form of the potential~40! becomes exact. With the
help of Eq.~53!, the estimate~42! of the elastic constant ca
also be refined. For convenience, we give here the valu
the productaK, instead of the value of the elastic consta

aK'
F0

2n2a

4 ln~W/a!
.3.53104 K. ~54!

The theoretical results~53! and ~54! do not have any ad
justable parameters, and are obtained within controllable

FIG. 6. Activation energy of the resistance of an array cons
ing of 100037 cells with parametersEJ50.9 K and EC50.7 K.
The one-dimensional vortex densitiesn, n0 are measured in units o
1/a. The dashed line is a fit to the data to extract the width of
Mott region. The cusplike part of the figure corresponds to the M
phase. Additional wiggles on that part may be related to bound
effects; see Sec. V and Fig. 5~b!. Inset: activation energy outside th
Mott phase. The zeros ofER(n) at n2n0.0.006 indicate the re-
stored rigidity of the vortex chain. Note that in qualitative agre
ment with Fig. 4 the maxima ofER(n) decrease with increasin
un2n0u; the dotted line in the inset is a guide to the eye.
r
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proximations. In contrast with this, Eq.~24! for the effective
pinning cannot be used for the quantitative comparison w
the experiment:9 The tight-binding approximation we hav
used in Section III to estimate the suppression of the pinn
potential is not applicable to the caseEC'EJ . @We note that
Eq. ~23! still allows one to reproduce the correct trend in t
variation of aC with the ratioEC /EJ .] Therefore, we pro-
ceed in the following way. First, we find the soliton lengthxs
from the experimental values ofaC . Then, using the theo
retical value ofaK and the value ofxs extracted from the
data, we find the renormalized pinning potentialUp

eff and the
soliton activation energyEs . We will check that the renor-
malized pinning potential is indeed substantially lower th
its bare value 0.1EJ . Finally, we will relate the found value
of Es to the activation energy of the resistance for the e
perimental sample.

The values ofaC anda'1024 cm found experimentally
allow us to estimate the soliton length from Eq.~47!:

xs5
8a

aC
5890a'0.09 cm. ~55!

This length is really large. In fact,xs is about three times the
length of the arrayL5300a used in Ref. 9 to extract the
activation energyER . This may explain why the values o
ER found there are systematically lower than the activat
energy for the longest array; see Fig. 6. A single solit
consists of about 300 vortices, and therefore its activat
energy may exceed easily the single-vortex energy sca
Note also thatxs exceeds considerably the interaction rad
~53! that gives us confidence in the applicability of the sin
Gordon equation~43!. The effective pinning potential, ac
cording to Eq.~44!, can be found as

Up
eff5S a

2pxs
D 2 aK

na
.3.431023 K. ~56!

This energy is at least one order of magnitude smaller t
its bare value 0.1EJ ; see Eq.~3!. The reduction is apparently
due to the quantum zero-point motion of individual vortice
Again, the strong suppression of the pinning energy guar
tees the harmonic form of the pinning potential~23!, and
hence allows us to use the sine-Gordon equation for the s
tons. Finally, using Eqs.~44! and ~45!, we find the soliton
energy at the commensurability point:

Es5
aC

4p2
aK.8 K. ~57!

This energy exceeds significantly the boundary pinning
ergy. According to Eqs.~12! and ~50!, the latter contributes
to ER less than 0.5 K. We neglect this contribution, a
therefore identifyER with the energyEs of the formation of
a soliton. The calculated value~57! is somewhat lower than
the measuredER . Still, we find the agreement quite impre
sive, having in mind the huge value of the elastic const
~54!, calculated without any adjustable parameters.

The large value of the elastic constant~54! results from
the long-range nature of the intervortex interaction forc
In fact, the vortex chain in the incommensurate phase
so rigid that Eq.~52! is inapplicable in the case of a samp
only a thousand cells long. Away from the transition po
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(uau5aC), the elastic term in Eq.~52!, which is supposed to
be a small correction, is about 70 times larger than
‘‘main’’ boundary pinning term. Therefore, for the cond
tions of the experiment, the incommensurate phase is
described by the model of a rigid vortex chain; see Sec
This immediately explains the strong oscillations of the
tivation energy with the periodDn51/L in the incommen-
surate phase, see Eqs.~12! and ~26!.

There is a clear resemblance between the experimen
measured curve ofER(n) ~inset in Fig. 6!, and the curve in
Fig. 4, simulated with the help of Eqs.~12! and ~26!. In
agreement with the model of a rigid chain, the minima
ER(n) reach zero atun2n0u*0.005, and the maxima o
ER(n) decrease with increasingun2n0u. The boundary term
Eq. ~12! has a maximum of'0.5 K and accounts for th
main contribution to the maxima ofER at n2n0.0.006. The
vortex chain softens up only in a very narrow region arou
the transition point, so that the crossover region is of
order ofDn; see the inset in Fig. 6.

To end this section, we reiterate that in the experiment
commensurability pointn051/3a was reached in the samp
with W57a, which means the chain is stable against
formation of a zigzag structure at 1/nW50.43. According to
Eq. ~15!, for a continuous system, the zigzag instabil
would already occur at 1/nW50.65, i.e., before the densit
n051/3a is reached. Since the experimental data show
indication of a qualitative difference between the arrays w
W53a and W57a, we conclude that the array widthW
57a is narrow enough to allow suppression of the instabi
by the effects of discreteness.

VII. DISCUSSION

An external magnetic field applied to an array of Jose
son junctions allows one to introduce vortices into it. A s
ficiently weak field creates a linear chain of vortices in
quasi-one-dimensional array. The ratio between the per
of the vortex chain and the array of Josephson junction
controlled by the value of the magnetic field. The comm
surate phase corresponds to the vortex analog of a Mot
sulator. Within this phase, the elementary excitation is a s
ton consisting of a number of individual vortices. The fini
gap energy for the soliton translates into a finite activat
energy of the resistance of the array. Each soliton transfe
fraction of the flux quantum through the array. In the inco
mensurate phase, the spontaneous proliferation of sol
and antisolitons leads to the formation of a one-dimensio
vortex liquid. This results in a finite vortex-flow resistance
the array.

In this paper we have analyzed the commensur
incommensurate transition for a one-dimensional vortex
tem in detail. The size and energy of the vortex solito
which drive the transition, depend on two parameters of
v
n
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vortex chain. These parameters are the elastic constant
the pinning potential existing due to the discreteness of
array of Josephson junctions. The long-range nature of
vortex-vortex interaction leads to a large value of the ela
constant. On the other hand, the zero-point motion of e
quantum vortex leads to a considerable suppression of
pinning potential. As a result, the size of the solitons tu
out to be extremely large, about 300 vortices under the c
ditions of the experiments reported in this paper and in R
9. This enables us to treat the transition in the framework
the classical theory.19 Our theory explains quantitatively th
main experimental observations.

We would like to conclude with the following remark:
quasi-one-dimensional array of small superconducting
lands connected by Josephson junctions can be used to s
quantum phase transitions in two complementary ways.
first way relies on the control of the charge state of the
lands by an external gate. In this case, a transition betw
the charge-localized and charge-delocalized phases ca
observed in principle. The localized phase is a Mott insu
tor, with a finite gap for charge solitons, which play the ro
of elementary excitations. The delocalized phase behave
a one-dimensional Luttinger liquid~see, e.g., Ref. 23 and
references therein!. The experimental observation of the tw
phases and the transition is difficult, as it is virtually impo
sible to avoid the existence of random offset charges, wh
introduce strong disorder into the system. The other way i
study the commensurate-incommensurate transition in a
tem of vortices induced in the array by an external magn
field ~the case studied in this paper!. This transition belongs
to the same universality class as the Mott transition
charge delocalization. A great advantage of the vortex s
tem is that it is virtually disorder free. However, due to t
large size of the solitons driving the transition, the critic
region around the phase transition point is extremely nar
for the arrays studied experimentally. To widen the critic
region, one should find a way to reduce the vortex-vor
interaction strength. That would open new possibilities
experimental investigations of the Luttinger liquid that
formed on the incommensurate side of the transition. T
properties of the liquid are expected to depend crucially24 on
the value of the fractional flux carried by the solitons.
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