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Excitation spectrum of the homogeneous spin liquid
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We discuss the excitation spectrum of a disordered, isotropic, and translationally invariant spin state in the
two-dimensional Heisenberg antiferromagnet. The starting point is the nearest-neighbor resonating-valence-
bond state which plays the role of the vacuum of the theory, in a similar sense asahstate is the vacuum
for antiferromagnetic spin-wave theory. We discuss the elementary excitations of this state and show that these
are not Fermionic spin-1/2 “spinons” but spin-1 excited dimers which must be modeled by bond bosons. We
derive an effective Hamiltonian describing the excited dimers which is formally analogous to spin-wave
theory. Condensation of the bond bosons at zero temperature into the state with moment)rs (shown to
be equivalent to antiferromagnetic ordering. The latter is a key ingredient for a microscopic interpretation of
Zhang's S@5) theory of cuprate superconductivify50163-18289)03721-7

I INTRODUCTION where, e.g.j+x denotes the nearest neighbor of site x

. o _ direction, the nearest-neighbor RVB state on a 2D square
ngh-temperature SUpEI’COﬂdUCtIVIty occurs In a statqattice with 2N sites can be written as

which is frequently referred to as an “resonating-valence-

bond (RVB) spin liquid.” This state has no magnetic order, 1 SN

but has strong short-range antiferromagnetic correlations. |RVB>:TW|O>’ ()
Undoubtedly the strong repulsion between electrons, which nw

turns the system into a charge-transfer insulator at half fillingvheren is a normalization factor. It corresponds to a super-
persists in the doped case, so that a description in terms @fosition of all states which can be obtained by covering the
free-electron-like Slater-determinants is not really adequatglane compactly with nearest-neighbor singlets, all with
The problem then is how to describe such a state theoretequal phase. Covering the plane with singlets is equivalent to
cally. Despite its frequently being referred to in the literature,covering it with dimers, a well-known problem from statis-

the RVB spin liquid is a rather elusive concept. For exampletical mechanic§.We can therefore rewrite the state as
the precise nature of its ground state and low-lying elemen-

tary excitations is not known to any degree of certainty. In 1
the following we want to address this problem by studying a |RVB) = n > ), 4
disordered state for the two-dimension@D) Heisenberg n a
antiferromagnet wherea denotes a dimer covering of the lattice gnd) the
state obtained by putting singlets onto the dimers.of
H=J> S- S In the following, we want to examine the problem of the
() possible elementary excitations of such a singlet background,

on a 2D square lattice. He& denotes a spin-1/2 operator on gnd set up an eﬁestlve Ha.rmlt”oman governing their dynam-
ics. The idea of “expanding” around a suitably chosen

sitei. One might expect that this is a kind of stepping stong cuum state is realized in simplest form in linear spin-wave

. e v,
also for the doped case, in that the elementary excitations (%ﬁeory. The general line of thought here is quite analogous to

the undoped spin liquid persist to some degree also for ﬁnit‘ﬁnear spin-wave theory, with the sole exception that the role

doping. . : )
Perhaps the best-defined RVB spin liquid is the neares of the vacuum(which determines the symmetries of the

neighbor RVB statk®>—at least this wave function can be ground statis playeo_l by the "singlet soup'((_%) instead of

. - . X the Neel state. A similar approach has previously been ap-
v_vrltten down in compact.f(.)rm. We define the singlet genera-plied to dimerized planar Heisenberg-type modéiso spin
tion operator on the bond] ladders>!°to strongly coupled Heisenberg plarfé$?and to

1 spin-Peierls-like spin chair$:**An example where the fluc-

f =~ (ef.ef —cfcf 1 tuations are Fermionic rather than Bosonic in nature is pro-
S, =75 (Ci,1C1.1 = Ci i) L ® athy 0S0
V2 vided by the Kondo latticé® The main difference as com-
+ oy pared to the present work is that in all of these works a rather

wherec; ,=¢; ,C; ;C; - are the constrained fermion opera- ynique and simple dimer covering of the system is given by
tors, which do not allow the creation of a second electron onhe topology or the form of the Hamiltonian—the complica-
an already singly occupied site. Introducing the operator tions that arise from the use of a disordered singlet soup such
as Eq.(3) then can be avoided.
S= E (SiTi+>A(+SiTi+A)’ 2) Ar_1 e_zxpansion aro_und a (_:Iimer backgr_ound is not the only
i ' Ty possibility to deal with a disordered spin state. Previously,
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FIG. 1. An incorrect picture for fluctuations in a singlet back- o . )
ground. 3J/4 in this transition, because the only change is the loss of
one nearest-neighbor singlet. Because singlet and triplet are
degenerate for sites which are not connected by an exchange
¢ bond, we might as well consider the two spins connected by

eventually to lattice-gauge theoridsL? the ‘long singlet’ as being unpairddee Fig. lo)]. The tran-
While the technical complications arising from the use ofSition from Figs. 1a)—(b) could thus be viewed as pair cre-

a dimer basis are considerable, this approach also has sofdion of two unpaired spins. Next, by acting with the ex-
major advantages: in a site basis it is virtually impossible tgc12nge term on a bond which connects a dangling spin to
even write down a disordered spin state, because one has 3°ther singlefsee Fig. 1c)], we can recouple the spins so

deal with the spin degeneracy on each single site. The calc@S {0 form a new singlet and leave one of the formerly paired
lation only becomes feasible if this site degeneracy is liftedSPINS unpairedsee Fig. 1d)]. This process corresponds to a

for example by assuming strict Beorder as in spin-wave propaga_ltion of the dangling _spin. We would thus arrive at the
theory. On the other hand, the degeneracy is automaticall onclusion that the fluctuations out of the nearest-neighbor
taken care of in the dimer basis, because two interacting sitddVB state are unpaired spins, which carry a spin of 1/2 and
do have a unique ground state. A further considerable advaifonsequently must obey Fermi statistics. Clearly, these exci-
tage of the dimer basis is that it is easily enlarged by hold@!ions should be identified with the ominous “spinons.

pairs on nearest neighbors, so as to describe a superconduct-FUrther reasoning shows, howeyer_, that,'Ehe_Ilne of thought
ing state. Indeed, as will be seen below, the present descrif2ding to the introduction of the “spinons” misses a small

tion of the antiferromagnetic phase most naturally can pdut crucial detail. The first reason is that the state in Fig) 1

generalized to comprise also a superconducting phaség not orthogonal to the vacuum, and thus cannot represent a

thereby providing a very simple microscopical picture for thelfué fluctuation. More precisely, if we introdu¢see Figs. 1
SQ(5) rotations which smoothly connect antiferromagnetic@"

and superconducting phase in Zhang's thébof cuprate |a):sT 23T4|0>

superconductors. 1,223,415/

|b)=s] s} J0),

. it is straightforward to seéFig. 2) that(a|b)=—3, in other
The nearest-neighbor RVB staté) has the symmetry \yorqs: after the “transition” Figs. t)—1(b) we remain in

properties expected for a homogeneous spin liquid: it is iSO original state, Fig. (&), with a probability of 25%. The
tropic, translationally invariant, is an exact spin singlet, andy5p1em of nonorthogonality is not restricted to the first step
has no magnetic order. On the other hand, just as tre Nej, gy 1: the states Figs.(d) and Xd) have an overlap of
statg, It IS not an elgensta}te bf. If we take one singlet 1/2, and this generalizes to any two states which differ by
conflgur_atlon| o) _and act v_wth the exc_hange term on a bond ;e hopping process of a “spinon.” The nonorthogonality
connecting two different singlefsee Fig. 1a)] we can cre- roblem thus is omnipresent and severe.

ate a state which no longer can be represented as a super;g)o—l_et us therefore return to the first step, Fig&)2-1(b),
sition of only nearest-neighbor singlets. Such a state there;q consider how we can remedy the problem. The most

fore represents a kind of fluctuation and as a first step Weiatra| way to proceed is to form the orthogonal complement
need to understand the character of these fluctuations. It

might apped’ that the energetically most favorable fluctua- Ib’y=|b)—(a|b)|a),

tion is the state shown in Fig.(H): two nearest-neighbor

singlets are transformed into a configuration with only oneso as to see what is really new in the stHig. A straight-
nearest-neighbor singlet and a second singlet connectingrward computation shows that after normalization to unity
more distant sites. Nominally the energy increases by onlyhe orthogonal complement is

Schwinger boson mean-field theofi&Y’ and slave-Fermion
mean-field theori¢§ have been employed; the latter lea

Il. ELEMENTARY EXCITATIONS OF A SINGLET SOUP



13812 R. EDER PRB 59

=9 =2 e=e I o= To be more precise, we now discuss the action of the Heisen-
o—o op g—o o—o berg exchange on all possible configurations of nearest-
- -ehange i I neighbor singlets and triplets. Consider tn@arest-neighbor
Oo—o0 J [ .. .
“-‘i‘ i | I bonds(i,j) and (’,j’), and assume that they are connected

I by a single bondi(i’). Denoting the Heisenberg exchange
along the latter bond bi; ;» we have
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FIG. 3. A more correct picture for fluctuations in a singlet back- (tl doySir J Si,jti',j',y)' ™
ground.
These equations show that if we start out from states con-
1 taining nearest-neighbor singlets or triplets on the left-hand
|b") > 12ﬂt3‘1a|0>_ (5) side, the exchange term only produces states which again
V3 a?Xy.2 consist of nearest-neighbor singlets or triplets on the right-

hand sidghad the two bonds been connected by exchange
along another bond,j(i’), (i,j'), or (j,j'), we would have
obtained the same equations with the sole difference that in
some cases the prefactors change their |sighis proves
rigorously that acting with an arbitrarily high power of the
Hamiltonian onto the nearest-neighbor RVB state produces
i only states which can be built up fronearest-neighbosin-
tl =—(cl.cl . +cl cl), glets or triplets.
iy~ \/— i1C5,1 7 GGl . i )
This “theorem” in fact holds true in a more general
sense: on a single dimer, the four states|. andt! do form
i~ (al.e et &ry), ©) a complete basié.'l’hus if we use a fixed dimer coverirgg
ij.z™ 2 i1C 1T G C J T the set of states obtained by placing singlets and triplets on
the dimers ofa form a complete basis of the Hilbert space.
which create the three components of ttiplet on the bond  Adding up such states obtained frai possibledimer cov-
(i,j). We arrive at the conclusion that the true fluctuation outerings then clearly produces a highly overcomplete basis of
of the nearest-neighbor singlet background is not the creatiothe Hilbert space, which therefore must automatically in-
of two fermionic spinons, but rather the creation of two ex-clude states with singlets of arbitrary length. It follows that
cited dimers, which carry a spin of 1 and consequentlyall states with longer-range singlets also can be represented
should be modeled by bond bosdA<.The further evolution as superpositions of states which are composed exclusively
of the created triplets then is quite obvioisee Fig. 3 (but  from nearest-neighbor singlets and triplets. These states are
completely different from that of the spingndy exchange therefore redundant, and if we formulate a self-consistent
along bonds connecting the triplets with neighboring singletgheory in terms of nearest-neighbor singlets and triplets, we
the triplets can de-excite while simultaneously the singlehave automatically included these longer-ranged singlets.
turns into a triplet—this process, which is very much remi-The fact that we are using a nearest-neighbor RVB state as
niscent of the propagation of a Frenkel-type exciton, correthe starting point for constructing our theory therefore means
sponds to the propagation of the excited dimer. Note thabo loss of generality and in particular does by no means
unlike the spinon states in Fig. 1, all different states in Fig. 3mply that we are considering only states with only very
are mutually rigorously orthogonal. As a matter of fact, thereshort-ranged antiferromagnetic correlations. In fact, it will be
are problems with nonorthogonalities also for the tripletshown below that one can construct even states with infinite-
states—these are “inherited” from the original nearest-range antiferromagnetic order by using exclusively nearest-
neighbor RVB state. They will be discussed in detail belowneighbor singlets and triplets.
and be shown to be much less severe than those for the The preceding considerations suggest that we should
spinon states. Their main effect is to replace the simple exmodel the excitation spectrum of the nearest-neighbor singlet
cited dimer by a more delocalized object, which resonatesacuum by bosonic excitations, which approximately corre-
between different orientations within a limited spatial region.spond to excited dimers. Assuming that the bonds in the

Here we have introduced the operatérs

-1
_ St ot _at oot
iJ,X_E(CLTCJ,T_CLLCM)’
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system have been labeled in some way, we denote the tripletherea= X,y denotes the direction of the bond in real space,
operator on bond by t|. Then, we introduce the following andn, a normalization factor. In this state one triplet is put

basis states onto the bond i(i +«) and the remainder of the lattice is

covered compactly by singlets in all possible ways. Next, we
Wi iy, i) introduce the Fourier transforms
1 gN-m ﬁ ; ik /2
= t. 0), _ ; ik-R;
\/n(ilal,izag,...,ima’m) (N=m)!,= IV'aV| > |k’a> \/mg |J,a>e - -

(8 In the Hilbert space of bond bosons, this state would be

where n(ijay,isay, .. .imay) is a normalization factor. denoted byrlza|0>. The procedure to be followed then is like

They describe a certain numbem) of triplets which are this: in a first step we compute thex2 overlap matrix
“immersed into the singlet soup.” Thereby the singlets fill N,, ,.(k)=(7 .7, ,.) and diagonalize it. Denoting the re-

the space in between the triplets compactly in all possibleylting eigenvectors and eigenvalueséhyand\ , , the states
ways. All states which can be generated by pair creation and

propagation of triplet bond&uch as the ones shown in Fig. 1 _
3) can be represented in this way. We next consider the TE_V|O>=\/—_ 2 eyyar;a|0> (12
triplets as boson-like elementary excitations of the singlet Ny a=xy

background, in precisely the same way as misaligned spingrm an orthonormal basis set and hence can serve as effec-
are considered as bosonic excitations in a ENéack-  tjve single-particle orbitals with momentukn Since the bo-
ground” in antiferromagnetic spin-wave theory. Re- son operators which correspond to the original triplets 8bey
interpreting the state [Tk a ,h}l’a,]=Na,a,(k), the operators , obey the canoni-

m cal commutation relations for boson operatc[rs,;,,,,rliy,]

|lﬁila1,i2a2, L ,,inam)—>]_[ o « 10, =4, , . They describe a tripletlike excitation which oscil-

v=1om lates between- andy-directed bonds within a certain spatial
egion whose extent is determined by the range of the real-
pace overlap integrals,a|j,a’).

Next, we set up the 22 Hamilton matrix H(k)
:<Tk'V|H|Tl’V,>, which in turn requires knowledge of the
real-space matrix elementéi,a|H|j,a’). Diagonalizing
H=3 o5+ (Ayd- T+ He)+ Y, €7 -7, H (k) —EoN(Kk), whereE, denotes the expectation value of

: b h) 9 H in the “background” statg4), we obtain the desired dis-

©) persion relation of a single triplet boson. The pair-creation
where we have grouped the three triplet components into Enatrix element is obtained in an analogous way.
three-vectorr so as to stress manifest rotation invariance. This procedure in fact is neither new nor unconventional:
The first term in Eq(9) corresponds to the energy of forma- a completely analogous construction is performed, e.g., in
tion of the triplets, the second term describes pair creatiothe construction of the-J model** which describes the dy-
processes as in Fig(@ — 3(b), and the third term accounts namics of the(nonorthogonal Zhang-Rice singlets on the
for the propagation of the triplets, see Fig&)3— 3(d). The  different plaquettes of the Cy(lane. The only difference is
matrix elements;; andA;; should be obtained by computing that here we have two different nonorthogonal objects
matrix elements of the Heisenberg Hamiltonidnbetween (bosons on bonds irandy direction per unit cell, whereas
the corresponding staté8). Of course, one thereby has to it was only a single Zhang-Rice singlet/unit cell in the case
assume that, for example, the matrix element for a triplepf the CuQ plane. Apart from that the construction is pre-
jumping from bondm to bondn does not depend signifi- Cisely the same.
cantly on the positions of the other triplets—otherwise a de- In the next three sections we will calculate the dispersion
scription in terms of a single-particle-like Hamiltonian would relation, the pair-creation matrix element, and discuss how
not be feasible. As is the case in spin-wave theory, the these matrix elements depend on the density of triplets.
bosons have to obey a hard-core constraint, and in fact preReaders who are not interested in these more technical parts
ence of one boson prohibits the presence of another bosdie advised to proceed to Sec. VI.
not only on the same bond, but also on all bonds which share
a site with the original one. Ill. PROPAGATION OF A SINGLE TRIPLET
In the following, we will first study the problem of a

single excited dimer in the singlet background, in other 10O Carry out our program we need to compute the real-
words we want to compute the “bare” boson dispersionSPace matrix elements, a{j, 8) and(i,a[H|j, ). In doing
e(K) in Eq. (9). As our basis states we consequently choos&® 1€ concept of a loop covering of the plareof crucial

where ther;r « Tepresent boson operators, we may expect td

describe the dynamics of these bosons by a Hamiltonian osf
the form

(suppressing th, y, or z spin index of the triplet |m_portance. F(_)r two Qimer coveringsandb the loop cov-
ering c=a+b is obtained by drawing@ andb “on top of
1 N1 each other”(see, for example, Fig. 1 in Ref).2This pro-
li,a)= \/__ mtiT’i +;[|o>, (10) duces a covering of the_plane by clo_sed loapsach of even
ng : length 2_(u) [note that in the following we always measure
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o oo o

the length of a lood_(u) in units of dimer$. Let us now

consider each loop as an isolated 1D ring withlXu) sites. °c e e e ° ©
We assume that the sites along the ring are labeled such that © © ¢ o © o
the dimer coveringa corresponds to the stat¢a) o o g o o o _ o
=HisiT’i+l|O>—the dimer covering then must correspond

to |b)=TI;s', 1;,,/0). Expanding the products we get® ° o ° o © ©
different spin states from each covering, and there arepre- o o o o o o © 0 oo o ©

cisely two spin states which show up in bdé) and |b)
namely the two possible N¢ states. We thus hav@|b), (@) (b)
=2/ The same holds true for any other loop, from
which, usingZ < s+ pL(u)=N, we find the scalar product of
the two singlet distributiorfs

(al thp) = 27O, . "

exact calculations on finite clustefsee the Appendijx The
whereP(c) is the total number of loops in the loop covering x(u) thereby indeed turned out to decay rapidly witfu),
C. so only contributions with. (u)<2 were kept in the present

Let us now assume that the singlets on the borid |,) ~ calculation. It should be noted that the computation of the

and on the bona in |¢,) have been replaced byalike  x(u) is no fundamental obstacle to the present scheme: it
triplet (due to the explicit rotational invariance of the singlet may well be possible to obtain essentially exact values for
soup the result for ar- or y-like boson will be precisely the these parameters by using Monte Carlo techniques on large
same—we are choosing thelike component because the lattices. Figure 4 then shows the pairs of bondsy) and
ambiguous states in this case are again the ones wigh Ne(j,8) which can be connected by loops of length 2 and 3 as
order along the loop Then, a necessary condition for the well as the corresponding signs-)?(“0. In this way we
scalar product to be different from zero is that there is &ind the overlap matrix
single loopug in the resulting loop covering+b which
passes through both bondsandn. The reason is that the x(L)
time-reversal parity of the triplet is negative whereas that of N(k) = Lzl oL-1 (k)
the singlet is positive. A necessary condition for a laof
give a nonvanishing overlap is that the total time-reversalith v,(k)=1 and
parities “along the loop” are equal for both staties,) and

FIG. 4. Pairs of bonds which are connectedlby 2 loops(a)
andL =3 loops(b). Bondi is kept fixed(dashed ling bondj (full
line) is labeled by ¢ 1)7W,

)

|4,). This, however, is only possible if the triplets fig,) 0 asid s ky
and| ) are within the same loop. Each loopan-b there- st 2 sin 2
fore must contain either no triplet or both of them. y2(K) = K K

We can now split up the entire overlap integtal,| ) 45i,-<_x) sin( _y> 0
into components which differ by the length and topology of 2 2

the loopug which passes through both triplets. The absolute (14)

numerical value of the overlap from this particular loop is\we proceed to a calculation of the matrix elements of the
identical to the case of pure singlet covering. The onlyHamiltonian. We first recall that for the nearest-neighbor
change may be an extra minus sign, which originates bervB state the expectation value &f between two dimer
cause the singlets do have an orientation, whereas the tripleggverings|,) and|y,) can be decomposed into contribu-

do not. We thus can rewrite the overlap as tions from each individual loop in the loop coveriag- b”
<¢a|¢b>:u2 21_L(u0)(_1)U(UO)X(UO)v <‘//a|H|‘//b>:[ 2 E(u) 2P(a+b)*N,
0 ueatb
2~ IN-LW) o .
X(U): - E 2P(a+b)7lAa+b,u- (13) E(U) 65[(2 5L(u),1)L(u) nb(u)]l
1 a,b

whereng(u) is the number of nearest-neighbor bondsuin
HereA., is 1 if the loop covering contains the loop and which bridge the loofsee Fig. 5, and e;= —3J/4 the ex-
0 otherwise. We also note that(1)=1, which fixes the
normalization factomn,. With the exception of the/(u) all
parts in Eq.(13) can be computed analytically(u) may be { }
pe=L--0 ¢----0

viewed as the norm of a nearest-neighbor RVB state which
covers only the exterior of the loap divided by the norm

n; of the state which covers the exterior of a single bond. If -
we assume that the norm increases exponentially with the & o
number of sites in the systerm~e®N, with «>0, one @) (b)

would estimate thaj(u)~e~ - W~11 This suggests that

x(u) is a quite rapidly decreasing function bfu). In the FIG. 5. “Bridging bonds” (dashed linesin the L=3 loop (a)
present work numerical values for(u) were obtained by and in anL=4 loop (b).

q
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FIG. 7. By application ofH a triplet can hop from bondn
FIG. 6. The sign of the hopping integral from the dashed bmnd —m’ [see(a)— (b)] and then overlap with the triplet in the final
(dashed to the indicated bond. state on bonah along the indicated =2 loop[see(b)—(c)]. This

e“)(k):%"tl(k), (16)

K

2

process gives a nonvanishing hopping matrix element from bond

change energy/singleE(u)/es is the number of nearest- M—N.

neighbor bonds that can be formed from the sites covered by

u?. This formula implies that there is no contribution from

bonds connectinglifferent loops The reason is that the ex-

change along a bond connecting different singlets can onl .

lead to the pair creation of two triplets, see the first &. Where the elements of the2 matrixt, (k) are

In order to maintain time-reversal symmetry along each loop, _ _ _

it is then necessary that both triplets belong to the same t1dk)=4 cogky) =2 cog2k,) — 4 cogky)cosky),

Ido_op—whlch is not possible if the bond in question connects t1yy(k)=4 cogk,) — 2 cog 2k,) — 4 cogk,)cogky),
ifferent loops.

Let us now again assume that the bandh |,) and the 3k 3k K
bondn in |¢,) are occupied by a triplet, and consider the txy(K)=4 sir(TX) sin +4 sir(%)sin(%).
“connected matrix element” oH between the two resulting 17
statesy ¢,|H|a) — Eof | ha) - First, let us assume that we (
act with the exchange along a bond connectingand a  To keep things simple we have, moreover, replaced the dif-
neighboring bondn’; the triplet can either propagate fram  ferent ,, by the average value.
to m’, or decay into two triplets on botln andm’ [see the Next, we consider the case that one of the loops, gg.,
second Eq(7)]. Neglecting the second possibility we obtain has a lengti=2. In other words, we consider a process like
a nonvanishing contribution to the matrix elementbbnly  the one shown in Fig. 7: the triplet jumps from bonmto
if there is a single loopig € a+ b which covers botim” and  bondm’, and the triplet oorm’ overlaps with the triplet on
n. Alternatively, if we act on a bond which connect&ind a  bondn along a loop(in this case of length 2). There is also
neighboring bonad’, the triplet jumps froormto n’ and we  an analogous process, where the triplet jumps frota m’
get a nonvanishing contribution only if one single loop  andm’ andm overlap by a loop. The respective matrix ele-
ea+b coversn’ andm. If, on the other hand, we act with ments can be factorized into the matrix element for the hop-
the exchange along a bond which does not touch either of thging of the triplet times the overlap along the loop. This
triplet bondsm or n, both triplets will stay where they are means that the matrix element can be written as
and we get a nonvanishing matrix element only if botAnd  (#3J/8)t,(m,n), where
n are covered by a single loap e a+b. The same holds
:Lueemzevl\(/ee:ct with the exchange along the bomdsandn tz(m,n)zg [LL(m,m’) yo(m' )+t (nm’ ) yo(m’ ) T:

We first consider the case that and n belong to two ) , )
different loops,u, anduj . In the simplest case both loops Nerety(mm’) andy,(m’,n) are the real-space versions of
consist only of a single bond, i.eu, consists of the single the matrices17) and(14). Fourier transformation gives
bond m and uj only of n. Since the two triplets belong to J
different loops, the overlagyy,|y,) is zero. Moreover, the e?(k)= 77i[t1(k)y2(k)+ yo>(K)t1(K)T, (18
matrix elements of the exchange along any bond which does 8
not connectm andn vanishes—the calculation thus becomesyyhere it has to be kept in mind tha(k) and y,(k) are
very easy. The matrix element for the triplet hopping from  symmetric2 x 2 matrices. The “embedding factor” is
to nis =J/4, where the signs for different relative positions
of the two bonds are shown in Fig. 6. To “embed” the 2N P(ath)
hopping process into the singlet background, we need to (e ;J 2 AaibmBatbnBarbn, (19
renormalize this matrix element by ’

where (n,n’,n) are like in Fig. 7. Actually there are two

o-N inequivalent relative orientations of a single bamdand an
Dom=—— 2 2P@TDA . Adibn, (15) L=2 loop—the two respective values af; do not differ
Ny ab ’ ' strongly and for simplicity we use the average of the two

values for the two configurations. Processes involving even
which is again estimated from cluster calculations. The firstonger loops could be treated in an analogous way, but we
contribution to the Hamiltonian matrix then is neglect these.
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We proceed to the second case, i.e., we assumethatl  The first term on the right-hand side of E(R3) is the
n are covered by a single loam,. As was the case for the “bare” on-site energy of the triplet. It is always proportional
overlap integrals, the matrix elements then can be split upo the overlap integral, so upon switching to the effective
into contributions differing by the loop, which covers both  bosons this term becomes kaindependent constant shift.
triplet bonds. Once this loop is fixed, we can divide all bondsThe quantityey(u) may be thought of as describing a “loss
in the plane into three distinct classes. First, bonds belongingf resonance energy.” It is the difference of the two contri-
to any loop other thamg are not affected at all by the pres- butions(20) and(22) and occurs because the loagpis fixed,
ence of the triplets and give the same contribution as in thevhence the area covered by this loop is not available for

pure singlet state. This becomes resonating between different singlet coverings. For example
we have
Lo 1) (UO)Z*[NfL(uo)]
2 o/(—1)70) —
nq <¢a|H|¢a>
J+ey(l)= " —Ep, (25)
° (el ) °
2| X E(u)[2PEIRTIA Ly (200 i.e., this quantity is an additive renormalization of the energy
ab “ff:ob of formation for a single triplet due to its being embedded

o ) ) into the singlet soup. Numerical evaluation in a cluster
This is an energy of order of the system shtein the end it gho\s that this additive correction is quite large—for one

must be canceled, up to terms of ordé, by a correspond- triplet in a pure singlet background we fingy(1)~1.2J.

ing contribution in —Eo(4| ). This cancellation is the \yhile this is surprising at first sight it should be noted that a
analog of the familiar linked-cluster theorem of many-body gjmiar large value £0.8]) was previously found in spin

physics. _ _ _ ladders!® A fixed triplet obviously leads to a quite substan-
Second, we consider those bondsug which are not ig| |oss of resonance energy. The numerical values, ()

bridging bonds. They will be covered by either a singlet or 83,4 were again obtained by cluster calculatidAgpen-
triplet in eithera or b, whence these bonds together give thedix). Introducingz,(u) = o(1) + Jx () we can write down

contribution the third part of the Hamilton matrix:
[E(Ug) + (2= 81 (uy),1)d— €sNp(Uo) ] )
€0
AL (26)

21~ L(W0)(— 1)(t0) (). (21) D) =eo(1)+ 2,

This is a “connected” contribution of ordex®. N
; : L . : We can now add up the three contributions, E4$), (18),
This leaves us with the bridging bondee Fig. 3, which and (26), to obtain the total “connected” Hamilton matrix

may give a nontrivial contribution. However, since the bridg-2- e }
ing bonds occur only fot (ug)=3 we neglect their contri- e(k). This is still expressed in terms of the nonorthogonal

bution altogether. orbitals?{'a. What remains to be done therefore is to trans-

The subtracted contribution; Eo{ /.| ), may be rewrit-  form the Hamilton matrix to the orthogonal orbitdls2). To
ten as that end we take matrix elements of the form

o~ IN-L(up)] (y,k|?(k)|v’,k>. Introducing the % 2 transformation ma-
—Eo>, 217t —q)ot = trix
Ug nl
. ( 1 1 ) o7
P(a+b)—1 =l —7—6,7—&],
XaE,b 2 Aaer,an (22) \/)\—1 \/)\—2

where we have used the expanded fafi®) of y(uy). This  the transformed Hamiltonian then can be expressed as
is again an energy of ordé®, which cancels the bulk term

(20) up to terms of ordeN°. After some reshufflindusing e(k)=TTe(k)T.
SL(u)=N] we can rewrite the contribution to the matrix
element as IV. PAIR-CREATION AMPLITUDE
In this section we proceed to a discussion of the pair-
UA ¢b>+uz [€3(Uo) + €o(Uo) ] (23 creation amplitude\, in Eq. (9). As discussed in Sec. II, by
. ° starting from an arbitrary singlet covering of the plane and
with acting with the Hamiltonian along a bond connecting two

different singlets, wenly create a state where both singlets
are replaced by triplets; see the first of E(B. The situation
where the two singlets in question are parallel to each other,
oP(a+b)—NA i.e., that the four sites belonging to the two singlets form a

atb,u: square with edge 1, requires special attention. As discussed
above we have the identity

e3(U)=I(1= 8L (402" (= 1)"Wx(u),

(-1

eolu)=—" >

ny a,b

> E(u)

uea+b

Eo
E(u)=E(u) - L)« - (24) shis) 10)—2s] ] Joy=t] -t ., |0), (28)
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(e] ﬁ b [e] o O@O O@O (e] I I
(o] o---0 o] O@O o---0 O@O
(e] q b o] (o] O@O O@O (e] I I

(a) (b)
(@) (b)
FIG. 8. The sign £ 1)(™™ for all different pairs of bonds on
which pair creation is possible. The bond(dashedlis kept fixed,
the bondn is labeled by 1),

FIG. 9. A state with two triplet§a) can have a nonvanishing
overlap with a state consisting exclusively of two singldts

K
2

, 3Ky
_ ) ) t1 xy(K) =4 sin —=|sin
i.e., the state with two parallel triplets can be expressed as a 2

3k k
in —Y | sinl =%
+4SII’< > )sm( 2),
linear combination of the two perpendicular combinations of

parallel singlet states. In other words, this state is alread S — —t \_ i
exhausted by the singlet background, and consequently mu pd be_armg n mind th"’(tTk'a|Tk,a’>_ Na,a’(K), we find for
be omitted from our reduced Hilbert space. The triplets thud€ Pair-creation matrix

have to obey the additional constraint of never being parallel T - T

to each other—one implication is that we must set the re- A(K)=T N(K)AKIN'(K)T.

Spicg“c/ﬁrﬁgg{grﬁ,ae“ﬁﬂm%?m SlaﬁlTeeQF ttr?ezrir;t.rix element IeThis qompletes .the Qerivation of the single-particle terms of
us consider the action ¢ on the RVB stata3). We have, Ehe triplet Hamiltonian. Before we prqceed,_let us bngfly
) return to the problem of nonorthogonality. Strictly speaking,
, the state with two triplets is not orthogonal to the singlet
J(—1)emm n, background either. The reason is that if one draws a loop
H|RVB)=NeJRVB)+ a2 ﬁ % % | Pmana)- passing through both triplets, the time-reversal parities of the
’ (29) two triplets cancel, and the state has a nonvanishing overlap
with a state where the loop is covered only by singlste
The first term on the right-hand side originates from pro-Fig. 9). However, this overlap is rather small: in the case
cesses where the Hamiltonian has “hit’ a bond covered by shown in Fig. 9 it is, for example; \3x(3)/8, and obvi-
singlet, the second one originates from processes where tloasly this is the most unfavorable case. For other relative
exchange has acted along bonds connecting two singlets amientations of the two triplets the overlap can be only
bondsm and n (the prime on the sum indicates that only achieved by a loop of length 8, whence these overlaps are
pairs of bonds connected by a bond are summed)oVée  «y(4)<1. The nonorthogonalities thus are much more be-
modulus of the respective matrix elemengid [see Eq(7)] nign than those for the spinon states, when neglecting them
and there is an extra sign which depends on the relativaltogetherias we will do henceforthis probably quite justi-
orientation of the bondsn and n. The dependence of this fied.
sign on the orientation is shown in Fig. 8. Also, we have
approximated the normalization factor which is included in \, ExTRAPOLATION TO EINITE TRIPLET DENSITY
the definition of| @, h.) by
In the preceding sections we have computed the various

overlap integrals and matrix elements for triplet propagation,

1 1 ) . . . .
~ > (30 pair creation, and interaction. In all of these cases the matrix

n(mae,ne)  \n, element could be factorized into a contribution from a “lo-

] o cal” transition between different singlet/triplet coverings

obtain the pair-creation matrix elemeTnt we now form thegescribes the embedding of these active loops into the singlet
overlap between Eq29) and the stater, , 7" ,|0). Defin-  packground. Thereby we have always given expressions for

ing the 2< 2 matrix: these “embedding factors” which are valid in the limit of
vanishing triplet concentration, i.e., we have computed them
~ a ., as they would be for a pure singlet covering of the system.
Alk)= §tl,aﬁ(k)' Clearly, this is inappropriate for the real system, where quan-

tum fluctuations have admixed a finite density of triplet
Bosons. In the following we want to discuss how we have to

= Ny modify our theory to take the effect of a finite triplet concen-
Jn’ tration into account. It should be stressed from the very be-

ginning that this is quite obviously a very complex problem

t],(K) = —2 cog 2k,) — 4 cogk,)cos k,), and we will be forced to apply some relatively crude ap-

proximations.
) If we want to derive single-particle-like matrix elements
t1,(K)=—2 cog2ky) — 4 cogk,)cogKky), for finite triplet concentration we should consider overlap
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integrals or matrix elements ¢f of the type

<\Ifjlal,i2a2 ..... imam|q’i1al,i2a2 ..... imam>’ (32)

i.e., m—1 triplets stay unchanged, and only a single one
(which without loss of generality can be taken to be the first
ong changes its positioifbut maintains its spin In other
words, we should calculate the embedding factors for singlet
coverings containing a certain number of “inert” triplets.
Thereby we actually have to make the magssumptiorthat 4
the matrix element does not depend significantly on the po-
sitions of these inert triplets—otherwise, the very idea of a
single-particle-like propagation of the triplets would be in-
valid. One might then expect that approximate values can be 05 [ ¢ .
obtained by distributing then inert triplets in all possible
ways [we call the number of possible distributioym) ] -
over the system, and taking the average of the respective 0 025 05 0.75

matrix elements computed for ald(m) possible distribu- 8

tions. In this way, the embedding factors acquire a depen- G, 10. Dependence of the various parameters on the triplet

dence on the density of triplets. density as obtained from numerical calculations on the clus-
The numerical calculation in a finite cluster then proceedser.

as follows: we choosenbondsiq,i, . . .i,,, which obey the
various constraints on the relative positions of triplets, ancf a triplet[see Eq(25)] evaluated in the %4 cluster. The
evaluate the ground-state norm and energy according to  concentration dependence is as expected: for low triplet con-
m centrationeg(1) is large because an added triplets blocks
n=2 Zp(a+b)_N1—[ A many long loops along which resonance could have oc-
~ o Cathiy curred. As the triplet concentration gets higher, these longer
loops are blocked anyway, so adding a further triplet does
m not increase the energy too much any more. In the high-
2P@+b)-NT] Agipi - (33  density limit the additive renormalization approaches zero,
v=1 ! as expected. The figure shows, however, that the concentra-
tion dependence is quite significant, i.e., this effect should
not be neglected.
In addition to reducing the importance of longer loops, for
a finite density of triplets we have to take care of the ex-
m cluded volume constraint which the bond bosons have to
“ ( . Aa+bjy)"

1 e1)/d 1

> eu)

uea+b

EOZE
a,b

The calculation of the various embedding factors then pro
ceeds in an entirely analogous fashion, i.e., in Ef®), (15),
and(24) we replace

S

a,b

(34) obey. Placing a triplet on one given bormtblocks a total of
nine other bonds, on which no more triplets can be placed
(see Fig. 11 Of these, seven bonds are blocked because they
share a site withm; the remaining two are blocked because
they are “parallel” tom and the state with two parallel trip-

v=

In this way we obtain all embedding factors for fixed distri-
bution of inert triplets, and the value for triplet concentration

m/N is obtained by averaging over all allowed d|str|but|onsIets is actually a linear combination of singlésee Eq(28)].

of 'the bof‘ds'l"z’ - »Im. In practice this calcullatlon " In order to take care of thiblocking effectwe resort to a
quires quite a substantial numerical effort so this was per:

formed only for the 4«4 cluster. One might expect, how- Gutzwiller-type - approximation. It has been shown by
T . Ogawa, Kanda, and Matsub&tahat the essence of the
ever, that the finite-size effects are in fact smaller for the : ST . i
. ) L , Gutzwiller approximation is the neglect of the difference in
more relevant higher triplet concentrations: the main effect

of the fixed triplets obviously is to reduce the importance ofphase between states where the particles in question are dis-

long loops. Since the bonds occupied by the static tripleté”bqted in different ways over th.e lattice. With this approxi-
mation, any real-space distribution of bosons contributes

must be identical in the bra and ket state, loops of Iengtqhe same numbewhich without loss of generality can be
L(u)=2 which pass through these bonds are impossible.

When the density of triplets gets appreciable, the probability
to find enough space for forming longer loops becomes
smaller and smaller. Since longer loops may cause problems o

o O o O O ®)

o O
in the small clusters, a suppression of these may therefore

even reduce finite-size effects. Moreover, the suppression of o o)
longer loops is actually beneficial for our entire approach: it

tends to eliminate the problems with the nonorthogonalities ©c © ©c ©°

in the singlet soup and makes the truncation of the length
L(ug) a better approximation.

As an illustration Fig. 10 shows the dependenceqgtl), FIG. 11. Placing a triplet on the centralashedl bond blocks
i.e., the additive renormalization of the energy of formationthe nine indicated bonds, on which no more triplets can be placed.

o o o O O O
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0O.,0 O O O O O O O 0O O© D(m,A D(m,A
olo o] o [0 of o [0 o O 5—’%(\/( 4)+\/( 5)) (37)

@]

n n

To summarize this section, Fig. 10 shows the values of
the different parameters as estimated by the procedure out-
o lined above, for all possible triplet concentrations in the 4
o X4 cluster. Let us stress again that the approximations lead-
ing to the parameters in Fig. 10 are probably rather crude—
one may expect, however, that we get roughly correct orders
o of magnitude and that the ratios of the different parameters
0O 0 0o 0o 0o 00 O O 0 O come out approximately correct.

FIG. 12. Areas on which no triplets are allowed in some pro-
cesses.

VI. SPIN DYNAMICS

Let us first briefly summarize the discussion so far: We
taken to be 1) to the norm of any state withbosons. The have shown that the elementary excitations of the singlet
total norm of any such state then becomes simply the numbeoup correspond to excited dimers, which must be modeled
of possible ways to distributen bosons over the plane, i.e., by bond bosons. Combining the matrix elements computed
D(m). In the present case, the situation is somewhat moré the two preceding sections we obtain a Hamiltonian of the
complicated, because we still have to take into account théorm
fact that due to the loop problem the norm of a state wwith
fixed triplets is not 1(unlike the case if the triplets were just  — ' k) 7 Tt [AK), o7 7, H.C.
ordinary bosons We thus approximate the normalization Ko e TRR R H

factor of any state witim triplets by Thereby the matrix elements(k) ande(k) are functions of

1 the triplet density. For given triplet density these param-

' (35) eters can be computed a}nd _the Hamiltoniar_L which after the
\ /D(m)n—m Gutzwiller-type renormalization of the matrix elements we

take to be a free-boson Hamiltonian, is solved by Bogoliu-

Wheren?s the value obtained by a\/eraging Eag) over all bov transformation. Combining the two differeﬂbperators
allowed triplet configurations, ,i,, . . . ,iy. Clearly, this re-  into a two-vectorT the ansatz reads
placement will lead to a renormalization of the various em- _ +
bedding factors. To evaluate these, we usually have to con- Fie= Uit vieT oy, (38)

sider a certain ared, covered by one or two loops, in which where the real X2 matricesu andv have to fulfill
the actual overlap, hopping or pair-creation process takes

n(m)=

place. We then determin@gain by simulation on the 44 ukul—vkvlz 1,
cluste) the number of ways to distribut@ triplets over the . .
exterior of the aread. Thereby we request that putting a Uv — iU, =0. (39

triplet anywhere withind always gives an allowed configu-

. . . The inverse transformation of E(38) is therefore
ration ofm+1 triplets. We call the number of allowed triplet ®9

cc_)nfigurationsD(m,A). Defining th(_e various areaai asin Tk:UIFk_UIFT—k- (40)
Fig. 12, we then have to renormalize the various parameters o ]
as follows: The Hamiltonian can be transformed to free particle form
Ny HZE wV(k)Fl VFkV
ﬂl—> T k'y ’ !
\/D(myA]_)
D(m, Ay) +32 Trloee(k)of—vd () uf— A (K)o,
X(2)=x(2) 57—
D(m,Ay) provided the transformation matrices obey
Eo(z)ﬁfo(z)m,
v e(k)ug—2A(K)vg=ugw(k),
D(m,A,)+D(m, As) 2A (U= (K)o T = v (k). 42

n—mn )
2D(m, A
( ) Here we have introduced the X2 matrix (k)

D(m, Ag) + D(m, A;) =diag(w4(k),w»(k)). The triplet density is
73— 73 2D(m,¢41) (36)

3
Si=— 2>, Tr{uugf(w)+ovwp[1+f , (43
For the pair-creation amplitude we replace "N ; tutif (@) toil (@)} 43
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Sq= 00— . (44)

This is entirely analogous to the treatment of Hirsch and

Tang’ of the condensation of Schwinger bosons in the

mean-field theory of Arovas and Auerbal®As will be seen

in a moment, just as for the Schwinger bosons the conden-
sation of the triplets corresponds to antiferromagnetic order-
pi=2 ] ing. The ground-state energy then is

w/

Emt:Eow)—S; Trvwro(k)], (45)

where Eq(6) is the energy of the singlet background for
triplet densitys. This is calculated from Eq33). We obtain

a value of—0.342@/bond, which is quite close to the true
ground-state energy of the 2D Heisenberg antiferromagnet.
An interesting figure is the lowering of the energy as com-
pared to the original RVB vacuur(8). In the 4xX4 cluster
(which has been used to compute all matrix elemetits

©9) rem) .0 ©0) expectation value of the pure nearest-neighbor RVB state is
FIG. 13. Dispersion of the two eigenvalues for two different ~ —0.334 318/bond;*® so that the admixture of the triplets
temperatures. lowers the energy only by a tiny 0.00®ond. In view of the

strong approximations we were forced to make this result
probably has little quantitative significance—it shows quite
clearly, however, that the energy of the RVB vacuum is low-
ered only by a very small energy by the triplet fluctuations.
This is what must come out because in the thermodynamic
limit the energy of the RVB state is 0.302)/bond?! com-
pared to the exact ground-state energy of approximately

wheref is the Bose function. The requiremeéit= 6; then
provides a self-consistency condition for the density.
Numerical evaluation shows that there is a minimum trip-
let concentration$,. For 6< &y, the parameters are such that
in a certain area arounkl=(7,7) the eigenvalue problem
(42) does not have real eigenvalues. Bgrthe minimum of 0.3343/bond2°
the triplet dispersion, which occurs atr(m) is precisely ' X

zero. With the coarse mesh of concentrations possible in tht?or\nNeSi%rcoeC?ﬁg E)%r? ddés()csuosrféogrgfat?teu zil?lné(lz)qé::etlsat/l\?hri]cfklljrg;-
16-site cluster, we find 0.255,<<0.375. We therefore lin- y : y o) L

. . . - tend over more than one unit cell, they have something like a
earize all matrix elements, i.e., x(8)=ay+b,(6—0.25),

. - - . structure factor which depends on the type of operator by
using the \./alu.es aﬁ—_0.25 ando=0.375 to determine, which they are probed. Let us consider a single bang) (
andb, . This givess,=0.335.

With increasing temperature, the self-consistent value of’md introduce even and odd combinations of spin operators

S increases slowly, approaching, for T—0. Figure 13 on this bond:

shows the dispersion relation for the respective self- S =F+.

consistently determined triplet density at different tempera- - !

tures. Since we have two degrees of freedomisite triplet ~ Due to their opposite parity under exchange ahdj these

in x andy direction we obtain two bands. While one of these two operators have an entirely different effect on the four
bands is practically dispersionless, the dispersive one repossible spin states of the bon&, annihilates the singlet
sembles results obtained for other spin liquids, such as thand t;r but convertst;[—>ity and t;—>—itx, whence S}

e

10 ; : — . — . .
two-leg |add{92 or the bilayer Heisenberg =i;fx7 S on the other hand, converts the singlet itfio
antiferromagnet” the dispersion starts at relatively high en- 54 vige versa, but annihilates bdﬂwand S, whenceS.
romagnetic zone boundary, and, as stated above, takesv_vag hJ;\q/-éI{(;N‘?trztrl:lslraetzt’r'ICt ourselves to only a single bond
more or less pronounced minimum @t= (7, ). For low
the value for antiferromagnetic spin waves. The case of zero E eiq'RJSJ- =i 2 e'd-Rn cos( %)
temperature requires special attention: it is obvious from Fig. ! n
13 that the gap a@Q approaches zero foF —0. Assuming e-q

: (46)
sume that this momentum becomes macroscopically occu- 2
pied by a triplet densitysy. To determine this condensed whereq, is the unit vector along the bondandR, denotes
fraction we note that the limiting densit, is defined such its center of gravity. Let us next discuss how these matrix
lated for this density. Then, fof = 5, we evaluate the den- packground. We act with the operatorS(q)
sity 8; of uncondensed triplets.e., we excludek=Q from =(1/\/2N)E]-e‘q'RJSJ— on some given state. The first term
the sum in Eq.(43)] and finally determine the condensate simply changes the spin and momentum of a triplet. It does

ergy atk=(0,0), takes a shallow maximum near the antifer- _—

temperatures the bandwidth 462J, which is quite close to

that the gap vanishes at zero temperature, we may then as- X?n—sin(— (;TH'F;H)

that the gap aQ is exactly zero with the parameters calcu- elements are modified due to the embedding into the singlet
density from not affect the number of triplets, so we need no further renor-
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malizations. For the second term, let us start out from a stat€hen, introducing the 3D unit vect&®, we can construct the
with one triplet|j,a) and assume that the triplet is annihi- coherent state
lated, i.e., converted into a singlet. This leaves us with the

state |\If)\)=e"m“"g,+|RVB).

1 svt o This state corresponds to a condensate ofa@]e! bosons,
)= —= msjﬁﬂo)- whose density is given byo=\2. The staggered magneti-
N1 ' zation per site is

" _K /5Qn[1+X(2)/2]Q.
ny

(RVB| ;) -~ 1\F S
: ynn 4 4 Ny’ Inserting the value for the condensate densgigy obtained

from Eg. (44) we obtain the valuen,=0.25. Most current

because it is easy .to see that a state with one fixed singlet h@@timates for the 2D Heisenberg antiferromagnet are around
an overlap oh/4 with the RVB state. If we want to extrapo- —0.326
=0.3:!

Iatle thlsﬁzo f'g'te triplet tdzns!%n\’\f a(ljgfl!nl rlave t(;) use the As mentioned above, the identification of antiferromag-
values oin anan, computed wi IXed rIplets, and renor- - qic ordering and condensation of some kind of effective

malize the matrix element by bosons is quite reminiscent of the treatment of Hirsch and

The matrix element with the pure RVB state then is

Tang’ in the framework of Schwinger boson mean-field
o= /D(m’Al) theory® In the present theory the direction of the staggered
D(m) -~ magnetization is given by the unit vect6, which can be
, chosen arbitrarily. Condensation of the triplet bosons deter-
We thus find mines the total density of triplets, but not their distribution
over the three spin species. The “ground state” thus is ac-
sq= {%)L o+ tually an entire manifold of states which can be transformed
q a=xy 2 ) \2N % atka into one another via S@) rotations of the vectof2. One

might thus conjecture the existence of low-energy states
where the direction of) changes slowly in real space. These

- K n . QDz —_ -
X T,a™ Z\/n:lsm( 7) (Tq.at 7q0) |- (47)  states, which corresponds to a slow fluctuation of the antifer-
romagnetic order parameter may be describable in terms of a

By using the inverse transformatia@0) this can now be nonlineara model—we defer a detailed discussion of this
converted to the eigenvectorE. The dynamical spin- ISSue to a separate paper. _ _ o
correlation function of the spin liquid thus consists of two _ TO conclude this section, we discuss the relationship with
components: First, there is a two-particle continuum, whichZhang's  S@) — symmetric  theory  of  cuprate
dominates for momenta around (0,0). Second, there is 8uPerconductivity’ The preceding discussion has shown
single-particle-like contribution, which dominates the crossthat an antiferromagnetic state can be viewed as a spin liquid
section for momentum transfers neatr,¢r), and hence where the tripletlike bond bosons havc_e condensed into the
should be identified with the excitations seen in neutron scaiState which has momenturmr () ands-like symmetry un-
tering around this momentum. The situation is the same fofl€r point-group operations. The antiferromagnetic order pa-
ladders, where the single-particle spectrum is observable ifRmeter, a real three vector, then is the vector of condensa-
the channel with momentum transfer perpendicular to thdion amplitudes of the three bond-boson species. This
ladderk, = 7 and the two-particle continuum fde, = 0.1 interpretation of the annfelrrqmagnetlc_state in fact is a key
Next, we discuss the relationship between condensation dpgredient for a microscopic interpretation of Zhang's(S0
triplets and antiferromagnetic ordering. The operator of stagtheory of cuprate superconductor. Namely theoperator,

Zhang's representation of the $) angular momentum

« In o algebra® precisely converts aglike combination of bond
M= \/ZNZ\/: Y (That T04) triplets with momentum 4,7) into a nearest-neighbor
N1 a=xy d-wave hole pair. This can be seen by writing theperator

in real space:

=2N %\/nil\/2+x(2)(ra++ T0+). (49

Here we have used the fact that for the high-symmetry mo-

mentumQ the overlap and Hamilton matrix are trivially di- (GGt G Gt )] (49)

agonalized by the symmetric and antisymmetric combina- R e A

tions of the bonds i andy direction, Introducing a further bond bosan', which stands for the
hole pair, this could be written as

TFZIZ e Ri[(ci1Citx, TCi, Citxt)

1
o _ _
T +—_(T + 7 ) N +
Q= \/E Qx—*Qy ﬂ'—hK’XTQYX—hK,yTQ’y,



13822 R. EDER PRB 59

where the momentur = (0,0). Acting with (- 7)*N onto  form domain walls, i.e., a single unpaired spin separating
an undoped state with the triplet condensate densjtl®s two parts with opposite dimer coveririgee, e.g., the discus-
will therefore convert this state into a condensateddike  sion in Ref. 29. In these systems, one can indeed observe a
nearest-neighbor hole pairs with momentum (0,0). Viewedphase transition from a ground state with bond-triplet-like
in this way, the connection between the antiferromagneti@xcitations to another ground state which supports domain-
and the superconducting state appears quite natural. The onhall-like spinon excitationd’ These domain-wall-type exci-
drawback would be that the hole pairs are strictly nearesttations do indeed carry a spin of 1/2, but it should be noted
neighbor pairs, i.e., the present version of theoperator that their existence hinges crucially on the special topology
neglects charge fluctuations. of one-dimensional systems and the fact that there are pre-

cisely two possible dimer coverings. It would in fact be quite

difficult to imagine the analog of such a domain wall in the

VII. DISCUSSION disordered two-dimensional system.

In summary, we have discussed the excitation spectrum of !N the present work we have chosen the completely iso-
a completely disordered and homogeneous spin syster{OPIC nearest-neighbor RVB state as the starting point for
Thereby we used an approach which might be viewed as gonstruc_tlng th_e triplet Haml_ltoman. Thls_|s approprlate_ fpr
generalization of spin-wave theory: whereas spin-wavé t_ruly isotropic system, W_hlch probably is real_lzed at finite
theory describes fluctuations around a’eNeordered dppmg gnd/qr sufficiently high temperature. Using a fransla-
“vacuum,” we have instead used the nearest-neighbor rygionally invariant state, however, is not mandatory. For ex-
state as basis for self-consistently constructing the excitatioffMP!e by redefining the operatSras
spectrum. This general idea of treating a completely disor-
dered state is probably more widely applicable, for example _ T et
to treat the “orbital liquids” proposed recentf/for manga- S Z [(A+ s, 3+ (170845 50
nates.

As a first key result, we then found that the elementarywith e>0 we can obviously generate a singlet soup with a
excitations of the singlet-soup-like vacuum are not Fermifreference for singlet orientation kdirection. It is tempting
onic “spinons,” but rather bosonic excitations, which can  to speculate that this may be appropriate for orthorhombic
be viewed as excited dimers propagating through the systetra; - ,SLCuQ,, where atx=0.125 columnar order is known
while constantly resonating betwegrandy direction of the  to exist. Analogous calculation as above, but with a firite
dimer. Following a similar procedure as in the Zhang-Ricemay thus be appropriate to discuss the excitation spectrum of
derivation of thet-J model, we could write down a Hamil- this material.
tonian for these bosonic excitations. The Hamiltonian con- Finally we note that the present scenario for the excitation
tains an energy of formation for the triplets, a term describ-spectrum of the spin liquid provides a corner stone for a
ing their propagation and a term describing pair creation an#hicroscopic interpretation of Zhang's $&) symmetric
annihilation. All quantities in the derivation are quite well- theory of cuprate superconductdfsAs discussed above, an
defined, and can in principle be obtained by numerical techantiferromagnetic state may be thought of as being generated
niques. In the present work we have actually attempteaban by condensing tripletlike spin excitations of the RVB spin
initio calculation of the various parameters in the effectiveliquid into the state with momentuma( 7). The antiferro-
Hamiltonian—a promising alternative to this somewhatmagnetic order parameter corresponds to the vector of con-
clumsy approach might be a semiempirical approach, whergensation amplitudes of the three triplet species. The5S0O
the parameters in the Hamiltonian are adjusted to match, e.ggymmetry states that such a triplet excitation with momen-
experimental data. tum (m,7) is “dynamically equivalent” to ad,2_2 hole

The obtained ground state is an exact spin singlet, trangair?’ In fact the 7 operator® which plays the role of a
lationally invariant and isotropic—in short, it has precisely ladder operator for “rotations in charge direction” in the
the symmetry properties expected for a spin liquid. The el-SQ(5) theory? precisely replaces a bond triplet with mo-
ementary excitations is a triplet mode, which reaches its lowmentum @r,7) by a hole pair with momentum (0,0). The
est energy aQ= (s, 7). Such a triplet mode is the most fact that thew operator is an approximate eigenoperator of
natural generalization of an antiferromagnetic spin wave tdhe Hamiltonian[H,7]=wom then implies that the triplet
the spin-liquid state. Condensation of these bond bosons intand the hole pair are dynamically indistinguishable and dif-
the state with momentumn(, 7v) then corresponds to antifer- fer only by their energy of formation. The operator thus
romagnetic ordering of the system. The breaking of rotawould convert a condensate of triplets into a condensate of
tional symmetry in spin space is due to fixirdifferend hole pairs, and, by the dynamical equivalence of these two
condensation amplitudes for the three components of thebjects, thus converts the antiferromagnetic ground state at
triplet mode. The latter correspond to the three possible cormhalf filling into a superconducting state at finite-doping. The
ponents of the antiferromagnetic order parameter. somewhat ‘toy-model-type’ discussion of Ref. 27 thus may

It should be noted that all conclusions rely on the assumpvery well be transferable almost literally to the fully planar
tion that the completely disordered singlet soup is the propet-J model.
starting point for the construction. The situation may be dif- In the present work we have restricted ourselves to a pure
ferent in one-dimensional spin chains which are dimerizedspin system. One my expect, however, that all considerations
either due to an explicit dimerization or due to frustration.go through also for the doped system, with the sole differ-
For simple topological reasons only two possible dimer cov-ence that we get additional renormalizations of the matrix
erings of the chain do exist, and this opens the possibility telements in the effective Hamiltonian due to the fact that the
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doped holes reduce the volume available for pair generation TABLE I. The values ofy(L) andey(L) for the two different..
and propagation of triplets. Moreover, we will need terms

which describe the coupling of the triplet branch to the mo- M=2 M=4
bile holes. In the simpler case of hole motion in a spin ladder — — — —
this program has in fact already been carried*8tt leading L x(L) €o(L) x(L) €o(L)
to quite satisfactory agreement with numerical results. For 1 0.10953 0.13844 0.121483 0.15142
the planar case we defer this to future work. 2 0.03602 0.01675 0.043671 0.01998
3 0.00780 —0.00197 0.012879  —0.00001
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Shou-Cheng Zhang for instructive discussions and helpfuéovering the entire cluster. Similarly, we defirﬁ)(L)

comments. =(n41/n)eg(L), which gives the gain or loss in energy due to

a fixed loop of length.. The values for the differeng andeg

are given in Table | and actually show already a quite re-
In this appendix we discuss the numerical work needed tonarkable independence of systems size. Moreover, the ex-

obtain the values of(u), ep(u) and thex. To that end all  pectation value of the energy/bog /N is —0.334 318 for

possible dimer coverings of ad XM cluster with periodic M=4, —0.313763 forM=6; the estimate folL=0o is

boundary conditions are generated on the computer the sums0.3022! All in all the data suggest that already the 4

in Eq. (13) are evaluated numerically. Restrictions on com-cluster gives reasonably accurate estimates for the different

puter memory and CPU time do not allow to uge>6, so  parameters.

that in practice onlyM =4,6 are possible. To study the size  Moreover, the data show that th€L) ande(L) decrease

dependence, we consider the quantiji¢k)=(n,/n)x(L);  quite rapidly withL. Truncation of the series aftér=2 thus

these give the ratio of the norm of an RVB state covering theseems to be quite a reasonable approximation as well.
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