
PHYSICAL REVIEW B 1 JUNE 1999-IVOLUME 59, NUMBER 21
Excitation spectrum of the homogeneous spin liquid
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~Received 20 October 1998!

We discuss the excitation spectrum of a disordered, isotropic, and translationally invariant spin state in the
two-dimensional Heisenberg antiferromagnet. The starting point is the nearest-neighbor resonating-valence-
bond state which plays the role of the vacuum of the theory, in a similar sense as the Ne´el state is the vacuum
for antiferromagnetic spin-wave theory. We discuss the elementary excitations of this state and show that these
are not Fermionic spin-1/2 ‘‘spinons’’ but spin-1 excited dimers which must be modeled by bond bosons. We
derive an effective Hamiltonian describing the excited dimers which is formally analogous to spin-wave
theory. Condensation of the bond bosons at zero temperature into the state with momentum (p,p) is shown to
be equivalent to antiferromagnetic ordering. The latter is a key ingredient for a microscopic interpretation of
Zhang’s SO~5! theory of cuprate superconductivity.@S0163-1829~99!03721-2#
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I. INTRODUCTION

High-temperature superconductivity occurs in a st
which is frequently referred to as an ‘‘resonating-valen
bond ~RVB! spin liquid.’’ This state has no magnetic orde
but has strong short-range antiferromagnetic correlatio
Undoubtedly the strong repulsion between electrons, wh
turns the system into a charge-transfer insulator at half fill
persists in the doped case, so that a description in term
free-electron-like Slater-determinants is not really adequ
The problem then is how to describe such a state theo
cally. Despite its frequently being referred to in the literatu
the RVB spin liquid is a rather elusive concept. For examp
the precise nature of its ground state and low-lying elem
tary excitations is not known to any degree of certainty.
the following we want to address this problem by studyin
disordered state for the two-dimensional~2D! Heisenberg
antiferromagnet

H5J(
^ i , j &

Si•Sj

on a 2D square lattice. HereSi denotes a spin-1/2 operator o
site i. One might expect that this is a kind of stepping sto
also for the doped case, in that the elementary excitation
the undoped spin liquid persist to some degree also for fi
doping.

Perhaps the best-defined RVB spin liquid is the near
neighbor RVB state1–5—at least this wave function can b
written down in compact form. We define the singlet gene
tion operator on the bondi , j

si , j
† 5

1

A2
~ ĉi ,↑

† ĉ j ,↓
† 2 ĉi ,↓

† ĉ j ,↑
† !, ~1!

where ĉi ,s
† 5ci ,s

† ci ,s̄ci ,s̄
† are the constrained fermion oper

tors, which do not allow the creation of a second electron
an already singly occupied site. Introducing the operator

S5(
i

~si ,i 1 x̂
†

1si ,i 1 ŷ
†

!, ~2!
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where, e.g.,i 1 x̂ denotes the nearest neighbor of sitei in x
direction, the nearest-neighbor RVB state on a 2D squ
lattice with 2N sites can be written as

uRVB&5
1

An

SN

N!
u0&, ~3!

wheren is a normalization factor. It corresponds to a sup
position of all states which can be obtained by covering
plane compactly with nearest-neighbor singlets, all w
equal phase. Covering the plane with singlets is equivalen
covering it with dimers, a well-known problem from stati
tical mechanics.6 We can therefore rewrite the state as

uRVB&5
1

An
(

a
uca&, ~4!

wherea denotes a dimer covering of the lattice anduca& the
state obtained by putting singlets onto the dimers ofa.

In the following, we want to examine the problem of th
possible elementary excitations of such a singlet backgrou
and set up an effective Hamiltonian governing their dyna
ics. The idea of ‘‘expanding’’ around a suitably chose
vacuum state is realized in simplest form in linear spin-wa
theory. The general line of thought here is quite analogou
linear spin-wave theory, with the sole exception that the r
of the vacuum~which determines the symmetries of th
ground state! is played by the ‘‘singlet soup’’~3! instead of
the Néel state. A similar approach has previously been
plied to dimerized planar Heisenberg-type models,7,8 to spin
ladders,9,10 to strongly coupled Heisenberg planes,11,12and to
spin-Peierls-like spin chains.13,14An example where the fluc
tuations are Fermionic rather than Bosonic in nature is p
vided by the Kondo lattice.15 The main difference as com
pared to the present work is that in all of these works a rat
unique and simple dimer covering of the system is given
the topology or the form of the Hamiltonian—the complic
tions that arise from the use of a disordered singlet soup s
as Eq.~3! then can be avoided.

An expansion around a dimer background is not the o
possibility to deal with a disordered spin state. Previous
13 810 ©1999 The American Physical Society
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PRB 59 13 811EXCITATION SPECTRUM OF THE HOMOGENEOUS SPIN . . .
Schwinger boson mean-field theories16,17 and slave-Fermion
mean-field theories18 have been employed; the latter lea
eventually to lattice-gauge theories.18,19

While the technical complications arising from the use
a dimer basis are considerable, this approach also has s
major advantages: in a site basis it is virtually impossible
even write down a disordered spin state, because one h
deal with the spin degeneracy on each single site. The ca
lation only becomes feasible if this site degeneracy is lift
for example by assuming strict Ne´el order as in spin-wave
theory. On the other hand, the degeneracy is automatic
taken care of in the dimer basis, because two interacting s
do have a unique ground state. A further considerable ad
tage of the dimer basis is that it is easily enlarged by h
pairs on nearest neighbors, so as to describe a supercon
ing state. Indeed, as will be seen below, the present des
tion of the antiferromagnetic phase most naturally can
generalized to comprise also a superconducting ph
thereby providing a very simple microscopical picture for t
SO~5! rotations which smoothly connect antiferromagne
and superconducting phase in Zhang’s theory20 of cuprate
superconductors.

II. ELEMENTARY EXCITATIONS OF A SINGLET SOUP

The nearest-neighbor RVB state~4! has the symmetry
properties expected for a homogeneous spin liquid: it is
tropic, translationally invariant, is an exact spin singlet, a
has no magnetic order. On the other hand, just as the N´el
state, it is not an eigenstate ofH. If we take one singlet
configurationuca& and act with the exchange term on a bo
connecting two different singlets@see Fig. 1~a!# we can cre-
ate a state which no longer can be represented as a sup
sition of only nearest-neighbor singlets. Such a state th
fore represents a kind of fluctuation and as a first step
need to understand the character of these fluctuation
might appear21 that the energetically most favorable fluctu
tion is the state shown in Fig. 1~b!: two nearest-neighbo
singlets are transformed into a configuration with only o
nearest-neighbor singlet and a second singlet connec
more distant sites. Nominally the energy increases by o

FIG. 1. An incorrect picture for fluctuations in a singlet bac
ground.
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3J/4 in this transition, because the only change is the los
one nearest-neighbor singlet. Because singlet and triplet
degenerate for sites which are not connected by an exch
bond, we might as well consider the two spins connected
the ‘long singlet’ as being unpaired@see Fig. 1~c!#. The tran-
sition from Figs. 1~a!→~b! could thus be viewed as pair cre
ation of two unpaired spins. Next, by acting with the e
change term on a bond which connects a dangling spin
another singlet@see Fig. 1~c!#, we can recouple the spins s
as to form a new singlet and leave one of the formerly pai
spins unpaired@see Fig. 1~d!#. This process corresponds to
propagation of the dangling spin. We would thus arrive at
conclusion that the fluctuations out of the nearest-neigh
RVB state are unpaired spins, which carry a spin of 1/2 a
consequently must obey Fermi statistics. Clearly, these e
tations should be identified with the ominous ‘‘spinons.’’

Further reasoning shows, however, that the line of thou
leading to the introduction of the ‘‘spinons’’ misses a sm
but crucial detail. The first reason is that the state in Fig. 1~b!
is not orthogonal to the vacuum, and thus cannot represe
true fluctuation. More precisely, if we introduce~see Figs. 1
and 2!

ua&5s1,2
† s3,4

† u0&,

ub&5s1,3
† s4,2

† u0&,

it is straightforward to see~Fig. 2! that ^aub&52 1
2 , in other

words: after the ‘‘transition’’ Figs. 1~a!→1~b! we remain in
the original state, Fig. 1~a!, with a probability of 25%. The
problem of nonorthogonality is not restricted to the first st
in Fig. 1: the states Figs. 1~c! and 1~d! have an overlap of
1/2, and this generalizes to any two states which differ
one hopping process of a ‘‘spinon.’’ The nonorthogonal
problem thus is omnipresent and severe.

Let us therefore return to the first step, Figs. 1~a!→1~b!,
and consider how we can remedy the problem. The m
natural way to proceed is to form the orthogonal complem

ub8&5ub&2^aub&ua&,

so as to see what is really new in the stateub&. A straight-
forward computation shows that after normalization to un
the orthogonal complement is

FIG. 2. Placing singlets in either of the two ways shown on
left produces the spin configuration on the right with the indica
prefactors. This gives a contribution of21/4 to the overlap, an
equal contribution comes from the spin-reversed configuration.
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13 812 PRB 59R. EDER
ub8&5
1

A3
(

a5x,y,z
t12,a
† t34,a

† u0&. ~5!

Here we have introduced the operators22,7

t i j ,x
† 5

21

A2
~ ĉi ,↑

† ĉ j ,↑
† 2 ĉi ,↓

† ĉ j ,↓
† !,

t i j ,y
† 5

i

A2
~ ĉi ,↑

† ĉ j ,↑
† 1 ĉi ,↓

† ĉ j ,↓
† !,

t i j ,z
† 5

1

A2
~ ĉi ,↑

† ĉ j ,↓
† 1 ĉi ,↓

† ĉ j ,↑
† !, ~6!

which create the three components of thetriplet on the bond
( i , j ). We arrive at the conclusion that the true fluctuation o
of the nearest-neighbor singlet background is not the crea
of two fermionic spinons, but rather the creation of two e
cited dimers, which carry a spin of 1 and consequen
should be modeled by bond bosons.22,7 The further evolution
of the created triplets then is quite obvious~see Fig. 3! ~but
completely different from that of the spinons!: by exchange
along bonds connecting the triplets with neighboring sing
the triplets can de-excite while simultaneously the sing
turns into a triplet—this process, which is very much rem
niscent of the propagation of a Frenkel-type exciton, cor
sponds to the propagation of the excited dimer. Note t
unlike the spinon states in Fig. 1, all different states in Fig
are mutually rigorously orthogonal. As a matter of fact, the
are problems with nonorthogonalities also for the trip
states—these are ‘‘inherited’’ from the original neare
neighbor RVB state. They will be discussed in detail bel
and be shown to be much less severe than those for
spinon states. Their main effect is to replace the simple
cited dimer by a more delocalized object, which resona
between different orientations within a limited spatial regio

FIG. 3. A more correct picture for fluctuations in a singlet bac
ground.
t
n

-
y

s
t

-
-

at
3
e
t
-

he
x-
s
.

To be more precise, we now discuss the action of the Heis
berg exchange on all possible configurations of near
neighbor singlets and triplets. Consider twonearest-neighbor
bonds( i , j ) and (i 8, j 8), and assume that they are connect
by a single bond (i ,i 8). Denoting the Heisenberg exchang
along the latter bond byhi ,i 8 we have

hi ,i 8si , j
† si 8, j 8

†
5

J

4
t i , j
†
•t i 8, j 8

† ,

hi ,i 8si , j
† ti 8, j 8

†
5

J

4
t i , j
† si 8, j 8

†
2

iJ

4
t i , j
† 3t i 8, j 8

† ,

hi ,i 8t i , j ,a
† t i 8, j 8,a

†
5

J

4
si , j

† si 8, j 8
†

2
J

4
~ t i , j

†
•t i 8, j 8

†
2t i , j ,a

† t i 8, j 8,a
†

!,

hi ,i 8t i , j ,a
† t i 8, j 8,b

†
5

J

4
t i , j ,b
† t i 8, j 8,a

†

2
iJeabg

4
~ t i , j ,g

† si 8, j 8
†

2si , j
† t i 8, j 8,g

†
!. ~7!

These equations show that if we start out from states c
taining nearest-neighbor singlets or triplets on the left-ha
side, the exchange term only produces states which a
consist of nearest-neighbor singlets or triplets on the rig
hand side@had the two bonds been connected by excha
along another bond, (j ,i 8), (i , j 8), or (j , j 8), we would have
obtained the same equations with the sole difference tha
some cases the prefactors change their sign#. This proves
rigorously that acting with an arbitrarily high power of th
Hamiltonian onto the nearest-neighbor RVB state produ
only states which can be built up fromnearest-neighborsin-
glets or triplets.

This ‘‘theorem’’ in fact holds true in a more genera
sense: on a single dimerm, the four statessm

† andtm
† do form

a complete basis.7 Thus if we use a fixed dimer coveringa,
the set of states obtained by placing singlets and triplets
the dimers ofa form a complete basis of the Hilbert spac
Adding up such states obtained fromall possibledimer cov-
erings then clearly produces a highly overcomplete basis
the Hilbert space, which therefore must automatically
clude states with singlets of arbitrary length. It follows th
all states with longer-range singlets also can be represe
as superpositions of states which are composed exclusi
from nearest-neighbor singlets and triplets. These states
therefore redundant, and if we formulate a self-consist
theory in terms of nearest-neighbor singlets and triplets,
have automatically included these longer-ranged singl
The fact that we are using a nearest-neighbor RVB state
the starting point for constructing our theory therefore me
no loss of generality and in particular does by no mea
imply that we are considering only states with only ve
short-ranged antiferromagnetic correlations. In fact, it will
shown below that one can construct even states with infin
range antiferromagnetic order by using exclusively near
neighbor singlets and triplets.

The preceding considerations suggest that we sho
model the excitation spectrum of the nearest-neighbor sin
vacuum by bosonic excitations, which approximately cor
spond to excited dimers. Assuming that the bonds in

-
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system have been labeled in some way, we denote the tr
operator on bondi by t i

† . Then, we introduce the following
basis states

uC i 1a1 ,i 2a2 , . . , i mam
&

5
1

An~ i 1a1 ,i 2a2 , . . . ,i mam!

SN2m

~N2m!! )n51

m

ti n ,an

† u0&,

~8!

where n( i 1a1 ,i 2a2 , . . . i mam) is a normalization factor.
They describe a certain number (m) of triplets which are
’‘immersed into the singlet soup.’’ Thereby the singlets fi
the space in between the triplets compactly in all poss
ways. All states which can be generated by pair creation
propagation of triplet bonds~such as the ones shown in Fi
3! can be represented in this way. We next consider
triplets as boson-like elementary excitations of the sing
background, in precisely the same way as misaligned s
are considered as bosonic excitations in a ‘‘Ne´el back-
ground’’ in antiferromagnetic spin-wave theory. R
interpreting the state

uc i 1a1 ,i 2a2 , . . ., i nam
&→)

n51

m

t i n ,an

† u0&,

where thet i n ,an

† represent boson operators, we may expec

describe the dynamics of these bosons by a Hamiltonia
the form

H5J(
i

ti
†
•ti1(

i , j
~D i j ti

†
•tj

†1H.c.!1(
i , j

e i j ti
†
•tj ,

~9!

where we have grouped the three triplet components in
three-vectort so as to stress manifest rotation invarian
The first term in Eq.~9! corresponds to the energy of form
tion of the triplets, the second term describes pair crea
processes as in Fig. 3~a!→ 3~b!, and the third term account
for the propagation of the triplets, see Figs. 3~c!→ 3~d!. The
matrix elementse i j andD i j should be obtained by computin
matrix elements of the Heisenberg HamiltonianH between
the corresponding states~8!. Of course, one thereby has
assume that, for example, the matrix element for a trip
jumping from bondm to bond n does not depend signifi
cantly on the positions of the other triplets—otherwise a
scription in terms of a single-particle-like Hamiltonian wou
not be feasible. As is the case in spin-wave theory, tht
bosons have to obey a hard-core constraint, and in fact p
ence of one boson prohibits the presence of another bo
not only on the same bond, but also on all bonds which sh
a site with the original one.

In the following, we will first study the problem of a
single excited dimer in the singlet background, in oth
words we want to compute the ‘‘bare’’ boson dispersi
e(k) in Eq. ~9!. As our basis states we consequently cho
~suppressing thex, y, or z spin index of the triplet!

u i ,a&5
1

An1

SN21

~N21!!
t i ,i 1â
† u0&, ~10!
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wherea5x,y denotes the direction of the bond in real spa
andn1 a normalization factor. In this state one triplet is p
onto the bond (i ,i 1â) and the remainder of the lattice i
covered compactly by singlets in all possible ways. Next,
introduce the Fourier transforms

uk,a&5
eika/2

A2N
(

j
u j ,a&eik•Rj . ~11!

In the Hilbert space of bond bosons, this state would
denoted byt̃k,a

† u0&. The procedure to be followed then is lik
this: in a first step we compute the 232 overlap matrix
Na,a8(k)5^t̃k,at̃k,a8

† & and diagonalize it. Denoting the re
sulting eigenvectors and eigenvalues byen andln , the states

tk,n
† u0&5

1

Aln
(

a5x,y
en,at̃k,a

† u0& ~12!

form an orthonormal basis set and hence can serve as e
tive single-particle orbitals with momentumk. Since the bo-
son operators which correspond to the original triplets obe23

@ t̃k,a ,t̃k,a8
†

#5Na,a8(k), the operatorstk,n obey the canoni-
cal commutation relations for boson operators:@tk,n ,tk,n8

†
#

5dn,n8 . They describe a tripletlike excitation which osci
lates betweenx- andy-directed bonds within a certain spati
region whose extent is determined by the range of the r
space overlap integralŝi ,au j ,a8&.

Next, we set up the 232 Hamilton matrix H(k)
5^tk,nuHutk,n8

† &, which in turn requires knowledge of th
real-space matrix elementŝi ,auHu j ,a8&. Diagonalizing
H(k)2E0N(k), whereE0 denotes the expectation value
H in the ‘‘background’’ state~4!, we obtain the desired dis
persion relation of a single triplet boson. The pair-creat
matrix element is obtained in an analogous way.

This procedure in fact is neither new nor unconvention
a completely analogous construction is performed, e.g.
the construction of thet-J model,24 which describes the dy
namics of the~nonorthogonal! Zhang-Rice singlets on the
different plaquettes of the CuO2 plane. The only difference is
that here we have two different nonorthogonal obje
~bosons on bonds inx andy direction! per unit cell, whereas
it was only a single Zhang-Rice singlet/unit cell in the ca
of the CuO2 plane. Apart from that the construction is pr
cisely the same.

In the next three sections we will calculate the dispers
relation, the pair-creation matrix element, and discuss h
these matrix elements depend on the density of tripl
Readers who are not interested in these more technical p
are advised to proceed to Sec. VI.

III. PROPAGATION OF A SINGLE TRIPLET

To carry out our program we need to compute the re
space matrix elementŝi ,au j ,b& and ^ i ,auHu j ,b&. In doing
so the concept of a loop covering of the plane2 is of crucial
importance. For two dimer coveringsa andb the loop cov-
ering c5a1b is obtained by drawinga and b ‘‘on top of
each other’’~see, for example, Fig. 1 in Ref. 2!. This pro-
duces a covering of the plane by closed loopsu, each of even
length 2L(u) @note that in the following we always measu
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13 814 PRB 59R. EDER
the length of a loopL(u) in units of dimers#. Let us now
consider each loopu as an isolated 1D ring with 2L(u) sites.
We assume that the sites along the ring are labeled such
the dimer covering a corresponds to the stateua&
5) isi ,i 11

† u0&—the dimer coveringb then must correspond
to ub&5) isi 11,i 12

† u0&. Expanding the products we get 2L(u)

different spin states from each covering, and there are
cisely two spin states which show up in bothua& and ub&
namely the two possible Ne´el states. We thus havêaub&,
52/2L(u). The same holds true for any other loop, fro
which, using(uPa1bL(u)5N, we find the scalar product o
the two singlet distributions2

^caucb&52P(a1b)2N,

whereP(c) is the total number of loops in the loop coverin
c.

Let us now assume that the singlets on the bondm in uca&
and on the bondn in ucb& have been replaced by az-like
triplet ~due to the explicit rotational invariance of the sing
soup the result for anx- or y-like boson will be precisely the
same—we are choosing thez-like component because th
ambiguous states in this case are again the ones with´el
order along the loop!. Then, a necessary condition for th
scalar product to be different from zero is that there is
single loopu0 in the resulting loop coveringa1b which
passes through both bondsm and n. The reason is that the
time-reversal parity of the triplet is negative whereas tha
the singlet is positive. A necessary condition for a loopu to
give a nonvanishing overlap is that the total time-rever
parities ‘‘along the loop’’ are equal for both statesuca& and
ucb&. This, however, is only possible if the triplets inuca&
anducb& are within the same loop. Each loop ina1b there-
fore must contain either no triplet or both of them.

We can now split up the entire overlap integral^caucb&
into components which differ by the length and topology
the loopu0 which passes through both triplets. The absol
numerical value of the overlap from this particular loop
identical to the case of pure singlet covering. The o
change may be an extra minus sign, which originates
cause the singlets do have an orientation, whereas the tri
do not. We thus can rewrite the overlap as

^caucb&5(
u0

212L(u0)~21!s(u0)x~u0!,

x~u!5
22[N2L(u)]

n1
(
a,b

2P(a1b)21Da1b,u . ~13!

HereDc,u is 1 if the loop coveringc contains the loopu and
0 otherwise. We also note thatx(1)51, which fixes the
normalization factorn1. With the exception of thex(u) all
parts in Eq.~13! can be computed analytically.x(u) may be
viewed as the norm of a nearest-neighbor RVB state wh
covers only the exterior of the loopu, divided by the norm
n1 of the state which covers the exterior of a single bond
we assume that the norm increases exponentially with
number of sites in the system,n'eaN, with a.0, one
would estimate thatx(u)'e2a[L(u)21]. This suggests tha
x(u) is a quite rapidly decreasing function ofL(u). In the
present work numerical values forx(u) were obtained by
hat
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f
e

exact calculations on finite clusters~see the Appendix!. The
x(u) thereby indeed turned out to decay rapidly withL(u),
so only contributions withL(u)<2 were kept in the presen
calculation. It should be noted that the computation of
x(u) is no fundamental obstacle to the present scheme
may well be possible to obtain essentially exact values
these parameters by using Monte Carlo techniques on l
lattices. Figure 4 then shows the pairs of bonds (i ,a) and
( j ,b) which can be connected by loops of length 2 and 3
well as the corresponding signs (21)s(u0). In this way we
find the overlap matrix

N~k!5 (
L51

`
x~L !

2L21
gL~k!

with g1(k)51 and

g2~k!5S 0 4sinS kx

2 D sinS ky

2 D
4sinS kx

2 D sinS ky

2 D 0
D .

~14!

We proceed to a calculation of the matrix elements of
Hamiltonian. We first recall that for the nearest-neighb
RVB state the expectation value ofH between two dimer
coveringsuca& and ucb& can be decomposed into contribu
tions from each individual loop in the loop coveringa1b2:

^cauHucb&5F (
uPa1b

E~u!G2P(a1b)2N,

E~u!5es@~22dL(u),1!L~u!1nb~u!#,

wherenb(u) is the number of nearest-neighbor bonds inu
which bridge the loop~see Fig. 5!, andes523J/4 the ex-

FIG. 4. Pairs of bonds which are connected byL52 loops~a!
andL53 loops~b!. Bond i is kept fixed~dashed line!, bond j ~full
line! is labeled by (21)s(u).

FIG. 5. ‘‘Bridging bonds’’ ~dashed lines! in the L53 loop ~a!
and in anL54 loop ~b!.
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change energy/singlet.E(u)/es is the number of nearest
neighbor bonds that can be formed from the sites covere
u2. This formula implies that there is no contribution fro
bonds connectingdifferent loops. The reason is that the ex
change along a bond connecting different singlets can o
lead to the pair creation of two triplets, see the first Eq.~7!.
In order to maintain time-reversal symmetry along each lo
it is then necessary that both triplets belong to the sa
loop—which is not possible if the bond in question conne
different loops.

Let us now again assume that the bondm in uca& and the
bond n in ucb& are occupied by a triplet, and consider t
‘‘connected matrix element’’ ofH between the two resulting
states:̂ cbuHuca&2E0^cbuca&. First, let us assume that w
act with the exchange along a bond connectingm and a
neighboring bondm8; the triplet can either propagate fromm
to m8, or decay into two triplets on bothm andm8 @see the
second Eq.~7!#. Neglecting the second possibility we obta
a nonvanishing contribution to the matrix element ofH only
if there is a single loopu0Pa1b which covers bothm8 and
n. Alternatively, if we act on a bond which connectsn and a
neighboring bondn8, the triplet jumps fromn to n8 and we
get a nonvanishing contribution only if one single loopu0
Pa1b coversn8 andm. If, on the other hand, we act with
the exchange along a bond which does not touch either o
triplet bondsm or n, both triplets will stay where they ar
and we get a nonvanishing matrix element only if bothm and
n are covered by a single loopu0Pa1b. The same holds
true if we act with the exchange along the bondsm and n
themselves.

We first consider the case thatm and n belong to two
different loops,u0 and u08 . In the simplest case both loop
consist only of a single bond, i.e.,u0 consists of the single
bond m and u08 only of n. Since the two triplets belong to
different loops, the overlap̂cbuca& is zero. Moreover, the
matrix elements of the exchange along any bond which d
not connectm andn vanishes—the calculation thus becom
very easy. The matrix element for the triplet hopping fromm
to n is 6J/4, where the signs for different relative position
of the two bonds are shown in Fig. 6. To ‘‘embed’’ th
hopping process into the singlet background, we need
renormalize this matrix element by

hnm5
22N

n1
(
a,b

2P(a1b)Da1b,mDa1b,n , ~15!

which is again estimated from cluster calculations. The fi
contribution to the Hamiltonian matrix then is

FIG. 6. The sign of the hopping integral from the dashed bonm
~dashed! to the indicated bondn.
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e (1)~k!5
Jh

4
t1~k!, ~16!

where the elements of the 232 matrix t1(k) are

t1,xx~k!54 cos~ky!22 cos~2kx!24 cos~kx!cos~ky!,

t1,yy~k!54 cos~kx!22 cos~2ky!24 cos~kx!cos~ky!,

t1,xy~k!54 sinS 3kx

2 D sinS ky

2 D14 sinS 3ky

2 D sinS kx

2 D .

~17!

To keep things simple we have, moreover, replaced the
ferenthnm by the average valueh.

Next, we consider the case that one of the loops, e.g.,u08 ,
has a length>2. In other words, we consider a process li
the one shown in Fig. 7: the triplet jumps from bondm to
bond m8, and the triplet onm8 overlaps with the triplet on
bondn along a loop~in this case of length 2). There is als
an analogous process, where the triplet jumps fromn to m8
andm8 andm overlap by a loop. The respective matrix el
ments can be factorized into the matrix element for the h
ping of the triplet times the overlap along the loop. Th
means that the matrix element can be written
(h3J/8)t2(m,n), where

t2~m,n!5(
m8

@ t1~m,m8!g2~m8,n!1t1~n,m8!g2~m8,m!#;

heret1(m,m8) andg2(m8,n) are the real-space versions
the matrices~17! and ~14!. Fourier transformation gives

e (2)~k!5
h3J

8
@ t1~k!g2~k!1g2~k!t1~k!#, ~18!

where it has to be kept in mind thatt1(k) and g2(k) are
symmetric232 matrices. The ‘‘embedding factor’’ is

h35
22N

n1
(
a,b

2P(a1b)Da1b,mDa1b,n8Da1b,n , ~19!

where (m,n8,n) are like in Fig. 7. Actually there are two
inequivalent relative orientations of a single bondm and an
L52 loop—the two respective values ofh3 do not differ
strongly and for simplicity we use the average of the tw
values for the two configurations. Processes involving e
longer loops could be treated in an analogous way, but
neglect these.

FIG. 7. By application ofH a triplet can hop from bondm
→m8 @see~a!→~b!# and then overlap with the triplet in the fina
state on bondn along the indicatedL52 loop @see~b!→~c!#. This
process gives a nonvanishing hopping matrix element from b
m→n.
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We proceed to the second case, i.e., we assume thatm and
n are covered by a single loopu0. As was the case for the
overlap integrals, the matrix elements then can be split
into contributions differing by the loopu0 which covers both
triplet bonds. Once this loop is fixed, we can divide all bon
in the plane into three distinct classes. First, bonds belong
to any loop other thanu0 are not affected at all by the pres
ence of the triplets and give the same contribution as in
pure singlet state. This becomes

212L(u0)~21!s(u0)
22[N2L(u0)]

n1

(
a,b F (

uPa1b
uÞu0

E~u!G2P(a1b)21Da1b,u0
. ~20!

This is an energy of order of the system sizeN; in the end it
must be canceled, up to terms of orderN0, by a correspond-
ing contribution in 2E0^caucb&. This cancellation is the
analog of the familiar linked-cluster theorem of many-bo
physics.

Second, we consider those bonds inu0 which are not
bridging bonds. They will be covered by either a singlet o
triplet in eithera or b, whence these bonds together give t
contribution

@E~u0!1~22dL(u0),1!J2esnb~u0!#

3212L(u0)~21!s(u0)x~u0!. ~21!

This is a ‘‘connected’’ contribution of orderN0.
This leaves us with the bridging bonds~see Fig. 5!, which

may give a nontrivial contribution. However, since the brid
ing bonds occur only forL(u0)>3 we neglect their contri-
bution altogether.

The subtracted contribution,2E0^caucb&, may be rewrit-
ten as

2E0(
u0

212L(u0)~21!s(u0)
22[N2L(u0)]

n1

3(
a,b

2P(a1b)21Da1b,u0
, ~22!

where we have used the expanded form~13! of x(u0). This
is again an energy of orderN, which cancels the bulk term
~20! up to terms of orderN0. After some reshuffling@using
(L(u)5N# we can rewrite the contribution to the matr
element as

J^caucb&1(
u0

@eJ~u0!1e0~u0!# ~23!

with

eJ~u!5J~12dL(u0),1!2
12L(u)~21!s(u)x~u!,

e0~u!5
~21!s(u)

n1
(
a,b

F (
uPa1b

Ē~u!G2P(a1b)2NDa1b,u ,

Ē~u!5E~u!2L~u!
E0

N
. ~24!
p

s
g

e

a

-

The first term on the right-hand side of Eq.~23! is the
‘‘bare’’ on-site energy of the triplet. It is always proportiona
to the overlap integral, so upon switching to the effecti
bosons this term becomes ak-independent constant shif
The quantitye0(u) may be thought of as describing a ‘‘los
of resonance energy.’’ It is the difference of the two cont
butions~20! and~22! and occurs because the loopu0 is fixed,
whence the area covered by this loop is not available
resonating between different singlet coverings. For exam
we have

J1e0~1!5
^cauHuca&

^cauca&
2E0 , ~25!

i.e., this quantity is an additive renormalization of the ener
of formation for a single triplet due to its being embedd
into the singlet soup. Numerical evaluation in a clus
shows that this additive correction is quite large—for o
triplet in a pure singlet background we finde0(1)'1.2J.
While this is surprising at first sight it should be noted tha
similar large value ('0.8J) was previously found in spin
ladders.10 A fixed triplet obviously leads to a quite substa
tial loss of resonance energy. The numerical values ofe0(u)
andE0 were again obtained by cluster calculations~Appen-
dix!. Introducingẽ0(u)5e0(u)1Jx(u) we can write down
the third part of the Hamilton matrix:

ẽ (3)~k!5e0~1!1 (
L>2

ẽ0~L !

2L21
gL~k!. ~26!

We can now add up the three contributions, Eqs.~16!, ~18!,
and ~26!, to obtain the total ‘‘connected’’ Hamilton matrix
ẽ(k). This is still expressed in terms of the nonorthogon
orbitals t̃k,a

† . What remains to be done therefore is to tran
form the Hamilton matrix to the orthogonal orbitals~12!. To
that end we take matrix elements of the for

^n,ku ẽ(k)un8,k&. Introducing the 232 transformation ma-
trix

T5S 1

Al1

e1 ,
1

Al2

e2D , ~27!

the transformed Hamiltonian then can be expressed as

e~k!5TTẽ~k!T.

IV. PAIR-CREATION AMPLITUDE

In this section we proceed to a discussion of the pa
creation amplitudeDk in Eq. ~9!. As discussed in Sec. II, by
starting from an arbitrary singlet covering of the plane a
acting with the Hamiltonian along a bond connecting tw
different singlets, weonly create a state where both single
are replaced by triplets; see the first of Eqs.~7!. The situation
where the two singlets in question are parallel to each ot
i.e., that the four sites belonging to the two singlets form
square with edge 1, requires special attention. As discus
above we have the identity

si , j
† si 8, j 8

† u0&22si ,i 8
† sj , j 8

† u0&5t i , j
†
•t i 8, j 8

† u0&, ~28!
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i.e., the state with two parallel triplets can be expressed
linear combination of the two perpendicular combinations
parallel singlet states. In other words, this state is alre
exhausted by the singlet background, and consequently m
be omitted from our reduced Hilbert space. The triplets th
have to obey the additional constraint of never being para
to each other—one implication is that we must set the
spective pair-creation matrix element to zero.

To compute the numerical value of the matrix element,
us consider the action ofH on the RVB state~3!. We have

HuRVB&5NesuRVB&1
J~21!s(m,n)

4

n1

An
(
m,n

(
a

8

uFma,na&.

~29!

The first term on the right-hand side originates from p
cesses where the Hamiltonian has ‘‘hit’’ a bond covered b
singlet, the second one originates from processes where
exchange has acted along bonds connecting two singlet
bondsm and n ~the prime on the sum indicates that on
pairs of bonds connected by a bond are summed over!. The
modulus of the respective matrix element isJ/4 @see Eq.~7!#
and there is an extra sign which depends on the rela
orientation of the bondsm and n. The dependence of thi
sign on the orientation is shown in Fig. 8. Also, we ha
approximated the normalization factor which is included
the definition ofuFma,na& by

1

n~ma,na!
'

1

An1
2

. ~30!

The factor of 1/An remains from the definition of Eq.~3!. To
obtain the pair-creation matrix element we now form t
overlap between Eq.~29! and the statetk,n

† t2k,m
† u0&. Defin-

ing the 232 matrix:

D̃~k!5
zJ

8
t1,ab8 ~k!,

z5
n1

An
,

t1,xx8 ~k!522 cos~2kx!24 cos~kx!cos~ky!,

t1,yy8 ~k!522 cos~2ky!24 cos~kx!cos~ky!,

FIG. 8. The sign (21)s(m,n) for all different pairs of bonds on
which pair creation is possible. The bondm ~dashed! is kept fixed,
the bondn is labeled by (21)s(m,n).
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t1,xy8 ~k!54 sinS 3kx

2 D sinS ky

2 D14 sinS 3ky

2 D sinS kx

2 D ,

~31!

and bearing in mind that̂t̄k,au t̄k,a8
† &5Na,a8(k), we find for

the pair-creation matrix

D~k!5TTN~k!D̃~k!NT~k!T.

This completes the derivation of the single-particle terms
the triplet Hamiltonian. Before we proceed, let us brie
return to the problem of nonorthogonality. Strictly speakin
the state with two triplets is not orthogonal to the sing
background either. The reason is that if one draws a lo
passing through both triplets, the time-reversal parities of
two triplets cancel, and the state has a nonvanishing ove
with a state where the loop is covered only by singlets~see
Fig. 9!. However, this overlap is rather small: in the ca
shown in Fig. 9 it is, for example,2A3x(3)/8, and obvi-
ously this is the most unfavorable case. For other rela
orientations of the two triplets the overlap can be on
achieved by a loop of length 8, whence these overlaps
}x(4)!1. The nonorthogonalities thus are much more b
nign than those for the spinon states, when neglecting th
altogether~as we will do henceforth! is probably quite justi-
fied.

V. EXTRAPOLATION TO FINITE TRIPLET DENSITY

In the preceding sections we have computed the vari
overlap integrals and matrix elements for triplet propagati
pair creation, and interaction. In all of these cases the ma
element could be factorized into a contribution from a ‘‘l
cal’’ transition between different singlet/triplet covering
along a single or two neighboring loops, and a factor wh
describes the embedding of these active loops into the sin
background. Thereby we have always given expressions
these ‘‘embedding factors’’ which are valid in the limit o
vanishing triplet concentration, i.e., we have computed th
as they would be for a pure singlet covering of the syste
Clearly, this is inappropriate for the real system, where qu
tum fluctuations have admixed a finite density of trip
Bosons. In the following we want to discuss how we have
modify our theory to take the effect of a finite triplet conce
tration into account. It should be stressed from the very
ginning that this is quite obviously a very complex proble
and we will be forced to apply some relatively crude a
proximations.

If we want to derive single-particle-like matrix elemen
for finite triplet concentration we should consider overl

FIG. 9. A state with two triplets~a! can have a nonvanishing
overlap with a state consisting exclusively of two singlets~b!.
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integrals or matrix elements ofH of the type

^C j 1a1 ,i 2a2 , . . . ,i mam
uC i 1a1 ,i 2a2 , . . . ,i mam

&, ~32!

i.e., m21 triplets stay unchanged, and only a single o
~which without loss of generality can be taken to be the fi
one! changes its position~but maintains its spin!. In other
words, we should calculate the embedding factors for sin
coverings containing a certain number of ‘‘inert’’ triplet
Thereby we actually have to make the majorassumptionthat
the matrix element does not depend significantly on the
sitions of these inert triplets—otherwise, the very idea o
single-particle-like propagation of the triplets would be i
valid. One might then expect that approximate values can
obtained by distributing them inert triplets in all possible
ways @we call the number of possible distributionsD(m)#
over the system, and taking the average of the respec
matrix elements computed for allD(m) possible distribu-
tions. In this way, the embedding factors acquire a dep
dence on the density of triplets.

The numerical calculation in a finite cluster then procee
as follows: we choosem bondsi 1 ,i 2 . . . i m , which obey the
various constraints on the relative positions of triplets, a
evaluate the ground-state norm and energy according to

n5(
a,b

2P(a1b)2N)
n51

m

Da1b,i n
,

E05(
a,b

F (
uPa1b

e~u!G2P(a1b)2N)
n51

m

Da1b,i n
. ~33!

The calculation of the various embedding factors then p
ceeds in an entirely analogous fashion, i.e., in Eqs.~13!, ~15!,
and ~24! we replace

(
a,b

•••→(
a,b

S )
n51

m

Da1b,i nD ••• . ~34!

In this way we obtain all embedding factors for fixed dist
bution of inert triplets, and the value for triplet concentrati
m/N is obtained by averaging over all allowed distributio
of the bondsi 1 ,i 2 , . . . , i m . In practice this calculation re
quires quite a substantial numerical effort so this was p
formed only for the 434 cluster. One might expect, how
ever, that the finite-size effects are in fact smaller for
more relevant higher triplet concentrations: the main eff
of the fixed triplets obviously is to reduce the importance
long loops. Since the bonds occupied by the static trip
must be identical in the bra and ket state, loops of len
L(u)>2 which pass through these bonds are impossi
When the density of triplets gets appreciable, the probab
to find enough space for forming longer loops becom
smaller and smaller. Since longer loops may cause probl
in the small clusters, a suppression of these may there
even reduce finite-size effects. Moreover, the suppressio
longer loops is actually beneficial for our entire approach
tends to eliminate the problems with the nonorthogonali
in the singlet soup and makes the truncation of the len
L(u0) a better approximation.

As an illustration Fig. 10 shows the dependence ofe0(1),
i.e., the additive renormalization of the energy of formati
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of a triplet @see Eq.~25!# evaluated in the 434 cluster. The
concentration dependence is as expected: for low triplet c
centratione0(1) is large because an added triplets bloc
many long loops along which resonance could have
curred. As the triplet concentration gets higher, these lon
loops are blocked anyway, so adding a further triplet do
not increase the energy too much any more. In the hi
density limit the additive renormalization approaches ze
as expected. The figure shows, however, that the conce
tion dependence is quite significant, i.e., this effect sho
not be neglected.

In addition to reducing the importance of longer loops, f
a finite density of triplets we have to take care of the e
cluded volume constraint which the bond bosons have
obey. Placing a triplet on one given bondm blocks a total of
nine other bonds, on which no more triplets can be pla
~see Fig. 11!. Of these, seven bonds are blocked because
share a site withm; the remaining two are blocked becau
they are ‘‘parallel’’ tom and the state with two parallel trip
lets is actually a linear combination of singlets@see Eq.~28!#.
In order to take care of thisblocking effect, we resort to a
Gutzwiller-type approximation. It has been shown
Ogawa, Kanda, and Matsubara25 that the essence of th
Gutzwiller approximation is the neglect of the difference
phase between states where the particles in question are
tributed in different ways over the lattice. With this approx
mation, any real-space distribution ofm bosons contributes
the same number~which without loss of generality can b

FIG. 10. Dependence of the various parameters on the tri
densityd as obtained from numerical calculations on the 434 clus-
ter.

FIG. 11. Placing a triplet on the central~dashed! bond blocks
the nine indicated bonds, on which no more triplets can be pla
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taken to be 1) to the norm of any state withm bosons. The
total norm of any such state then becomes simply the num
of possible ways to distributem bosons over the plane, i.e
D(m). In the present case, the situation is somewhat m
complicated, because we still have to take into account
fact that due to the loop problem the norm of a state withm
fixed triplets is not 1~unlike the case if the triplets were jus
ordinary bosons!. We thus approximate the normalizatio
factor of any state withm triplets by

n~m!5
1

AD~m!nm̄

, ~35!

wherenm̄ is the value obtained by averaging Eq.~33! over all
allowed triplet configurationsi 1 ,i 2 , . . . , i m . Clearly, this re-
placement will lead to a renormalization of the various e
bedding factors. To evaluate these, we usually have to c
sider a certain areaA, covered by one or two loops, in whic
the actual overlap, hopping or pair-creation process ta
place. We then determine~again by simulation on the 434
cluster! the number of ways to distributem triplets over the
exterior of the areaA. Thereby we request that putting
triplet anywhere withinA always gives an allowed configu
ration ofm11 triplets. We call the number of allowed triple
configurationsD(m,A). Defining the various areasAi as in
Fig. 12, we then have to renormalize the various parame
as follows:

n1→
n1

AD~m,A1!
,

x~2!→x~2!
D~m,A2!

D~m,A1!
,

e0~2!→e0~2!
D~m,A2!

D~m,A1!
,

h→h
D~m,A4!1D~m,A5!

2D~m,A1!
,

h3→h3

D~m,A6!1D~m,A7!

2D~m,A1!
. ~36!

For the pair-creation amplitude we replace

FIG. 12. Areas on which no triplets are allowed in some p
cesses.
er

re
e

-
n-

es

rs

z→
z

2 SAD~m,A4!

n
1AD~m,A5!

n D . ~37!

To summarize this section, Fig. 10 shows the values
the different parameters as estimated by the procedure
lined above, for all possible triplet concentrations in the
34 cluster. Let us stress again that the approximations le
ing to the parameters in Fig. 10 are probably rather crud
one may expect, however, that we get roughly correct ord
of magnitude and that the ratios of the different parame
come out approximately correct.

VI. SPIN DYNAMICS

Let us first briefly summarize the discussion so far: W
have shown that the elementary excitations of the sin
soup correspond to excited dimers, which must be mode
by bond bosons. Combining the matrix elements compu
in the two preceding sections we obtain a Hamiltonian of
form

H5 (
k,n,m

e~k!n,mtk,n
†

•tk,m1@D~k!n,mtk,n
†

•t2k,m
† 1H.c.#.

Thereby the matrix elementsD(k) ande(k) are functions of
the triplet density. For given triplet densityd i these param-
eters can be computed and the Hamiltonian, which after
Gutzwiller-type renormalization of the matrix elements w
take to be a free-boson Hamiltonian, is solved by Bogol
bov transformation. Combining the two differentt operators
into a two-vectorT the ansatz reads

Gk5ukTk1vkT2k
† , ~38!

where the real 232 matricesu andv have to fulfill

ukuk
T2vkvk

T51,

ukvk
T2vkuk

T50. ~39!

The inverse transformation of Eq.~38! is therefore

Tk5uk
TGk2vk

TG2k
† . ~40!

The Hamiltonian can be transformed to free particle form

H5(
k,n

vn~k!Gk,n
† Gk,n

13(
k

Tr@vke~k!vk
T2vkD~k!uk

T2ukD~k!vk
T#,

~41!

provided the transformation matrices obey

e~k!uk
T22D~k!vk

T5uk
Tv~k!,

2D~k!uk
T2e~k!vk

T5vk
Tv~k!. ~42!

Here we have introduced the 232 matrix v(k)
5diag(v1(k),v2(k)…. The triplet density is

d f5
3

N (
k

Tr$ukuk
Tf ~v!1vkvk

T@11 f ~v!#%, ~43!

-
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where f is the Bose function. The requirementd i5d f then
provides a self-consistency condition for the density.

Numerical evaluation shows that there is a minimum tr
let concentrationd0. For d,d0, the parameters are such th
in a certain area aroundk5(p,p) the eigenvalue problem
~42! does not have real eigenvalues. Ford0 the minimum of
the triplet dispersion, which occurs at (p,p) is precisely
zero. With the coarse mesh of concentrations possible in
16-site cluster, we find 0.25,d0,0.375. We therefore lin-
earize all matrix elementsx, i.e., x(d)5ax1bx(d20.25),
using the values atd50.25 andd50.375 to determineax
andbx . This givesd050.335.

With increasing temperature, the self-consistent value
d increases slowly, approachingd0 for T→0. Figure 13
shows the dispersion relation for the respective s
consistently determined triplet density at different tempe
tures. Since we have two degrees of freedom/site~the triplet
in x andy direction! we obtain two bands. While one of thes
bands is practically dispersionless, the dispersive one
sembles results obtained for other spin liquids, such as
two-leg ladder9,10 or the bilayer Heisenberg
antiferromagnet:12 the dispersion starts at relatively high e
ergy atk5(0,0), takes a shallow maximum near the antif
romagnetic zone boundary, and, as stated above, tak
more or less pronounced minimum atQ5(p,p). For low
temperatures the bandwidth is'2J, which is quite close to
the value for antiferromagnetic spin waves. The case of z
temperature requires special attention: it is obvious from F
13 that the gap atQ approaches zero forT→0. Assuming
that the gap vanishes at zero temperature, we may then
sume that this momentum becomes macroscopically o
pied by a triplet densitydQ . To determine this condense
fraction we note that the limiting densityd0 is defined such
that the gap atQ is exactly zero with the parameters calc
lated for this density. Then, ford i5d0 we evaluate the den
sity d̄ f of uncondensed triplets@i.e., we excludek5Q from
the sum in Eq.~43!# and finally determine the condensa
density from

FIG. 13. Dispersion of the two eigenvaluesv i for two different
temperatures.
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dQ5d02 d̄ f . ~44!

This is entirely analogous to the treatment of Hirsch a
Tang17 of the condensation of Schwinger bosons in t
mean-field theory of Arovas and Auerbach.16 As will be seen
in a moment, just as for the Schwinger bosons the cond
sation of the triplets corresponds to antiferromagnetic ord
ing. The ground-state energy then is

Etot5E0~d!23(
k

Tr@vkvk
Tv~k!#, ~45!

where E0(d) is the energy of the singlet background f
triplet densityd. This is calculated from Eq.~33!. We obtain
a value of20.3426J/bond, which is quite close to the tru
ground-state energy of the 2D Heisenberg antiferromagn26

An interesting figure is the lowering of the energy as co
pared to the original RVB vacuum~3!. In the 434 cluster
~which has been used to compute all matrix elements! the
expectation value of the pure nearest-neighbor RVB stat
20.334 318J/bond,3,5 so that the admixture of the triplet
lowers the energy only by a tiny 0.008J/bond. In view of the
strong approximations we were forced to make this res
probably has little quantitative significance—it shows qu
clearly, however, that the energy of the RVB vacuum is lo
ered only by a very small energy by the triplet fluctuation
This is what must come out because in the thermodyna
limit the energy of the RVB state is20.302J/bond,21 com-
pared to the exact ground-state energy of approxima
0.334J/bond.26

We proceed to a discussion of the spin-correlation fu
tion. Since the bond bosons are actually objects which
tend over more than one unit cell, they have something lik
structure factor which depends on the type of operator
which they are probed. Let us consider a single bond (i , j )
and introduce even and odd combinations of spin opera
on this bond:

S6
z 5Si

z6Sj
z .

Due to their opposite parity under exchange ofi and j these
two operators have an entirely different effect on the fo
possible spin states of the bond:S1

z annihilates the single
and tz

† but converts tx
†→ i t y and ty

†→2 i t x , whence S1
z

5 i t̄†3 t̄. S2
z , on the other hand, converts the singlet intotz

†

and vice versa, but annihilates bothtx
† and S1

z , whenceS1
z

5 t̄†1 t̄. If we still restrict ourselves to only a single bondn
we have to ‘‘translate’’

(
j

eiq•RjSj5 i(
n

eiq•RnFcosS en•q

2 D t̄n
†

3 t̄n2sinS en•q

2 D ~ t̄n
†1 t̄n!G , ~46!

whereqn is the unit vector along the bondn andRn denotes
its center of gravity. Let us next discuss how these ma
elements are modified due to the embedding into the sin
background. We act with the operatorS(q)
5(1/A2N)( je

iq•RjSj on some given state. The first term
simply changes thez spin and momentum of a triplet. It doe
not affect the number of triplets, so we need no further ren
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malizations. For the second term, let us start out from a s
with one triplet u j ,a& and assume that the triplet is annih
lated, i.e., converted into a singlet. This leaves us with
state

uc j&5
1

An1

SN21

~N21!!
sj , j 1â

† u0&.

The matrix element with the pure RVB state then is

^RVBuc j&5
1

Ann1

n

4
5

1

4
A n

n1
,

because it is easy to see that a state with one fixed single
an overlap ofn/4 with the RVB state. If we want to extrapo
late this to finite triplet density we again have to use
values ofn andn1 computed withm fixed triplets, and renor-
malize the matrix element by

k5AD~m,A1!

D~m!
.

We thus find

S~q!5 (
a5x,y

FcosS qa

2 D 1

A2N
(

k
t̄q1k,a

†

3 t̄k,a2
k

4
A n

n1
sinS qa

2 D ~ t̄q,a
† 1 t̄q,a!G . ~47!

By using the inverse transformation~40! this can now be
converted to the eigenvectorsG. The dynamical spin-
correlation function of the spin liquid thus consists of tw
components: First, there is a two-particle continuum, wh
dominates for momenta around (0,0). Second, there
single-particle-like contribution, which dominates the cro
section for momentum transfers near (p,p), and hence
should be identified with the excitations seen in neutron s
tering around this momentum. The situation is the same
ladders, where the single-particle spectrum is observabl
the channel with momentum transfer perpendicular to
ladderk'5p and the two-particle continuum fork'50.10

Next, we discuss the relationship between condensatio
triplets and antiferromagnetic ordering. The operator of st
gered magnetization~which is avector! can be written as

M s5A2N
k

4
A n

n1
(

a5x,y
~ t̄Q,a

† 1 t̄Q,a!

5A2N
k

4
A n

n1
A21x~2!~tQ,1

† 1tQ,1!. ~48!

Here we have used the fact that for the high-symmetry m
mentumQ the overlap and Hamilton matrix are trivially d
agonalized by the symmetric and antisymmetric combi
tions of the bonds inx andy direction,

tQ,6
† 5

1

A2
~ t̄Q,x

† 6 t̄Q,y
† !.
te

e

as

e

h
a

s

t-
r
in
e

of
-

-

-

Then, introducing the 3D unit vectorV, we can construct the
coherent state

uCl&5elANV•tQ,1
†

uRVB&.

This state corresponds to a condensate of thetQ,1
† bosons,

whose density is given bydQ5l2. The staggered magnet
zation per site is

ms5
k

2
AdQn@11x~2!/2#

n1
V.

Inserting the value for the condensate densitydQ obtained
from Eq. ~44! we obtain the valuems50.25. Most current
estimates for the 2D Heisenberg antiferromagnet are aro
ms50.3.26

As mentioned above, the identification of antiferroma
netic ordering and condensation of some kind of effect
bosons is quite reminiscent of the treatment of Hirsch a
Tang17 in the framework of Schwinger boson mean-fie
theory.16 In the present theory the direction of the stagge
magnetization is given by the unit vectorV, which can be
chosen arbitrarily. Condensation of the triplet bosons de
mines the total density of triplets, but not their distributio
over the three spin species. The ‘‘ground state’’ thus is
tually an entire manifold of states which can be transform
into one another via SO~3! rotations of the vectorV. One
might thus conjecture the existence of low-energy sta
where the direction ofV changes slowly in real space. The
states, which corresponds to a slow fluctuation of the anti
romagnetic order parameter may be describable in terms
nonlinears model—we defer a detailed discussion of th
issue to a separate paper.

To conclude this section, we discuss the relationship w
Zhang’s SO~5! symmetric theory of cuprate
superconductivity.20 The preceding discussion has show
that an antiferromagnetic state can be viewed as a spin liq
where the tripletlike bond bosons have condensed into
state which has momentum (p,p) ands-like symmetry un-
der point-group operations. The antiferromagnetic order
rameter, a real three vector, then is the vector of conde
tion amplitudes of the three bond-boson species. T
interpretation of the antiferromagnetic state in fact is a k
ingredient for a microscopic interpretation of Zhang’s SO~5!
theory of cuprate superconductor. Namely thep operator,
which acts as the ‘‘ladder operator in charge direction’’
Zhang’s representation of the SO~5! angular momentum
algebra,20 precisely converts ans-like combination of bond
triplets with momentum (p,p) into a nearest-neighbo
d-wave hole pair. This can be seen by writing thep operator
in real space:

pz5(
i

eiQ•Ri@~ci ,↑ci 1 x̂,↓1ci ,↓ci 1 x̂,↑!

2~ci ,↑ci 1 ŷ,↓1ci ,↓ci 1 ŷ,↑!#. ~49!

Introducing a further bond bosonh†, which stands for the
hole pair, this could be written as

p5hK ,x
† t̄Q,x2hK ,y

† t̄Q,y ,
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where the momentumK5(0,0). Acting with (V•p)rN onto
an undoped state with the triplet condensate densitiesrV
will therefore convert this state into a condensate ofd-like
nearest-neighbor hole pairs with momentum (0,0). View
in this way, the connection between the antiferromagn
and the superconducting state appears quite natural. The
drawback would be that the hole pairs are strictly near
neighbor pairs, i.e., the present version of thep operator
neglects charge fluctuations.

VII. DISCUSSION

In summary, we have discussed the excitation spectrum
a completely disordered and homogeneous spin sys
Thereby we used an approach which might be viewed a
generalization of spin-wave theory: whereas spin-wa
theory describes fluctuations around a Ne´el ordered
‘‘vacuum,’’ we have instead used the nearest-neighbor R
state as basis for self-consistently constructing the excita
spectrum. This general idea of treating a completely dis
dered state is probably more widely applicable, for exam
to treat the ‘‘orbital liquids’’ proposed recently28 for manga-
nates.

As a first key result, we then found that the element
excitations of the singlet-soup-like vacuum are not Fer
onic ‘‘spinons,’’ but rather bosonic excitationsti , which can
be viewed as excited dimers propagating through the sys
while constantly resonating betweenx andy direction of the
dimer. Following a similar procedure as in the Zhang-R
derivation of thet-J model, we could write down a Hamil
tonian for these bosonic excitations. The Hamiltonian c
tains an energy of formation for the triplets, a term descr
ing their propagation and a term describing pair creation
annihilation. All quantities in the derivation are quite we
defined, and can in principle be obtained by numerical te
niques. In the present work we have actually attempted aab
initio calculation of the various parameters in the effect
Hamiltonian—a promising alternative to this somewh
clumsy approach might be a semiempirical approach, wh
the parameters in the Hamiltonian are adjusted to match,
experimental data.

The obtained ground state is an exact spin singlet, tra
lationally invariant and isotropic—in short, it has precise
the symmetry properties expected for a spin liquid. The
ementary excitations is a triplet mode, which reaches its lo
est energy atQ5(p,p). Such a triplet mode is the mos
natural generalization of an antiferromagnetic spin wave
the spin-liquid state. Condensation of these bond bosons
the state with momentum (p,p) then corresponds to antifer
romagnetic ordering of the system. The breaking of ro
tional symmetry in spin space is due to fixing~different!
condensation amplitudes for the three components of
triplet mode. The latter correspond to the three possible c
ponents of the antiferromagnetic order parameter.

It should be noted that all conclusions rely on the assum
tion that the completely disordered singlet soup is the pro
starting point for the construction. The situation may be d
ferent in one-dimensional spin chains which are dimeriz
either due to an explicit dimerization or due to frustratio
For simple topological reasons only two possible dimer c
erings of the chain do exist, and this opens the possibility
d
ic
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form domain walls, i.e., a single unpaired spin separat
two parts with opposite dimer covering~see, e.g., the discus
sion in Ref. 29!. In these systems, one can indeed observ
phase transition from a ground state with bond-triplet-li
excitations to another ground state which supports dom
wall-like spinon excitations.30 These domain-wall-type exci
tations do indeed carry a spin of 1/2, but it should be no
that their existence hinges crucially on the special topolo
of one-dimensional systems and the fact that there are
cisely two possible dimer coverings. It would in fact be qu
difficult to imagine the analog of such a domain wall in th
disordered two-dimensional system.

In the present work we have chosen the completely i
tropic nearest-neighbor RVB state as the starting point
constructing the triplet Hamiltonian. This is appropriate f
an truly isotropic system, which probably is realized at fin
doping and/or sufficiently high temperature. Using a trans
tionally invariant state, however, is not mandatory. For e
ample by redefining the operatorS as

S5(
i

@~11e!si ,i 1 x̂
†

1~12e!si ,i 1 ŷ
†

# ~50!

with e.0 we can obviously generate a singlet soup with
preference for singlet orientation inx direction. It is tempting
to speculate that this may be appropriate for orthorhom
La12xSrxCuO4, where atx50.125 columnar order is known
to exist. Analogous calculation as above, but with a finitee
may thus be appropriate to discuss the excitation spectrum
this material.

Finally we note that the present scenario for the excitat
spectrum of the spin liquid provides a corner stone fo
microscopic interpretation of Zhang’s SO~5! symmetric
theory of cuprate superconductors.20 As discussed above, a
antiferromagnetic state may be thought of as being gener
by condensing tripletlike spin excitations of the RVB sp
liquid into the state with momentum (p,p). The antiferro-
magnetic order parameter corresponds to the vector of c
densation amplitudes of the three triplet species. Then, SO~5!
symmetry states that such a triplet excitation with mom
tum (p,p) is ‘‘dynamically equivalent’’ to adx22y2 hole
pair.27 In fact the p operator,20 which plays the role of a
ladder operator for ‘‘rotations in charge direction’’ in th
SO~5! theory,20 precisely replaces a bond triplet with mo
mentum (p,p) by a hole pair with momentum (0,0). Th
fact that thep operator is an approximate eigenoperator
the Hamiltonian@H,p#5v0p then implies that the triplet
and the hole pair are dynamically indistinguishable and d
fer only by their energy of formation. Thep operator thus
would convert a condensate of triplets into a condensate
hole pairs, and, by the dynamical equivalence of these
objects, thus converts the antiferromagnetic ground stat
half filling into a superconducting state at finite-doping. T
somewhat ‘toy-model-type’ discussion of Ref. 27 thus m
very well be transferable almost literally to the fully plan
t-J model.

In the present work we have restricted ourselves to a p
spin system. One my expect, however, that all considerat
go through also for the doped system, with the sole diff
ence that we get additional renormalizations of the ma
elements in the effective Hamiltonian due to the fact that
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doped holes reduce the volume available for pair genera
and propagation of triplets. Moreover, we will need term
which describe the coupling of the triplet branch to the m
bile holes. In the simpler case of hole motion in a spin lad
this program has in fact already been carried out,10,31 leading
to quite satisfactory agreement with numerical results.
the planar case we defer this to future work.
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APPENDIX

In this appendix we discuss the numerical work neede
obtain the values ofx(u), e0(u) and theh. To that end all
possible dimer coverings of anM3M cluster with periodic
boundary conditions are generated on the computer the s
in Eq. ~13! are evaluated numerically. Restrictions on co
puter memory and CPU time do not allow to useM.6, so
that in practice onlyM54,6 are possible. To study the siz
dependence, we consider the quantitiesx̄(L)5(n1 /n)x(L);
these give the ratio of the norm of an RVB state covering
m

et

ys

v.
n

-
r

r

ul

to

ms
-

e

exterior of a loop of lengthL to the norm of an RVB state

covering the entire cluster. Similarly, we defineē0(L)
5(n1 /n)e0(L), which gives the gain or loss in energy due

a fixed loop of lengthL. The values for the differentx̄ andē0

are given in Table I and actually show already a quite
markable independence of systems size. Moreover, the
pectation value of the energy/bondE0 /N is 20.334 318 for
M54, 20.313 763 for M56; the estimate forL5` is
20.302.21 All in all the data suggest that already the 434
cluster gives reasonably accurate estimates for the diffe
parameters.

Moreover, the data show that thex̄(L) andē(L) decrease
quite rapidly withL. Truncation of the series afterL52 thus
seems to be quite a reasonable approximation as well.

TABLE I. The values ofx̄(L) andē0(L) for the two differentL.

M52 M54

L x̄(L) ē0(L) x̄(L) ē0(L)
1 0.10953 0.13844 0.121483 0.15142
2 0.03602 0.01675 0.043671 0.01998
3 0.00780 20.00197 0.012879 20.00001
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