PHYSICAL REVIEW B VOLUME 59, NUMBER 21 1 JUNE 1999-I

Energy band with Wannier functions of ferromagnetic symmetry
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It is shown that iron possesses an energy band with Bloch functions which can be unitarily transformed into
optimally localized Wannier functions belonging to a corepresentation of the magnetic dvbup
=14/mm'm’ of ferromagnetic iron. As compared to the other bands of iron, this “ferromagnetic band” is
extremely narrow. In paramagnetic iron, it is roughly half-filled, and in ferromagnetic iron, it is nearly empty
for the minority-spin states and nearly filled for the majority-spin states. These findings can be interpreted
within the group-theoretical nonadiabatic Heisenberg model as proposed by the author for better understanding
of superconductivity and spin-density-wave states. In the framework of this model, the localized states in the
Heisenberg model are no longer represented by atomic or Wannier functions but by more realistic nonadiabatic
localized functions which have the same symmetry as the Wannier functions. The related nonadiabatic Hamil-
tonianH" has the correct symmetry of the ferromagnetic state because it does not commute with the operator
K of time inversion. From the symmetry &f" it follows that the ground statg5") of H" possesses a spin
structure with the magnetic groud. Furthermore, it is argued that an operator commuting Witbnly has
nonmagneticeigenstatesHence, there is evidence that the ferromagnetic band causes the stability of the
ferromagnetic state in irofiIS0163-182609)05021-3

[. INTRODUCTION nonadiabatic Heisenberg model, these modified orbitals are
described by introducing a new quantum numlewhich

In his original theory of magnetism, Heisenbkextended labels different states of motion of the center of mass of the
the well-known Heitler-London model of the hydrogen mol- localized states.
ecule to the metals by assuming that there is exactly one The essential properties of the nonadiabatic localized
electron at each atom of a metal. This assumption, which i§tates are fixed by the three postulates of the nonadiabatic
often referred to as the Heisenberg model, leads to a funddi€isenberg model. As a consequence, the nonadiabatic local-
mental understanding of magnetism, although in most meta€ed functions (representing the nonadiabatic localized
electrons belonging to partly filled energy bands are resporgtate$ have the same symmetry as the Wannier functions of
sible for magnetism. In such bands the electrons may hon narrowest, roughly half-filled energy bands of the metal

from one atom to another when performing their band mo- nder consideration. Thus, any application of the nonadia-

tion. There is strong theoretical and experimental evidencgzrﬁ:ﬁagghsquﬁlrg ;ncrfrilets;tarct)? méhbzs%r?ouczﬁzggr%s;ﬂng'
that, e.g., thel electrons of the transition metals exhibit be- y y

havior of both the band and the Heisenberg madel. functions which is determined by the symmetry of the Bloch

e : . _functions in the band structure of the given mé&tl.
The nonadiabatic Heisenberg model as proposed in thi 9

) it i h ivinal Hei S However, the partly filled bands in thg@aramagnetic
and previous papefs’ generalizes the original Heisenberg g sryctures of the metals are degenerate at some symme-

model by introducing three new postulates which will be vy hoints and lines of the Brillouin zone. Therefore, it is not
given in the following Sec. Il. The essential physical state-yossible to separate narrow single bafmisnarrow isolated
ment of this model is expressed by the second postulatgets of bands which satisfy the compatibility relations
given in Eq.(2.13. It replaces the strong original assumption throughout the Brillouin zone. Thus, the Bloch functions of
of the Heisenberg model by stating that the balance betweeme narrowest, roughly half-filled energy bands cannot be
bandlike and atomiclike behavior is shiftad far as possible unitarily transformed into Wannier functions which dreth
towards the atomiclike behavior in narrow energy bands. symmetry adapted to the paramagnetic space gMfipof

The second postulate of the nonadiabatic Heisenberthe considered metahnd best localized:” Therefore, the ex-
model cannot be satisfied within the adiabatgyr Born-  act Wannier functions are often replaced by approximated
Oppenheim@grapproximation, which represents the localized Wannier functions ignoring the band degeneracies. These ap-
states by Wannier functions. These functions describe locaproximated Wannier functions are constructed from the
ized electrons which move irigid orbitals in the average Bloch functions by a transformation which is nearly but not
potential of the other electrons. The second postulate, howexactly unitary. Such Wannier functions, howevare not
ever, requires a more realistic description of the electroni@llowedwithin the nonadiabatic Heisenberg model.
motion within the localized states. In the tr(@onadiabatig An (exactly unitary transformation of the Bloch func-
system a localized electron moves in a potential dependintions of the conduction bands into best localized Wannier
on which of the adjacent localized states is occupied and ofunctions becomes possible in a lot of metals when the Wan-
the present motion of the electrons in these states. Within theier functions are allowed to have a reduced symmetry or
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1. NONADIABATIC HEISENBERG MODEL

Consider a single partly filled energy band in a metal with
one atom in the unit cell. For the present considerations, this
band need not be an FM band. Let

H:HHF+HCb (21)

be the electronic Hamiltonian of this band with,- and

_ > > >, =2, t 'T_: . -
Hep= TE (T1,To[Hep| Ty 7T2>CTlslcTZSZCTéSZCTisl’
s
(2.2

r A ©H Ff P DNZGZT A PH G N representing the Hartree-Fock and Coulomb energy, respec-
. . t R o
tively. The fermion operators_ andcys create and annihi-

FIG. 1. Band structure of ferromagnetic iron after Callaway andlate electrons with spis in the localized Stateis'lt) repre-
Wang (Ref. 16. Solid lines are majority-spin states; dashed are

minority-spin states. The heavy lines denote the ferromagneti$€nted by Wannier functions(r —T). They are assumed to
(FM) band which has the symmetry of band 2 in Table I. be situated at the atoms and to form a complete basis within

the considered band. Other contributiondtédrom the elec-

when they are allowed to be spin dependefihere are two trons not belonging to this band are neglected even as are
interesting cases. spin-orbit effects.

(1) The Wannier functions are symmetry adapted to the Hc, may be written as
complete paramagnetic grody® but are spin dependent.

(2) The Wannier functions still are spindependent but Hep=Hct+Hext Hz, 2.3
are symmetry adapted only to a magnetic subgtdugf M”. \ith the operator of Coulomb repulsioH,, containing all

In the first case, an absolutely new exchange mechanisihe matrix elements ofi,, with
can be established within the nonadiabatic Heisenberg

model. This _m_ec?anism is proposed_ to be_the cz_iuse_of -f—l:-f-i and -f—zz-l*-é, 2.4
superconductivity:® The second case is considered in this
paper. the exchange operatdi,., containing the matrix elements

Paramagnetic iron possesses an energy band with Blodhith
functions which can be unitarily transformed into optimally . . ..
localized Wannier functions belonging to a one-dimensional T;=T, and T,=Tjy, (2.9
corepresentation of the magnetic grpr=|4/mm’m’ of .. .andH, comprising the remaining matrix elements, i.e., the
the ferromagnetic state; see Appendix A. Furthermore, it I$1atrix elements with
not possible to choose these Wannier functions to be real. As
compared to the other bands of iron, this “ferromagnetic
(FM) band” is extremely narrow. In paramagnetic iron, it is
roughly half-filled. In ferromagnetic iron, on the other hand,
it is nearly empty for the minority-spin states and nearly(2
filled for the majority-spin states; see Fig. 1. ' _ . = -
Within the nonadiabatic Heisenberg model, the FM bancf!ectrons in the localized states at the positidisand T
causes the stability of the ferromagnetic state in iron. In Secand creating at least one of them at the new positibnsr
[l A it shall be shown that the postulates of the nonadiabatic—f—z_ Hence, unlikeH . or H,, the operatoH, generates vir-

Heisenberg model force a ferromagnetic spin structure in thg 5| transitions between adjacent localized states which shift
FM band. That meansf, the postulates are satified within an he palance between the bandlike and atomiclike behavior of
FM band,thenthe electron spins form a spin structure pos-ine electrons toward the bandlike character. Let
sessing the magnetic grouy.

The result of Sec. Il A is confirmed in the following Sec. H'=Hpr+Hc+Hey 2.7
IIl B. Here, from the properties of the nonadiabatic localized o , .
functions alone, it shall be deduced that the nonadiabatif® the Hamiltonian obtained froi by puttingH,=0. As-
HamiltonianH" of the FM band is spin dependent and thatSUMe the considered band to be sufficiently narrow that the

the ground statéG") of H" possesses a spin structure with 9round stateG’) of H' clearly has atomiclike character.
the magnetic group of ferromagnetic iron. This atomiclike character will be Iegs p'ronounced in the
In Appendix A, the symmetry of the Wannier functions of 9round statdG) of the complete Hamiltoniahl because of
the FM band will be given. In the following Appendix B, the the influence of the interactioH, . Thus, the probability to
essential properties of the related nonadiabatic localizefind two electrons(with different spin directionson the
functions will be deduced from the postulates of the nonasame lattice poinfl will be larger in |G) than in |G’).
diabatic Heisenberg model. Since further properties of thes&herefore, the total Coulomb repulsion energy in the state
functions are unknown, they only serve to derive generalG) should be greater than in the stdt8’) because the
properties ofH". Coulomb repulsion of two electrons occupying localized

(T, T #{T1, TS} (2.6)

The matrix elements oH, satisfy neither Eq(2.4) nor
5. Thus, H, represents an interaction annihilating two
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states on the same lattice poﬁﬁs larger than the Coulomb tion of the nuclei which nonadiabatically follows the motion
repulsion of two electrons occupying adjacent localizedof the electron occupying the stdf,m,n) andt is the spin

states’ coordinate; see Appendix B.
' Hence, we may assume that in sufficiently narrow, partly the electronic orbital in a StatEF,m,w depends very
filled energy bands we have much onv since the mass of the electron is considerably

smaller than the mass of the nucleus. In the nonadiabatic

system, the electrons no longer moverigid orbitals in the

average potential of the other electrons, but move in a poten-

tial depending on which of the adjacent localized states are

nonadiabatic Heisenberg model states that relat®8) is occupied and on the present positions of.these eIecFr_ons.

satisfied for the narrowest, roughly half-filled bands of theH€Nnce. the electrons should be able to avoid the transitions

metals3 generated bsz by an appr(_)prlately modified motion, if
The particular form of the matrix elements Hf, shows these transitions are energetically unfavourable, i.e., if rela-

that it represents a short-ranged interaction which crucialhion (2-8) is true. Thus, as a consequence of relatds), all

depends on the exact form of the localized functions. Thidhe matrix elements ofic,, which satisfy neither Eq(2.4)

fact suggests that only small changes of the localized eled?0" Ed.(2.5 should vanish. . o

tronic orbitals are required to prevegat least partially the For this reason, we assume that there exist nonadiabatic

transitions generated Wy,. Such modifications of the elec- localized functions satisfying

tronic orbitals do not exist within the adiabatic approxima- . . . .

tion because these madifications yield charge distributions ~ (T,,m;,n;T,,m,,N|Hcp|T1,m;,n;T5,m5,n)=0

within the localized states, being symmetric with respect to (2.13

the lattice on the average of time, but not at any moment.

Consequently, the nuclei become permanently accelerated ih

varying directions. Therefore, we replace ttagliabati¢ lo- o L

calized states represented by the Wannier functions by more {T1, T} #{T1, T3}

realistic nonadiabatic localized states,

(GIH|G)>(G'[H"|G), (2.9

where|G) and|G’) are theexactground states ofl [given
in Eq. (2.2)] andH’, respectively. The first postulate of the

This Eq.(2.13 is the second postulate of the nonadiabatic
|-|*—,m’,,>' (2.9 Heisenberg model.

As a consequence of ER.13), the commutation proper-
which take into account the motion of the nuclei. The newties of the operatoH¢, depend on the symmetry properties
quantum numbew labels different states of motion of the of the nonadiabatic localized states. Since only small modi-
center of mass of the nucleus and the electron occupying thiications of the adiabatic electronic orbitals are required to

state|T,m, v). (With free atoms, the nonadiabatic motion of Prevent the transitions generatedHy, we may assume that
the nuclei occurs in such a way that the total center of maste nonadiabatic Hamiltoniald" has the same commutation
stays at rest. In a solid state, consisting of bound atoms, thidroperties as the adiabatic Hamiltoni&h' given in Eq.
restriction does not holg.The quantum numbem of the  (2.7), i.e.,
crystal spiri replaces the spin quantum numisén the nona-
diabatic system. , = . =

The nonadiabatic HamiltoniaH" may be written as [H ,p]( i]O = [H ’P]{ i)o, (2.14

H"=Hur+Hgp, (2.10  whereP stands for any symmetry operator.
According to its definition, the operat¢t’ arises from

where the Coulomb interaction now has the form the complete adiabatic Hamiltoni&hin Eq. (2.1) by putting

gbz_E (T1,my,m;Ty,my,n|Hey| T4 my,n;T4,mj,n) H,=0. (2.19
T,m
nt o n This equation does not state thdy§ is neglectedbut thatH,

t _ : . .
X C$lmlcf2m20f/m/c$,m, : (2.1)  is put equal to zeroBy this step, the commutation properties
22 of H' depend on the symmetry of the Wannier functions

The new fermion operatorcsf%:rn and c$m create and annihi- w(r — 'F) (whereas the commutation properties of the com-

late electrons with crystal spim in the nonadiabatic local- plete HamiltoniarH are independent of the symmetry of the
used basis functionsAs a consequence of relatid@.14),

the nonadiabatic localized functions have the same symmetry
as the Wannier functions/(r —T). Equation(2.14) is the

ized state§T,m,n). The matrix elements ofi?, are inte-
grals over nonadiabatic localized functions

(Ftﬁ |f m,n) (2.12 third (and las}t postulate of the nonadiabatic Heisenberg
Y B ' model.
as given in Eq(2.13 of Ref. 4, andv=n labels the nona- It is not possible to calculate any matrix elementsHgf,

diabatic states which satisfy the following Ed&.13 and  since the nonadiabatic functiong,t,q |'F,m,n) are un-
(4.2). The new coordinate represents that part of the mo- known apart from the properties given in Appendix B. The
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nonadiabatic Heisenberg model is a purely group-theoreticalhus,H" commutesonly with the symmetry operators of,
model which analyses the symmetry and spin dependence wofhile the complete adiabatic Hamiltidd in Eq. (2.1) com-
H". mutes with all the operatoi8(a) of the space grou@ﬁ of
The operatoH¢, given in Eq.(2.11) has nonvanishing bcc paramagnetic iron,
matrix elements with
[H,P(a)]=0 for ac O}, (3.9
my,myt#{m;,m,},
(M, Mg} #4my, ma} and with the operatoK of time inversion,
violating the conservation of crystal spin. These matrix ele-

ments are the cause of an interaction between the electron [H,K]=0. (3.9
spins and the phononidn this paper, this spin-phonon inter-
action is ignored. The operatoH" does not possess the bcc symmetry of the
paramagnetic lattice. From Eg8.5), (3.6), and(3.7) it fol-
. APPLICATION OF THE NONADIABATIC lows that the ground stat&") of H" satisfies the equations
HEISENBERG MODEL TO FERROMAGNETIC IRON

o _ o P(a)|G"=|G") for aeG, (3.10
A. Ferromagnetic spin structure in the nonadiabatic

ground state n n >
_ _ KP(a)|G")=|G") for ae{C,,|0}G,
Now assume that the energy band considered in the pre- (3.12)
vious Sec. Il to be the FM band of iron denoted in Fig. 1 by
the heavy lines. It is extremely narrow and roughly half-and
filled in paramagnetic iron. Hence, we have optimal n n
conditions for a relatively great value of K|G")#|G"). (3.12

_ Tl These equations show that [i6") the electrons movas if
AB=(GIH|G)~(G'[H'|G"). @1 there exists a potential with the magnetic gradp which
We first examine the commutation properties of the op-neans that they move as if there exists a ferromagnetic spin
eratorH' given in Eq.(2.7). The matrix elements ol’  Structure. Such a motion is possibleahd only ifa spin
satisfy Eq.(2.4) or (2.5), sinceH, is put equal to zero. As a Structure with the magnetic grouy exists in reality. Hence,
consequence of EqgA25) and (A26) it follows that H'’ the second postulate2.13 of the nonadiabatic Heisenberg
commutes with the symmetry operatdtéa) andKP(a) of model may be satisfied only if there exists a ferromagnetic

i _ - spin structure with the magnetic grody. In the following
the magnetic group =G+K{C5|0}G [see Eq.(A2)] of  gec |11 B it will be shown that, actuallyi" is spin depen-

ferromagnetic iron, dent in the FM band.
[H',P(a)]=0 for aeG (3.2 ) _ o
B. Magnetic state as eigenstate of a real Hamiltonian

and The important Equatioi3.7) could not be understood in

the framework of the adiabatic approximation since the
original operator of Coulomb interaction,
because also the matrix elements of the operators
P(a)H'P (a) (with aeG) and KP(a)H'P }(a)K 1! ~

i 5 i Hoo=5 2 ==, (3.13
(with ae{C,,|0}G) satisfy Eq.(2.4) or (2.5). 2 iy r,—r

Equations(A20), (A23), and (A24), on the other hand, w#v
show thatK H'K ~* has matrix elements violating Eq®.4)
and(2.5). ThereforeH' does not commute with the operator
K of time inversion,

[H',KP(a)]=0 for ae{C,|0}G, (3.3

1 e?

is real and, hence, commutes with the opera€oof time
inversion,

[H',K]#0. (3.4 [Hep,K]=0. (3.14

Therefore, within the adiabatic approximation it is not pos-
sible in any way to turn this operator into an operator not
commuting withK.

The nonadiabatic operator of Coulomb interaction in the

According to the third postulat®.14) of the nonadiabatic
Heisenberg model, the nonadiabatic oper&ifralso com-
mutes with the operato8(a) andKP(a) of the groupM,

[H"P(a)]=0 for acG (3.5 FM band[as given in Eq(2.11)] may be written as
and HEy=F 4H coF 4, (3.15
[H",KP(a)]=0 for ae{CZX|6}G, (3.6)  where the projection operator
anddoes not commuteith the operatoK of time inversion,
nt n
Fa=2 Cf.Ct (3.1

[H",K]#0. (3.7 T,m
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projects on the spacd of wave functions which satisfy the change energy. The energE"=(G"|H"|G") of the
Pauli principle within the FM band. From Eq§3.7) and nonadiabatic ground state may be written as
(3.14 it follows that it is the projection operatdt , which

does not commute witk, E"=E—Eex, (4.7)
whereE,, stands for the total exchange energy of the elec-
[Fa.K]#O0. 3.17 trons of the FM band within the spin-dependent potential of
This equation is true if all the electrons at the Fermi levénd E denotes the re-
ot maining energy. If the postulates of the nonadiabatic
chmK*1¢ A. (3.18 Heisenberg model are satisfied within the FM band, then the

] ] ] o electrons occupying the nonadiabatic localized states move
As shown in Appendix B, Eq3.18 is satisfied if(and only i, such a way that the exchange enefy, is maximum,
if) the quantum numbers;, andn, in Eq. (B8) are different.

That means that, i, #n,, the nonadiabatic operatdtg, Ecyx=maximum, 4.2

does not commute witH, although the operator dyisreal ¢4 5 gpin structure with the magnetic groip In this case,

and, hence, Eq3.7) does not violate physical principles.  {he electrons of the FM band move in orbitals which are
Since the quantum numbeng andn, are different, the adapted to the symmetry of.

nonadiabatic localized functions cannot be written as a prod-  ~gnsider the interatomic exchange interaction in the FM
uct of a function depending on and q and Pauli’s spin  pand. As is well known, fronH,, [given in Eq.(2.3)] the

function[see Eq(B2)], familiar Heisenberg exchange operator
(1 t,q]T.mn)#(r,q|T,ndug(t). (3.19 1 . Lo
. . He=—— 2 (T, TaHeol T2, T)S:Sr, (4.3
This equation demonstrates that, as a consequence of the he 147,

postulates of the nonadiabatic Heisenberg model, the nona- ] ] )
diabatic operatoH?, of Coulomb interaction has become may be derived under the assumption that there is one elec-

spin dependentdZ, no longer commutes with the symmetry tron at each aton(The operator$y denote spin operators at

operatorsS(«) of the electron spifisee Eq(B3)], positionT.) Also in the nonadiabatic system we may assume
the operator

[H2,,S(a)]=0 only for a=E (3.20
and, hence’ HQX:Z <-I-:11mlvn;-l_:27m21n|HCb|-|_:2,mi,n;-l-:l,mé,n>
T,m
S(@)|G"=|G") only for a=E, (3.21)
XCQT nt n n (4.4)

c: ,Cz
where E denotes the identity operation. This equation con- Tamy ~Tomy “T4m; “Tomy

firms the statement of the preceding Sec. Il A that the nonag, produce the required spin-dependent potential within the
diabatic ground stat¢G") possesses a spin structure. Ac- g\ pand.

cording to Egs.(3.5 and (3.6) this spin structure has the g already mentioned, in the nonadiabatic localized states

magnetic grougM of ferromagnetic iron. > S . .
9 grouM g |T,m,v) the electrons no longer move in rigid orbitals in the

average potential of the other electrons, but move in a poten-
IV. EXCHANGE ENERGY tial depending on which of the adjacent localized states are
The considerations in the preceding Sec. Il may be sumoccupied and on the present positions of these electrons. This
marized by an if-then statemeiitthe postulates of the nona- Modified motion is labeled by the new quantum number
diabatic Heisenberg model are satisfied within the FM band]'he matrix elements of both the Hartree-Fock operatge
then the electrons of this band move in orbitals which areand the operator of Coulomb repulsion energy, [see Eq.
adapted to the symmetry of the magnetic grdup That  (2.3)], will not markedly depend om since they only depend
means that they movas if there exists a ferromagnetic spin on the charge distributionls{F,t,ﬁ |-F’m',,>|2 in the local-

structure with the groupM. From this we concluded that jzeq states. The matrix elementstdf,, on the other hand,

such a spin structure really exists. This conclusion, howevel, - e the same form as the matrix elementsiBfand, hence
contains the tacit assumption that an electron of the FM bangle o g sensitively on the exact form of the localized func-
“sees” the spin directions of the other electrons. Thus, wi

must assume that any localized electron of the FM ban

moves in a spin-dependent potential generated by the other EEQA: —(G"[HJG") (4.5

electrons and that this movement occurs in such a manner

that the potential energy related to this spin-dependent powill also depend sensitively on the exact form of the elec-

tential is minimum. In this case, the electrons of the FM bandronic orbitals within the nonadiabatic localized states. If the

really move in orbitals which are adapted to the symmetry ofpostulates of the nonadiabatic Heisenberg model are satisfied

the magnetic group/. within the FM band, the electrons modify their orbitals
The required spin-dependent potential exists: it is generwithin the nonadiabatic localized states in such a way that

ated by exchange interaction. The mentioned “potential enthe exchange ener@@" is maximum for a ferromagnetic

ergy related to this spin-dependent potential” is the ex-spin structure.

ions. Thus, the exchange energy
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Though the simple exchange operdthyin Eq. (4.3 may TABLE I. Single-valued representatiof of the eight possible
be derived fromHZ, only under the stronfcf. Eq. (3.19]  ferromagnetic bands in bcc metals in 18§, notation of Table IlI.
approximation Bands 3, 4, 7, and 8 form ferromagnetic bands in any band structure

since the Wannier functions related to these bands cannot be chosen
to be real. It can be examined by Table Il whether or not also bands

= T = ’oaT ’
(T1,mg,0;T,Ma,n[Hep T2, my,0;Ty,m;,n) 1, 2, 5, and 6 form ferromagnetic bands in a given band structure.

%<T1 N Ty ,n| HCb|T2vn;Tlan>5m1m15mém21 (4-6)

1 ry Py X z7 N*

. . : 2 r; P X7 Z N*

we may assume that also in the nonadiabatic system the ex- 2 2 r 2 .

change energ§:) is maximum if there is exactly one elec- 3 F3+ Ps Xi Zi N+

tron at each atom. Hence, there are optimal conditions for a 4 F‘l Pa XE Z‘i N,

large exchange enerdﬁ@" in iron since Eq(2.13 produces 5 rl_ P2 Xl_ Zl_ N_

a ground state in which a maximum number of atoms is 6 FE P1 X{ Z% Nf
occupied by only one electron of the FM band. ! F?; Pa X2_ Zi N

The condensation enerdy;, i.e., the energy difference 8 s P3 X2 Zy N™

between the paramagnetic and the ferromagnetic state, 75
given by
VI. CHOICE OF THE FERROMAGNETIC BAND
E;=AE+E,,, 4.7 IN THE BAND STRUCTURE OF IRON

whereAE is given in Eq.(3.1). E; may be positive even if An energy band in a bcc metal is called a FM band fif,

E.x iS Negative. first, the Bloch functions of this band can be unitarily trans-

formed into Wannier functions which are best localized,

symmetry adapted to the magnetic grddp=14/mm'm’ of

the ferromagnetic state, and situated at the atoms, and fif,
The operatoK of time inversion reverses the direction of second, these Wannier functions cannot be chosen to be real.

a magnetic moment. Thus, the applicatiorkobn any mag- In bcc metals, FM bands may be identified by means of the

V. TIME-INVERSION SYMMETRY

netic stated m) yields a state differing fronim), Tables I, II, and Ill; see Appendix A. Within the nonadia-
batic Heisenberg model, the FM band should be one of the
K|m)#|m), (5.)  narrowest(roughly) half-filled bands in the band structure of

the paramagnetic metal.

Consider the band structure of iron as given in Fig. 1. The
narrowest, partly filled band is characterizedHbys and P.
Table Il shows that the three fold-degenerate state with
symmetry splits into three states wiflj , Z; , andZ, sym-

[H",K]#0 (5.2) metry at the transition from the paramagnetic space group
1 . . 9 .
Oj, to the ferromagnetic space gro(qih. In the same way,
Hence,H" has the correct magnetic symmetry, since itsP4 splits intoP; andP,.
ground statéG") is not an eigenstate df,

sinceK transforms the spin structure h) into the reversed
structure.

The nonadiabatic Hamiltoniakl" derived in this paper
does not commute witK,

TABLE II. Single-valued representatiori®; of eight bands in
the D3/ notation of Table Ill. Each band is related to the band of
Table | given in the first column. Assume that in a given band
structure a band of the symmetry type of ban¢j=1,2,5,6) of
Table | is present. Assume further the symmetry of this band to be
written in theDj/, notation of Table IlI, too. Bangl does not form
a ferromagnetic band if thB}/ notation of this band can be found
among the two bands related to bgnid this Table Il, because, in
this case, the Wannier functions may be chosen to be real.

K|G")#|G"). (5.3

Thus, from Eq.(5.2) alone it follows thajG") is magnetic.
On the other hand, there is evidence that all égen-
statesof the adiabatic Hamiltoniail given in Eq.(2.1) do
not possess a magnetic structure becadisgmmmutes with
K. Therefore, the eigenstates ldfmay be chosen such that
they are eigenstates &f too. If the numbeN of electrons is
even, all the eigenstatgs;) of K may be chosen in such a

way' that they satisfy 1 ri P, X 7t N

+ + + +

Kle)=|e); (5.4) Iz P2 %s & N2

i.e., they are not magnetic. 2 rs P3 X3 Z; Ny

If N is odd, the(anti-unitary operatork does not possess r, Py Xy z; N,

eigenstates and we cannot exclude in this way thdtas

magnetic eigenstates. However, a magnetic structure in a 5 ry P3 Xy Z Ny

state consisting of many electrons should be stable for both r; Py X3 Z; N5
odd and even numbels of electrons. Hence, we may sup-

pose that in any metal the complete adiabatic Hamiltoilan 6 T3 Py X3 Z3 Ny

does not possessgenstatesn which the spins form a mag- r, P, X Z, Ny

netic structure.
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TABLE Ill. Compatibility relations betweemﬁ, the space group of bcc paramagnetic iron, and the space
groupsC3, and D/ . The space groug, of the ferromagnetic state has the point grabip,, and the
related “magnetic overgroup’D% with the point groupD 4y, is given by Eq.(A8). The first row lists the
irreducible representations at the symmetry points in the Brillouin 2gnef Oﬁ in the notation of Bouck-
aert, Smoluchowski, and WignéRef. 13 as given in Appendix 3-3 of Ref. 14. The following rows list
representations at the corresponding points in the Brillouin 2gpef C3;, andD3/ in the notation of Koster
et al (Ref. 15 as given in Table 2.2 of Ref. 10. The representations in the same column are compatible in the
sense that a set of basis functions of the representation in the first row forms also a basis of the representa-
tions below. It should be noted that the representatiod¥iandIl'; are different even if they have the same
name.(a) PointsI" in I'; andI'y . The representations in parentheses are compatible with the representations
labeled by the minugb) PointH in I’ and pointZ in I'y . The representations in parentheses are compatible
with the representations labeled by the mini@$ PointsP in I'g andf’a. (d) PointN in I'¢ and pointsX and

NinTg.
@
Op  TIi(I)  TIaly) Tyl Tpl'a) Iio(l19)
Ch Iy T ry+ry, Ty4T3+T; T7+T3+4T;
D/ Iy Iz ry+T3 r;+Tz ry+Ts
(b)
OfF  Hi(H]) Hy(Hy) HifHi)  His(Ha) His(H1s)
Can zZr zZ; Zr+2;  Z;+Z3+Z;  Zi+Z3+Z;
D/ zZr Z3 Zr+23 Z,+22 Z5+2Z:
(©
og Pl P2 P3 P4 P5
Cin P, P, Pi+P,  P,+Ps+P, P,+P3+P,
D3/ P, Ps P+ Py P,+Ps P,+Ps
(d)
o} N, N, N Ny N} N} N3 N,
Cin Xy X3 X3 Xy X5 Xy Xy X5
N* N* N* N* N~ N~ N~ N~
Dl X1 X3 X Xs Xz Xy X3 Xa
Ny Nz Ny Ny N2 Ny Ny Ny

Table | shows that the Bloch functions wit, andP,  spin states, see the preceding Sec. VI and Fig. 1. These find-
symmetry may form an FM band, namely, band 2 in thisings are interpreted within a nonadiabatic extension of the
table. This band can be connectedlif, as well as tol';,  original Heisenberg model of magnetism, the “nonadiabatic
because both states subduce the skgfeat the transition Heisenberg model.” The aim of this paper is to report evi-
from O} to C3,; see Table Ill. Hence, in both cases the dence that the FM band causes the stability of the ferromag-
compatibility relations are satisfied @, . (In this contex, it ~ netic state in iron.
is meaningless that i@ the compatibility relations are vio- ~ Also within this new model it is the familiar exchange
lated betweel™ andP in the first case and betwedhandH ~ Mechanism which keeps the spins parallel in the ferromag-
in the second caseWe choosd’;, to belong to the FM band netic state. However, it is the special symmetry of the FM
in order to get a nearly empty band for the minority-spinband whichactivatesa spin-dependent exchange mechanism
states and nearly filled band for the majority-spin statiés. producing the ferromagnetic spin structure. As a conse-
should be noted that also a linear combination of the]ﬂ&fo quence of the postulates of the nonadiabatic Heisenberg
Bloch functions subduced froffij; andT';, may belong to  model, the Coulomb repulsion energy of the electrons of the
the FM band. FM band is lowered byAE [given in Eq.(3.1)], if an ex-

According to Tables | and Ill both thdl, and N, state ~ change mechanism operates in iron which produces a ferro-
may belong to the FM band. In Fig. 1 th, state is chosen magnetic spin structure with the magnetic grddp There-

sinceN; is not connected td';, betweenl” andN. fore, the electrons of the FM band modify their orbitals
within the nonadiabatic localized states in such a way that
VII. DISCUSSION the exchange energli, is maximum for a spin structure

with the groupM; see Eq.4.2).
The energy differenc&; between the paramagnetic and
Iron possesses a narrow FM band which is nearly emptyhe ferromagnetic states is not given by the exchange energy
for the minority-spin states and nearly filled for the majority- E., alone, but by

A. Stability of the ferromagnetic state
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Ef=AE+E,,; magnetic ground state. Obviously, the antiferromagnetic
N o state is energetically more favorable than the ferromagnetic
see Sec. IV. Hencdg; may be positive even i, is nega-  giate.
tive. ) The same statement applies to théand in the bcc tran-
From Eq. (4.2 we may concluQe that the ene.rggtlcally sition elements,
most favorable exchange mechanism is activated in iron. The
nonadiabatic Heisenberg model does not specify this mecha- T, Hjs, Ny, and Py,
nism. Hence, there is no reason to assume that this mecha- ) ]
nism is different from the mechanisms commonly consideredVhich is also a FM band. Thus, a metal with a half-filled
as decisive for ferromagnetism. However, interatomic exdand like niobium may either have a ground state with spin-
change coupling in the FM band should be an important pa,{phonon Interqctlodwhlch, at low tempgratures, prod.uces a
of this exchange mechanism since a maximum number ofuperconducting stater a ferromagnetic state. Obviously,
atoms is occupied by only one electron of the FM bandalso the state with spin-phonon interaction is energetically
Hence, there are optimal conditions for a large exchang&10re favorable than the ferromagnetic state. _
energy within the FM band. TheI',, state in the FM band of iron belongs neither to
Within the nonadiabatic Heisenberg model, the electrorfNy AF nor to anyr band. Hence, the electrons of this band
system is described by the nonadiabatic Hamiltoni#th have no other possibility but to form a ferromagnetic state in
given in Eq.(2.10. An important feature oH" is that it has ~ order that their Coulomb repulsion energy is lowered\y.
the correct symmetry of the ferromagnetic state; see Egs. On the basis of these findings | may give a provisional
(3.5), (3.6), and(3.7). EspeciallyH" does not commute with condition for ferromagnetllsm_: a metal may have a stable fer-
the operatoKK of time inversion. romagnetic grounq state if, first, one of its narrowest,_partly
There is evidence that a Hamiltonian commuting with ~ filled paramagnetic energy bands is a FM band and if, sec-
does not possess magnetic eigenstates; see Sec. V. For tARd, this band is neither an AF norsaband.
reason, | presume that any spontaneous magnetic structure in
a metal is connected with a narrow, roughly half-filled ACKNOWLEDGMENTS
“magnetic band” in the paramagnetic band structure of this . .
metgl. In this context, arﬁ) energ)? band is called a “magnetic | am indebted to Er_nst Helmut Brandt for critical com-
band” if the Bloch functions of this band can be unitarily ments on the manuscript.
transformed into Wannier functions that are best localized,
symmetry adapted to the magnetic group of the considered APPENDIX A: WANNIER FUNCTIONS
spin structure, and situated at the atoms. OF THE FERROMAGNETIC BAND

The magnetic group of ferromagnetic iron,
B. Condition for ferromagnetism

The FM band in iron is characterized by the representa- M=l4/mmm’, (AD)

tions may be written as

I'15,H35.Ns, and Py (7.0 M=G+K{C,,/0}G (A2)

of the paramagnetic point groupy. In the bee transition it the magnetic moments point in tredirection. K is the

e"amer‘tFS&A"’I‘: )Fg" b;“d dotcﬁurs hot so Jarily as tmr]‘;t(a”gfe”odperator of time inversiort;,, denotes a rotation about the
magnetic and and the superconducting barmdt{an . > .
which are proposed to cause the stability of the antiferromag‘[”‘xIS through the angler, {C5,0} is a symmetry operation

netic state in chromiufhand the superconducting state in L°" Eq. (A11)], and
several transition elements.

_ _ (5

The AF band of chromium is characterized by the repre- G=14/m=Cg, (A3)
sentations is the space group of the magnetic state. The point group

'35, Hzs, N1, and Ps. Mo=4/mm’ m’ (A4)
At the same time, this band forms a FM band. That meansf M has the form
the Bloch functions of this band can be unitarily transformed
either into basis functions of the representations Mo=Gy+KC,,Gy, (A5)
I3,T4, X5, Mgo, Ay, Z13, and Rs where

of the space grou$,, of the spin density wavé or into Go=4/m=Cyp (A6)

basis functions of the representations is the point group ofG. Both groupsM and G have the

TS, Py, X+, 25, and N* tetragonal Brillouin zond™; .
The ferromagnetic groull is a subgroup of the paramag-
of the space group?ih of the ferromagnetic statesee Ap-  netic group
pendix A). Thus, within the nonadiabatic Heisenberg model,
chromium may either have an antiferromagnetic or a ferro- MP=0j+KO} (A7)
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of bcc iron. Furthermore, in this paper the “magnetic over-with the abbreviations

group” R .
rH=w(r-T Al8

of M is consideredM’ may be written as

and

M’=Dﬂ+KDiE (A9) T =aT+R. (A19)

The ¢ numbersd(a) =+ 1 are the representatives B} .

The corepresentatioDI'; of M derived fromI', is one
M =D 4n+KDp. (A10)  dimensional, too; see Table 7.15 of Ref. 10. Therefdre,
the phase factog(k) even can be chosen in such a way that

the Wannier functions are symmetry adapted to the complete
magnetic groupM. Hence, in addition to EqA17) we have

and, hence, has the tetragonal point group

The elements

a={alR} (A11)
of G consist of a point group operatiom and a primitive KP(a)(r|T)=d(Ka)(r|T') for ae{Cy|0}G,
translationR. The symmetry operatof3(a) and the operator
K of time inversion act on a function of positiofi(r), ac-  with again T’ being given by Eq(A19). The ¢ numbers

(A20)

cording to d(Ka)==1 are representatives &T , .
. . - The Bloch functions of the bands listed in Table Il can be
P(a)f(r)=f(a r—a'R) (A12) unitarily transformed into best localized Wannier functions
and which are symmetry adapted to the magnetic overgidudp

given by Eqgs.(A8) and (A9). The representation@\15) of

KF(F)=f*(r), (A13) the FM band subduce representations
respectively. Ip—T{+T3, P3—P1+P;3, Ny—Xg,
Consider the band structure of Fe depicted in Fig. 1, in , . .
particular the FM band denoted by the heavy lines. The Hys—Z4 +2Z5, Ny—Nj, (A21)

Bloch functions of this band in paramagnetic iron shall be

unitarily transformed into Wannier functions of D}/ ; see Table IIl. Table Il shows that neither of the two

bands(in the third and fourth rows of this tableelated to
BZ . band 2 is compatible with the symmetry of the FM band
w(r—T)=— >, ek Tg(K)gu(r), (A14)  sincePz andZ, do not belong to the same band in Table II.
N Thereforeg(k) cannot be chosen in such a manner that Egs.
which are situated at the lattice poirfs The sum runs over (A17), (A20), and _K(FIT)=C<F|T> (with |c|=1) are satis-
the N wave vectorsk of the Brillouin zone(BZ) and g(k) fied at the same time. Hence we have
denotes &-dependent phase factor Wikg(IZ)|= 1. K(rIT i
The FM band is characterized by the representations (r[T)#c(rlT) (A22)
, (with |c|=1), since we assume that Eq&17) and (A20)
I'15, Hzs, Ny, and Ps, (A15)  are satisfied.

of Oﬁ. These representations subduce representatio of Applying K on both sides of EqA14), we see that the

:Cih according to functions KW(F—'F) are a unitary» transformation of the
time-inverted Bloch functionK ¢i(r). Because the Bloch
[,—T+T,, P3—Pi+P,, Ny—X{, functions are eigenfunctions of the real Hartree-Fock Hamil-

tonian, always botH<go|;(F) and cp@(F) belong to the FM
band. Hence, the time-inverted Wannier functioks/(r

see Table Ill. Hence, at the points of symmelryP, X, Z,  —T) as well as the Wannier functiong(r —T) form a basis
and N of I'; the Bloch functions of the FM band may be in the space spanned by the Bloch functions of the FM band.

chosen in §uch a way that they are basis functions of th@:onsequently, the functiongw(ﬁ_f) may be written as
representations linear combinations

I, ,Py,X{,2Z;, and N¥,

His—Z3+25+2;5, Ny—N*; (A16)

K(F|Ty=> (T/|K|TXr [T A23
respectively, of band 2 in Table I. Consequefitlythe phase (rm TE (Tl 1) (A23)
factor g(k) in Eq. (A14) may be chosen in such a way that
the Wannier functions ar@l) best localized an@?) symme-
try adapted tdG according to

of the Wannier functionsv(r —T), with

- - 2 (TKTH?=1 (A24)
P(a)(r|Ty=d(a)(r|T') for aeG, (A17) T
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and at least two nonvanishing coefficier,|K|T) and (T',m’,v'|T,m,v)
(ToKIT).
Equations(A17), (A20), and (A23) also may be written EEJ'I (T',m’,v'|rt,q)(r t,q|T,m,»)drdq
for the fermion operators%S in Eq. (2.2, t
=61 70mmOyry - (B7)

P(a)c%P*l(a):d(a)ct,,S for aeG, (A25)

The quantum number=n labels the functions satisfying

KP(a)C}SP‘l(a)K*:d(Ka)cE,s for ae{C2X|6}G, Egs.(2.13 and(4.2). In principle,n may depend omor T.

(A26) EquationgB11) and(B12) show thain may take two differ-
, ent valuesn; andn,,
with |d(a)|=|d(Ka)|=1 and
. L n, for m=3,
Kex K™ 1= (T'|K|T)cs,_, A27 n= (B8)
Ts %"( KTy, (A27) n, for m=—%,

with at least two nonvanishing summands. since the two sets of functions belongingrg andn,, re-
spectively, are not connected by symmetry. For instange,
might belong to a moderate amg to a more heavy motion
of the center of mass. In the following, is given by Eq.

. . . . . . (B8) and take the two val dn, ind dentl
In this section the properties of the nonadiabatic Iocahzeci) ) andv may take the two values, andn, independently

functions of the FM band will be given as far as they are
determined within the nonadiabatic Heisenberg model. From, .
these properties, the important equati®@®21) will be de-
rived.

Each localized statﬁ) represented by the Wannier func-

tions W(F—f) given by Eq.(A18) may be occupied by an
electron with spin-down or spin-up direction. We put

APPENDIX B: NONADIABATIC LOCALIZED FUNCTIONS
OF THE FERROMAGNETIC BAND

From Egs.(3.5 and(3.6) it follows that the nonadiabatic
alized functions have the same symmetry as the adiabatic
functions. However, the symmetry operatétéa) now act

onr,t, and on the new coordinatg according to
P(a)(F,t,ﬁ|f,m,v)

L. . =<a_1F—a_lli,a_lt,a_lcﬂf,m,l/), (B9)
rtT,s)=(r|Tug(t), Bl L .
(T8 =(rihus®) (B2) and the application oK yields

where

K(r,t,q|T,m,»)=grt,q/T,—m,»)*.  (B10)

Us(t) = O (B2)

stands for Pauli’s spin functions with the spin quantum num-  Suppressing from now on tI(E,t,ﬁ| representation, from
bers= =3 and the spin coordinate= = 3. A symmetry op- Egs.(A17), (A20), and(B3) we get
erator S(«) of the three-dimensional rotation group(3)

acts onug(t) according td° P(a)|T,m,n)=dn(a)|T",mn) for acG (B11)

S =tga )= dyga)ug(t) for ac0(3), ¢

(B3)

where the matricefds (@) ] are the representatives of the

two-dimensional double-valued representativy, of O(3).
The matriced dg/s(@)] may be chosen diagonal fare G,

KP(a)|f,m,n)=dm(Ka)|'F’ ,m,n), for ae{C2X|5}G,
(B12)

with T’ being given in Eq(A19). All the ¢ numbersd,(a)
andd(Ka) have the absolute value 1,

and are assumed to be diagonal. In this case, the spin lies in
z direction.
The effect of the time inversion operatiiris given by

|dm(e)|=|dm(Ka)|=1,

since they are the representatives of the two one-dimensional
corepresentationgrelated to m=+3) subduced by the

(B13)

Kug(t)=gu_g(1), B4 8
. S(U=0:U-5(1) B4 corepresentatio®,,X DI'; of My,
with Like the adiabatic localized states, the nonadiabatic local-
Qurp=Fi. (B5) ized state§T,m,v) arise by a unitary transformation from

nonadiabatic Bloch state|£,m,v) forming a single(with
m= + 3 doubly degenerajeenergy band labeled by. As in
the adiabatic case, the nonadiabatic Bloch functions are
eigenfunctions of a real operator. Hence, always both,
|k,m,v) andK|k,m,v) belong to the same band Thus, the

states K|T,m,v) are linear combinations of the states

The localized function$F,t|f,s> are replaced by nonadia-
batic localized functions,

(F 4 T,8)—(r,t,q |T,m,v), (B6)

which are orthonormal according to
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|'F’,m’,v> with m’=—m as a consequence of E(10).
The adiabatic equation®23) and (A24) now may be writ-
ten as

K|f,m,v>= E |f’,—m,v’)(f’,—m,v’|K|f,m,v),

long to the two different bands, andn, for m=+3% and

m=— 3, respectively. The state‘sAK|'|:,m,n) may be writ-
ten as

FAK|'F,m,n)=Z |'F’,—m,n)(f’,—m,n|K|f,m,n>;
T
(B18)

see Eq(B10). From Egs.(B8) and(B16) it follows that all
the coefficients in Eq(B18) vanish,

(f’,—m,n|K|‘F,m,n>=0, (B19)

if (and only i n;#n,. Hence, we have

K|f’,m,n>¢A (B20)

The importanisee Sec. Il Bequation(B20) also may be
written for the nonadiabatic fermion operators in E2.11),

Kel K¢ A (B21)

TIVI
(B14)
with
> (T —mu[K|T.m»)[?=1 (B15)
T!
and
(T',—m,»'|K|T,m,»)=0 (B16)
for v'#v as a consequence of the orthogonality relationif ny#n,.
(B7).
Let
Fa=2 [T.mn)T,mn| (B17)
Tm

be the operator projecting on the spadespanned by the

states|f,m,n>. That means tha#l consists of the nonadia-
batic states satisfying Eq&.13 and(4.2). These states be-

if n,#n,, where hered is defined by the projection operator

;
F =2 ci ¢t . (B22)
Tm
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