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Energy band with Wannier functions of ferromagnetic symmetry
as the cause of ferromagnetism in iron

Ekkehard Kru¨ger
Max-Planck-Institut fu¨r Metallforschung, D-70506 Stuttgart, Germany

~Received 8 May 1998; revised manuscript received 20 November 1998!

It is shown that iron possesses an energy band with Bloch functions which can be unitarily transformed into
optimally localized Wannier functions belonging to a corepresentation of the magnetic groupM
5I4/mm8m8 of ferromagnetic iron. As compared to the other bands of iron, this ‘‘ferromagnetic band’’ is
extremely narrow. In paramagnetic iron, it is roughly half-filled, and in ferromagnetic iron, it is nearly empty
for the minority-spin states and nearly filled for the majority-spin states. These findings can be interpreted
within the group-theoretical nonadiabatic Heisenberg model as proposed by the author for better understanding
of superconductivity and spin-density-wave states. In the framework of this model, the localized states in the
Heisenberg model are no longer represented by atomic or Wannier functions but by more realistic nonadiabatic
localized functions which have the same symmetry as the Wannier functions. The related nonadiabatic Hamil-
tonianHn has the correct symmetry of the ferromagnetic state because it does not commute with the operator
K of time inversion. From the symmetry ofHn it follows that the ground stateuGn& of Hn possesses a spin
structure with the magnetic groupM. Furthermore, it is argued that an operator commuting withK only has
nonmagneticeigenstates. Hence, there is evidence that the ferromagnetic band causes the stability of the
ferromagnetic state in iron.@S0163-1829~99!05021-3#
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I. INTRODUCTION

In his original theory of magnetism, Heisenberg1 extended
the well-known Heitler-London model of the hydrogen mo
ecule to the metals by assuming that there is exactly
electron at each atom of a metal. This assumption, whic
often referred to as the Heisenberg model, leads to a fun
mental understanding of magnetism, although in most me
electrons belonging to partly filled energy bands are resp
sible for magnetism. In such bands the electrons may
from one atom to another when performing their band m
tion. There is strong theoretical and experimental evide
that, e.g., thed electrons of the transition metals exhibit b
havior of both the band and the Heisenberg model.2

The nonadiabatic Heisenberg model as proposed in
and previous papers3–5 generalizes the original Heisenbe
model by introducing three new postulates which will
given in the following Sec. II. The essential physical sta
ment of this model is expressed by the second postu
given in Eq.~2.13!. It replaces the strong original assumptio
of the Heisenberg model by stating that the balance betw
bandlike and atomiclike behavior is shiftedas far as possible
towards the atomiclike behavior in narrow energy bands

The second postulate of the nonadiabatic Heisenb
model cannot be satisfied within the adiabatic~or Born-
Oppenheimer! approximation, which represents the localiz
states by Wannier functions. These functions describe lo
ized electrons which move inrigid orbitals in the average
potential of the other electrons. The second postulate, h
ever, requires a more realistic description of the electro
motion within the localized states. In the true~nonadiabatic!
system a localized electron moves in a potential depend
on which of the adjacent localized states is occupied and
the present motion of the electrons in these states. Within
PRB 590163-1829/99/59~21!/13795~11!/$15.00
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nonadiabatic Heisenberg model, these modified orbitals
described by introducing a new quantum numbern which
labels different states of motion of the center of mass of
localized states.

The essential properties of the nonadiabatic localiz
states are fixed by the three postulates of the nonadiab
Heisenberg model. As a consequence, the nonadiabatic lo
ized functions ~representing the nonadiabatic localize
states! have the same symmetry as the Wannier functions
the narrowest, roughly half-filled energy bands of the me
under consideration. Thus, any application of the nonad
batic Heisenberg model starts with a group-theoretical
amination of the symmetry of the best localized Wann
functions which is determined by the symmetry of the Blo
functions in the band structure of the given metal.6–8

However, the partly filled bands in the~paramagnetic!
band structures of the metals are degenerate at some sym
try points and lines of the Brillouin zone. Therefore, it is n
possible to separate narrow single bands~or narrow isolated
sets of bands! which satisfy the compatibility relations
throughout the Brillouin zone. Thus, the Bloch functions
the narrowest, roughly half-filled energy bands cannot
unitarily transformed into Wannier functions which areboth
symmetry adapted to the paramagnetic space groupM P of
the considered metalandbest localized.6,7 Therefore, the ex-
act Wannier functions are often replaced by approxima
Wannier functions ignoring the band degeneracies. These
proximated Wannier functions are constructed from
Bloch functions by a transformation which is nearly but n
exactly unitary. Such Wannier functions, however,are not
allowedwithin the nonadiabatic Heisenberg model.

An ~exactly! unitary transformation of the Bloch func
tions of the conduction bands into best localized Wann
functions becomes possible in a lot of metals when the W
nier functions are allowed to have a reduced symmetry
13 795 ©1999 The American Physical Society
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13 796 PRB 59EKKEHARD KRÜGER
when they are allowed to be spin dependent.8 There are two
interesting cases.

~1! The Wannier functions are symmetry adapted to
complete paramagnetic groupM P but are spin dependent.

~2! The Wannier functions still are spinindependent but
are symmetry adapted only to a magnetic subgroupM of M P.

In the first case, an absolutely new exchange mechan
can be established within the nonadiabatic Heisenb
model. This mechanism is proposed to be the cause
superconductivity.3,5 The second case is considered in th
paper.

Paramagnetic iron possesses an energy band with B
functions which can be unitarily transformed into optima
localized Wannier functions belonging to a one-dimensio
corepresentation of the magnetic groupM5I4/mm8m8 of
the ferromagnetic state; see Appendix A. Furthermore, i
not possible to choose these Wannier functions to be rea
compared to the other bands of iron, this ‘‘ferromagne
~FM! band’’ is extremely narrow. In paramagnetic iron, it
roughly half-filled. In ferromagnetic iron, on the other han
it is nearly empty for the minority-spin states and nea
filled for the majority-spin states; see Fig. 1.

Within the nonadiabatic Heisenberg model, the FM ba
causes the stability of the ferromagnetic state in iron. In S
III A it shall be shown that the postulates of the nonadiaba
Heisenberg model force a ferromagnetic spin structure in
FM band. That means,if the postulates are satified within a
FM band,then the electron spins form a spin structure po
sessing the magnetic groupM.

The result of Sec. III A is confirmed in the following Se
III B. Here, from the properties of the nonadiabatic localiz
functions alone, it shall be deduced that the nonadiab
HamiltonianHn of the FM band is spin dependent and th
the ground stateuGn& of Hn possesses a spin structure w
the magnetic groupM of ferromagnetic iron.

In Appendix A, the symmetry of the Wannier functions
the FM band will be given. In the following Appendix B, th
essential properties of the related nonadiabatic locali
functions will be deduced from the postulates of the no
diabatic Heisenberg model. Since further properties of th
functions are unknown, they only serve to derive gene
properties ofHn.

FIG. 1. Band structure of ferromagnetic iron after Callaway a
Wang ~Ref. 16!. Solid lines are majority-spin states; dashed a
minority-spin states. The heavy lines denote the ferromagn
~FM! band which has the symmetry of band 2 in Table I.
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II. NONADIABATIC HEISENBERG MODEL

Consider a single partly filled energy band in a metal w
one atom in the unit cell. For the present considerations,
band need not be an FM band. Let

H5HHF1HCb ~2.1!

be the electronic Hamiltonian of this band withHHF and

HCb5(
TW ,s

^TW 1 ,TW 2uHCbuTW 18 ,TW 28&cTW 1s1

†
c

TW 2s2

†
cTW

28s2
cTW

18s1
,

~2.2!

representing the Hartree-Fock and Coulomb energy, res
tively. The fermion operatorsc

TW s

†
andcTW s create and annihi-

late electrons with spins in the localized statesuTW & repre-

sented by Wannier functionsw(rW2TW ). They are assumed to
be situated at the atoms and to form a complete basis wi
the considered band. Other contributions toH from the elec-
trons not belonging to this band are neglected even as
spin-orbit effects.

HCb may be written as

HCb5Hc1Hex1Hz , ~2.3!

with the operator of Coulomb repulsion,Hc , containing all
the matrix elements ofHCb with

TW 15TW 18 and TW 25TW 28 , ~2.4!

the exchange operatorHex containing the matrix element
with

TW 15TW 28 and TW 25TW 18 , ~2.5!

and Hz comprising the remaining matrix elements, i.e., t
matrix elements with

$TW 1 ,TW 2%Þ$TW 18 ,TW 28%. ~2.6!

The matrix elements ofHz satisfy neither Eq.~2.4! nor
~2.5!. Thus, Hz represents an interaction annihilating tw

electrons in the localized states at the positionsTW 18 and TW 28

and creating at least one of them at the new positionsTW 1 or

TW 2. Hence, unlikeHc or Hex , the operatorHz generates vir-
tual transitions between adjacent localized states which s
the balance between the bandlike and atomiclike behavio
the electrons toward the bandlike character. Let

H85HHF1Hc1Hex ~2.7!

be the Hamiltonian obtained fromH by puttingHz50. As-
sume the considered band to be sufficiently narrow that
ground stateuG8& of H8 clearly has atomiclike characte
This atomiclike character will be less pronounced in t
ground stateuG& of the complete HamiltonianH because of
the influence of the interactionHz . Thus, the probability to
find two electrons~with different spin directions! on the

same lattice pointTW will be larger in uG& than in uG8&.
Therefore, the total Coulomb repulsion energy in the st
uG& should be greater than in the stateuG8& because the
Coulomb repulsion of two electrons occupying localiz

d
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PRB 59 13 797ENERGY BAND WITH WANNIER FUNCTIONS OF . . .
states on the same lattice pointTW is larger than the Coulomb
repulsion of two electrons occupying adjacent localiz
states.9

Hence, we may assume that in sufficiently narrow, pa
filled energy bands we have

^GuHuG&.^G8uH8uG8&, ~2.8!

whereuG& and uG8& are theexactground states ofH @given
in Eq. ~2.1!# andH8, respectively. The first postulate of th
nonadiabatic Heisenberg model states that relation~2.8! is
satisfied for the narrowest, roughly half-filled bands of t
metals.3

The particular form of the matrix elements ofHz shows
that it represents a short-ranged interaction which cruci
depends on the exact form of the localized functions. T
fact suggests that only small changes of the localized e
tronic orbitals are required to prevent~at least partially! the
transitions generated byHz . Such modifications of the elec
tronic orbitals do not exist within the adiabatic approxim
tion because these modifications yield charge distributi
within the localized states, being symmetric with respec
the lattice on the average of time, but not at any mome
Consequently, the nuclei become permanently accelerate
varying directions. Therefore, we replace the~adiabatic! lo-
calized states represented by the Wannier functions by m
realistic nonadiabatic localized states,

uTW ,m,n&, ~2.9!

which take into account the motion of the nuclei. The n
quantum numbern labels different states of motion of th
center of mass of the nucleus and the electron occupying

stateuTW ,m,n&. ~With free atoms, the nonadiabatic motion
the nuclei occurs in such a way that the total center of m
stays at rest. In a solid state, consisting of bound atoms,
restriction does not hold.! The quantum numberm of the
crystal spin3 replaces the spin quantum numbers in the nona-
diabatic system.

The nonadiabatic HamiltonianHn may be written as

Hn5HHF1HCb
n , ~2.10!

where the Coulomb interaction now has the form

HCb
n 5(

TW ,m

^TW 1 ,m1 ,n;TW 2 ,m2 ,nuHCbuTW 18 ,m18 ,n;TW 28 ,m28 ,n&

3c
TW 1m1

n†
c

TW 2m2

n†
c

TW
28m

28
n

c
TW

18m
18

n
. ~2.11!

The new fermion operatorsc
TW m

n†
and c

TW m

n
create and annihi-

late electrons with crystal spinm in the nonadiabatic local

ized statesuTW ,m,n&. The matrix elements ofHCb
n are inte-

grals over nonadiabatic localized functions

^rW,t,qW uTW ,m,n&, ~2.12!

as given in Eq.~2.13! of Ref. 4, andn5n labels the nona-
diabatic states which satisfy the following Eqs.~2.13! and
~4.2!. The new coordinateqW represents that part of the mo
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tion of the nuclei which nonadiabatically follows the motio

of the electron occupying the stateuTW ,m,n& and t is the spin
coordinate; see Appendix B.

The electronic orbital in a stateuTW ,m,n& depends very
much onn since the mass of the electron is considera
smaller than the mass of the nucleus. In the nonadiab
system, the electrons no longer move inrigid orbitals in the
average potential of the other electrons, but move in a po
tial depending on which of the adjacent localized states
occupied and on the present positions of these electr
Hence, the electrons should be able to avoid the transit
generated byHz by an appropriately modified motion, i
these transitions are energetically unfavourable, i.e., if re
tion ~2.8! is true. Thus, as a consequence of relation~2.8!, all
the matrix elements ofHCb

n which satisfy neither Eq.~2.4!
nor Eq.~2.5! should vanish.

For this reason, we assume that there exist nonadiab
localized functions satisfying

^TW 1 ,m1 ,n;TW 2 ,m2 ,nuHCbuTW 18 ,m18 ,n;TW 28 ,m28 ,n&50
~2.13!

if

$TW 1 ,TW 2%Þ$TW 18 ,TW 28%.

This Eq. ~2.13! is the second postulate of the nonadiaba
Heisenberg model.

As a consequence of Eq.~2.13!, the commutation proper
ties of the operatorHCb

n depend on the symmetry propertie
of the nonadiabatic localized states. Since only small mo
fications of the adiabatic electronic orbitals are required
prevent the transitions generated byHz , we may assume tha
the nonadiabatic HamiltonianHn has the same commutatio
properties as the adiabatic HamiltonianH8 given in Eq.
~2.7!, i.e.,

@H8,P#H 5

ÞJ 0 ⇒ @Hn,P#H 5

ÞJ 0, ~2.14!

whereP stands for any symmetry operator.
According to its definition, the operatorH8 arises from

the complete adiabatic HamiltonianH in Eq. ~2.1! by putting

Hz50. ~2.15!

This equation does not state thatHz is neglected, but thatHz
is put equal to zero. By this step, the commutation propertie
of H8 depend on the symmetry of the Wannier functio

w(rW2TW ) ~whereas the commutation properties of the co
plete HamiltonianH are independent of the symmetry of th
used basis functions!. As a consequence of relation~2.14!,
the nonadiabatic localized functions have the same symm

as the Wannier functionsw(rW2TW ). Equation~2.14! is the
third ~and last! postulate of the nonadiabatic Heisenbe
model.

It is not possible to calculate any matrix elements ofHCb
n

since the nonadiabatic functionŝrW,t,qW uTW ,m,n& are un-
known apart from the properties given in Appendix B. T
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13 798 PRB 59EKKEHARD KRÜGER
nonadiabatic Heisenberg model is a purely group-theore
model which analyses the symmetry and spin dependenc
Hn.

The operatorHCb
n given in Eq. ~2.11! has nonvanishing

matrix elements with

$m1 ,m2%Þ$m18 ,m28%,

violating the conservation of crystal spin. These matrix e
ments are the cause of an interaction between the elec
spins and the phonons.3 In this paper, this spin-phonon inte
action is ignored.

III. APPLICATION OF THE NONADIABATIC
HEISENBERG MODEL TO FERROMAGNETIC IRON

A. Ferromagnetic spin structure in the nonadiabatic
ground state

Now assume that the energy band considered in the
vious Sec. II to be the FM band of iron denoted in Fig. 1
the heavy lines. It is extremely narrow and roughly ha
filled in paramagnetic iron. Hence, we have optim
conditions3 for a relatively great value of

DE5^GuHuG&2^G8uH8uG8&. ~3.1!

We first examine the commutation properties of the o
erator H8 given in Eq. ~2.7!. The matrix elements ofH8
satisfy Eq.~2.4! or ~2.5!, sinceHz is put equal to zero. As a
consequence of Eqs.~A25! and ~A26! it follows that H8
commutes with the symmetry operatorsP(a) andKP(a) of

the magnetic groupM5G1K$C2xu0W %G @see Eq.~A2!# of
ferromagnetic iron,

@H8,P~a!#50 for aPG ~3.2!

and

@H8,KP~a!#50 for aP$C2xu0W %G, ~3.3!

because also the matrix elements of the opera
P(a)H8P21(a) ~with aPG) and KP(a)H8P21(a)K21

~with aP$C2xu0W %G) satisfy Eq.~2.4! or ~2.5!.
Equations~A20!, ~A23!, and ~A24!, on the other hand

show thatKH8K21 has matrix elements violating Eqs.~2.4!
and~2.5!. Therefore,H8 does not commute with the operat
K of time inversion,

@H8,K#Þ0. ~3.4!

According to the third postulate~2.14! of the nonadiabatic
Heisenberg model, the nonadiabatic operatorHn also com-
mutes with the operatorsP(a) andKP(a) of the groupM,

@Hn,P~a!#50 for aPG ~3.5!

and

@Hn,KP~a!#50 for aP$C2xu0W %G, ~3.6!

anddoes not commutewith the operatorK of time inversion,

@Hn,K#Þ0. ~3.7!
al
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Thus,Hn commutesonly with the symmetry operators ofM,
while the complete adiabatic HamiltionH in Eq. ~2.1! com-
mutes with all the operatorsP(a) of the space groupOh

9 of
bcc paramagnetic iron,

@H,P~a!#50 for aPOh
9 , ~3.8!

and with the operatorK of time inversion,

@H,K#50. ~3.9!

The operatorHn does not possess the bcc symmetry of
paramagnetic lattice. From Eqs.~3.5!, ~3.6!, and~3.7! it fol-
lows that the ground stateuGn& of Hn satisfies the equation

P~a!uGn&5uGn& for aPG, ~3.10!

KP~a!uGn&5uGn& for aP$C2xu0W %G,
~3.11!

and

KuGn&ÞuGn&. ~3.12!

These equations show that inuGn& the electrons moveas if
there exists a potential with the magnetic groupM, which
means that they move as if there exists a ferromagnetic
structure. Such a motion is possible ifand only if a spin
structure with the magnetic groupM exists in reality. Hence,
the second postulate~2.13! of the nonadiabatic Heisenber
model may be satisfied only if there exists a ferromagne
spin structure with the magnetic groupM. In the following
Sec. III B it will be shown that, actually,Hn is spin depen-
dent in the FM band.

B. Magnetic state as eigenstate of a real Hamiltonian

The important Equation~3.7! could not be understood in
the framework of the adiabatic approximation since t
original operator of Coulomb interaction,

H̃Cb5
1

2 (
m,n

mÞn

e2

urWm2rWnu
, ~3.13!

is real and, hence, commutes with the operatorK of time
inversion,

@H̃Cb ,K#50. ~3.14!

Therefore, within the adiabatic approximation it is not po
sible in any way to turn this operator into an operator n
commuting withK.

The nonadiabatic operator of Coulomb interaction in t
FM band@as given in Eq.~2.11!# may be written as

HCb
n 5FAH̃CbFA , ~3.15!

where the projection operator

FA5(
TW ,m

c
TW m

n†
c

TW m

n
~3.16!
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projects on the spaceA of wave functions which satisfy the
Pauli principle within the FM band. From Eqs.~3.7! and
~3.14! it follows that it is the projection operatorFA which
does not commute withK,

@FA ,K#Þ0. ~3.17!

This equation is true if

Kc
TW m

n†
K21¹A. ~3.18!

As shown in Appendix B, Eq.~3.18! is satisfied if~and only
if ! the quantum numbersn1 andn2 in Eq. ~B8! are different.
That means that, ifn1Þn2, the nonadiabatic operatorHCb

n

does not commute withK, although the operator H˜
Cb is real

and, hence, Eq.~3.7! does not violate physical principles.
Since the quantum numbersn1 and n2 are different, the

nonadiabatic localized functions cannot be written as a pr
uct of a function depending onrW and qW and Pauli’s spin
function @see Eq.~B2!#,

^rW,t,qW uTW ,m,n&Þ^rW,qW uTW ,n&us~ t !. ~3.19!

This equation demonstrates that, as a consequence o
postulates of the nonadiabatic Heisenberg model, the n
diabatic operatorHCb

n of Coulomb interaction has becom
spin dependent.HCb

n no longer commutes with the symmet
operatorsS(a) of the electron spin@see Eq.~B3!#,

@HCb
n ,S~a!#50 only for a5E ~3.20!

and, hence,

S~a!uGn&5uGn& only for a5E, ~3.21!

whereE denotes the identity operation. This equation co
firms the statement of the preceding Sec. III A that the no
diabatic ground stateuGn& possesses a spin structure. A
cording to Eqs.~3.5! and ~3.6! this spin structure has th
magnetic groupM of ferromagnetic iron.

IV. EXCHANGE ENERGY

The considerations in the preceding Sec. III may be su
marized by an if-then statement:if the postulates of the nona
diabatic Heisenberg model are satisfied within the FM ba
then the electrons of this band move in orbitals which a
adapted to the symmetry of the magnetic groupM. That
means that they moveas if there exists a ferromagnetic sp
structure with the groupM. From this we concluded tha
such a spin structure really exists. This conclusion, howe
contains the tacit assumption that an electron of the FM b
‘‘sees’’ the spin directions of the other electrons. Thus,
must assume that any localized electron of the FM b
moves in a spin-dependent potential generated by the o
electrons and that this movement occurs in such a ma
that the potential energy related to this spin-dependent
tential is minimum. In this case, the electrons of the FM ba
really move in orbitals which are adapted to the symmetry
the magnetic groupM.

The required spin-dependent potential exists: it is gen
ated by exchange interaction. The mentioned ‘‘potential
ergy related to this spin-dependent potential’’ is the e
d-

the
a-
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d,

r,
d

e
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change energy. The energyEn5^GnuHnuGn& of the
nonadiabatic ground state may be written as

En5E2Eex , ~4.1!

whereEex stands for the total exchange energy of the el
trons of the FM band within the spin-dependent potential
all the electrons at the Fermi level~and E denotes the re-
maining energy!. If the postulates of the nonadiabat
Heisenberg model are satisfied within the FM band, then
electrons occupying the nonadiabatic localized states m
in such a way that the exchange energyEex is maximum,

Eex5maximum, ~4.2!

for a spin structure with the magnetic groupM. In this case,
the electrons of the FM band move in orbitals which a
adapted to the symmetry ofM.

Consider the interatomic exchange interaction in the F
band. As is well known, fromHex @given in Eq.~2.3!# the
familiar Heisenberg exchange operator

Hs52
1

\2 (
TW 1ÞTW 2

^TW 1 ,TW 2uHCbuTW 2 ,TW 1&SW TW 1
SW TW 2

~4.3!

may be derived under the assumption that there is one e

tron at each atom.~The operatorsSW TW denote spin operators a

positionTW .! Also in the nonadiabatic system we may assu
the operator

Hex
n 5(

TW ,m

^TW 1 ,m1 ,n;TW 2 ,m2 ,nuHCbuTW 2 ,m18 ,n;TW 1 ,m28 ,n&

3c
TW 1m1

n†
c

TW 2m2

n†
c

TW 1m
28

n
c

TW 2m
18

n
~4.4!

to produce the required spin-dependent potential within
FM band.

As already mentioned, in the nonadiabatic localized sta

uTW ,m,n& the electrons no longer move in rigid orbitals in th
average potential of the other electrons, but move in a po
tial depending on which of the adjacent localized states
occupied and on the present positions of these electrons.
modified motion is labeled by the new quantum numbern.
The matrix elements of both the Hartree-Fock operatorHHF

and the operator of Coulomb repulsion energy,Hc
n @see Eq.

~2.3!#, will not markedly depend onn since they only depend

on the charge distributionsu^rW,t,qW uTW ,m,n&u2 in the local-
ized states. The matrix elements ofHex

n , on the other hand
have the same form as the matrix elements ofHz

n and, hence,
depend sensitively on the exact form of the localized fu
tions. Thus, the exchange energy

Eex
FM52^GnuHex

n uGn& ~4.5!

will also depend sensitively on the exact form of the ele
tronic orbitals within the nonadiabatic localized states. If t
postulates of the nonadiabatic Heisenberg model are sati
within the FM band, the electrons modify their orbita
within the nonadiabatic localized states in such a way t
the exchange energyEex

FM is maximum for a ferromagnetic
spin structure.
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13 800 PRB 59EKKEHARD KRÜGER
Though the simple exchange operatorHs in Eq. ~4.3! may
be derived fromHCb

n only under the strong@cf. Eq. ~3.19!#
approximation

^TW 1 ,m1 ,n;TW 2 ,m2 ,nuHCbuTW 2 ,m18 ,n;TW 1 ,m28 ,n&

'^TW 1 ,n;TW 2 ,nuHCbuTW 2 ,n;TW 1 ,n&dm
18m1

dm
28m2

, ~4.6!

we may assume that also in the nonadiabatic system the
change energyEex

FM is maximum if there is exactly one elec
tron at each atom. Hence, there are optimal conditions f
large exchange energyEex

FM in iron since Eq.~2.13! produces
a ground state in which a maximum number of atoms
occupied by only one electron of the FM band.

The condensation energyEf , i.e., the energy difference
between the paramagnetic and the ferromagnetic stat
given by

Ef5DE1Eex , ~4.7!

whereDE is given in Eq.~3.1!. Ef may be positive even if
Eex is negative.

V. TIME-INVERSION SYMMETRY

The operatorK of time inversion reverses the direction
a magnetic moment. Thus, the application ofK on any mag-
netic stateum& yields a state differing fromum&,

Kum&Þum&, ~5.1!

sinceK transforms the spin structure ofum& into the reversed
structure.

The nonadiabatic HamiltonianHn derived in this paper
does not commute withK,

@Hn,K#Þ0. ~5.2!

Hence, Hn has the correct magnetic symmetry, since
ground stateuGn& is not an eigenstate ofK,

KuGn&ÞuGn&. ~5.3!

Thus, from Eq.~5.2! alone it follows thatuGn& is magnetic.
On the other hand, there is evidence that all theeigen-

statesof the adiabatic HamiltonianH given in Eq.~2.1! do
not possess a magnetic structure becauseH commutes with
K. Therefore, the eigenstates ofH may be chosen such tha
they are eigenstates ofK, too. If the numberN of electrons is
even, all the eigenstatesuei& of K may be chosen in such
way10 that they satisfy

Kuei&5uei&; ~5.4!

i.e., they are not magnetic.
If N is odd, the~anti-unitary! operatorK does not posses

eigenstates and we cannot exclude in this way thatH has
magnetic eigenstates. However, a magnetic structure
state consisting of many electrons should be stable for b
odd and even numbersN of electrons. Hence, we may sup
pose that in any metal the complete adiabatic HamiltoniaH
does not possesseigenstatesin which the spins form a mag
netic structure.
x-

a

s

is

s

a
th

VI. CHOICE OF THE FERROMAGNETIC BAND
IN THE BAND STRUCTURE OF IRON

An energy band in a bcc metal is called a FM band
first, the Bloch functions of this band can be unitarily tran
formed into Wannier functions which are best localize
symmetry adapted to the magnetic groupM5I4/mm8m8 of
the ferromagnetic state, and situated at the atoms, an
second, these Wannier functions cannot be chosen to be
In bcc metals, FM bands may be identified by means of
Tables I, II, and III; see Appendix A. Within the nonadia
batic Heisenberg model, the FM band should be one of
narrowest~roughly! half-filled bands in the band structure o
the paramagnetic metal.

Consider the band structure of iron as given in Fig. 1. T
narrowest, partly filled band is characterized byH258 andP3.
Table III shows that the three fold-degenerate state withH258
symmetry splits into three states withZ2

1 , Z3
1 , andZ4

1 sym-
metry at the transition from the paramagnetic space gr
Oh

9 to the ferromagnetic space groupC4h
5 . In the same way,

P3 splits intoP1 andP2.

TABLE I. Single-valued representationsRkW of the eight possible
ferromagnetic bands in bcc metals in theC4h

5 notation of Table III.
Bands 3, 4, 7, and 8 form ferromagnetic bands in any band struc
since the Wannier functions related to these bands cannot be ch
to be real. It can be examined by Table II whether or not also ba
1, 2, 5, and 6 form ferromagnetic bands in a given band struct

1 G1
1 P1 X1

1 Z1
1 N1

2 G2
1 P2 X1

1 Z2
1 N1

3 G3
1 P3 X2

1 Z3
1 N1

4 G4
1 P4 X2

1 Z4
1 N1

5 G1
2 P2 X1

2 Z1
2 N2

6 G2
2 P1 X1

2 Z2
2 N2

7 G3
2 P4 X2

2 Z3
2 N2

8 G4
2 P3 X2

2 Z4
2 N2

TABLE II. Single-valued representationsRkW of eight bands in
the D4h

17 notation of Table III. Each band is related to the band
Table I given in the first column. Assume that in a given ba
structure a band of the symmetry type of bandj ( j 51,2,5,6) of
Table I is present. Assume further the symmetry of this band to
written in theD4h

17 notation of Table III, too. Bandj does not form
a ferromagnetic band if theD4h

17 notation of this band can be foun
among the two bands related to bandj in this Table II, because, in
this case, the Wannier functions may be chosen to be real.

1 G1
1 P1 X1

1 Z1
1 N1

1

G2
1 P2 X3

1 Z2
1 N2

1

2 G3
1 P3 X3

1 Z3
1 N1

1

G4
1 P4 X1

1 Z4
1 N2

1

5 G1
2 P3 X1

2 Z1
2 N1

2

G2
2 P4 X3

2 Z2
2 N2

2

6 G3
2 P1 X3

2 Z3
2 N1

2

G4
2 P2 X1

2 Z4
2 N2

2
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TABLE III. Compatibility relations betweenOh
9 , the space group of bcc paramagnetic iron, and the sp

groupsC4h
5 and D4h

17 . The space groupC4h
5 of the ferromagnetic state has the point groupC4h , and the

related ‘‘magnetic overgroup’’D4h
17 with the point groupD4h is given by Eq.~A8!. The first row lists the

irreducible representations at the symmetry points in the Brillouin zoneGc
v of Oh

9 in the notation of Bouck-
aert, Smoluchowski, and Wigner~Ref. 13! as given in Appendix 3-3 of Ref. 14. The following rows lis
representations at the corresponding points in the Brillouin zoneGq

v of C4h
5 andD4h

17 in the notation of Koster
et al ~Ref. 15! as given in Table 2.2 of Ref. 10. The representations in the same column are compatible
sense that a set of basis functions of the representation in the first row forms also a basis of the rep
tions below. It should be noted that the representations inGc

v andGq
v are different even if they have the sam

name.~a! PointsG in Gc
v andGq

v . The representations in parentheses are compatible with the represent
labeled by the minus.~b! PointH in Gc

v and pointZ in Gq
v . The representations in parentheses are compa

with the representations labeled by the minus.~c! PointsP in Gc
v andGq

v . ~d! PointN in Gc
v and pointsX and

N in Gq
v .

~a!

Oh
9 G1(G18) G2(G28) G12(G128 ) G258 (G25) G158 (G15)

C4h
5 G1

6 G2
6 G1

61G2
6 G2

61G3
61G4

6 G1
61G3

61G4
6

D4h
17 G1

6 G3
6 G1

61G3
6 G4

61G5
6 G2

61G5
6

~b!

Oh
9 H1(H18) H2(H28) H12(H128 ) H258 (H25) H158 (H15)

C4h
5 Z1

6 Z2
6 Z1

61Z2
6 Z2

61Z3
61Z4

6 Z1
61Z3

61Z4
6

D4h
17 Z1

6 Z3
6 Z1

61Z3
6 Z4

61Z5
6 Z2

61Z5
6

~c!

Oh
9 P1 P2 P3 P4 P5

C4h
5 P1 P2 P11P2 P21P31P4 P11P31P4

D4h
17 P1 P3 P11P3 P41P5 P21P5

~d!

Oh
9 N1 N2 N3 N4 N18 N28 N38 N48

C4h
5 X1

1 X2
1 X2

1 X1
1 X2

2 X1
2 X1

2 X2
2

N1 N1 N1 N1 N2 N2 N2 N2

D4h
17 X1

1 X2
1 X4

1 X3
1 X2

2 X1
2 X3

2 X4
2

N1
1 N2

1 N2
1 N1

1 N2
2 N1

2 N1
2 N2

2
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Table I shows that the Bloch functions withZ2
1 and P2

symmetry may form an FM band, namely, band 2 in t
table. This band can be connected toG258 as well as toG12

because both states subduce the stateG2
1 at the transition

from Oh
9 to C4h

5 ; see Table III. Hence, in both cases t
compatibility relations are satisfied inC4h

5 . ~In this contex, it
is meaningless that inOh

9 the compatibility relations are vio
lated betweenG andP in the first case and betweenG andH
in the second case.! We chooseG12 to belong to the FM band
in order to get a nearly empty band for the minority-sp
states and nearly filled band for the majority-spin states~It
should be noted that also a linear combination of the twoG2

1

Bloch functions subduced fromG258 and G12 may belong to
the FM band.!

According to Tables I and III both theN1 and N4 state
may belong to the FM band. In Fig. 1 theN4 state is chosen
sinceN1 is not connected toG12 betweenG andN.

VII. DISCUSSION

A. Stability of the ferromagnetic state

Iron possesses a narrow FM band which is nearly em
for the minority-spin states and nearly filled for the majorit
ty

spin states, see the preceding Sec. VI and Fig. 1. These
ings are interpreted within a nonadiabatic extension of
original Heisenberg model of magnetism, the ‘‘nonadiaba
Heisenberg model.’’ The aim of this paper is to report e
dence that the FM band causes the stability of the ferrom
netic state in iron.

Also within this new model it is the familiar exchang
mechanism which keeps the spins parallel in the ferrom
netic state. However, it is the special symmetry of the F
band whichactivatesa spin-dependent exchange mechani
producing the ferromagnetic spin structure. As a con
quence of the postulates of the nonadiabatic Heisenb
model, the Coulomb repulsion energy of the electrons of
FM band is lowered byDE @given in Eq.~3.1!#, if an ex-
change mechanism operates in iron which produces a fe
magnetic spin structure with the magnetic groupM. There-
fore, the electrons of the FM band modify their orbita
within the nonadiabatic localized states in such a way t
the exchange energyEex is maximum for a spin structure
with the groupM; see Eq.~4.2!.

The energy differenceEf between the paramagnetic an
the ferromagnetic states is not given by the exchange en
Eex alone, but by
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Ef5DE1Eex ;

see Sec. IV. Hence,Ef may be positive even ifEex is nega-
tive.

From Eq. ~4.2! we may conclude that the energetica
most favorable exchange mechanism is activated in iron.
nonadiabatic Heisenberg model does not specify this me
nism. Hence, there is no reason to assume that this me
nism is different from the mechanisms commonly conside
as decisive for ferromagnetism. However, interatomic
change coupling in the FM band should be an important p
of this exchange mechanism since a maximum numbe
atoms is occupied by only one electron of the FM ba
Hence, there are optimal conditions for a large excha
energy within the FM band.

Within the nonadiabatic Heisenberg model, the elect
system is described by the nonadiabatic HamiltonianHn

given in Eq.~2.10!. An important feature ofHn is that it has
the correct symmetry of the ferromagnetic state; see E
~3.5!, ~3.6!, and~3.7!. Especially,Hn does not commute with
the operatorK of time inversion.

There is evidence that a Hamiltonian commuting withK
does not possess magnetic eigenstates; see Sec. V. Fo
reason, I presume that any spontaneous magnetic structu
a metal is connected with a narrow, roughly half-fille
‘‘magnetic band’’ in the paramagnetic band structure of t
metal. In this context, an energy band is called a ‘‘magne
band’’ if the Bloch functions of this band can be unitari
transformed into Wannier functions that are best localiz
symmetry adapted to the magnetic group of the conside
spin structure, and situated at the atoms.

B. Condition for ferromagnetism

The FM band in iron is characterized by the represen
tions

G12,H258 ,N4 , and P3 ~7.1!

of the paramagnetic point groupOh . In the bcc transition
elements, a FM band occurs not so rarely as the antife
magnetic~AF! band and the superconducting band (s band!
which are proposed to cause the stability of the antiferrom
netic state in chromium4 and the superconducting state
several transition elements.3,5

The AF band of chromium is characterized by the rep
sentations

G258 , H258 , N1 , and P3 .

At the same time, this band forms a FM band. That mea
the Bloch functions of this band can be unitarily transform
either into basis functions of the representations

G3
1 , G4

1 , X5 , M20, A10, Z11, and R5

of the space groupD4h
6 of the spin density wave11 or into

basis functions of the representations

G2
1 , P2 , X1

1 , Z2
1 , and N1

of the space groupC4h
5 of the ferromagnetic state~see Ap-

pendix A!. Thus, within the nonadiabatic Heisenberg mod
chromium may either have an antiferromagnetic or a fer
e
a-
a-

d
-
rt
of
.
e
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,
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magnetic ground state. Obviously, the antiferromagne
state is energetically more favorable than the ferromagn
state.

The same statement applies to thes band in the bcc tran-
sition elements,

G258 , H258 , N2 , and P4 ,

which is also a FM band. Thus, a metal with a half-filleds
band like niobium may either have a ground state with sp
phonon interaction~which, at low temperatures, produces
superconducting state! or a ferromagnetic state. Obviously
also the state with spin-phonon interaction is energetic
more favorable than the ferromagnetic state.

The G12 state in the FM band of iron belongs neither
any AF nor to anys band. Hence, the electrons of this ba
have no other possibility but to form a ferromagnetic state
order that their Coulomb repulsion energy is lowered byDE.

On the basis of these findings I may give a provision
condition for ferromagnetism: a metal may have a stable
romagnetic ground state if, first, one of its narrowest, pa
filled paramagnetic energy bands is a FM band and if, s
ond, this band is neither an AF nor as band.
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APPENDIX A: WANNIER FUNCTIONS
OF THE FERROMAGNETIC BAND

The magnetic group of ferromagnetic iron,

M5I4/mm8m8, ~A1!

may be written as

M5G1K$C2xu0W %G ~A2!

if the magnetic moments point in thez direction. K is the
operator of time inversion,C2x denotes a rotation about thex

axis through the anglep, $C2xu0W % is a symmetry operation
@cf. Eq. ~A11!#, and

G5I4/m5C4h
5 ~A3!

is the space group of the magnetic state. The point grou

M054/mm8m8 ~A4!

of M has the form

M05G01KC2xG0 , ~A5!

where

G054/m5C4h ~A6!

is the point group ofG. Both groupsM and G have the
tetragonal Brillouin zoneGq

v .
The ferromagnetic groupM is a subgroup of the paramag

netic group

M P5Oh
91KOh

9 ~A7!
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of bcc iron. Furthermore, in this paper the ‘‘magnetic ov
group’’

M 85M1KM ~A8!

of M is considered.M 8 may be written as

M 85D4h
171KD4h

17 ~A9!

and, hence, has the tetragonal point group

M085D4h1KD4h . ~A10!

The elements

a5$auRW % ~A11!

of G consist of a point group operationa and a primitive

translationRW . The symmetry operatorsP(a) and the operator
K of time inversion act on a function of position,f (rW), ac-
cording to

P~a! f ~rW !5 f ~a21rW2a21RW ! ~A12!

and

K f ~rW !5 f * ~rW !, ~A13!

respectively.
Consider the band structure of Fe depicted in Fig. 1,

particular the FM band denoted by the heavy lines. T
Bloch functions of this band in paramagnetic iron shall
unitarily transformed into Wannier functions

w~rW2TW !5
1

AN
(

kW

BZ

e2 ikW•TW g~kW !wkW~rW !, ~A14!

which are situated at the lattice pointsTW . The sum runs over

the N wave vectorskW of the Brillouin zone~BZ! and g(kW )

denotes akW -dependent phase factor withug(kW )u51.
The FM band is characterized by the representations

G12, H258 , N4 , and P3 , ~A15!

of Oh
9 . These representations subduce representationsG

5C4h
5 according to

G12→G1
11G2

1 , P3→P11P2 , N4→X1
1 ,

H258 →Z2
11Z3

11Z4
1 , N4→N1; ~A16!

see Table III. Hence, at the points of symmetryG, P, X, Z,
and N of Gq

v the Bloch functions of the FM band may b
chosen in such a way that they are basis functions of
representations

G2
1 , P2 , X1

1 , Z2
1 , and N1,

respectively, of band 2 in Table I. Consequently,6,7 the phase

factor g(kW ) in Eq. ~A14! may be chosen in such a way th
the Wannier functions are~1! best localized and~2! symme-
try adapted toG according to

P~a!^rWuTW &5d~a!^rWuTW 8& for aPG, ~A17!
-

n
e

e

with the abbreviations

^rWuTW &5w~rW2TW ! ~A18!

and

TW 85aTW 1RW . ~A19!

The c numbersd(a)561 are the representatives ofG2
1 .

The corepresentationDG2
1 of M derived fromG2

1 is one
dimensional, too; see Table 7.15 of Ref. 10. Therefore,8,11

the phase factorg(kW ) even can be chosen in such a way th
the Wannier functions are symmetry adapted to the comp
magnetic groupM. Hence, in addition to Eq.~A17! we have

KP~a!^rWuTW &5d~Ka!^rWuTW 8& for aP$C2xu0W %G,
~A20!

with again TW 8 being given by Eq.~A19!. The c numbers
d(Ka)561 are representatives ofDG2

1 .
The Bloch functions of the bands listed in Table II can

unitarily transformed into best localized Wannier functio
which are symmetry adapted to the magnetic overgroupM 8
given by Eqs.~A8! and ~A9!. The representations~A15! of
the FM band subduce representations

G12→G1
11G3

1 , P3→P11P3 , N4→X3
1 ,

H258 →Z4
11Z5

1 , N4→N1
1 , ~A21!

of D4h
17 ; see Table III. Table II shows that neither of the tw

bands~in the third and fourth rows of this table! related to
band 2 is compatible with the symmetry of the FM ba
sinceP3 andZ4

1 do not belong to the same band in Table

Therefore,g(kW ) cannot be chosen in such a manner that E

~A17!, ~A20!, and K^rWuTW &5c^rWuTW & ~with ucu51) are satis-
fied at the same time. Hence we have

K^rWuTW &Þc^rWuTW & ~A22!

~with ucu51), since we assume that Eqs.~A17! and ~A20!
are satisfied.

Applying K on both sides of Eq.~A14!, we see that the

functions Kw(rW2TW ) are a unitary transformation of th
time-inverted Bloch functionsKwkW(rW). Because the Bloch
functions are eigenfunctions of the real Hartree-Fock Ham
tonian, always bothKwkW(rW) and wkW(rW) belong to the FM
band. Hence, the time-inverted Wannier functionsKw(rW

2TW ) as well as the Wannier functionsw(rW2TW ) form a basis
in the space spanned by the Bloch functions of the FM ba

Consequently, the functionsKw(rW2TW ) may be written as
linear combinations

K^rWuTW &5(
TW 8

^TW 8uKuTW &^rW uTW 8& ~A23!

of the Wannier functionsw(rW2TW ), with

(
TW 8

u^TW 8uKuTW &u251 ~A24!
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and at least two nonvanishing coefficients^TW 1uKuTW & and

^TW 2uKuTW &.
Equations~A17!, ~A20!, and ~A23! also may be written

for the fermion operatorsc
TW s

†
in Eq. ~2.2!,

P~a!c
TW s

†
P21~a!5d~a!c

TW 8s

†
for aPG, ~A25!

KP~a!c
TW s

†
P21~a!K215d~Ka!c

TW 8s

†
for aP$C2xu0W %G,

~A26!

with ud(a)u5ud(Ka)u51 and

Kc
TW s

†
K215(

TW 8
^TW 8uKuTW &cTW 8s

†
, ~A27!

with at least two nonvanishing summands.

APPENDIX B: NONADIABATIC LOCALIZED FUNCTIONS
OF THE FERROMAGNETIC BAND

In this section the properties of the nonadiabatic localiz
functions of the FM band will be given as far as they a
determined within the nonadiabatic Heisenberg model. Fr
these properties, the important equation~B21! will be de-
rived.

Each localized stateuTW & represented by the Wannier fun

tions w(rW2TW ) given by Eq.~A18! may be occupied by an
electron with spin-down or spin-up direction. We put

^rW,tuTW ,s&5^rWuTW &us~ t !, ~B1!

where

us~ t !5dst ~B2!

stands for Pauli’s spin functions with the spin quantum nu
ber s56 1

2 and the spin coordinatet56 1
2 . A symmetry op-

erator S(a) of the three-dimensional rotation groupO(3)
acts onus(t) according to10

S~a!us~ t ![us~a21t !5(
s8

ds8s~a!us8~ t ! for aPO~3!,

~B3!

where the matrices@ds8s(a)# are the representatives of th
two-dimensional double-valued representationD1/2 of O(3).
The matrices@ds8s(a)# may be chosen diagonal foraPG0
and are assumed to be diagonal. In this case, the spin lie
z direction.

The effect of the time inversion operatorK is given by

Kus~ t !5gsu2s~ t !, ~B4!

with12

g61/257 i . ~B5!

The localized functionŝrW,tuTW ,s& are replaced by nonadia
batic localized functions,

^rW,tuTW ,s&→^rW,t,qW uTW ,m,n&, ~B6!

which are orthonormal according to
d

m

-

in

^TW 8,m8,n8uTW ,m,n&

[(
t
EE ^TW 8,m8,n8urW,t,qW &^rW,t,qW uTW ,m,n&drWdqW

5dTW 8TW dm8mdn8n . ~B7!

The quantum numbern5n labels the functions satisfying

Eqs.~2.13! and~4.2!. In principle,n may depend onm or TW .
Equations~B11! and~B12! show thatn may take two differ-
ent valuesn1 andn2,

n5H n1 for m5 1
2 ,

n2 for m52 1
2 ,

~B8!

since the two sets of functions belonging ton1 and n2, re-
spectively, are not connected by symmetry. For instancen1
might belong to a moderate andn2 to a more heavy motion
of the center of mass. In the following,n is given by Eq.
~B8! andn may take the two valuesn1 andn2 independently
of m.

From Eqs.~3.5! and~3.6! it follows that the nonadiabatic
localized functions have the same symmetry as the adiab
functions. However, the symmetry operatorsP(a) now act
on rW,t, and on the new coordinateqW according to

P~a!^rW,t,qW uTW ,m,n&

5^a21rW2a21RW ,a21t,a21qW uTW ,m,n&, ~B9!

and the application ofK yields

K^rW,t,qW uTW ,m,n&5gs^rW,t,qW uTW ,2m,n&* . ~B10!

Suppressing from now on the^rW,t,qW u representation, from
Eqs.~A17!, ~A20!, and~B3! we get

P~a!uTW ,m,n&5dm~a!uTW 8,m,n& for aPG ~B11!

and

KP~a!uTW ,m,n&5dm~Ka!uTW 8,m,n&, for aP$C2xu0W %G,
~B12!

with T8 being given in Eq.~A19!. All the c numbersdm(a)
anddm(Ka) have the absolute value 1,

udm~a!u5udm~Ka!u51, ~B13!

since they are the representatives of the two one-dimensi
corepresentations~related to m56 1

2 ) subduced by the
corepresentationD1/23DG2

1 of M0.
Like the adiabatic localized states, the nonadiabatic loc

ized statesuTW ,m,n& arise by a unitary transformation from

nonadiabatic Bloch statesukW ,m,n& forming a single~with
m56 1

2 doubly degenerate! energy band labeled byn. As in
the adiabatic case, the nonadiabatic Bloch functions
eigenfunctions of a real operator. Hence, always bo

ukW ,m,n& andKukW ,m,n& belong to the same bandn. Thus, the

states KuTW ,m,n& are linear combinations of the state
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uTW 8,m8,n& with m852m as a consequence of Eq.~B10!.
The adiabatic equations~A23! and ~A24! now may be writ-
ten as

KuTW ,m,n&5 (
TW 8n8

uTW 8,2m,n8&^TW 8,2m,n8uKuTW ,m,n&,

~B14!

with

(
TW 8

u^TW 8,2m,nuKuTW ,m,n&u251 ~B15!

and

^TW 8,2m,n8uKuTW ,m,n&50 ~B16!

for n8Þn as a consequence of the orthogonality relat
~B7!.

Let

FA5(
TW m

uTW ,m,n&^TW ,m,nu ~B17!

be the operator projecting on the spaceA spanned by the

statesuTW ,m,n&. That means thatA consists of the nonadia
batic states satisfying Eqs.~2.13! and~4.2!. These states be
f

n

long to the two different bandsn1 and n2 for m51 1
2 and

m52 1
2 , respectively. The statesFAKuTW ,m,n& may be writ-

ten as

FAKuTW ,m,n&5(
TW 8

uTW 8,2m,n&^TW 8,2m,nuKuTW ,m,n&;

~B18!

see Eq.~B10!. From Eqs.~B8! and ~B16! it follows that all
the coefficients in Eq.~B18! vanish,

^TW 8,2m,nuKuTW ,m,n&50, ~B19!

if ~and only if! n1Þn2. Hence, we have

KuTW ,m,n&¹A ~B20!

if n1Þn2.
The important~see Sec. III B! equation~B20! also may be

written for the nonadiabatic fermion operators in Eq.~2.11!,

Kc
TW m

n†
K21¹A ~B21!

if n1Þn2, where hereA is defined by the projection operato

FA5(
TW m

c
TW m

n†
c

TW m

n
. ~B22!
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11E. Krüger, Phys. Rev. B36, 2263~1987!.
12H.-W. Streitwolf,Gruppentheorie in der Festko¨rperphysik~Aka-
demische Verlagsgesellschaft Geest & Portig KG, Leipz
1967!.

13L.P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.50,
58 ~1936!.

14J. C. Slater,Quantum Theory of Molecules and Solids~McGraw-
Hill, New York, 1965!, Vol. 2.

15G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz,Prop-
erties of the Thirty-Two Point Groups~MIT Press, Cambridge,
MA, 1963!.

16J. Callaway and C.S. Wang, Phys. Rev. B16, 2095~1977!.


