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Molecular-dynamics calculation of the thermal conductivity of vitreous silica
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We use extensive classical molecular-dynamics simulations to calculate the thermal conductivity of a model
silica glass. Apart from the potential parameters, this is done with no other adjustable quantity and the standard
equations of heat transport are used directly in the simulation box. The calculations have been done between 10
and 1000 K and the results are in good agreement with the experimental data at temperatures above 20 K. The
plateau observed around 10 K can be accounted for by correcting our results taking into account finite-size
effects in a phenomenological wgy50163-18209)00121-4

I. INTRODUCTION lier studie§ in which the plates were treated like hard walls
...and has mainly been applied to the calculation of the thermal
. "%onductivity in one- or two-dimensional systef®.Never-
and unusual features which have been well known for quitghajess very recently Oligschleger and Schapplied the

some time’. These features are apparent in the specific healame method in a study of heat transport phenomena in crys-
and the thermal conductivity but we would like to focus here;g)iine and glassy samplémainly selenium! In parallel to

on the thermal conductivityx. The temperature dependence these studies which can be calledsitu, other methods re-

of x(T) can be separated in three distinct temperature dolying on the use of the density and heat flux correlation

mains: functions® or on the Kubo and Greenwood-Kubo
(i) At very low temperature T<1 K) the thermal con- formalism?® have been developed in order to determine the

ductivity increases likeT2. This increase can be explained thermal conductivity of solids. Our results for the thermal

within the tunneling modé&lwhich was proposed almost 30 conductivity obtained with the BKS potential compare rea-

years ago. sonably well with the experimental data. First of all, the
(i) At intermediate temperatures €r<20 K) the ther-  order of magnitude is correct above 20 K and, at least in the

mal conductivity exhibits a “plateau” for which several ex- range 20—-400 K, a nice quantitative agreement is obtained.

planations have been givérAn extension of the tunneling Furthermore, by taking care of finite-size corrections in a

model, the soft-potential model has been proposed and givé&€ry simple phenomenological way, we are able to reproduce

a coherent description of the plateau by introducing the conthe plateau around 10 K. Of course, the very low-

cept of “soft vibrations.”*° temperaturd? behavior, which is known to be due to quan-
(ii ) At high temperature =30 K), «(T) rises smoothly tum effects, is out of the scope of such a classical calcula-

and seems to saturate to a limiting valke unlike crystals  tion.

wherex(T)~1/T at elevated temperature. Recently this sec- This paper is organized in the following way. In Sec. II

ond rise of the thermal conductivity has also been explainete describe thenodus operandive have used to obtain the

within the soft-potential mod&which appears to be able to thermal conductivity. In Sec. Ill we present first the results

account for all the thermal anomalies of glasses over th@btained directly from the MD simulations. Then we show

whole temperature range. the effect of finite-size corrections on these results and dis-
Our aim here is not to propose a new or alternative explacuss our findings. In Sec. IV we draw the major conclusions.

nation of the above-mentioned anomalies. The purpose is to

perform a molecular-dynamid$1D) simulation on a model Il. MODUS OPERANDI

silica glass using a very widely used interaction potential

[the so-called “BKS” (van Beest, Kramer, and van Santen ~ Except the determination ok(T), the simulations are

potential] without any preconception of the model able to Standard classical MD calculations on a microcanonical en-

explain the thermal anomalies of silica. This means that wgemble of 648 particles (216 Sj@nolecule$ interacting via

do not add or inject am priori quantity in the potential to the BKS potential. As in a previous stud¥the particles are

reproduce a specific model. We use the standard definition gfacked in a cubic box of edge length=21.48 A (the den-

the heat transport coefficients that we calculate directly irsity is approximately equal to 2.18 g/émon which periodic

our simulation box. In fact we introduce artificially inside the boundary conditions are applied to simulate a macroscopic

system a “hot” and a “cold” plate which therefore induce a sample. The equations of motion are integrated using a

heat flux. This flux creates a temperature gradient and ondeurth-order Runge-Kutta algorithm with a time steyt

the steady state has been reached we can determine the thequal to 0.7 fs. The glassy samples are obtained after a

mal conductivity. By using plates compatible with the peri- quench from the liquid stateT&7000 K) at a constant

odic boundary conditions we are able to calculate the thermajuenching rate of 2:810* K/s.

conductivity directly during the simulations without any ad-  The principle of the thermal conductivity determination is

ditional parameter. This technique has been inspired by eaiustrated in Fig. 1. We consider two platés. and P,
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Lo ¢ +Ae | box into Ng “slices” along Ox in which the temperature is
| _Ae f calculated at each iteration. Due to the periodic boundary
' Clegl®: %, conditions we can concentrate only on tNg/2 slices be-
o 5 .r O:) }, io tweenx= —L/4 andx=L/4 and have a better determination
o o~ 10 of the temperature in these slices since by symmetry argu-
ol o 23] o | = L& ments these slices are equivalent to M2 slices located
o' i le clee.: O outside[ —L/4,L/4]. We can therefore determine the tem-
9 ® peratureT; (i=1,..NJ2) of each slice at each iteration. By
00 9e Olef :"io0 averaging eachi; over a large number of iterations to kill the
L/4 L/4 5% unavoidable large temperature fluctuatiddae to the small

average number of particles in each sljcae are able to
FIG. 1. Schematic representation of the method used to detedetermine after which simulation timethe averaged profile
mine the thermal conductivity. More details can be found in theof T(x) can reasonably well be approximated by a straight
text. line. After that time we estimat@(x) using a first-order
least-square fit of the averagéds, the slope of which will
perpendicular to th©x axis and located at=—L/4 andX  give us the temperature gradient. At that point all the quan-
=+L/4. These plates have a widthfalongOx and their  tities necessary to calculateare determined.
surface is.%. The positions of these plates permit to keep the  Concerning the “practical details” of the simulation we
periodic boundary conditions without introducing an asym-have checked that the results are independent on the choice
metry in the system. This has the advantage, compared  Ae and for the other quantities we have used a compro-
other Studleg in which the introduction of the thermostatic mise between Computer time and accuracy of the results.
plates breaks the symmetry, to use a relatively small numbe#ere are the values used in our simulations: the width of the
Of partic|es. At eaCh iteration the pal’tiC|eS Wh|Ch are inSidep|ateS has been taken equa' to=21 A Wh|Ch means that
P_ andP. are determined and their number is, respectively gpproximately 30—40 atoms are inside the plates at each it-
N_ andN, . Once these particles are determined, a constardration. The temperature gradient has been determined on
energyAe is subtracted from the energy of the particles in-N/2=six slices, each slice containing approximately 100
sideP_ and added to the energy of the particlesPin. By  particles. « has been determined on samples which have
imposing the heat transfer in this manner we insure a conpeen saved all along the quenching procedure and therefore
stant heat flux per unit ared,,'® which is equal to have different temperaturég To have the same treatment
Ae/(2L2At) (the factor 2 comes from the fact that the heatfor each sample we have fixefle to 1% of kgT which
flux coming from the hot plate splits equally into two parts to appears to be a good choice. The temperature gradients ob-
reach the cold plaje The energy modification is done by tained this way are small enough to insure the validity of Eq.
rescaling the velocities of the particles inside the plates. Nev¢4). The most problematic choice is the simulation time
ertheless, to avoid an artificial drift of the kinetic energy thiS|ndeed in order to reach the Steady state one needs |0ng MD
has to be done with the total momentum of the plates beinguns. For us a typical run consists of 50 000 MD sté}s
conserved. For a particleinside P_ or P, the modified pg) directly after the quench during which the average tem-
velocity is given at each iteration by perature is fixed and the heat transfer is switched on. Then
, we perform 450 000 supplemental ste3d5 ps with only
Vi =Vet a(Vi—Vg) (D) the heat transfer but no other constraints during which the
wherevg is the velocity of the center of mass of the en- résults are collected and averaged. After this time the tem-
semble of particles in the plate and perature gradient should have converged and the value of
should be constant. As we can see in Fig. 2, this can be

Ae considered to be qualitatively true for the samples above 10
a= 1x—> (2 K but certainly not for the low-temperature systems. In fact,
Ec at low temperature, longer rufg million steps(700 pg] are

necessary and still the convergence is not pefiecs inter-
esting to note that though our method converges slowly, it
still converges faster than the calculationxdt) given by a
steady state experiment without a temperature gradiReit

17, p. 61]. It is also worth noticing that the characteristic
sigmoidal shape of the temperature profile obsentediais
consistent to what is expected in the intermediate regime
where only heat transport over a small distance close to the
plates is effective. In the following, only the results above 8
J K will be reported.

4

depending on whether the particles are insiie or P_ .
The relative kinetic energEE is given by

1 1
E5=§ EI myv7e— > EI mVg. ©)

Following the standard definition of the transport
coefficientd® the thermal conductivity is given by

T aTlox

. . . 1. RESULTS
wheredT/dx is the temperature gradient alo@x. This for-

mula, known as Fourier's law of heat flow, is only valid  The results obtained for the thermal conductivity as a
when a stable, linear temperature profile is obtained in théunction of temperature in our model silica glass are repro-
system. To calculate the gradient we divide the simulatiorduced in Fig. 3 and compared to experimental data collected
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16 contributionst® In a large intermediate range, 20—400 K, the
agreement between the calculated and experimental values is
very good. Indeed in the simulatianalso increases in this
- temperature range unlike what is found in crystalline
1123 samples. The major discrepancy between the simulation and
the experiment can be seen between 8 and 20 K since we do
not find the characteristic plateau in the thermal conductivity.
In the following, we would like to argue that this discrepancy

{14

110

o1 is essentially due to finite size effects.
In our cubic finite simulation box with periodic boundary
29l (@ 1 I @ {90 conditions, the components of thewave vectors take dis-
crete values of the forrk,=n,2#x/L, wheren, is a relative
1 39%‘ integer(and similarly for the other space directignand one
hd cannot find, in principle, propagative phonons with a fre-
{88 guency smaller than a lower cutoé, which can be esti-
mated by 2rv+/L, wherev+ is the transverse sound veloc-
e ity. Considering the experimental valuev:=3.75
x[A] x[A] X 10° cm/s for silic&° this givesw /2w=1.5 THz[in prac-

tice, when diagonalizing the dynamical matrix in our low-
temperature sample, we find, similarly to a previous work
done on the same systéna slightly lower first nonzero
frequencyw/27m=1.2 THz, in agreement with the existence
of an excess of moddmaybe nonpropagatiyethe so-called
boson peak? in this frequency range” Therefore using the
between 1 and 100 K and up to 1000 K? The first obser- correspondencéw=3kgT which gives the average phonon
vation is that our simulations with the BKS potential give the frequencyw of the phonons excited at temperatdrethere
correct order of magnitude over the whole temperature rangere certainly not enough phonons excited at temperatures
(except at very low temperatujewith no adjustable param- below T,=19 K in our box to be able to reproduce the ex-
eters apart from the “technical parameters” described abov@erimental curve correctly. In Fig. 3, the departure between
and the constitutive potential parameters. At very high temour simulations and experiments is actually seen at a tem-
peratures, say above 500 K, one observes a more markeerature of the order of 20 K, in good agreement with this
saturation ofx(T) than in the experiments. This might be analysis.

explained by the fact that other contributions than the one To try to put this argument on more quantitative grounds,
described here can occur in the experiments at such higlet us assume that the thermal conductivity is given by the
temperatures. It is known that the radiative contributionsusual formuld*
(photon transpoytin particular increase quickly in this tem-

perature range and can become of the order of the phonon

FIG. 2. Values of the temperature as a functiorx af the slices
located betweenx=—L/4 andx=L/4 for four different samples
and the corresponding least square linear(fi: T~1 K, (b) T
~11 K, (c) T=27 K, and(d) T~89 K.

K—§CU /, (5)

the velocity and mean free path of the phonons, respectively.
When applying such a formula to glasses one has to be care-
ful because of localization effects. Obviouslyand/” are the
® characteristics of the “propagative” phonons, i.e., those
? f which really contribute to the transport phenomena. Conse-
o quently the heat capacity to be considered should be only
og? due to the contribution of these phonons and thereface
.D.Dﬁg* cording to other authof$) should exhibit at low temperature
1ol g o | the usual Debye behavidthe same as in crystalslf we
% assume also that the lack of phonons in our box, i.e., a wrong
® value ofC, is the essential cause for the underestimated cal-
* O)Simulation (inite size correction) culated value ok, a very simple and crude way to take care
;gmggg‘(m fnite size comection) of this is to multiply our simulation results by a corrective
factor C.,/C,, which can be estimated by taking f@x,, and
T Cy, the heat capacities calculated in the Debye approximation
04 .. , for an infinite system and a finite cubic box of edgere-
1 10 100 1000 spectively. To calculate this temperature-dependent factor
TIK] we have used the standard formdafas

| | l whereC is the heat capacity per unit volume, ancand /
ned ®
®
o Y

10.0 |

Thermal Conductivity [10~° W em™ K]

FIG. 3. Log-log plot of the thermal conductivity as a function of

© 2
temperature in silica®: experiment; *: simulations{]: simula- C.= sz(ioﬁL Eg)f D( : hwl2kgT ) wzdw, (6)
tions with finite-size corrections. 2m°\vy v/ Jo \sinh(fw/2kgT)
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k
Cb:f%% E

( fv pkl/2kgT )2 determination has been done directly inside the MD scheme
k

SN KI2kgT) (7)  with the use of the standard equations governing the macro-
P B scopic transport coefficients and no preconceived model has
with w3 =(N/L%)1872(1/lv3+2/v3) 1. In the expression of been assumed. Moreover, it turns out that this method has
C, the double sum runs over the three polarizatigns considerable advantagésspecially concerning the length of
=L,T,,T, and over the firsN k vectors(quantized as indi- the simulations compared to the standard methods usually
cated aboveof lowest normk=|k|. For N andL we have implemented to calculate the transport coeffici¢htThe
taken the simulation valug$= 648 andL =21.48 A and for calculated values of the thermal conductivity are in good
the sound velocities the experimental values=5.9 agreement with the experimental data at high temperature

X 10° cm/s antb. =v. = 3.75x 10° cm/s?° When correct- ('_r>20 K) and by including finite-size correctio_ns in a
! 2 glmple way we are able to reproduce the plateau in the ther-

ing our numerical data this way, we obtain the open square - . .
represented in Fig. 3 which turn out to be in very good agreefnal conductivity around 10 K, which has been the topic of

ment with the experimental results in the plateau region. Oiseveral interpretations in the literatJtdhe agreement be-

course, our reasoning is very crude since it assumes thiween the calculated and the experimental values of the ther-

finite-size corrections affect only the heat-capacity contripyMal conductivity is even more striking when taking into ac-

tion in the expression ok [Eq. (5)] and that the harmonic count the ultrafast que.nching rate used to generate our
approximation holds for the propagative phonons in tha{;\morphous samples. This shows once more the good quality

temperature range, however we think that the agreement witﬂf the BKS potential which permits to reproduce the thermal

the data cannot be fortuitous. anomalies of vitreous silica with no additional parameters.

It is unfortunate that we could not obtain more reliable Of course, our arguments on the finite-size effects should
results at temperatures lower than 8(#ue to the impossi- be tested In the future by running larger sa_mplles. Nevgrlthe—
bility to reach the permanent regiményway, after correc- less, the simple phenomenolpgmal correction Is so efficient
tion, these results would certainly give larger values #or that one can reasonably claim that the initial discrepancy
than the experiments since it is known that, at very low temPetween the calculated and experimental values of the ther-

peratures, the propagative phonons start to be scattered | conductivity is indeed due to finite-size effects and not

the quantum two-level systefiand therefore should have a 0 a weakness of the method. Therefore we believe that this

lower mean free path than the one obtained in a classica“aChnique is a good way to calculate the thermal properties

calculation like the one performed here. of materials directly inside molecular-dynamics simulations.

Most of the numerical calculations have been done on the
IBM/SP2 computer at CNUSGCenter National Universi-
In conclusion, we have presented the results of an extertaire Sud de Calcyl Montpellier. We would like to thank
sive classical molecular-dynamics simulation aimed to deterClaire Levelut and Jacques Pelous for very interesting com-
mine the thermal conductivity in a model silica glass. Thisments.
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