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Molecular-dynamics calculation of the thermal conductivity of vitreous silica

Philippe Jund and Re´mi Jullien
Laboratoire des Verres–UniversitéMontpellier 2, Place Euge`ne Bataillon, Case 069, 34095 Montpellier, France

~Received 1 February 1999!

We use extensive classical molecular-dynamics simulations to calculate the thermal conductivity of a model
silica glass. Apart from the potential parameters, this is done with no other adjustable quantity and the standard
equations of heat transport are used directly in the simulation box. The calculations have been done between 10
and 1000 K and the results are in good agreement with the experimental data at temperatures above 20 K. The
plateau observed around 10 K can be accounted for by correcting our results taking into account finite-size
effects in a phenomenological way.@S0163-1829~99!00121-6#
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I. INTRODUCTION

The thermal properties of glasses exhibit some spec
and unusual features which have been well known for q
some time.1 These features are apparent in the specific h
and the thermal conductivity but we would like to focus he
on the thermal conductivityk. The temperature dependen
of k(T) can be separated in three distinct temperature
mains:

~i! At very low temperature (T<1 K) the thermal con-
ductivity increases likeT2. This increase can be explaine
within the tunneling model2 which was proposed almost 3
years ago.

~ii ! At intermediate temperatures (2<T<20 K) the ther-
mal conductivity exhibits a ‘‘plateau’’ for which several ex
planations have been given.3 An extension of the tunneling
model, the soft-potential model has been proposed and g
a coherent description of the plateau by introducing the c
cept of ‘‘soft vibrations.’’4,5

~iii ! At high temperature (T>30 K), k(T) rises smoothly
and seems to saturate to a limiting valuek` unlike crystals
wherek(T);1/T at elevated temperature. Recently this s
ond rise of the thermal conductivity has also been explai
within the soft-potential model6 which appears to be able t
account for all the thermal anomalies of glasses over
whole temperature range.

Our aim here is not to propose a new or alternative exp
nation of the above-mentioned anomalies. The purpose
perform a molecular-dynamics~MD! simulation on a mode
silica glass using a very widely used interaction poten
@the so-called ‘‘BKS’’ ~van Beest, Kramer, and van Sante!
potential7# without any preconception of the model able
explain the thermal anomalies of silica. This means that
do not add or inject ana priori quantity in the potential to
reproduce a specific model. We use the standard definitio
the heat transport coefficients that we calculate directly
our simulation box. In fact we introduce artificially inside th
system a ‘‘hot’’ and a ‘‘cold’’ plate which therefore induce
heat flux. This flux creates a temperature gradient and o
the steady state has been reached we can determine the
mal conductivity. By using plates compatible with the pe
odic boundary conditions we are able to calculate the ther
conductivity directly during the simulations without any a
ditional parameter. This technique has been inspired by
PRB 590163-1829/99/59~21!/13707~5!/$15.00
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lier studies8 in which the plates were treated like hard wa
and has mainly been applied to the calculation of the ther
conductivity in one- or two-dimensional systems.9,10 Never-
theless, very recently Oligschleger and Scho¨n applied the
same method in a study of heat transport phenomena in c
talline and glassy samples~mainly selenium!.11 In parallel to
these studies which can be calledin situ, other methods re-
lying on the use of the density and heat flux correlati
functions12 or on the Kubo and Greenwood-Kub
formalism13 have been developed in order to determine
thermal conductivity of solids. Our results for the therm
conductivity obtained with the BKS potential compare re
sonably well with the experimental data. First of all, th
order of magnitude is correct above 20 K and, at least in
range 20–400 K, a nice quantitative agreement is obtain
Furthermore, by taking care of finite-size corrections in
very simple phenomenological way, we are able to reprod
the plateau around 10 K. Of course, the very lo
temperatureT2 behavior, which is known to be due to qua
tum effects, is out of the scope of such a classical calcu
tion.

This paper is organized in the following way. In Sec.
we describe themodus operandiwe have used to obtain th
thermal conductivity. In Sec. III we present first the resu
obtained directly from the MD simulations. Then we sho
the effect of finite-size corrections on these results and
cuss our findings. In Sec. IV we draw the major conclusio

II. MODUS OPERANDI

Except the determination ofk(T), the simulations are
standard classical MD calculations on a microcanonical
semble of 648 particles (216 SiO2 molecules! interacting via
the BKS potential. As in a previous study,14 the particles are
packed in a cubic box of edge lengthL521.48 Å ~the den-
sity is approximately equal to 2.18 g/cm3) on which periodic
boundary conditions are applied to simulate a macrosco
sample. The equations of motion are integrated usin
fourth-order Runge-Kutta algorithm with a time stepDt
equal to 0.7 fs. The glassy samples are obtained afte
quench from the liquid state (T'7000 K) at a constan
quenching rate of 2.331014 K/s.

The principle of the thermal conductivity determination
illustrated in Fig. 1. We consider two platesP2 and P1
13 707 ©1999 The American Physical Society
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perpendicular to theOx axis and located atx52L/4 andx
51L/4. These plates have a width 2d along Ox and their
surface isL2. The positions of these plates permit to keep
periodic boundary conditions without introducing an asy
metry in the system. This has the advantage, compare
other studies15 in which the introduction of the thermostat
plates breaks the symmetry, to use a relatively small num
of particles. At each iteration the particles which are ins
P2 andP1 are determined and their number is, respective
N2 andN1 . Once these particles are determined, a cons
energyDe is subtracted from the energy of the particles
sideP2 and added to the energy of the particles inP1 . By
imposing the heat transfer in this manner we insure a c
stant heat flux per unit areaJx ,16 which is equal to
De/(2L2Dt) ~the factor 2 comes from the fact that the he
flux coming from the hot plate splits equally into two parts
reach the cold plate!. The energy modification is done b
rescaling the velocities of the particles inside the plates. N
ertheless, to avoid an artificial drift of the kinetic energy th
has to be done with the total momentum of the plates be
conserved. For a particlei inside P2 or P1 the modified
velocity is given at each iteration by

vi85vG1a~vi2vG! ~1!

where vG is the velocity of the center of mass of the e
semble of particles in the plate and

a5A16
De

Ec
R

, ~2!

depending on whether the particles are insideP1 or P2 .
The relative kinetic energyEc

R is given by

Ec
R5

1

2 (
i

mivi
22

1

2 (
i

mivG
2 . ~3!

Following the standard definition of the transpo
coefficients16 the thermal conductivity is given by

k52
Jx

]T/]x
, ~4!

where]T/]x is the temperature gradient alongOx. This for-
mula, known as Fourier’s law of heat flow, is only val
when a stable, linear temperature profile is obtained in
system. To calculate the gradient we divide the simulat

FIG. 1. Schematic representation of the method used to de
mine the thermal conductivity. More details can be found in
text.
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box into Ns ‘‘slices’’ along Ox in which the temperature is
calculated at each iteration. Due to the periodic bound
conditions we can concentrate only on theNs/2 slices be-
tweenx52L/4 andx5L/4 and have a better determinatio
of the temperature in these slices since by symmetry a
ments these slices are equivalent to theNs/2 slices located
outside @2L/4,L/4#. We can therefore determine the tem
peratureTi ( i 51,...Ns/2) of each slice at each iteration. B
averaging eachTi over a large number of iterations to kill th
unavoidable large temperature fluctuations~due to the small
average number of particles in each slice!, we are able to
determine after which simulation timet the averaged profile
of T(x) can reasonably well be approximated by a strai
line. After that time we estimateT(x) using a first-order
least-square fit of the averagedTi ’s, the slope of which will
give us the temperature gradient. At that point all the qu
tities necessary to calculatek are determined.

Concerning the ‘‘practical details’’ of the simulation w
have checked that the results are independent on the ch
of De and for the other quantities we have used a comp
mise between computer time and accuracy of the resu
Here are the values used in our simulations: the width of
plates has been taken equal to 2d51 Å which means that
approximately 30–40 atoms are inside the plates at eac
eration. The temperature gradient has been determined
Ns/25six slices, each slice containing approximately 1
particles. k has been determined on samples which ha
been saved all along the quenching procedure and there
have different temperaturesT. To have the same treatmen
for each sample we have fixedDe to 1% of kBT which
appears to be a good choice. The temperature gradients
tained this way are small enough to insure the validity of E
~4!. The most problematic choice is the simulation timet.
Indeed in order to reach the steady state one needs long
runs. For us a typical run consists of 50 000 MD steps~35
ps! directly after the quench during which the average te
perature is fixed and the heat transfer is switched on. T
we perform 450 000 supplemental steps~315 ps! with only
the heat transfer but no other constraints during which
results are collected and averaged. After this time the te
perature gradient should have converged and the valuek
should be constant. As we can see in Fig. 2, this can
considered to be qualitatively true for the samples above
K but certainly not for the low-temperature systems. In fa
at low temperature, longer runs@1 million steps~700 ps!# are
necessary and still the convergence is not perfect@it is inter-
esting to note that though our method converges slowly
still converges faster than the calculation ofk(t) given by a
steady state experiment without a temperature gradient~Ref.
17, p. 61!#. It is also worth noticing that the characterist
sigmoidal shape of the temperature profile observed at 1 K is
consistent to what is expected in the intermediate reg
where only heat transport over a small distance close to
plates is effective. In the following, only the results above
K will be reported.

III. RESULTS

The results obtained for the thermal conductivity as
function of temperature in our model silica glass are rep
duced in Fig. 3 and compared to experimental data collec

r-
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between 1 and 100 K,18 and up to 1000 K.19 The first obser-
vation is that our simulations with the BKS potential give t
correct order of magnitude over the whole temperature ra
~except at very low temperatures! with no adjustable param
eters apart from the ‘‘technical parameters’’ described ab
and the constitutive potential parameters. At very high te
peratures, say above 500 K, one observes a more ma
saturation ofk(T) than in the experiments. This might b
explained by the fact that other contributions than the o
described here can occur in the experiments at such
temperatures. It is known that the radiative contributio
~photon transport! in particular increase quickly in this tem
perature range and can become of the order of the pho

FIG. 2. Values of the temperature as a function ofx in the slices
located betweenx52L/4 and x5L/4 for four different samples
and the corresponding least square linear fit:~a! T'1 K, ~b! T
'11 K, ~c! T'27 K, and~d! T'89 K.

FIG. 3. Log-log plot of the thermal conductivity as a function
temperature in silica:d: experiment; *: simulations;h: simula-
tions with finite-size corrections.
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contributions.19 In a large intermediate range, 20–400 K, t
agreement between the calculated and experimental valu
very good. Indeed in the simulationk also increases in this
temperature range unlike what is found in crystalli
samples. The major discrepancy between the simulation
the experiment can be seen between 8 and 20 K since w
not find the characteristic plateau in the thermal conductiv
In the following, we would like to argue that this discrepan
is essentially due to finite size effects.

In our cubic finite simulation box with periodic boundar
conditions, the components of thek wave vectors take dis
crete values of the formkx5nx2p/L, wherenx is a relative
integer~and similarly for the other space directions!, and one
cannot find, in principle, propagative phonons with a fr
quency smaller than a lower cutoffvc which can be esti-
mated by 2pvT /L, wherevT is the transverse sound veloc
ity. Considering the experimental valuevT53.75
3105 cm/s for silica20 this givesvc/2p.1.5 THz @in prac-
tice, when diagonalizing the dynamical matrix in our low
temperature sample, we find, similarly to a previous wo
done on the same system21, a slightly lower first nonzero
frequencyvo/2p.1.2 THz, in agreement with the existenc
of an excess of modes~maybe nonpropagative!, the so-called
boson peak,22 in this frequency range#.23 Therefore using the
correspondence\v53kBT which gives the average phono
frequencyv of the phonons excited at temperatureT, there
are certainly not enough phonons excited at temperat
below To.19 K in our box to be able to reproduce the e
perimental curve correctly. In Fig. 3, the departure betwe
our simulations and experiments is actually seen at a t
perature of the order of 20 K, in good agreement with t
analysis.

To try to put this argument on more quantitative groun
let us assume that the thermal conductivity is given by
usual formula,24

k5
1

3
Cvl , ~5!

whereC is the heat capacity per unit volume, andv and l
the velocity and mean free path of the phonons, respectiv
When applying such a formula to glasses one has to be c
ful because of localization effects. Obviouslyv andl are the
characteristics of the ‘‘propagative’’ phonons, i.e., tho
which really contribute to the transport phenomena. Con
quently the heat capacityC to be considered should be on
due to the contribution of these phonons and therefore~ac-
cording to other authors2,4! should exhibit at low temperatur
the usual Debye behavior~the same as in crystals!. If we
assume also that the lack of phonons in our box, i.e., a wr
value ofC, is the essential cause for the underestimated
culated value ofk, a very simple and crude way to take ca
of this is to multiply our simulation results by a correctiv
factor C` /Cb which can be estimated by taking forC` and
Cb the heat capacities calculated in the Debye approxima
for an infinite system and a finite cubic box of edgeL, re-
spectively. To calculate this temperature-dependent fa
we have used the standard formulas24

C`5
kB

2p2 S 1

vL
3 1

2

vT
3D E

0

vDS \v/2kBT

sinh~\v/2kBT! D
2

v2dv, ~6!
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Cb5
kB

L3 (
p

(
k

S \vpk/2kBT

sinh~\vpk/2kBT! D
2

~7!

with vD
3 5(N/L3)18p2(1/vL

312/vT
3)21. In the expression of

Cb the double sum runs over the three polarizationsp
5L,T1 ,T2 and over the firstN k vectors~quantized as indi-
cated above! of lowest normk5uku. For N and L we have
taken the simulation valuesN5648 andL521.48 Å and for
the sound velocities the experimental valuesvL55.9
3105 cm/s andvT1

5vT2
53.753105 cm/s.20 When correct-

ing our numerical data this way, we obtain the open squa
represented in Fig. 3 which turn out to be in very good agr
ment with the experimental results in the plateau region.
course, our reasoning is very crude since it assumes
finite-size corrections affect only the heat-capacity contri
tion in the expression ofk @Eq. ~5!# and that the harmonic
approximation holds for the propagative phonons in t
temperature range, however we think that the agreement
the data cannot be fortuitous.

It is unfortunate that we could not obtain more reliab
results at temperatures lower than 8 K~due to the impossi-
bility to reach the permanent regime!. Anyway, after correc-
tion, these results would certainly give larger values fork
than the experiments since it is known that, at very low te
peratures, the propagative phonons start to be scattere
the quantum two-level systems2 and therefore should have
lower mean free path than the one obtained in a class
calculation like the one performed here.

IV. CONCLUSION

In conclusion, we have presented the results of an ex
sive classical molecular-dynamics simulation aimed to de
mine the thermal conductivity in a model silica glass. Th
g
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determination has been done directly inside the MD sche
with the use of the standard equations governing the ma
scopic transport coefficients and no preconceived model
been assumed. Moreover, it turns out that this method
considerable advantages~especially concerning the length o
the simulations! compared to the standard methods usua
implemented to calculate the transport coefficients.17 The
calculated values of the thermal conductivity are in go
agreement with the experimental data at high tempera
(T.20 K) and by including finite-size corrections in
simple way we are able to reproduce the plateau in the t
mal conductivity around 10 K, which has been the topic
several interpretations in the literature.3 The agreement be
tween the calculated and the experimental values of the t
mal conductivity is even more striking when taking into a
count the ultrafast quenching rate used to generate
amorphous samples. This shows once more the good qu
of the BKS potential which permits to reproduce the therm
anomalies of vitreous silica with no additional parameter

Of course, our arguments on the finite-size effects sho
be tested in the future by running larger samples. Never
less, the simple phenomenological correction is so effici
that one can reasonably claim that the initial discrepa
between the calculated and experimental values of the t
mal conductivity is indeed due to finite-size effects and n
to a weakness of the method. Therefore we believe that
technique is a good way to calculate the thermal proper
of materials directly inside molecular-dynamics simulation

Most of the numerical calculations have been done on
IBM/SP2 computer at CNUSC~Center National Universi-
taire Sud de Calcul!, Montpellier. We would like to thank
Claire Levelut and Jacques Pelous for very interesting co
ments.
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