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Calculation of anomalous phonons and the hcp-bcc phase transition in zirconium
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Using molecular dynamics with a many-body potential fitted to properties of zirconium we study the
behavior of phonons at high temperature in the bcc lattice; in particulaf, fhenode which according to the
Nishiyama-Wassermann mechanism is the cause of the martensitic transition to hcp in group-IV transition
metals. This phonon frequency softens towards the transition but does not tend to zero frequency. In contrast
to the fast kinetics of the beehcp transition, the reverse process, i.e.,-hdjec, is not observed in standard
molecular dynamics: it can be induced if thg, phonon is perturbatively excited in the martensitic phase. The
sluggishness of the reverse process is attributed to the fact that in the low-temperature hcp phase, the equiva-
lent oscillation toT,) involves two modes with different frequency. The bcc to hcp transition is a first-order
transition and occurs in such a way that most of the reversed bcc atoms obey Nishiyama-Wassermann rules,
i.e., the path of transformation is reversible. However, there is some plastic damage which is not recovered.
[S0163-182€09)10021-3

I. INTRODUCTION Using inelastic neutron scattering, the phonon dispersion
curve of zirconium has been measur®dind revised:'°
A martensitic transition is a structural phase transitionThis shows that th@;y phonon is softened a little toward
which involves little movement of atoms during transforma-the transition temperature with a slope of 0.0008 THz/K.
tion. In group-1V transition metals, i.e., titanium, zirconium, Although the softening is consistent with the soft-mode
and hafnium, a transition from body-centered-cubic toMO9€l in WhichT,y is the cause of the transition, this pho-
hexagonal-close-packed structure is observed on lowerindon has a finite frequency of about 1.08 THz at the transition

- ) ) - %mperatur% implying a coupling with the strain. The
the temperature. The atomistic mechanism for this transitio o tron-measured phonon does not incorporate coupling to
has been described by the Nishiyama-Wasserm&in)

rarh LHDE . an infinite wavelength strain, this coupling explains the oc-
rules: " Zirconium is the best representative of the group forcyrence of the transition prior to thB;,-mode frequency
simulation purposes: unlike titanium, zirconium has no maggoing to zero.
netic moment and the phase transition is purely mechahical.  Several theoretical models have been proposed in order to
The experimentally determined transition temperaflgeds  describe the experimental results. May, "I and
1136 K. Strauch?! studied the vibrational properties of zirconium by
The nature of the kinetics of this type of transition hasusing a Born-Mayer-type potential. They concluded that zir-
been widely investigated. In 1947 ZehstudiedB brass and  conium manifests line broadening, line shift, and interference
proposed a soft-mode model for the stability of the bcc strucwhich are the main features of a strong anharmonic system.
ture in which the shear modulygC,,—C;,) becomes low- Ab initio work by Ye et al!? employed the frozen phonon
ered and approaches zero at the transition temperature. Baethod and discovered that the modes along the salient pho
low the transition temperature each unit cell in the latticenon branch, i.e.]'-N k=[&£0], are strongly coupled. Wil-
becomes mechanically unstable and a phase transition okxime and Massobrid'**derived a four-parameter embedded
curs. A similar model by Friedel concentrates on a particulaatom method(EAM) potential for zirconium: In harmonic
short-wavelength phonon becoming unstabitowever, the  and guasiharmonic regimes, tfig, phonon becomes un-
mechanism is not always so simple: in general the phonostable, but using molecular dynamics they found that the
mode will have lower symmetry than the crystal and hencehonon is dynamically stable and has a finite frequency at
will couple to the macroscopic strain. In this case one of theéhigher temperature. From the fact that the anharmonic effect
single-crystal elastic constants will tend to zero at the tranis fully included via the interatomic potential, this result con-
sition, but there is no pure phonon instability. The phaseirms that the anharmonic effect has an important role for
transition occurs by a distortion involving both the phononstabilizing the bcc lattice.
and the strain, which is in general accommodated by the From the thermodynamic point of view, theoretical ap-
formation of a microstructure. proaches such as Landau-type theory, mean-field theory,
The latter is the case in zirconium. According to theand self-consistent phonon thetty’ led to the same con-
mechanism proposed by Nishiyama and Wasserngilll),  clusion that the excess vibrational entropy stabilizes the
significant finite strain is required in addition to tfiey pho-  high-temperature phase. This can be explained as follows:
non. First, theTy phonon has a peculiar low frequency and thus
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can be excited easif{’!” Consequently, the vibrational en- nority of the atoms in the hcp structure have different neigh-
tropy of the system becomes large enough to stabilize thbors than would be predicted from the NW mechanism, hav-
bcc structure. Second, at the transition temperature, the fréag moved relative distances of order of the lattice parameter.
quency of the phonon is still finite but magnitude of the Although this microscopic irreversibility is at variance with
fluctuation is decreasing and therefore its vibrational entropghe Nishiyama-Wassermann mechanism, the majority of the
is no longer sufficient to stabilize the bcc structure and theitoms were found to have the expected neighbors.
transition to hcp structure takes place. This is in a good

agreement with the experimental results. The phonon density [l. MOLECULAR DYNAMICS

of states in a low-frequency region around 1.69 THz is low-
ered with decreasing temperatdr&he argument of excess
entropy stabilizing the high-temperature phase is also applie

In our simulations we use a Finnis-Sinclair-type
aotentiaif4 which has the form

to the similar martensitic transition in NiAl alloy‘§,how- 1

ever, since the transition in zirconium occurs above the De- Ei=> > V()= 2 b(rip), 1)
bye temperature the phonon entropy argument should be ! !

treated with caution. where V(r;;) represents the pair repulsive energy, is a

Based on these observations, Linttjand Mouritsefi'®  parameterized pairwise interaction representing the square of
used strain components as order parameters in a Landaie tight-binding hopping integral, and its square root repre-
theOI’y to Study martensitic tl’ansition in Zirconium. ASimilar sents the cohesive energy of a partia'y filed band in the
method is applied by Gooding and Krumhdfisb study the  assumption of local charge neutralfy.The cubic spline
bcc— 9R transition in Li. They used a corresponding phononsynctional form is chosen fov(r;) and ¢, .?® The potential
as an order parameter and combined the phonon with straijas fitted to properties of the hcp structure only, namely the
components. Both works show that the transition is first or-anjsotropic elastic properties of zirconium, the 1.595 non-
der and stacking faults can be formed as a metastable statgjea|c/a ratio, the lattice parameter, vacancy formation, and

Ab initio calculations have shown that the density of cohesive energy of the hcp structd@fealthough fitted only
states at the Fermi energy in bee is higher than in? 1 the hep phase, the potential is known to reproduce a good
It is therefore possible that the phase transition is due tQescription of both bcc and hcp phases: in particular, the
excess electronic entropy. However, as we show here, and ginsition temperature observed by classical molecular dy-
iS knOWn from the eleCtroniC structure CaICUIationS, the effechamics at |arge System Size |ies between 1330 and 13@0 K’
of this h|gh density of states iS- to deStablllze the ideal bC(depending S“ght'y on Choice Of boundary Conditions and
structure(i.e., all atoms on their lattice positionsised 0 thermostats. Further details of the potential are discussed
calculate the density of states. Thus the density of statesisewhere’
derived from this ideal structure may no longer be a good e solve Newton's equations of motion by using a

model for the high-pressure structure. molecular-dynamics cod&?° The integration scheme is a

Despite this (;Iear picture of hOW_ and why the bcc StrUC-t 4y order” Gear predictor-corrector algorithm. The time
ture transforms into the hcp, there is no further study of thestep is equal to 1 fs. Temperature is regulated by a

Tiy phonon mode in the low-temperature phase. It is SUgyoge_Hoovel 32 thermostat. The initial configuration is a

ge;sr':edhthﬁ%t thg Ehonon mOdi n}'?fgt???:i: Into sevte;ral n?Odeﬁomogeneous bcc lattice with the equilibrium value of the
In theé hcp™and become much SUIEr: - However, (Nere IS |5yice parameter corresponding to the thermal expansion

_?0 systgm?tlc progf of ;h's rel?]tmn. Moreover, the role of ;o jicteq by the potential at each temperature, as found by a
wy-equivalent mode In hcp to the reverse transition remaln%reliminary series of constant pressure simulations. This

unsolved. variation of bcc lattice parameter with temperature is shown

In the present work, we use molecular dynamics to calcuz, £ig 1 |n all calculations, the unit cell is oriented along

late the phonon properties of the bcc structure in zirconiu 100 010 and (001 unless otherwise stated
using a many-body potential which is known to reproducr(:( hecr (010hce, (00jec, '

the phase transition via the NW mechanism.
Simulations in which the temperature is lowered through
T, are performed in order to allow the phase transition. The

evolution of T,y phonon is monitored. We attempt to raise  |n order to study a particular vibrational mode in a crystal,

the temperature to investigate the reverse transition, but ie first define the eigenvector of that mode. To do this the
the limit of our finite-size molecular dynamics, the reverseddisplacements of atoms in solid are written in terms of a

process is not observed. Nevertheless, we can induce the hepmplete set of independent coordinafess
to bcc transition by exciting th&,y equivalent mode in the
martensitic microstructure.

Throughout this paper we use the term martensite micro- “k(t)ZEi [ri()—1i]-& codk- 1), @
structure to mean the twinned hcp microstructure which has
been produced from the bcc phase via the phase transition.\Wherek is a wave vectorg, is a corresponding eigenvector
is not a pure single crystal, but contains several hcp variantgf the modek, |; is a lattice vector, and; is the position of
twin boundaries, and some stacking fatiiihich one might atomi. These coordinates are chosen to be the normal modes
expect to act as nucleation centers for the reverse transitionf the bcc crystal, withg, determined from a lattice-
In Ref. 3 it was shown that the transformation path is notdynamics calculation at 0 K. Consequently, their vibrations
perfectly microscopically reversible in the sense that a mi-are classical objects analogous to phongmisich are quan-

Ill. NORMAL-MODE CALCULATION
IN THE BCC PHASE
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3.80 . . . TABLE |. k,=[££2¢].
& T, T, L
370 L 4 0.0625 0.52 0.86 1.86
0.1250 1.06 1.75 3.50
0.1875 1.56 2.84 457
0.2500 1.57 3.86 5.17
E 3601 . 0.3125 1.91 4.49 4.79
8 0.3750 1.79 5.09 4.21
< 0.4375 1.20 5.40 3.60
g 350 - —a, i 0.5000 0.53 5.51 3.33
&
3 wherea, b, andc are the lengths of the axes of the ortho-
f" 3.40 - | rhombic simulation cell. The maximum allowed valuemf,

n;, andn, is determined by the number of bcc primitive unit
cells along each axis.

Thus once the vibrations of the structure are projected
330 0 4 onto these normal modes, it is straightforward to extract the
&’@,,e/’c" frequency of a specific phonon at a particular temperature by
Fourier transforming the ensemble-averaged position

(a(0)- ay(t)) or velocity (e (0)- a(t)) autocorrelation
320,% 5000 1000.0 1500.0 20000  function. We will use this method to determine the firilte-
Temperature (K) phonon dispersion relation from our molecular-dynamics
(MD) simulation.

FIG. 1. Variation of the equilibrium bcc lattice parameter A difficulty arises when a harmonic mode basis is applied
against temperature. Each point was calculated from a constag study a strongly anharmonic system because vibrations of
pressure molecular-dynamics calculation. Below the transition prespye normal-mode coordinates are no longer independent: in
sure the data is collected for a supercooled bcc phase which remai'?ﬁjantum language the phonons are scattered. However, in
stable for a few ps. the present case we found it was always possible to unam-
guously identify the peaks in the Fourier transform.

An alternative approach led Dickey and PasRii intro-
duce a perturbative normal-mode calculation in which a pho-
non is artificially excited at a particular time. The perturba-
tion is defined as

tized and with the same frequency, and can be comparegI
directly to neutron-scattering data.

If the crystal were perfectly harmonic, the evolution of the
normal coordinates could be written as

adh)=Acodwd+ o), & (D =ri(0)+ e cosk-lex, (5

whereA is an amplitudew, is the frequency of the mode, \herer’ andr are perturbed and unperturbed atomic posi-
and ¢ is a phase factor. . , , tion, respectively. The advantages of this method are that
We define the autocorrelation function for this mode asyoth the phonon frequency and its lifetime can be calculated
(ay(t)a(0)). In the harmonic case its Fourier transform is yithin a short simulation period. This is because the addi-
then simply a delta function ab, . tional energy of the perturbed mode is dispersed into other
At high temperatures, anharmonic effects cause the evanoges soon after the perturbation. However, when Willaime
lution of the modes to depend on the excitation of otheryng Massobriti 4 used this method to stud¥; phonon in
modes. Now the Fourier transform of the autocorrelationne pee structure they found that the frequency of the phonon

function will exhibit a peak aty,, broadened by these cou- g dependent on the strength of the perturbatipshowing
pling effects. Moreover, if the mode itself is anharmonic, inat the phonon itself is strongly anharmonic.

further broadening will occur and the peak position will beé  gince our calculations are designed to study very anhar-
dependent on temperature. _ monic phonons, we avoid all these difficulties and ensure the
_Finally, if e, is not a normal mode, the Fourier transform giagistical reliability by calculating phonon frequencies direct
will consist of peaks at each of the normal modes of whichfom the time evolution of normal-mode coordinates from a
ey is comprised. For example, if we takg=1, there willbe  |ong simulation, i.e., 40 ps and averaging over six samples.

a peak for each phonon with wave vector _ We will adopt the perturbative approach later when consid-
In the simulation box, there are only a certain number ofgring the reverse transition from hcp to bec.

wave vectors that are allowed due to the finite number of Thys we construct the finite temperature phonon disper-
atoms. The possible wave vectors are given by integers  sjon curve. We simulate 8192 bcc atoms at 1400 K and

n;, andng, such that present the phonon-dispersion relation along four branches
which are k;=[££2¢], k,=[££0], kz=[00¢], and k4
_ 27N 2mny 27y 7 =[&¢&€]. The results are shown in Tables 1-IV and com-
a ' b ' c ) pared with the experimentabata for zirconium in Fig. 2.
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TABLE Il. k,=[££0]. TABLE IV. k,=[&£€].
¢ T, T, L ¢ T L

0.0625 0.08 1.06 0.58  0.1250 0.86 2.63
0.1250 0.16 2.10 1.16  0.2500 1.97 4.43
0.1875 0.32 3.14 1.69  0.3750 3.23 5.00
0.2500 0.40 3.92 2.18  0.5000 4.26 4.26
0.3125 0.49 4.66 271 0.6250 4.38 2.18
0.3750 0.59 5.12 3.02  0.6666 4.60 1.79
0.4375 0.56 5.38 3.19  0.7500 4.80 2.34
0.5000 0.53 5.51 3.33  0.8750 5.03 4.07

1.0000 4.76 4.76

The results are generally in good agreement with the experi-
ment: since the potential was not fitted to any properties of,,| ;me (ie., reduced temperatyrelindeed, it is actually

this b(_:c structure this gives us confidence to proceed. Thei,pie ot the zero-temperature equilibrium volume(foeta-
only discrepancy is in the value of th&N branch phonons stablg bcc zirconium. This suggests that the high-pressure

which are somewhat lower than experiment. This is consisg . phase in the zirconium phase diagram has a quite differ-

:)eor;temitgl tirslehﬁgﬁgrh?;;rr:ié)rh;aesaﬁ—;riﬁcr]:rl]tiﬁrr:l.temperature forth%m character from the dynamically stabilized highbcc

It is also possible to obtain phonon-dispersion relations b)Phase. _ .
lattice dynamics? Force constants and dynamical matrix el- The frequency offyy phonon is calculated by MD in
ements can be obtained analytically from doubly differenti-cOnstant volume and constant temperature mode at 1400,
ating the potential which introduces slight complications duel600, and 1800 K as shown in Fig. 3. The slope is 0.0003
to its many-body natur® Unlike experiment and MD, THZ/K.
which measure correlation functions, lattice dynamics di-
rectly measures the harmonic term in the potential-energy
surface: no anharmonic effects are incorporated, although in
the quasiharmonic approach the lattice dynamics is per-
formed at different lattice parameters according to the tem- -
perature. N

Lattice dynamics results for the current potential at a bcc ;0
lattice parameter of 3.67 Alcorresponding to 1400 Kare 9
plotted in Fig. 1. Again, good agreement with both experi-
ment and MD can be seen with the dramatic exception of the 1N\ !
T,n branch, where the harmonic phonon frequency is /
imaginary—i.e., the expanded bcc lattice is unstable with J \
respect to this distortion.

The failure of the lattice dynamics calculation to repro-
duce the experimentally observed behavior provides dra-g 20 °
matic evidence for the importance of anharmonicity in the g A A\
system. Moreover, it explains why the visualization method & 5/ N \
used in Ref. 3—quenching the structuce® K and examin- /
ing the neighbors of each atom—never gives any bcc- % e
coordinated atoms. N

A further failing of the quasiharmonic approach is that it 0.0
predicts that theTly phonon becomes stiffer with reduced

6.0

~N
T
=

TABLE Ill. ks=[00¢].

£ T L
0.1250 0.85 1.25 20
0.2500 1.69 2.46 r N r H P r
0.3750 2.64 3.39 FIG. 2. Phonon dispersion curve @t=1400 K. Dashed lines
0.5000 3.43 4.13 are the results of the MD calculation as described in the text.
0.6250 4.13 453  Circles are experimental results taken from Ref. 9. Solid lines rep-
0.7500 4.49 4.65  resent quasiharmonic lattice-dynamics calculations for perfect bcc
0.8750 4.72 4.84 at the volume implied by the MD thermal expansion in Fig. 1.
1.0000 4.76 476 Imaginary frequencies corresponding to unstable phonons are

shown as negative.
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FIG. 3. Temperature dependence Bfy phonon in the bcc FIG. 4. Time evolution of thexy coordinate following rapid

phase aff>1390 K and the peaks of the Fourier transform for the cooling from 1400—1000 K, showing large fluctuations in the un-
equivalent mode in the hcp phaseTat 1390 K. Each point is taken stable bcc phase, followed by a discrete shift of the mean at the
from an average over several MD runs, and the error bars reflect thghase transition and subsequent stable oscillations in the hcp phase.
spread of the results. At 1000 K for some microstructures it proved

impossible to distinguish between the two highest frequency peaksﬁihase. The data is rather noisy, so we have applied a maxi-

IV. THE * T, MODE” IN THE HCP STRUCTURE mum e_nt_ropy_ procedure across variOL_Js runs which enables
us to distinguish the peaks corresponding to the hcp phonons
When the system undergoes a phase transition to the lowvhich make upay(t).
temperature hcp structure, there are six possible martensitic The discrete Fourier transforms of the time evolution of
variants which could occur, each corresponding to an NV\(aN(t)> in the hcp phase are shown Figs. 5 and 6, together
transition involving a particulall;y mode® In practice, a  wjith the maximum entropy smoothing and the actual data in
subset of three of these are selected, depending on the SRRa insets.
cific martensite growth plane, and a strain compensating mi- £q; three of the mode@ypified by Fig. § we find that the
crostructure involving these three hcp variants is formed. time averageday(t)) changes from zero to a finite value at
While taking the material through its phase transition, WEhe transition. This value is related to the amount of each
have continued to evaluate the time evolution the coordinate '

(1) which corresponds 10 B,y mode. According 0 the _soriene™ 1'% 154G MGIoStucture, hut ot n 4 staight
NW mechanism, within a single variant, one of the sets off. y P 9 9

[011]y.. planes becomes the basal planes in hcp, four pelise to equivalent hcp variants. For tlag, involved in the

come pyramidal planes, and one becomes prism planes. f[ransition there is a Ia_rge peak ce_ntered on zero correspond-
Figure 4 shows typical plots of they(t) associated with ing to the slow evolution of the microstructure and the_ cou-
the operative NW mechanism through the phase transitiorP!ing of the mode to the strain. There are also two distinct
In the bce phase, the fluctuation of those planetbjscon- — Peaks at relatively low frequency, showing that the coordi-
struction around zero displacemefitey(t)dt=0. After the ~ Nateay no longer represents a normal mode.
transition, the fluctuation is displaced away from zero point A typical example of one of the threB;y modes which
indicating the structural change. This shows that in spite ofire related to variants which do not appear in the microstruc-
the appearance of microstructuen(t)) is a good order ture is shown in Fig. 6. This has has a time-averaged value of
parameter for the transition. Ja(t)dt=0 and shows two peaks in the smoothed Fourier
When the system reached an equilibrium in the martensiteransform. This indicates that there is no normal mode in the
phase, thely “phonon” is projected out at 200, 600, and hcp which is equivalent to the mode in bcc which is respon-
1000 K. To investigate th&y-equivalent mode in the hcp sible for the transition.
phase we continue to follow the fluctuation and displacement Figure 3 shows frequencies of these modes evaluated at
of the coordinatey,, . After the transition we took a Fourier different temperatures. Unlike the,y mode in bcc no clear
transform of theay(t) autocorrelation function in the hcp temperature dependence can readily be determined.
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) . ) . FIG. 6. Typical time evolution of thexy coordinate for &l
FIG. 5. Typical time evolution of thexy coordinate for awy g4 which is not involved in the transition following rapid cooling

mode in the hcp phase which is involved in the transition via theg,, 1400-1000 K. The main figure shows the discrete Fourier
NW mechanism following rapid cooling from 14001000 K. The transform of the datddotted ling and the result of a maximum

main figure shows the discrete Fourier transform of the @iéted o400y smoothing of this datolid line), while the inset shows
line) and the result of a maximum entropy smoothing of this datathe dataay(t) itself.

(solid line), while the inset shows the datg(t) itself from which
a constant is subtracted to make the mean value zero prior to taking The above reasoning does suggest that if we can artifi-

the Fourier transform. cially stimulate the vibration corresponding to thgy pho-
non, and if the stimulation is strong enough, it might be
V. THE REVERSE PHASE TRANSITION, HCP-BCC possible to induce the hcp to bee transition. To prove this, we

impose the perturbation scheme defined by Bgjto excite

To investigate the hcp-bcc transition we carried out a sethe T1y phonon in the martensitic phase and perform the
ries of simulations comprising up to 75000 atoms, initially simulation at 1400 K where the bcc phase is stable. We use
in the pure hcp structure or the martensitic hcp microstructhe martensitic hcp phase because we know exactly wdjch
ture. Simulations lasted 50 ps and involved heating to temeigenvector corresponds to tfigy phonon which was in-
peratures between the transition temperature and the point @olved in the transition. We found that the strength of per-
which the crystal melts. Twenty calculations were performedurbation e required to induce the hcp to bcc transition is
at varying final temperatures and starting conditions. The hcp.7% of the lattice parameter.
to bcc transition has not been observed at any temperature, The eigenvectoey is common to the entiré'-N branch
no matter how hcp structure is defined, i.e., pure hcp or marand so we tried exciting a phonon lat 0.5 to see if it
tensite microstructure. could induce the transition. Again this was successful, al-

The possible explanation is that tfigy phonon splits into  though the size of perturbation required was much larger,
two or three normal modes in the hcp phase with differen28.3% of the lattice parametf.
frequencies. Furthermore, it becomes stiffer as discussed in It is interesting that this is sufficient to induce the hcp to
the last section. Thus to obtain the bcc phase via the reverdec process, because in the previous Wdrk perturbation
Nishiyama-Wassermann mechanism, the transition dynamicsgtrengths of up to 8.5% of the lattice parameter were used to
require simultaneous coherent fluctuation from several norstudy theT,y phonon frequency.
mal modes, rather than one. Since the normal modes have The question of whether the high-temperature structure is
different frequencies, the required vibrations cannot remairocc or hcp structures can be addressed in a number of ways.
in phase and the phonon-driven transition mechanism cann@ne is to consider thermodynamic properties of the whole
function. In fact, even if the normal modes had the samesystem, the difference in cohesive energy is 0.03 eV/atom,
frequency, the fact that the excited eigenvector, a linear comthe difference in volume is 0.6 3atom. In constant volume
bination of the degenerate eigenvectors, may not be exactlsimulation, the stress tensor will change. In constant stress,
the right combination to cause the transition. the box components will change. All these features are in-
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[110]
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a) b) ©)

FIG. 7. Atomic pictures taken from a typical simulation of the bcc to hcp and the hcp to bee tran@idnitial bee structure;(b)
microstructure after the martensitic transiti¢c),induced bcc phase. Notice that it has some thermal fluctuation. Black and grey circles label
different layers.

dicative of the phase under observation, and their discontinyshase of zirconium. The high-temperature phonon dispersion
ous change suggests the phase transition, but the most irrelation in the bcc lattice is established and it is in a good
portant tools are the radial distribution function, the nearestagreement with the experimental results. The frequency of
neighbor angular distribution function, and the assignment ofhe T,y phonon is 0.53 THz at 1400 K with a temperature
a local crystal structure to each atom by fitting a template tglependence of 0.0003 THz/K. Quasiharmonic lattice dynam-
a snapshot of its local environmehEigure 7 shows typical IS is shown to be inadequate to describe this phonon, pre-
local ordering of a few atoms through the complete becdicting it to be unstable at the volume of the simulation.
— martensite-bce phase transition cycle. In Fig. 8 this cycle Lattice dynamics does show that the phonon becomes stable
is further studied by quenching configurations to zero kelvins the volume is reduced. This indicates that while the high-
and measuring the “local crystal structure” of each atom.témperature bcc phase is dynamically stabilized by anhar-
Figure 8a) shows the perfect bce lattice used as a startingnonic effects against th&,;y mechanical instability, the
condition. Figure &) shows the characteristic strain- high-pressure bcc phase is likely to be a conventional har-
compensating hcp microstructure, while Figc)8shows that monic crystal. It would be interesting to investigate zirco-

the induced bcc phase contains predominantly bcc atoms bf#um at simultaneous high temperature and pressure to see
that Signiﬁcant numbers now have |oca||y hcp_type order. whether an isostructural transition exists between these two

phases.
Although the phonon softens toward the transition, its fre-
quency does not go to zero. Thus the transition is first order
We have used molecular-dynamics simulation to studyand must be nucleated by a large fluctuation in the phonon
the properties of the phonons in the high-temperature bccamplitude, together with a coupling to the strain. Of course,

VI. CONCLUSIONS

a) b) 9]

FIG. 8. Snapshots of a slice through the simulation cell showing the transformation from bcc to hcp by cooling, and the reverse transition
by heating and excitation of the approprite vibrational mode. The coloring of the atoms is determined by fitting a template of the nearest-
neighbor shell expected for bec, fcc, or hep to each atom. The atoms are then shaded as follows: black atoms have local hcp coordination
with neighbors as expected from the NW transition mechanism; dark grey atoms have local fcc coordination; mid grey atoms have bcc
coordination while light grey atoms have a different set of neighbors from their original 14, indicating irreversible plastic defor@ation.

Initial bce; (b) martensitic hepfc) induced bcc.
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it is the compensation for this strain which gives rise to theis induced artificially. We believe that this may be a rather

martensitic microstructure. general result in a wide class of martensitic transitions, and
We have continued to study the fluctuation of atomicmay explain, for example, the different mechanisms ob-

planes that used to be tfigy phonon after the phase tran- served for the forward and back transitions in iron where it

sition to a martensitic hcp occurs at around 1350 K. It is Nnohas been reported that the fcc-bec transition occurs via the

longer a pure phonon mode. This means that the reversgain deformation while the reverse bee-fc transition follows
Nishiyama-Wassermann mechanism cannot operate by phgre Burgers patf®

non fluctuations since it would require two phonons to be
excited simultaneously and coherently. Statistically, this is a

far less likely scenario than the single mode excitation re-

quired for transition from bcc, and consequently we observe

that the reverse transition can only occan the time scale
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