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Calculation of anomalous phonons and the hcp-bcc phase transition in zirconium

U. Pinsook and G. J. Ackland
Department of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3JZ, Scotland, United Kingdom

~Received 13 January 1999!

Using molecular dynamics with a many-body potential fitted to properties of zirconium we study the
behavior of phonons at high temperature in the bcc lattice; in particular, theT1N mode which according to the
Nishiyama-Wassermann mechanism is the cause of the martensitic transition to hcp in group-IV transition
metals. This phonon frequency softens towards the transition but does not tend to zero frequency. In contrast
to the fast kinetics of the bcc→hcp transition, the reverse process, i.e., hcp→bcc, is not observed in standard
molecular dynamics: it can be induced if theT1N phonon is perturbatively excited in the martensitic phase. The
sluggishness of the reverse process is attributed to the fact that in the low-temperature hcp phase, the equiva-
lent oscillation toT1N involves two modes with different frequency. The bcc to hcp transition is a first-order
transition and occurs in such a way that most of the reversed bcc atoms obey Nishiyama-Wassermann rules,
i.e., the path of transformation is reversible. However, there is some plastic damage which is not recovered.
@S0163-1829~99!10021-3#
ion
a
,
to
rin
tio

fo
ag
a

as

uc

. B
ice

o
la

no
c

th
an
s

on
th

he

ion

d
/K.
de
-

ion

g to
c-

r to

y
ir-
ce

em.
n
pho-

d

-
the

at
fect
n-
for

p-
ry,
-
the
ws:
us
I. INTRODUCTION

A martensitic transition is a structural phase transit
which involves little movement of atoms during transform
tion. In group-IV transition metals, i.e., titanium, zirconium
and hafnium, a transition from body-centered-cubic
hexagonal-close-packed structure is observed on lowe
the temperature. The atomistic mechanism for this transi
has been described by the Nishiyama-Wassermann~NW!
rules.1–3 Zirconium is the best representative of the group
simulation purposes: unlike titanium, zirconium has no m
netic moment and the phase transition is purely mechanic4

The experimentally determined transition temperatureT0 is
1136 K.

The nature of the kinetics of this type of transition h
been widely investigated. In 1947 Zener5 studiedb brass and
proposed a soft-mode model for the stability of the bcc str
ture in which the shear modulus12 (C112C12! becomes low-
ered and approaches zero at the transition temperature
low the transition temperature each unit cell in the latt
becomes mechanically unstable and a phase transition
curs. A similar model by Friedel concentrates on a particu
short-wavelength phonon becoming unstable.6 However, the
mechanism is not always so simple: in general the pho
mode will have lower symmetry than the crystal and hen
will couple to the macroscopic strain. In this case one of
single-crystal elastic constants will tend to zero at the tr
sition, but there is no pure phonon instability. The pha
transition occurs by a distortion involving both the phon
and the strain, which is in general accommodated by
formation of a microstructure.

The latter is the case in zirconium. According to t
mechanism proposed by Nishiyama and Wassermann~NW!,
significant finite strain is required in addition to theT1N pho-
non.
PRB 590163-1829/99/59~21!/13642~8!/$15.00
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Using inelastic neutron scattering, the phonon dispers
curve of zirconium has been measured7,8 and revised.9,10

This shows that theT1N phonon is softened a little towar
the transition temperature with a slope of 0.0008 THz
Although the softening is consistent with the soft-mo
model in whichT1N is the cause of the transition, this pho
non has a finite frequency of about 1.08 THz at the transit
temperature9 implying a coupling with the strain. The
neutron-measured phonon does not incorporate couplin
an infinite wavelength strain, this coupling explains the o
curence of the transition prior to theT1N-mode frequency
going to zero.

Several theoretical models have been proposed in orde
describe the experimental results. May, Mu¨ller, and
Strauch11 studied the vibrational properties of zirconium b
using a Born-Mayer-type potential. They concluded that z
conium manifests line broadening, line shift, and interferen
which are the main features of a strong anharmonic syst
Ab initio work by Ye et al.12 employed the frozen phono
method and discovered that the modes along the salient
non branch, i.e.,G-N k5@jj0#, are strongly coupled. Wil-
laime and Massobrio13,14derived a four-parameter embedde
atom method~EAM! potential for zirconium: In harmonic
and quasiharmonic regimes, theT1N phonon becomes un
stable, but using molecular dynamics they found that
phonon is dynamically stable and has a finite frequency
higher temperature. From the fact that the anharmonic ef
is fully included via the interatomic potential, this result co
firms that the anharmonic effect has an important role
stabilizing the bcc lattice.

From the thermodynamic point of view, theoretical a
proaches such as Landau-type theory, mean-field theo15

and self-consistent phonon theory16,17 led to the same con
clusion that the excess vibrational entropy stabilizes
high-temperature phase. This can be explained as follo
First, theT1N phonon has a peculiar low frequency and th
13 642 ©1999 The American Physical Society
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PRB 59 13 643CALCULATION OF ANOMALOUS PHONONS AND THE . . .
can be excited easily.16,17 Consequently, the vibrational en
tropy of the system becomes large enough to stabilize
bcc structure. Second, at the transition temperature, the
quency of the phonon is still finite but magnitude of t
fluctuation is decreasing and therefore its vibrational entr
is no longer sufficient to stabilize the bcc structure and
transition to hcp structure takes place. This is in a go
agreement with the experimental results. The phonon den
of states in a low-frequency region around 1.69 THz is lo
ered with decreasing temperature.9 The argument of exces
entropy stabilizing the high-temperature phase is also app
to the similar martensitic transition in NiAl alloys,18 how-
ever, since the transition in zirconium occurs above the
bye temperature the phonon entropy argument should
treated with caution.

Based on these observations, Lindga˙rd and Mouritsen2,19

used strain components as order parameters in a La
theory to study martensitic transition in zirconium. A simil
method is applied by Gooding and Krumhansl20 to study the
bcc→9R transition in Li. They used a corresponding phon
as an order parameter and combined the phonon with s
components. Both works show that the transition is first
der and stacking faults can be formed as a metastable s

Ab initio calculations have shown that the density
states at the Fermi energy in bcc is higher than in hcp.4,21,22

It is therefore possible that the phase transition is due
excess electronic entropy. However, as we show here, an
is known from the electronic structure calculations, the eff
of this high density of states is to destabilize the ideal b
structure~i.e., all atoms on their lattice positions! used to
calculate the density of states. Thus the density of st
derived from this ideal structure may no longer be a go
model for the high-pressure structure.

Despite this clear picture of how and why the bcc stru
ture transforms into the hcp, there is no further study of
T1N phonon mode in the low-temperature phase. It is s
gested that the phonon mode might split into several mo
in the hcp23 and become much stiffer.16,17 However, there is
no systematic proof of this relation. Moreover, the role
T1N-equivalent mode in hcp to the reverse transition rema
unsolved.

In the present work, we use molecular dynamics to cal
late the phonon properties of the bcc structure in zirconi
using a many-body potential which is known to reprodu
the phase transition via the NW mechanism.

Simulations in which the temperature is lowered throu
Tc are performed in order to allow the phase transition. T
evolution of T1N phonon is monitored. We attempt to rais
the temperature to investigate the reverse transition, bu
the limit of our finite-size molecular dynamics, the revers
process is not observed. Nevertheless, we can induce the
to bcc transition by exciting theT1N equivalent mode in the
martensitic microstructure.

Throughout this paper we use the term martensite mic
structure to mean the twinned hcp microstructure which
been produced from the bcc phase via the phase transitio
is not a pure single crystal, but contains several hcp varia
twin boundaries, and some stacking faults3 which one might
expect to act as nucleation centers for the reverse transi
In Ref. 3 it was shown that the transformation path is n
perfectly microscopically reversible in the sense that a
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nority of the atoms in the hcp structure have different neig
bors than would be predicted from the NW mechanism, h
ing moved relative distances of order of the lattice parame
Although this microscopic irreversibility is at variance wit
the Nishiyama-Wassermann mechanism, the majority of
atoms were found to have the expected neighbors.

II. MOLECULAR DYNAMICS

In our simulations we use a Finnis-Sinclair-typ
potential24 which has the form

Ei5
1

2 (
j

V~r i j !2A(
j

f~r i j !, ~1!

where V(r i j ) represents the pair repulsive energy,f i is a
parameterized pairwise interaction representing the squa
the tight-binding hopping integral, and its square root rep
sents the cohesive energy of a partialy filled band in
assumption of local charge neutrality.25 The cubic spline
functional form is chosen forV(r i j ) andf i .26 The potential
was fitted to properties of the hcp structure only, namely
anisotropic elastic properties of zirconium, the 1.595 no
idealc/a ratio, the lattice parameter, vacancy formation, a
cohesive energy of the hcp structure.27 Although fitted only
to the hcp phase, the potential is known to reproduce a g
description of both bcc and hcp phases: in particular,
transition temperature observed by classical molecular
namics at large system size lies between 1330 and 13903

depending slightly on choice of boundary conditions a
thermostats. Further details of the potential are discus
elsewhere.27

We solve Newton’s equations of motion by using
molecular-dynamics code.28,29 The integration scheme is
fourth-order Gear predictor-corrector algorithm. The tim
step is equal to 1 fs. Temperature is regulated by
Nose-Hoover30–32 thermostat. The initial configuration is
homogeneous bcc lattice with the equilibrium value of t
lattice parameter corresponding to the thermal expans
predicted by the potential at each temperature, as found
preliminary series of constant pressure simulations. T
variation of bcc lattice parameter with temperature is sho
in Fig. 1. In all calculations, the unit cell is oriented alon
(100)bcc , (010)bcc , and (001)bcc , unless otherwise stated

III. NORMAL-MODE CALCULATION
IN THE BCC PHASE

In order to study a particular vibrational mode in a cryst
we first define the eigenvector of that mode. To do this
displacements of atoms in solid are written in terms o
complete set of independent coordinates33 as

ak~ t !5(
i

@r i~ t !2 l i #•ek cos~k• l i !, ~2!

wherek is a wave vector,ek is a corresponding eigenvecto
of the modek, l i is a lattice vector, andr i is the position of
atomi. These coordinates are chosen to be the normal mo
of the bcc crystal, withek determined from a lattice-
dynamics calculation at 0 K. Consequently, their vibratio
are classical objects analogous to phonons~which are quan-
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13 644 PRB 59U. PINSOOK AND G. J. ACKLAND
tized! and with the same frequency, and can be compa
directly to neutron-scattering data.

If the crystal were perfectly harmonic, the evolution of t
normal coordinates could be written as

ak~ t !5A cos~vkt1wk!, ~3!

whereA is an amplitude,vk is the frequency of the mode
andwk is a phase factor.

We define the autocorrelation function for this mode
^ak(t)ak(0)&. In the harmonic case its Fourier transform
then simply a delta function atvk .

At high temperatures, anharmonic effects cause the e
lution of the modes to depend on the excitation of oth
modes. Now the Fourier transform of the autocorrelat
function will exhibit a peak atvk , broadened by these cou
pling effects. Moreover, if the mode itself is anharmon
further broadening will occur and the peak position will
dependent on temperature.

Finally, if ek is not a normal mode, the Fourier transfor
will consist of peaks at each of the normal modes of wh
ek is comprised. For example, if we takeek51, there will be
a peak for each phonon with wave vectork.

In the simulation box, there are only a certain number
wave vectors that are allowed due to the finite number
atoms. The possible wave vectors are given by integersnk ,
nl , andnm such that

k5S 2pnk

a
,
2pnk

b
,
2pnk

c D , ~4!

FIG. 1. Variation of the equilibrium bcc lattice paramet
against temperature. Each point was calculated from a cons
pressure molecular-dynamics calculation. Below the transition p
sure the data is collected for a supercooled bcc phase which rem
stable for a few ps.
d
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o-
r
n

,

h

f
f

wherea, b, and c are the lengths of the axes of the orth
rhombic simulation cell. The maximum allowed value ofnk ,
nl , andnm is determined by the number of bcc primitive un
cells along each axis.

Thus once the vibrations of the structure are projec
onto these normal modes, it is straightforward to extract
frequency of a specific phonon at a particular temperature
Fourier transforming the ensemble-averaged posit

^ak(0)•ak(t)& or velocity ^ȧk(0)•ȧk(t)& autocorrelation
function. We will use this method to determine the finiteT
phonon dispersion relation from our molecular-dynam
~MD! simulation.

A difficulty arises when a harmonic mode basis is appl
to study a strongly anharmonic system because vibration
the normal-mode coordinates are no longer independen
quantum language the phonons are scattered. Howeve
the present case we found it was always possible to un
biguously identify the peaks in the Fourier transform.

An alternative approach led Dickey and Paskin33 to intro-
duce a perturbative normal-mode calculation in which a p
non is artificially excited at a particular time. The perturb
tion is defined as

r i8~ t !5r i~ t !1e cos~k• l i !ek , ~5!

wherer 8 and r are perturbed and unperturbed atomic po
tion, respectively. The advantages of this method are
both the phonon frequency and its lifetime can be calcula
within a short simulation period. This is because the ad
tional energy of the perturbed mode is dispersed into ot
modes soon after the perturbation. However, when Willai
and Massobrio13,14 used this method to studyT1N phonon in
the bcc structure they found that the frequency of the pho
is dependent on the strength of the perturbatione, showing
that the phonon itself is strongly anharmonic.

Since our calculations are designed to study very anh
monic phonons, we avoid all these difficulties and ensure
statistical reliability by calculating phonon frequencies dire
from the time evolution of normal-mode coordinates from
long simulation, i.e., 40 ps and averaging over six samp
We will adopt the perturbative approach later when cons
ering the reverse transition from hcp to bcc.

Thus we construct the finite temperature phonon disp
sion curve. We simulate 8192 bcc atoms at 1400 K a
present the phonon-dispersion relation along four branc
which are k15@jj2j#, k25@jj0#, k35@00j#, and k4
5@jjj#. The results are shown in Tables I–IV and com
pared with the experimental9 data for zirconium in Fig. 2.

nt
s-
ins

TABLE I. k15@jj2j#.

j T1 T2 L

0.0625 0.52 0.86 1.86
0.1250 1.06 1.75 3.50
0.1875 1.56 2.84 4.57
0.2500 1.57 3.86 5.17
0.3125 1.91 4.49 4.79
0.3750 1.79 5.09 4.21
0.4375 1.20 5.40 3.60
0.5000 0.53 5.51 3.33
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The results are generally in good agreement with the exp
ment: since the potential was not fitted to any properties
this bcc structure this gives us confidence to proceed.
only discrepancy is in the value of theG-N branch phonons
which are somewhat lower than experiment. This is con
tent with the fact that the phase-transition temperature for
potential is higher than for real zirconium.

It is also possible to obtain phonon-dispersion relations
lattice dynamics.34 Force constants and dynamical matrix e
ements can be obtained analytically from doubly differen
ating the potential which introduces slight complications d
to its many-body nature.35 Unlike experiment and MD,
which measure correlation functions, lattice dynamics
rectly measures the harmonic term in the potential-ene
surface: no anharmonic effects are incorporated, althoug
the quasiharmonic approach the lattice dynamics is p
formed at different lattice parameters according to the te
perature.

Lattice dynamics results for the current potential at a b
lattice parameter of 3.67 Å~corresponding to 1400 K! are
plotted in Fig. 1. Again, good agreement with both expe
ment and MD can be seen with the dramatic exception of
T1N branch, where the harmonic phonon frequency
imaginary—i.e., the expanded bcc lattice is unstable w
respect to this distortion.

The failure of the lattice dynamics calculation to repr
duce the experimentally observed behavior provides d
matic evidence for the importance of anharmonicity in t
system. Moreover, it explains why the visualization meth
used in Ref. 3—quenching the structure to 0 K and examin-
ing the neighbors of each atom—never gives any b
coordinated atoms.

A further failing of the quasiharmonic approach is that
predicts that theT1N phonon becomes stiffer with reduce

TABLE II. k25@jj0#.

j T1 T2 L

0.0625 0.08 1.06 0.58
0.1250 0.16 2.10 1.16
0.1875 0.32 3.14 1.69
0.2500 0.40 3.92 2.18
0.3125 0.49 4.66 2.71
0.3750 0.59 5.12 3.02
0.4375 0.56 5.38 3.19
0.5000 0.53 5.51 3.33

TABLE III. k35@00j#.

j T L

0.1250 0.85 1.25
0.2500 1.69 2.46
0.3750 2.64 3.39
0.5000 3.43 4.13
0.6250 4.13 4.53
0.7500 4.49 4.65
0.8750 4.72 4.84
1.0000 4.76 4.76
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volume ~i.e., reduced temperature!. Indeed, it is actually
stable at the zero-temperature equilibrium volume for~meta-
stable! bcc zirconium. This suggests that the high-press
bcc phase in the zirconium phase diagram has a quite di
ent character from the dynamically stabilized high-T bcc
phase.

The frequency ofT1N phonon is calculated by MD in
constant volume and constant temperature mode at 1
1600, and 1800 K as shown in Fig. 3. The slope is 0.00
THz/K.

FIG. 2. Phonon dispersion curve atT51400 K. Dashed lines
are the results of the MD calculation as described in the te
Circles are experimental results taken from Ref. 9. Solid lines r
resent quasiharmonic lattice-dynamics calculations for perfect
at the volume implied by the MD thermal expansion in Fig.
Imaginary frequencies corresponding to unstable phonons
shown as negative.

TABLE IV. k45@jjj#.

j T L

0.1250 0.86 2.63
0.2500 1.97 4.43
0.3750 3.23 5.00
0.5000 4.26 4.26
0.6250 4.38 2.18
0.6666 4.60 1.79
0.7500 4.80 2.34
0.8750 5.03 4.07
1.0000 4.76 4.76
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IV. THE ‘‘ T1N MODE’’ IN THE HCP STRUCTURE

When the system undergoes a phase transition to the
temperature hcp structure, there are six possible marten
variants which could occur, each corresponding to an N
transition involving a particularT1N mode.36 In practice, a
subset of three of these are selected, depending on the
cific martensite growth plane, and a strain compensating
crostructure involving these three hcp variants is formed3

While taking the material through its phase transition,
have continued to evaluate the time evolution the coordin
aN(t), which corresponds to theT1N mode. According to the
NW mechanism, within a single variant, one of the sets
@011#bcc planes becomes the basal planes in hcp, four
come pyramidal planes, and one becomes prism planes

Figure 4 shows typical plots of theaN(t) associated with
the operative NW mechanism through the phase transit
In the bcc phase, the fluctuation of those planes is~by con-
struction! around zero displacement*aN(t)dt50. After the
transition, the fluctuation is displaced away from zero po
indicating the structural change. This shows that in spite
the appearance of microstructure^aN(t)& is a good order
parameter for the transition.

When the system reached an equilibrium in the marten
phase, theT1N ‘‘phonon’’ is projected out at 200, 600, an
1000 K. To investigate theT1N-equivalent mode in the hcp
phase we continue to follow the fluctuation and displacem
of the coordinateaN . After the transition we took a Fourie
transform of theaN(t) autocorrelation function in the hc

FIG. 3. Temperature dependence ofT1N phonon in the bcc
phase atT.1390 K and the peaks of the Fourier transform for t
equivalent mode in the hcp phase atT,1390 K. Each point is taken
from an average over several MD runs, and the error bars reflec
spread of the results. At 1000 K for some microstructures it pro
impossible to distinguish between the two highest frequency pe
w-
itic

pe-
i-

e
te

f
e-

n.

t
f

te

nt

phase. The data is rather noisy, so we have applied a m
mum entropy procedure across various runs which ena
us to distinguish the peaks corresponding to the hcp phon
which make upaN(t).

The discrete Fourier transforms of the time evolution
^aN(t)& in the hcp phase are shown Figs. 5 and 6, toget
with the maximum entropy smoothing and the actual data
the insets.

For three of the modes~typified by Fig. 5! we find that the
time averaged̂aN(t)& changes from zero to a finite value
the transition. This value is related to the amount of ea
variant in the resulting microstructure, but not in a straig
forward way because both positive and negativeaN(t) give
rise to equivalent hcp variants. For theaN involved in the
transition there is a large peak centered on zero corresp
ing to the slow evolution of the microstructure and the co
pling of the mode to the strain. There are also two disti
peaks at relatively low frequency, showing that the coor
nateaN no longer represents a normal mode.

A typical example of one of the threeT1N modes which
are related to variants which do not appear in the microstr
ture is shown in Fig. 6. This has has a time-averaged valu
*ak(t)dt50 and shows two peaks in the smoothed Four
transform. This indicates that there is no normal mode in
hcp which is equivalent to the mode in bcc which is respo
sible for the transition.

Figure 3 shows frequencies of these modes evaluate
different temperatures. Unlike theT1N mode in bcc no clear
temperature dependence can readily be determined.

he
d
s.

FIG. 4. Time evolution of theaN coordinate following rapid
cooling from 1400–1000 K, showing large fluctuations in the u
stable bcc phase, followed by a discrete shift of the mean at
phase transition and subsequent stable oscillations in the hcp p
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V. THE REVERSE PHASE TRANSITION, HCP-BCC

To investigate the hcp-bcc transition we carried out a
ries of simulations comprising up to 75 000 atoms, initia
in the pure hcp structure or the martensitic hcp microstr
ture. Simulations lasted 50 ps and involved heating to te
peratures between the transition temperature and the po
which the crystal melts. Twenty calculations were perform
at varying final temperatures and starting conditions. The
to bcc transition has not been observed at any tempera
no matter how hcp structure is defined, i.e., pure hcp or m
tensite microstructure.

The possible explanation is that theT1N phonon splits into
two or three normal modes in the hcp phase with differ
frequencies. Furthermore, it becomes stiffer as discusse
the last section. Thus to obtain the bcc phase via the rev
Nishiyama-Wassermann mechanism, the transition dynam
require simultaneous coherent fluctuation from several n
mal modes, rather than one. Since the normal modes h
different frequencies, the required vibrations cannot rem
in phase and the phonon-driven transition mechanism ca
function. In fact, even if the normal modes had the sa
frequency, the fact that the excited eigenvector, a linear c
bination of the degenerate eigenvectors, may not be exa
the right combination to cause the transition.

FIG. 5. Typical time evolution of theaN coordinate for aT1N

mode in the hcp phase which is involved in the transition via
NW mechanism following rapid cooling from 1400–1000 K. Th
main figure shows the discrete Fourier transform of the data~dotted
line! and the result of a maximum entropy smoothing of this d
~solid line!, while the inset shows the dataaN(t) itself from which
a constant is subtracted to make the mean value zero prior to ta
the Fourier transform.
-

-
-
at
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The above reasoning does suggest that if we can a
cially stimulate the vibration corresponding to theT1N pho-
non, and if the stimulation is strong enough, it might
possible to induce the hcp to bcc transition. To prove this,
impose the perturbation scheme defined by Eq.~5! to excite
the T1N phonon in the martensitic phase and perform
simulation at 1400 K where the bcc phase is stable. We
the martensitic hcp phase because we know exactly whiceN
eigenvector corresponds to theT1N phonon which was in-
volved in the transition. We found that the strength of p
turbation e required to induce the hcp to bcc transition
5.7% of the lattice parameter.

The eigenvectoreN is common to the entireG-N branch
and so we tried exciting a phonon atk50.56kN to see if it
could induce the transition. Again this was successful,
though the size of perturbation required was much larg
28.3% of the lattice parameter.37

It is interesting that this is sufficient to induce the hcp
bcc process, because in the previous work,13,14 perturbation
strengths of up to 8.5% of the lattice parameter were use
study theT1N phonon frequency.

The question of whether the high-temperature structur
bcc or hcp structures can be addressed in a number of w
One is to consider thermodynamic properties of the wh
system, the difference in cohesive energy is 0.03 eV/at
the difference in volume is 0.6 Å3/atom. In constant volume
simulation, the stress tensor will change. In constant str
the box components will change. All these features are

e

a

ng

FIG. 6. Typical time evolution of theaN coordinate for aT1N

mode which is not involved in the transition following rapid coolin
from 1400–1000 K. The main figure shows the discrete Fou
transform of the data~dotted line! and the result of a maximum
entropy smoothing of this data~solid line!, while the inset shows
the dataaN(t) itself.
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FIG. 7. Atomic pictures taken from a typical simulation of the bcc to hcp and the hcp to bcc transition.~a! Initial bcc structure;~b!
microstructure after the martensitic transition;~c! induced bcc phase. Notice that it has some thermal fluctuation. Black and grey circles
different layers.
in
t
s
t o
t

l
c
le
vi
m
in
-

b
.

d
c

ion
od
of

re
m-

pre-
n.
able
gh-
ar-

ar-
o-
see
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re-
der
non
se,
dicative of the phase under observation, and their discont
ous change suggests the phase transition, but the mos
portant tools are the radial distribution function, the neare
neighbor angular distribution function, and the assignmen
a local crystal structure to each atom by fitting a template
a snapshot of its local environment.3 Figure 7 shows typica
local ordering of a few atoms through the complete b
→martensite→bcc phase transition cycle. In Fig. 8 this cyc
is further studied by quenching configurations to zero kel
and measuring the ‘‘local crystal structure’’ of each ato
Figure 8~a! shows the perfect bcc lattice used as a start
condition. Figure 8~b! shows the characteristic strain
compensating hcp microstructure, while Fig. 8~c! shows that
the induced bcc phase contains predominantly bcc atoms
that significant numbers now have locally hcp-type order

VI. CONCLUSIONS

We have used molecular-dynamics simulation to stu
the properties of the phonons in the high-temperature b
u-
im-
t-
f

o

c

n
.
g

ut

y
c-

phase of zirconium. The high-temperature phonon dispers
relation in the bcc lattice is established and it is in a go
agreement with the experimental results. The frequency
the T1N phonon is 0.53 THz at 1400 K with a temperatu
dependence of 0.0003 THz/K. Quasiharmonic lattice dyna
ics is shown to be inadequate to describe this phonon,
dicting it to be unstable at the volume of the simulatio
Lattice dynamics does show that the phonon becomes st
as the volume is reduced. This indicates that while the hi
temperature bcc phase is dynamically stabilized by anh
monic effects against theT1N mechanical instability, the
high-pressure bcc phase is likely to be a conventional h
monic crystal. It would be interesting to investigate zirc
nium at simultaneous high temperature and pressure to
whether an isostructural transition exists between these
phases.

Although the phonon softens toward the transition, its f
quency does not go to zero. Thus the transition is first or
and must be nucleated by a large fluctuation in the pho
amplitude, together with a coupling to the strain. Of cour
transition
nearest-
ordination

have bcc
ion.
FIG. 8. Snapshots of a slice through the simulation cell showing the transformation from bcc to hcp by cooling, and the reverse
by heating and excitation of the approprite vibrational mode. The coloring of the atoms is determined by fitting a template of the
neighbor shell expected for bcc, fcc, or hcp to each atom. The atoms are then shaded as follows: black atoms have local hcp co
with neighbors as expected from the NW transition mechanism; dark grey atoms have local fcc coordination; mid grey atoms
coordination while light grey atoms have a different set of neighbors from their original 14, indicating irreversible plastic deformat~a!
Initial bcc; ~b! martensitic hcp;~c! induced bcc.
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it is the compensation for this strain which gives rise to
martensitic microstructure.

We have continued to study the fluctuation of atom
planes that used to be theT1N phonon after the phase tran
sition to a martensitic hcp occurs at around 1350 K. It is
longer a pure phonon mode. This means that the rev
Nishiyama-Wassermann mechanism cannot operate by
non fluctuations since it would require two phonons to
excited simultaneously and coherently. Statistically, this i
far less likely scenario than the single mode excitation
quired for transition from bcc, and consequently we obse
that the reverse transition can only occur~on the time scale
of our simulations! if such a simultaneous, phonon excitatio
e

.

R.

J.

-

er
e

o
se
o-

e
a
-
e

is induced artificially. We believe that this may be a rath
general result in a wide class of martensitic transitions, a
may explain, for example, the different mechanisms o
served for the forward and back transitions in iron where
has been reported that the fcc-bcc transition occurs via
Bain deformation while the reverse bcc-fcc transition follow
the Burgers path.38
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