PHYSICAL REVIEW B VOLUME 59, NUMBER 21 1 JUNE 1999-I

Influence of the Hall force on the vortex dynamics in type-Il superconductors
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The effect of the Hall force on the pinning of vortices in type-ll superconductors is considered. A field
theoretic formulation of the pinning problem allows a nonperturbative treatment of the influence of quenched
disorder. A self-consistent theory is constructed using the diagrammatic functional method for the effective
action, and an expression for the pinning force for independent vortices, as well as vortex lattices, is obtained.
We find that the pinning force for a single vortex is suppressed by the Hall force at low temperatures while it
is increased at high temperatures. The effect of the Hall force is more pronounced on a single vortex than on
a vortex lattice. The results of the self-consistent theory are shown to be in good agreement with numerical
simulations[S0163-182@9)02621-1]

The advent of high-temperature superconductors has led Upon averaging with respect to the quenched disorder, the
to a renewed interest in vortex dynamics. We shall consideaverage restoring forcEg= — =g/ ®rr/((Ur:;)) of the lat-
the influence of quenched disorder on the vortex dynamics itice vanishes. On the average, corresponding to the lattice
type-Il superconductors in the presence of a Hall force. Theeaching a steady-state velocity=((U)), there will be a
description of the vortex dynamics will be based on the phepalance F+ F;+ F,,+ F,=0, between the Lorentz forcE,
nomenological Langevin equatibh the friction forceF;= — »v, the Hall forceFH=av><ﬁ, and
the pinning forceF,= —((VV)). The pinning force is due to

MUpe+ PUgi+ Dy PrarUrr = @l X A— VV(R+ Ug,) time-reversal symmetry invariant under reversal of the direc-
R’ tion of the magnetic field, and is therefore antiparallel to the

velocity! Thus, the pinning yields a renormalization of the

+Fret re @) friction coefficient in terms of a velocity-dependent effective

friction coefficient, Fs+F,=— n¢(v)v, which reduces in
the absence of disorder to the bare friction coefficienand
has previously only been determined to lowest order in the

. : - disorder! The relationship between the average vortex ve-
X. Th namic matrixbgg, of the hexagonal Abrikosov ) . o
te e dynamic malrixbrg: Of the hexagonal Abrikoso locity and the induced electric fiel=vx B, leads to the

vortex lattice describes the interaction between the vortice . S

in the harmonic approximation. Having a thin superconduct-expressmns for the resistivity tensor and Hall angle,
ing film in mind, the system is two dimensionaormal to

n) and the dynamic matrix is specified within the continuum _ $oB
theory of elastic mediby the compression modulas; and p= 772ﬁ+ a2
the shear modulusgg, ¢

where ug; is the displacement at timeof the vortex that
initially has equilibrium positiorR, # is the friction coeffi-
cient, andm is a possible masger unit length of the vor-

o
f=arctan—. 3)
Neft

Neft & )

& Teff

2 2 The average vortex motion is conveniently described by
_ %o €119 Ceslly (€117~ Ce6) Uxlly @ reformulating the stochastic Langevin problem in terms of a
B | (c11—Ceo)0xay c66q§+cllq§ ' path integral. The probability functipnal for a realization

{ur¢}r Of the motion of the vortex lattice may be expressed,
where ¢, /B is equal to the area of the unit cell of the vortex using the equation of motion, through a functional integral
lattice, andpo=h/2e is the flux quantum. The fordger unit  over a set of auxiliary variablefig}r, and we are led to
length on the right-hand side of Eq1) consists of the Hall  consider the generating functiorl
force characterized by the parameterand Fg;= ¢¢j(R,t)

X n is the Lorentz force due to the transport current derjsity _ -

and the thermal white-noise stochastic foég is specified Z[F,J]If 1;[ DURJ I1 Dug o geisStu, (4
according to the fluctuation-dissipation theoreﬁﬁﬁtfﬁ,t,> R
=27kgTo(t—t")S,50rr, @andV is the pinning potential . . ~ e
due to quenched disorder. The pinning is described by &/hekrle In Fhe thlorg[u,u]—u[(l?e}d u+|l_:—VV+h§]+Ju,
Gaussian distributed stochastic potential with zero mean, an € have Introduced a source fieldcoupiing to the vortex
thus characterized by its correlation functiovhere now the ~POSitionsu, and used matrix notation in order to suppress the
brackets denote averaging with respect to the quenched giltegrations over time and summations over vortex positions
orded (V(X)V(X'))=v(x—X") = vo/(4ma2)exf —|x—x' |2 and Cartesian indices. The retarded Green’s operator is
(4a2)], taken to be a Gaussian function with rangand ~ given by — (D7)~ tu=mug+ nUr+ Zr/ Prr:Uriitan
strengthvy. X Ug¢, and its Fourier transform is

q
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S Mmw?+inw —law ®
D)., = . . —d,.
(D)0 iaw Mmw?+inw g ©

In order to immediately be able to perform the average with
respect to both the Langevin noise and the disorder, we hav

chosen a nonzero mass# 0, leaving the Jacobia/ an
irrelevant constafit’ (in final expressions the mass can be se
to zero, and will, in fact, for the values chosen not affect th
obtained numerical resujtand we obtain the averaged func-
tional

Z11=((2))= | Dpesta, ©
which generates, for example, the average position and co
relations

i28%°2

UriUrrtr))=————
(st )=

J=0

) 57
'<<Um>>:ﬁRt
J=0

@)

We have introduced the notatiopi=(u,u) and f=(F,J),
and the actionS=S;+S, consists of a quadratic term,
So[ ¢]= ¢D 1¢/2, where the matriXD ! in addition is a
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=—f-Kg, 5

(12
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In the physical problem of interest the sour&andJ are

aebsentK=O andJ=0, and the full matrix Green’s function
as, due to the normalization of the generating functional,
[F,J=0,K=0]=1, the structure

ol 9

where su=u—((u)) and su=u—({(u)). The retarded
Green's functiontjB gives the linear response to the force
Fgz, and GEB is the correlation functior{both matrices in
Cartesian indices as indicaded

According to Cornwalkt al,'° the effective action can be
written on the form TI'[¢,G]=S ¢]+(i/2)T(Ds*
—INnDHG—1]-i In(eSm)2”! where D5 1= 62 ¢/ 5S¢,
andS;.[ #,¢] is the part ofS ¢+ ], which is higher than
second order i in the expansion arouna, and Tr denotes
the trace over all variables. The superscript “2PI” on the last

GA
GK

0
GR

0 ((8u“suPy)

((8uesuPy)y  ((su*subyy )’
(13

matrix in Cartesian indices, and time and vortex positiond€rm indicates that only the two-particle irreducible vacuum

[ S = Orrr S(t—t')],

>

and a term originating from the disorder

2i kT S,p00s, (DR

8
(D)1 0 ®)

dtJ dt'ﬁgt&aﬁﬁv(um— UR’I’)Dg’t’ .
©)

This reformulation of the stochastic problem in terms of a
field theory is equivalent to the formalism of Martin, Siggia,
and Rosé, as noted previously.

Our aim is to express the effective action in terms of all

1
IS[¢]=5 2

RR af8

two-particle irreducible vacuum diagrams, and we therefore

add a two-particle source term to the generating functional

Z[f,K]:J D¢eiS[¢]+if¢+(i/Z)¢K¢_ (10)
The generator of connected Green’s functiohg]f,K]
=—iInZfK], has accordingly derivatives given hyhe
overbar consequently denotes the average with respect to t

actiong ¢+ fp+ pK p/2)

oW — 1 — _ .
o = PR =5 PR riv T1Gp(RLRE)],
of &t

11

ap
Ketrrt/

whereG is the full connected Green'’s function of the theory.
The quantity of interest is the effective actidi ¢,G]

=W[f,K]-f¢p— pKp/2—iGK/2, the Legendre transform
which satisfies the equations

diagrams should be included in the interaction part of the
effective action, and the subscript that propagator lines rep-
resentG, i.e., the brackets with subscri® denote the aver-
age (F[#])o=(detG) ~Y2[ Dy e ¥C "¥2F[ 4], for an arbi-
trary functionalF. We now expand the exponential and keep
only the first-order term ir§,,; and obtain

—i In(eiSnd N ZPI= (5 [+ Y] 2. (14)

For the physical problem of interest the two-particle source
K vanishes, and the last of the equations iﬂ(ELQ) therefore
yields the Dyson equatiorG =D 1—3[¢,G], with the
matrix self-energy given by

. S ¢+ yl)

el 7)ra i

The Dyson equation and E@l5) constitute a set of self-
consistent equations for the Green’s functions and the self-
energies. The average field occurring in ELp) is given by

&= (((U)),((Ur))) =(0,vt), as the expectation value of the
auxiliary field vanishes{(U))=—iZ"16Z/8F|;_qk-0=0,
due to the normalization of the generating functional. The
atrix self-energy has two independent componeit3,

2PI

EK
EA

SR
0 (15

i] K=0J=0

and 3X (as EAQ(Rt,R’t’)=[2§B(R’t’,Rt)]), and
for N vortices we have according to Eq(15),
DI A AT where org(RIR't") =1/

NEkv(k)kakﬁ[kGR(RtR’t’)k]e“Pk, and EEB(Rt,R’t’)
=—iINZv(k)k,kge'?.  The influence of thermal
and disorder induced fluctuations is described by the
phase ¢ =ikMk+k-(R—R’'+ug—Ug/), specified by
the Cartesian matrix M,z(Rt,R't")=i[Gk4(Rt,Rt)

—GﬁB(Rt,R’t’)]. Using the Langevin equation and the first
equation in Eq(12) we obtain for the pinning force



13618 BRIEF REPORTS PRB 59

0.14 0.15

0.12

0.1 0.1

Fy 0.08 i
0.06 0.05
0.04
0 1 1
0.02 0 0.5 1 1.5
v
FIG. 1. Pinning force(in units of v¥?%a~2) as a function of FIG. 2. Comparison of the simulation results for the pinning

velocity (in units of ~ta"2p¥?) for a single vortex for various force and the results of the self-consistent and second-order pertur-
strengths of the Hall force. The curves correspond aby  bation theory for a single vortex for the case of no Hall foree (

=0,0.2,0.4,0.6,0.8,1, where the uppermost curve corresponds to —0) and a moderately strong Hall forcer€ 7). The solid line
=0. The mass ism=0.1772a3v51’2 and the temperature i represents the self-consistent result and the crosses represent the

:0_1V(1)/2/(k8a). Inset: Pinning forcein units of 104V(1)/2a72) asa Simulation re;ult, while the uppermost dashed-dotted line represents
function of velocity(in units of n—la—zvé/Z) according to the self- the perturbation theory result, all for the caseo._ The dasheo_l line _
consistent theory at high temperatut@,Ta/véQ: 10. The upper and the le_Js symbols represent the sel_f-con5|stent and simulation
curve corresponds ta= 7, the lower toa=0. The mass ign r_esults, while the lowest dashed-dott_ed line represer;/tzs the perturba-
—0.015%a%v, 2. tion theory, all fora= 7. The mass ign=0.17%a%v, ¥ and the
temperature i§'=0.1v(1)/2/(k3a). The units of the pinning force and

i velocity are chosen as in Fig. 1.

Fo=x

' R Y i
; dt ; kv(k)[kGT(RIRt")k]e"**. In order to fully test the validity of the self-consistent

(16) theory its results are also compared to numerical simulations
as shown in Fig. 2. The agreement between the self-
We first consider the case of noninteracting vortices. Thisonsistent theory and the simulations is good except around
is appropriate for low magnetic fields where the vortices arédhe maximum of the pinning force. In this region the relative
so widely separated that the interaction between them can elocity fluctuations are large and the self-consistent theory
neglected. We have solved the above set of self-consistepredicts that the relative fluctuations are diverging at zero
equations by numerical iteration. In Fig. 1 the resulting pin-velocity even aff =0. The self-consistent equatiotes well
ning force as a function of the velocity is shown for a set ofas the numerical simulatiohgan therefore be expected to
different strengths of the Hall force in the low-temperatureyield the largest errors at low velocities.
regime, i.e. T<vi?%(kga). The Hall force is seen to reduce ~ The Hall angle is from the self-consistent theory found to
the pinning force in this temperature regime except, ofincrease monotonically from zero at low velocities to the
course, at low velocities. The high velocity behavier, —disorder independent valué=arctan/7) at high veloci-
> \Jvo/(na?), can be compared with the second-order perli€s, as shown in Fig. 3 for the single vortex case. The agree-
turbation expression, which is obtained by replacing the fullment between the self-consistent theory and the numerical
Green’s function in Eq(16) by the free Green’s function, Simulations is seen to be good, testifying to the validity of
and omittingM in the exponentthe mass term can be ne- the approximation made in E¢Ll4). As shown in Fig. 3 we

glected assumingi< 72a%/\/vg) find that increasing the temperature increases the Hall angle
at low velocities and that this feature vanishes at high veloci-
- ties.
0
F,=— V. (17
P An(n?+ a?)at? O'E;
0.

According to Fig. 2, there is good agreement between the 0.6

self-consistent and perturbation theory in the reduction of the g 0.5

pinning force due to the Hall force at high velocities. 0.4

At high temperaturesT> v¢'%/(kga), and moderate ve- 0.3

locities, v < \/vo/(7a@%), the Hall force has the opposite ef- 0.2

fect on the pinning force. According to E¢L6) we obtain 0.1
(for m< n?a%/\vy)

FIG. 3. Hall angle for a single vortex as a function of velocity.
=T "7 . (18 The curves represent the self-consistent results for the temperatures
8mn(kgT)?a® kgTav, ¥?=0,0.1,1, where the uppermost curve corresponds to the

highest temperature. The plus symbols represent the simulation re-
In this high-temperature limiwhich can be realized in high- sult for kgTav, ¥?=0.1. The paramete#/ 7 is unity and the mass
temperature superconductprsve observe that the self- is0.152a%»3?. Inset: Hall angle for a vortex lattice as a function of
consistent theory yields a pinning force that has a linear vevelocity in descending order of lattice stiffness&sgs=200v32,
locity dependence and that the Hall force yields an increaseoovy?, 50v32. The unit of the velocity occurring in the figures is
of the pinning force, as shown in the inset in Fig. 1. chosen as in Fig. 1.

vo(n?+a?)

p
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FIG. 4. Pinning force(in units of v3?A~?) as a function of
velocity (in units of 7~ *v3?A~?) for a vortex lattice of size 16
X 16. The range of the disorder correlatois chosen to be 042,
where A is the unit cell area. The solid curve correspondsato
=0, while the dashed curve correspondsite . The temperature
and mass are both set to zero. The elastic constantsAese
=103 and Acgg=100v3”. Inset: Pinning force as a function of
velocity for «=0 anda= 7, respectively. HereAcge=300v¢ and
the other parameters are chosen as above.

a system of noninteracting vortices. The influence of the Hall

force on the pinning force is more pronounced for a stiff than

a soft lattice as seen from the inset in Fig. 4, and is similarly

reflected in the Hall angle dependence on the stiffness of the
lattice as seen from the inset in Fig. 3; the stiffest lattice has
the greatest Hall angle.

A possible experimental verification of the obtained re-
sults would be to measure the Hall angle and pinning force
of a type-Il superconductor, and thereby obtain the value of
a of the particular material according to E®). The param-
eters characterizing the disorderand v,, may, e.g., be de-
termined by both measuring the velocity dependence of the
pinning force at high vortex velocities and at high tempera-
ture at moderate velocities. The self-consistent theory can
then be compared to the experimental results for pinning
forces and Hall angles using the experimentally obtained pa-
rameters as input.

In conclusion, we have studied analytically as well as
through simulations the vortex dynamics in type-Il supercon-

Finally, we consider a vortex lattice treating the interac-ductors in the presence of a Hall force and quenched disor-
tion between the vortices in the harmonic approximationder. For the case of a single vortex we find that the Hall force
The pinning force obtained from the self-consistent theoryreduces the pinning force in the high-velocity regime where
for the case of zero temperature is shown in Fig. 4. As exthe influence of fluctuations is negligible and the only effect
pected there is no influence of the Hall force on the pinningof the Hall force is through the response function. The situ-
force at low velocities, but we find a suppression at intermeation at high temperatures is the opposite since then the ther-

diate velocities, and at high velocities>cq.a/ 7, we re-

cover the high velocity limit of the single vortex result, i.e.,

mal fluctuations are dominating over the influence through
the response function, and the Hall force thus increases the

Eq.(17). By comparison of Fig. 1 and Fig. 4, we find that the pinning force because it suppresses the fluctuations. The in-
Hall force has a much weaker influence at intermediate vefluence of the Hall force on a vortex lattice is found to be
locities on the pinning of an interacting vortex lattice than onweaker than on a single vortex.
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