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Influence of the Hall force on the vortex dynamics in type-II superconductors

Staffan Grundberg and Jo”rgen Rammer
Department of Theoretical Physics, Umea˚ University, S-901 87 Umea˚, Sweden

~Received 9 November 1998!

The effect of the Hall force on the pinning of vortices in type-II superconductors is considered. A field
theoretic formulation of the pinning problem allows a nonperturbative treatment of the influence of quenched
disorder. A self-consistent theory is constructed using the diagrammatic functional method for the effective
action, and an expression for the pinning force for independent vortices, as well as vortex lattices, is obtained.
We find that the pinning force for a single vortex is suppressed by the Hall force at low temperatures while it
is increased at high temperatures. The effect of the Hall force is more pronounced on a single vortex than on
a vortex lattice. The results of the self-consistent theory are shown to be in good agreement with numerical
simulations.@S0163-1829~99!02621-1#
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The advent of high-temperature superconductors has
to a renewed interest in vortex dynamics. We shall cons
the influence of quenched disorder on the vortex dynamic
type-II superconductors in the presence of a Hall force. T
description of the vortex dynamics will be based on the p
nomenological Langevin equation1,2

müRt1hu̇Rt1(
R8

FRR8uR8t5au̇Rt3n̂2¹V~R1uRt!

1FRt1jRt , ~1!

where uRt is the displacement at timet of the vortex that
initially has equilibrium positionR, h is the friction coeffi-
cient, andm is a possible mass~per unit length! of the vor-
tex. The dynamic matrixFRR8 of the hexagonal Abrikosov
vortex lattice describes the interaction between the vort
in the harmonic approximation. Having a thin supercondu
ing film in mind, the system is two dimensional~normal to
n̂) and the dynamic matrix is specified within the continuu
theory of elastic media3 by the compression modulusc11 and
the shear modulusc66,

Fq5
f0

B S c11qx
21c66qy

2 ~c112c66!qxqy

~c112c66!qxqy c66qx
21c11qy

2 D , ~2!

wheref0 /B is equal to the area of the unit cell of the vorte
lattice, andf05h/2e is the flux quantum. The force~per unit
length! on the right-hand side of Eq.~1! consists of the Hall
force characterized by the parametera, andFRt5f0 j (R,t)
3n̂ is the Lorentz force due to the transport current densitj ,
and the thermal white-noise stochastic forcejRt is specified
according to the fluctuation-dissipation theorem^jRt

a jR8t8
b &

52hkBTd(t2t8)dabdRR8 , and V is the pinning potential
due to quenched disorder. The pinning is described b
Gaussian distributed stochastic potential with zero mean,
thus characterized by its correlation function~where now the
brackets denote averaging with respect to the quenched
order! ^V(x)V(x8)&5n(x2x8)5n0 /(4pa2)exp@2ux2x8u2/
(4a2)], taken to be a Gaussian function with rangea and
strengthn0.
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Upon averaging with respect to the quenched disorder,
average restoring forceFR52(R8FRR8^^uR8t&& of the lat-
tice vanishes. On the average, corresponding to the la
reaching a steady-state velocityv5^^u̇&&, there will be a
balance,F1Ff1FH1Fp50, between the Lorentz forceF,
the friction forceFf52hv, the Hall forceFH5av3n̂, and
the pinning forceFp52^^¹V&&. The pinning force is due to
time-reversal symmetry invariant under reversal of the dir
tion of the magnetic field, and is therefore antiparallel to t
velocity.1 Thus, the pinning yields a renormalization of th
friction coefficient in terms of a velocity-dependent effecti
friction coefficient, Ff1Fp[2h eff(v)v, which reduces in
the absence of disorder to the bare friction coefficienth, and
has previously only been determined to lowest order in
disorder.4 The relationship between the average vortex
locity and the induced electric field,E5v3B, leads to the
expressions for the resistivity tensor and Hall angle,

r5
f0B

heff
2 1a2 S heff a

2a heff
D , u5arctan

a

heff
. ~3!

The average vortex motion is conveniently described
reformulating the stochastic Langevin problem in terms o
path integral. The probability functional for a realizatio
$uRt%R of the motion of the vortex lattice may be expresse
using the equation of motion, through a functional integ
over a set of auxiliary variables$ũRt%R , and we are led to
consider the generating functional5,6

Z@F,J#5E )
R
DuRtE )

R8
DũR8t8JeiS[u,ũ] , ~4!

where in the actionS@u,ũ#5ũ@(DR)21u1F2¹V1j#1Ju,
we have introduced a source fieldJ coupling to the vortex
positionsu, and used matrix notation in order to suppress
integrations over time and summations over vortex positi
and Cartesian indices. The retarded Green’s operato
given by 2(DR)21u[müRt1hu̇Rt1(R8FRR8uR8t1an
3u̇Rt , and its Fourier transform is
13 616 ©1999 The American Physical Society
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~DR!qv
215S mv21 ihv 2 iav

iav mv21 ihv
D 2Fq . ~5!

In order to immediately be able to perform the average w
respect to both the Langevin noise and the disorder, we h
chosen a nonzero mass,mÞ0, leaving the JacobianJ an
irrelevant constant6,7 ~in final expressions the mass can be
to zero, and will, in fact, for the values chosen not affect
obtained numerical results! and we obtain the averaged fun
tional

Z@ f #[^^Z&&5E Df eiS[f] 1 i f f, ~6!

which generates, for example, the average position and
relations

i ^^uRt&&5
dZ

dJRt
U

J50

, ^^uRtuR8t8&&5
i 2d2Z

dJRtdJR8t8
U

J50

.

~7!

We have introduced the notationf5(ũ,u) and f 5(F,J),
and the actionS5S01SV consists of a quadratic term
S0@f#5fD21f/2, where the matrixD21 in addition is a
matrix in Cartesian indices, and time and vortex positio

@dRR8
tt8 [dRR8d(t2t8)#,

D215S 2ihkBTdabdRR8
tt8 ~DR!21

~DA!21 0
D , ~8!

and a term originating from the disorder

iSV@f#5
1

2 (
RR8ab

E dtE dt8 ũRt
a ]a]bn~uRt2uR8t8!ũR8t8

b .

~9!

This reformulation of the stochastic problem in terms o
field theory is equivalent to the formalism of Martin, Siggi
and Rose,8 as noted previously.9

Our aim is to express the effective action in terms of
two-particle irreducible vacuum diagrams, and we theref
add a two-particle source term to the generating function

Z@ f ,K#5E Df eiS[f] 1 i f f1( i /2)fKf. ~10!

The generator of connected Green’s functions,W@ f ,K#
[2 i ln Z@f,K#, has accordingly derivatives given by~the
overbar consequently denotes the average with respect t
actionS@f#1 f f1fKf/2)

dW

d f Rt
a

5f̄Rt
a ,

dW

dKRtR8t8
ab 5

1

2
@f̄Rt

a f̄R8t8
b

1 iGab~Rt,R8t8!#,

~11!

whereG is the full connected Green’s function of the theor
The quantity of interest is the effective actionG@f̄,G#

5W@ f ,K#2 f f̄2f̄Kf̄/22 iGK/2, the Legendre transform
which satisfies the equations
h
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dG

df̄
52 f 2Kf̄,

dG

dG
52

i

2
K. ~12!

In the physical problem of interest the sourcesK andJ are
absent,K50 andJ50, and the full matrix Green’s function
has, due to the normalization of the generating function
Z@F,J50,K50#51, the structure

Gi j 5S 0 GA

GR GKD 52 i S 0 ^^dũadub&&

^^duadũb&& ^^duadub&&
D ,

~13!

where du5u2^^u&& and dũ5ũ2^^ũ&&. The retarded
Green’s functionGab

R gives the linear response to the forc
Fb , and Gab

K is the correlation function~both matrices in
Cartesian indices as indicated!.

According to Cornwallet al.,10 the effective action can be
written on the form G@f̄,G#5S@f̄#1( i /2)Tr@(DS

21

2 ln D21)G21#2i ln^eiSint&G
2PI, where DS

215d2S@f̄#/df̄df̄,

andS int@c,f̄# is the part ofS@f̄1c#, which is higher than
second order inc in the expansion aroundf̄, and Tr denotes
the trace over all variables. The superscript ‘‘2PI’’ on the la
term indicates that only the two-particle irreducible vacuu
diagrams should be included in the interaction part of
effective action, and the subscript that propagator lines r
resentG, i.e., the brackets with subscriptG denote the aver-
age ^F@c#&G5(detG)21/2*Dc eicG21c/2F@c#, for an arbi-
trary functionalF. We now expand the exponential and ke
only the first-order term inSint and obtain

2 i ln^eiSint[c,f̄]&G
2PI5^SV@f̄1c#&G

2PI. ~14!

For the physical problem of interest the two-particle sou
K vanishes, and the last of the equations in Eq.~12! therefore
yields the Dyson equation,G215D212S@f̄,G#, with the
matrix self-energy given by

S i j 5S SK SR

SA 0 D 52i
d^SV@f̄1c#&G

2PI

dGi j
U

K50,J50

. ~15!

The Dyson equation and Eq.~15! constitute a set of self-
consistent equations for the Green’s functions and the s
energies. The average field occurring in Eq.~15! is given by
f̄5(^^ũ&&,^^uRt&&)5(0,vt), as the expectation value of th
auxiliary field vanishes,̂ ^ũ&&52 iZ21dZ/dFuJ50,K5050,
due to the normalization of the generating functional. T
matrix self-energy has two independent components,SR

and SK
„as Sba

A (Rt,R8t8)5@Sab
R (R8t8,Rt)#…, and

for N vortices we have according to Eq.~15!,
Sqv

R 5sqv
R 2sq50,v50

R , where sab
R (RtR8t8)51/

N(kn(k)kakb@kGR(RtR8t8)k#eiwk, and Sab
K (Rt,R8t8)

52 i /N(kn(k)kakbeiwk. The influence of therma
and disorder induced fluctuations is described by
phase wk5 ikMk1k•(R2R81uRt2uR8t8), specified by
the Cartesian matrix Mab(Rt,R8t8)5 i @Gab

K (Rt,Rt)
2Gab

K (Rt,R8t8)#. Using the Langevin equation and the fir
equation in Eq.~12! we obtain for the pinning force
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Fp5
i

N (
R8

E dt8 (
k

k n~k!@kGR~RtR8t8!k#eiwk.

~16!

We first consider the case of noninteracting vortices. T
is appropriate for low magnetic fields where the vortices
so widely separated that the interaction between them ca
neglected. We have solved the above set of self-consis
equations by numerical iteration. In Fig. 1 the resulting p
ning force as a function of the velocity is shown for a set
different strengths of the Hall force in the low-temperatu
regime, i.e.,T!n0

1/2/(kBa). The Hall force is seen to reduc
the pinning force in this temperature regime except,
course, at low velocities. The high velocity behavior,v
@An0/(ha2), can be compared with the second-order p
turbation expression, which is obtained by replacing the
Green’s function in Eq.~16! by the free Green’s function
and omittingM in the exponent~the mass term can be ne
glected assumingm!h2a3/An0)

Fp52
hn0

4p~h21a2!a4v2
v. ~17!

According to Fig. 2, there is good agreement between
self-consistent and perturbation theory in the reduction of
pinning force due to the Hall force at high velocities.

At high temperatures,T@n0
1/2/(kBa), and moderate ve

locities, v,An0/(ha2), the Hall force has the opposite e
fect on the pinning force. According to Eq.~16! we obtain
~for m!h2a3/An0)

Fp52
n0~h21a2!

8ph~kBT!2a2
v. ~18!

In this high-temperature limit~which can be realized in high
temperature superconductors! we observe that the self
consistent theory yields a pinning force that has a linear
locity dependence and that the Hall force yields an incre
of the pinning force, as shown in the inset in Fig. 1.

FIG. 1. Pinning force~in units of n0
1/2a22) as a function of

velocity ~in units of h21a22n0
1/2) for a single vortex for various

strengths of the Hall force. The curves correspond toa/h
50,0.2,0.4,0.6,0.8,1, where the uppermost curve correspondsa
50. The mass ism50.1h2a3n0

21/2 and the temperature isT
50.1n0

1/2/(kBa). Inset: Pinning force~in units of 1024n0
1/2a22) as a

function of velocity~in units of h21a22n0
1/2) according to the self-

consistent theory at high temperature,kBTa/n0
1/2510. The upper

curve corresponds toa5h, the lower toa50. The mass ism
50.01h2a3n0

21/2.
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In order to fully test the validity of the self-consisten
theory its results are also compared to numerical simulati
as shown in Fig. 2. The agreement between the s
consistent theory and the simulations is good except aro
the maximum of the pinning force. In this region the relati
velocity fluctuations are large and the self-consistent the
predicts that the relative fluctuations are diverging at z
velocity even atT50. The self-consistent equations~as well
as the numerical simulations! can therefore be expected t
yield the largest errors at low velocities.

The Hall angle is from the self-consistent theory found
increase monotonically from zero at low velocities to t
disorder independent valueu05arctan(a/h) at high veloci-
ties, as shown in Fig. 3 for the single vortex case. The ag
ment between the self-consistent theory and the nume
simulations is seen to be good, testifying to the validity
the approximation made in Eq.~14!. As shown in Fig. 3 we
find that increasing the temperature increases the Hall a
at low velocities and that this feature vanishes at high velo
ties.

FIG. 2. Comparison of the simulation results for the pinni
force and the results of the self-consistent and second-order pe
bation theory for a single vortex for the case of no Hall forcea
50) and a moderately strong Hall force (a5h). The solid line
represents the self-consistent result and the crosses represe
simulation result, while the uppermost dashed-dotted line repres
the perturbation theory result, all for the casea50. The dashed line
and the plus symbols represent the self-consistent and simula
results, while the lowest dashed-dotted line represents the pertu
tion theory, all fora5h. The mass ism50.1h2a3n0

21/2 and the
temperature isT50.1n0

1/2/(kBa). The units of the pinning force and
velocity are chosen as in Fig. 1.

FIG. 3. Hall angle for a single vortex as a function of velocit
The curves represent the self-consistent results for the tempera
kBTan0

21/250,0.1,1, where the uppermost curve corresponds to
highest temperature. The plus symbols represent the simulatio
sult for kBTan0

21/250.1. The parametera/h is unity and the mass
is 0.1h2a3n0

1/2. Inset: Hall angle for a vortex lattice as a function
velocity in descending order of lattice stiffnessesAc665200n0

1/2,
100n0

1/2, 50n0
1/2. The unit of the velocity occurring in the figures i

chosen as in Fig. 1.
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Finally, we consider a vortex lattice treating the intera
tion between the vortices in the harmonic approximati
The pinning force obtained from the self-consistent the
for the case of zero temperature is shown in Fig. 4. As
pected there is no influence of the Hall force on the pinn
force at low velocities, but we find a suppression at interm
diate velocities, and at high velocities,v@c11a/h, we re-
cover the high velocity limit of the single vortex result, i.e
Eq. ~17!. By comparison of Fig. 1 and Fig. 4, we find that th
Hall force has a much weaker influence at intermediate
locities on the pinning of an interacting vortex lattice than

FIG. 4. Pinning force~in units of n0
1/2A21/2) as a function of

velocity ~in units of h21n0
1/2A21/2) for a vortex lattice of size 16

316. The range of the disorder correlatora is chosen to be 0.1A1/2,
where A is the unit cell area. The solid curve corresponds toa
50, while the dashed curve corresponds toa5h. The temperature
and mass are both set to zero. The elastic constants areAc11

5104n0
1/2 andAc665100n0

1/2. Inset: Pinning force as a function o
velocity for a50 anda5h, respectively. Here,Ac665300n0

1/2 and
the other parameters are chosen as above.
.
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a system of noninteracting vortices. The influence of the H
force on the pinning force is more pronounced for a stiff th
a soft lattice as seen from the inset in Fig. 4, and is simila
reflected in the Hall angle dependence on the stiffness of
lattice as seen from the inset in Fig. 3; the stiffest lattice h
the greatest Hall angle.

A possible experimental verification of the obtained r
sults would be to measure the Hall angle and pinning fo
of a type-II superconductor, and thereby obtain the value
a of the particular material according to Eq.~3!. The param-
eters characterizing the disorder,a andn0, may, e.g., be de-
termined by both measuring the velocity dependence of
pinning force at high vortex velocities and at high tempe
ture at moderate velocities. The self-consistent theory
then be compared to the experimental results for pinn
forces and Hall angles using the experimentally obtained
rameters as input.

In conclusion, we have studied analytically as well
through simulations the vortex dynamics in type-II superco
ductors in the presence of a Hall force and quenched di
der. For the case of a single vortex we find that the Hall fo
reduces the pinning force in the high-velocity regime whe
the influence of fluctuations is negligible and the only effe
of the Hall force is through the response function. The si
ation at high temperatures is the opposite since then the t
mal fluctuations are dominating over the influence throu
the response function, and the Hall force thus increases
pinning force because it suppresses the fluctuations. The
fluence of the Hall force on a vortex lattice is found to
weaker than on a single vortex.
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