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Single-cluster-update Monte Carlo method for the random anisotropy model
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A Wolff-type cluster Monte Carlo algorithm for random magnetic models is presented. The algorithm is
demonstrated to reduce significantly the critical slowing down for planar random anisotropy models with weak
anisotropy strength. Dynamic exponerts 1.0 of best cluster algorithms are estimated for models with ratio
of anisotropy to exchange constddtJ= 1.0 on cubic lattices in three dimensions. For these models, critical
exponents are derived from a finite-size scaling analySi8163-18209)03818-1

There is ongoing interest in the properties of randomas additional bonds to some spin entity outside of the system,
magnetS and related systems like disordered type-llwhich does not take part in the MC dynamics. In SW-type
superconductor’,superfluids, or density waves pinned in cluster methods, pinning occurs if such a bond at a site or a
rough medi&:* In particular, models with continuous spins group of sites in a growing cluster is frozen. So far, such an
(Heisenberg oiXY mode) were studied recentlybecause extension was proposed only in ad hocfashion by Dot-
the stability of ferromagnetic or quasi-long-range order subsenko, Selke, and Talapg®ST).* In the DST approach a
ject to weak quenched disorder is not completely understoodluster is grown first by deleting and freezing bonds as in the
For two-component spins the transition might resemble thayVolff algorithm and then the sum of all on-site potentials for
of the corresponding pure system, which is the Kosterlitzthis cluster is considered as one bond to a siggiest spin
Thouless transition of the pureXY model in d=2 Sampling this term determines whether the cluster is pinned
dimensiong, and theX Y-ferromagnetic transition imi=3.  or can be flipped. This method is inefficient because clusters
On the other hand, such systems may eventually undergo@ow too large and most of them have to be rejected when
transition to a spin-glass pha&&® Thus the critical proper- the pinning potential is finally considered. Barkema and
ties of such disordered magnetic systems are not well undeMarko™ improved and implemented the method with their
stood, and related numerical studies are desirable. limited-cluster-flip (LCF) algorithm for random-field Ising

Monte Carlo(MC) simulation methods provide powerful models by imposing further constraints which stop cluster
tools to investigate statistical models. However, MC simula-growth at some stage. Our central idea is that sampling the
tion using single spin-flip dynamics, e.g., the Metropolis al-on-site potential terms can be efficiently done during cluster
gorithm, is plagued by critical slowing down because of di-growth. Cluster growth is stopped by the random potential
verging correlation lengths and tim&s. Cluster MC itself as soon as a pinning site or group of sites is found.
dynamics devised by Swendsen and W&8W/) can reduce Thus this method probes the real limitations on shapes and
slowing down drastically for somémostly unfrustrated Sizes of clusters in the system. Artificial constraints as in the
systems? By deleting and freezing bonds, SW algorithms LCF approach are not necessary, but they can be superim-
decompose the systems into independent clusters of marpsed if desired.
spins which can be flipped coherently by collective updates. Our algorithm will be described and demonstrated for ran-
Wolff developed an even more efficient single-cluster-updat&lom anisotropyX'Y models, but an adaption to other similar
algorithm?®® where only one cluster is grown in each step.random systems is possible. To be specific, we use random
Wolff's method proved to reduce slowing down by orders ofanisotropy models, proposed by Harris, Plischke, and
magnitudes for purel=2,3 XY models allowing progress Zuckermanrt? considered as classical spin system:
with numerical studies of their properti&sGenerally, new

N
types of cluster algorithms for special classes of models are _ 2
important tools for a better understanding of their properties, H= _JGZi> S-S— Dizl (S-a)° (J>0). @)
because these are related to the percolative properties of the
clusterst® In Eqg. (1) the spinsS and the random axes are unit vec-

Here, we extend Wolff's cluster algorithm to models of tors withm components. The; are uncorrelated with isotro-
magnetic systems with random potential terms. Examples gbic distribution, defining the quenched disorder. For tests of
such systems are random anisotrtSp§RAM) or random-  our algorithm, we consider this system wit=2 in d=2
field models'’ The physics of these models is concerned(3) dimensions on squar@ubic lattices withN=L¢ sites,
with pinning which entails frustrations between the bonds inusing periodic boundary conditions.
the spins system and its deformations in the random poten- The simplest form of the algorithm generates clusters as
tial. So, any cluster method for this type of model has tofollows: (a) To start growth, choose a random plane for re-
incorporate pinning of the clusters. flections of the spins, as in the original Wolff algorithm, and

Our approach is similar in spirit to the usage giiost a random site as starting point, mark it, and put it first on a
spinswith SW or Wolff algorithms?8for spin models in an list which enumerates the sites belonging to the growing
external field. Thus the on-site random potentials are viewedluster.(b) Growth from the starting site is done iteratively:
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Any listed site in the cluster is visited once in order to  TABLE I. Performance of cluster algorithms for random anisot-
sample its on-site potential energy and its bonds to spingpy models ind=2. ColumnG gives the respectiv& value for
outside the growing cluster. So, take an eritiyom this list, ~ the cluster algorithnisee tex, “M” means Metropolis algorithm.
which was not visited yet, and calculate for sginthe The table lists acceptance rat&p correlation timer,,, average
changed spin directioS;’ and the associated change of the cluster sizeg|c|) and computation time, per spin to perforny,
on-site potential energyAEia= ~D[(S'- ai)z_ (S- a{_)z]_ steps , refer to CPU seconds of a HP-J282

(c) Decide whether the on-site potential at sit#oes not pin

the cluster with a thermal probability b3 T G a (Ie) mu/MCS  t./s
e . a 32 05 095 M 0.296 - 270 1.0e-3
PH(S";S)=expmin{0,~ BAE}), @2 32 05 095 1 0305 208 69 2.led
where 8 is the inverse temperatureTl/If the cluster is 32 05 0985 4 0337 3.03 15  6.3e5
pinned its move must be rejected. Then start again with ste2 05 095 10 0352 3.92 081 4.9e-5
(a). (d) Otherwise, visit all nearest neighbgref sitei. If j is 32 05 09 40 0368 563 0.55 6.4e-5
not yet on the list of spins in the cluster determine whether32 0.5 095 100 0.372 6.86 0.53 1.0e-4
the bond betweenand] is frozen with a probability: 32 05 095 1024 0375 853 0.52 4.7e-4
b ) 64 05 0.95 M 0.296 - 2360 1.3e-2
P(S";5,5)=1-exdmin{0,—BI(S'-S)-S}]. B) 64 05 09 1 0305 208 61 2.1e-3
If the bond between andj is frozen marlj and add it to the €4 05 110 10 0479 6.47 0.96  6.4e-5
list of sites in the clustene) Continue with stefb) if there
are sites on the list which were not visited yet. Otherwise, thel6 40 1.00 M 0224 - 516 2.3e-3
growth process stops. Then the cluster is accepted and all ité6 4.0 1.00 3 0147 115 420 5.3e-3

spins are flipped to their new directiofg .

Steps(a) and (d) to (e) reduce to a modified Wolff algo-
rithm. Unlike the original Wolff algorithm, we cannot flip Eq. (2) but replace the energ&E? by this sum of energy
spins as they are joined to the cluster but have to CO"'ECéhangesAEgEEiE{g}AE? related to theG sites{g}CC. If
them first in a list. This is mandated by the pinning at On'sitethis bond is frozen reject the C|uster and start again m’lh
potentials, which is considered in stefs + (). If the ran-  otherwise AE? is set to zero and the algorithm continues
dom potentials vanish our extended algorithm produces exjith (d). Detailed balance is still maintained, as seen by a
actly the same clusters as the Wolff algorithm because clusg|ation similar to Eq.(4) when replacing the product of

ters are never rejected ift). Ergodicity of the algorithm D epara ;

, = ) . probabilitiesP(S';S) by products corresponding to groups
(8)—(e) is maintained as in the Wolff algorithm because any¢ citos Here, we use the numt@ras a fixed parameter for
spin direction can be flipped into any other by a SUItabIedifferent algorithms. WithG small, the algorithm may miss

move, _and there is a finite propgblllty of clusters W'th only some correlations and requires more numerical calculations.
one spin. The transition probability/ between two configu- For largeG, much work is spent on useless growth of clus-

rations{ S}, {S'} differing by one flip of a cluste€ factor-  or¢ \yhich are rejected when pinning is finally considered.
izes in two parts. The first is due to the change in exchangﬁ1 this limit, G=N, our algorithm equals the DST
energy along the boundary of the clustigl, which consists algorithm1® Thus ther,e is an optimure.

of all bonds withi e C and] ¢ C. This product of probabilities =, i following, we present some simulations for random
is |dent|cal to the transition probability of the Wolff _algo— anisotropy model&* We have sampled equilibrium dynam-
rithm in pure models. The second part samples anisotropy.q starting always with previously well equilibrated spin
energies in the bulk of the cluster. Thus detailed balance i8onfigurations. Our data indicate that properties do not vary
seen by strongly from sample to sample with not too lar§éJ. As
, brer. e expected, averages calculated with different algorithms for
W({S—{S"}) _ 1-P(S":S,9) Pi(S"S) the same sample do not differ. Here, we compare the appli-
W{S Y —{S}) (.iyea 1—PP(S 'S'.S)icc PA(S;S") cation of different cluster algorithms and in some cases the
Metropolis algorithm. For each method the same set of typi-
_ - cally one or two samples of RAM’s was used. This is suffi-
—exp(,B ‘]%:) (§-§'-S-§) cient to determine the performances of the algorithms. They
can be measured by the relaxational dynamics seen in the
, 2 2 fluctuations of a slow collective mode. We use the magneti-
+D§i: (S"a)—=(S-&) )H 4 zation M, which should be the slowest relevant mode and
calculate its integrated autocorrelation timg by a self-
Modifying step(c) we get improved algorithms by col- consistent windowing methdd. Runs for calculatingry,
lecting a number o6 on-site terms into one bond to a single used at least TOattempted moves per spitMonte Carlo
ghost spin. This can be built into our algorithm by castingsteps=MCS), but often up to 1®MCS. Table | shows re-
sites together in the sequence in which they are taken frormsults of simulations ind=2 dimensions. Note that an ac-
the list during cluster growth. It reads theft’) Add the  cepted move for cluster MC means that on average a number
on-site energy chang®E? to a variableAE. WhenG con-  of (|c|) spins is flipped, wherg/c|) is the mean cluster size.
tributions have been added calculate the probability that thiThe practical efficiency of our algorithm is given by the
cluster is not pinned at the corresponding group of sites as inomputation time . to decorrelate a configuration. The data
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(b) FIG. 2. Correlation time versus system size for random anisot-
7L i ropy models ind=3 with D/J=1.0 atT=2.20. Straight lines-L?*
A G=80 with z=(2.1, 0.9, 0.6 are fits to the data fo6=(1, 10, 40. (The
© - error of z is about=0.2)
v 5T 1
3 G=10 . magnetizationM and powers of these quantities. By histo-
G=1 gram sampling® we calculate the specific hea€,
1 : : : : =N([(E?®)]ay—[(E)?1a,)/T?, magnetizatiom, =[(M)],, ,
18 %2/ ; 26 3 connected  susceptibilityy, =N([(M?)]a, — [(M)?1,,)/T,

disconnected susceptibility, =N([(M?)],,, and Binder's
FIG. 1. Temperature dependence of performance data for clustegrth-order cumulant, = 1_[<M4>]a /(3[<M2>2]a ) as
. . . . . v v

algorithms with differentG values applied to a random anisotropy fnctions of T in the critical region. Brackets denote thermal
model (=8, D/J=1.0) ind=3. () Correlation timesry—for (---) and samplg - - - 1,, averages for fixed size. By cal-
comparisonry for the Metropolis algorithm are included) Av- culating these variousavfunctions af separately for indi-
erage cluster size§c|).

g eel) vidual realizations of the quenched disorder, we find that
show a gain by more than one order of magnitude for théhese functions for the sanhedo not deviate from each other

best algorithms for RAM’s wittD/J= 0.5 compared to Me- within about 2r error bars calculated by the histogram sam-
tropolis MC. There is an optimum performance at a value ofling technique. Thus within the accuracy achieved in our
G=10. For G>40, performance deteriorates leading toruns for individual samples their properties do not differ sig-
rather poor efficiency, as discussed above. The performandgficantly. The fourth-order cumulant takes on the scaling
data forD/J= 4.0 show the limitations of our algorithm. The form U =U[LY"(T—T)] with » the correlation length
cluster algorithms still reducey, , but practical performance exponent® HenceT, is determined by the unique intersec-
of the algorithms is worse than Metropolis MC. Figure 1tion of the curvesU (T) for different L, and 14 can be
shows the dependence gf, and(|c|) on temperature il determined from a fitqU, /dT)(T )L™ as shown in Fig.
=3 dimensions for a RAM wittD/J=1.0 and sizeL=8 3. The relatively small scatter of the intersections for differ-
using different algorithms. Again, a strong reductionrgf entU, (T) may be seen as further corroboration that critical
due to the cluster algorithms as compared to the Metropoligroperties of different RAM realizations do not differ
single spin-flip algorithm is found. From Fig(d), it is also  strongly. With the knowledge of . and 1k, finite-size scal-
seen that with increasing values Gfa further reduction of ing at T yields other critical exponents, using «L*”,

v is achieved, and the divergence of the correlation timem oL =A% y, «L”"* andy <L””. We derive the following
can be suppressed. At larger anisotropy strenDttds- 6 the
cluster algorithm does not produce spanning clusters any

more in the critical region and becomes inefficient. 0.66 | I T,=2.21410.001 7
For RAM’s in d=3 with D/J=1.0, an estimate of the 48
critical temperatureT,/J=2.20 was obtained previously. 062 F 32
Figure 2 shows scaling of correlation timegoL? at criti- 24
: > ; 16
cality for cluster algorithms and different values Gf In- > oss |
creasingG reduces always the dynamic exponent z. But at Tl st0
valuesG=40 the performance of the algorithm deteriorates. & '
At optimum values 0of5=<40 we havee<1.0. ForL= 32, we 054 +Z |
find that the algorithm witlG =40 is 20 times faster than the 16 32 64
Metropolis algorithm. L .
We have applied the algorithm with= 10 to derive criti- 2204 2208 2212 2216 222
cal properties for RAM’s ind=3 with D/J=1.0 by finite- r
size scaling. We studied between 25 samplesLfer8, 12 FIG. 3. Fourth-order cumular for random anisotropy models

for L=48, and 6 forL. =64. For each sample, at least of the in d=3 with D/J=1.0. From the intersection the critical tempera-
order 10 statistically independent configurations near criti- ture is determined as indicated by vertical bars. The inset shows the
cality were simulated for measurements of energy perBpin scaling of ¢U, /dT)(T.)=L”, which yields 1/=1.498+0.010.
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values: T./J=2.214+0.001, »=0.6672-0.005, «=0.153 els ind=3 dimensions were determined by a finite-size scal-
+0.003, 8=0.339+0.005y=1.341+0.011, andy=1.326 ing analysis. The estimated exponents for correlation length,

+0.011. Within our accuracy, the scaling relatiovj?ﬂ} )rysg{(netlzanon _and sy_sce;glbmty dequgld.those d(')f: the
=dw is fulfiled, and the exponents in this relation match” Y Terromagnetic transition. But our data indicate a different

those of theX Y-ferromagnetic transitiof? But the specific- type of transition because we find a divergent specific heat

heat exponentv>0 is finite, and the hyperscaling relation and hyperscaling violation.

2—a=(d— 0)v yields a finite hyperscaling violation expo-

nent#=0.23+0.02. | thank L. Schultz for generous support to perform this
In conclusion, we presented a cluster algorithm for disor-study, A. Mdius, M. Wolf, and K.-H. Milier for help and

dered magnetic systems. It is very efficient for weakuseful suggestions, and S. Kobe and his group for discussion.

strengths of the on-site potentials in random anisotrdpy  A. Wobst wrote the nucleus of the MC program. This work

models. Critical exponents for these random anisotropy modwas supported by INCO-Copernicus.
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