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Single-cluster-update Monte Carlo method for the random anisotropy model
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~Received 19 January 1999!

A Wolff-type cluster Monte Carlo algorithm for random magnetic models is presented. The algorithm is
demonstrated to reduce significantly the critical slowing down for planar random anisotropy models with weak
anisotropy strength. Dynamic exponentsz&1.0 of best cluster algorithms are estimated for models with ratio
of anisotropy to exchange constantD/J51.0 on cubic lattices in three dimensions. For these models, critical
exponents are derived from a finite-size scaling analysis.@S0163-1829~99!03818-7#
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There is ongoing interest in the properties of rand
magnets1 and related systems like disordered type
superconductors,2 superfluids, or density waves pinned
rough media.3,4 In particular, models with continuous spin
~Heisenberg orXY model! were studied recently5 because
the stability of ferromagnetic or quasi-long-range order s
ject to weak quenched disorder is not completely understo
For two-component spins the transition might resemble
of the corresponding pure system, which is the Kosterl
Thouless transition of the pureXY model in d52
dimensions,6 and theXY-ferromagnetic transition ind53.
On the other hand, such systems may eventually under
transition to a spin-glass phase.7–10 Thus the critical proper-
ties of such disordered magnetic systems are not well un
stood, and related numerical studies are desirable.

Monte Carlo~MC! simulation methods provide powerfu
tools to investigate statistical models. However, MC simu
tion using single spin-flip dynamics, e.g., the Metropolis
gorithm, is plagued by critical slowing down because of
verging correlation lengths and times.11 Cluster MC
dynamics devised by Swendsen and Wang~SW! can reduce
slowing down drastically for some~mostly unfrustrated!
systems.12 By deleting and freezing bonds, SW algorithm
decompose the systems into independent clusters of m
spins which can be flipped coherently by collective upda
Wolff developed an even more efficient single-cluster-upd
algorithm,13 where only one cluster is grown in each ste
Wolff’s method proved to reduce slowing down by orders
magnitudes for pured52,3 XY models allowing progress
with numerical studies of their properties.14 Generally, new
types of cluster algorithms for special classes of models
important tools for a better understanding of their propert
because these are related to the percolative properties o
clusters.15

Here, we extend Wolff’s cluster algorithm to models
magnetic systems with random potential terms. Example
such systems are random anisotropy16 ~RAM! or random-
field models.17 The physics of these models is concern
with pinning which entails frustrations between the bonds
the spins system and its deformations in the random po
tial. So, any cluster method for this type of model has
incorporate pinning of the clusters.

Our approach is similar in spirit to the usage ofghost
spinswith SW or Wolff algorithms12,18 for spin models in an
external field. Thus the on-site random potentials are view
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as additional bonds to some spin entity outside of the syst
which does not take part in the MC dynamics. In SW-ty
cluster methods, pinning occurs if such a bond at a site o
group of sites in a growing cluster is frozen. So far, such
extension was proposed only in anad hoc fashion by Dot-
senko, Selke, and Talapov~DST!.19 In the DST approach a
cluster is grown first by deleting and freezing bonds as in
Wolff algorithm and then the sum of all on-site potentials f
this cluster is considered as one bond to a singleghost spin.
Sampling this term determines whether the cluster is pin
or can be flipped. This method is inefficient because clus
grow too large and most of them have to be rejected w
the pinning potential is finally considered. Barkema a
Marko20 improved and implemented the method with the
limited-cluster-flip ~LCF! algorithm for random-field Ising
models by imposing further constraints which stop clus
growth at some stage. Our central idea is that sampling
on-site potential terms can be efficiently done during clus
growth. Cluster growth is stopped by the random poten
itself as soon as a pinning site or group of sites is fou
Thus this method probes the real limitations on shapes
sizes of clusters in the system. Artificial constraints as in
LCF approach are not necessary, but they can be supe
posed if desired.

Our algorithm will be described and demonstrated for ra
dom anisotropyXY models, but an adaption to other simila
random systems is possible. To be specific, we use ran
anisotropy models, proposed by Harris, Plischke, a
Zuckermann,16 considered as classical spin system:

H52J(
^ i , j &

Si•Sj2D(
i 51

N

~Si•ai !
2 ~J.0!. ~1!

In Eq. ~1! the spinsSi and the random axesai are unit vec-
tors withm components. Theai are uncorrelated with isotro
pic distribution, defining the quenched disorder. For tests
our algorithm, we consider this system withm52 in d52
~3! dimensions on square~cubic! lattices withN[Ld sites,
using periodic boundary conditions.

The simplest form of the algorithm generates clusters
follows: ~a! To start growth, choose a random plane for r
flections of the spins, as in the original Wolff algorithm, an
a random site as starting point, mark it, and put it first on
list which enumerates the sites belonging to the grow
cluster.~b! Growth from the starting site is done iterativel
13 577 ©1999 The American Physical Society
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13 578 PRB 59BRIEF REPORTS
Any listed site in the cluster is visited once in order
sample its on-site potential energy and its bonds to sp
outside the growing cluster. So, take an entryi from this list,
which was not visited yet, and calculate for spini the
changed spin directionSi8 and the associated change of t
on-site potential energy:DEi

a52D@(Si8•ai)
22(Si•ai)

2#.
~c! Decide whether the on-site potential at sitei does not pin
the cluster with a thermal probability

Pi
a~Si8;Si !5exp~min$0,2bDEi

a%!, ~2!

where b is the inverse temperature 1/T. If the cluster is
pinned its move must be rejected. Then start again with s
~a!. ~d! Otherwise, visit all nearest neighborsj of site i. If j is
not yet on the list of spins in the cluster determine whet
the bond betweeni and j is frozen with a probability:

Pb~Si8;Si ,Sj !512exp@min$0,2bJ~Si82Si !•Sj%#. ~3!

If the bond betweeni and j is frozen markj and add it to the
list of sites in the cluster.~e! Continue with step~b! if there
are sites on the list which were not visited yet. Otherwise,
growth process stops. Then the cluster is accepted and a
spins are flipped to their new directionsSi8.

Steps~a! and ~d! to ~e! reduce to a modified Wolff algo
rithm. Unlike the original Wolff algorithm, we cannot flip
spins as they are joined to the cluster but have to col
them first in a list. This is mandated by the pinning at on-s
potentials, which is considered in steps~b! 1 ~c!. If the ran-
dom potentials vanish our extended algorithm produces
actly the same clusters as the Wolff algorithm because c
ters are never rejected in~c!. Ergodicity of the algorithm
~a!–~e! is maintained as in the Wolff algorithm because a
spin direction can be flipped into any other by a suita
move, and there is a finite probability of clusters with on
one spin. The transition probabilityW between two configu-
rations$Si%, $Si8% differing by one flip of a clusterC factor-
izes in two parts. The first is due to the change in excha
energy along the boundary of the cluster]C, which consists
of all bonds withi PC and j ¹C. This product of probabilities
is identical to the transition probability of the Wolff algo
rithm in pure models. The second part samples anisotr
energies in the bulk of the cluster. Thus detailed balanc
seen by

W~$Si%→$Si8%!

W~$Si8%→$Si%!
5 )

^ i , j &P]C

12Pb~Si8;Si ,Sj !

12Pb~Si ;Si8,Sj8!
)
i PC

Pi
a~Si8;Si !

Pi
a~Si ;Si8!

5expH bFJ(
^ i , j &

~Si8•Sj82Si•Sj !

1D(
i

„~Si8•ai !
22~Si•ai !

2
…G J . ~4!

Modifying step ~c! we get improved algorithms by col
lecting a number ofG on-site terms into one bond to a sing
ghost spin. This can be built into our algorithm by casti
sites together in the sequence in which they are taken f
the list during cluster growth. It reads then:~c8! Add the
on-site energy changeDEi

a to a variableDEg
a . WhenG con-

tributions have been added calculate the probability that
cluster is not pinned at the corresponding group of sites a
s

p

r

e
its

ct
e

x-
s-

e

e

y
is

m

is
in

Eq. ~2! but replace the energyDEi
a by this sum of energy

changesDEg
a[( i P$g%DEi

a related to theG sites $g%,C. If
this bond is frozen reject the cluster and start again with~a!,
otherwiseDEg

a is set to zero and the algorithm continu
with ~d!. Detailed balance is still maintained, as seen by
relation similar to Eq.~4! when replacing the product o
probabilitiesPi

a(Si8;Si) by products corresponding to group
of sites. Here, we use the numberG as a fixed parameter fo
different algorithms. WithG small, the algorithm may miss
some correlations and requires more numerical calculatio
For largeG, much work is spent on useless growth of clu
ters, which are rejected when pinning is finally consider
In this limit, G[N, our algorithm equals the DST
algorithm.19 Thus there is an optimumG.

In the following, we present some simulations for rando
anisotropy models.21 We have sampled equilibrium dynam
ics starting always with previously well equilibrated sp
configurations. Our data indicate that properties do not v
strongly from sample to sample with not too largeD/J. As
expected, averages calculated with different algorithms
the same sample do not differ. Here, we compare the ap
cation of different cluster algorithms and in some cases
Metropolis algorithm. For each method the same set of ty
cally one or two samples of RAM’s was used. This is suf
cient to determine the performances of the algorithms. T
can be measured by the relaxational dynamics seen in
fluctuations of a slow collective mode. We use the magn
zation M, which should be the slowest relevant mode a
calculate its integrated autocorrelation timetM by a self-
consistent windowing method.22 Runs for calculatingtM
used at least 104 attempted moves per spin~Monte Carlo
steps5MCS!, but often up to 106 MCS. Table I shows re-
sults of simulations ind52 dimensions. Note that an ac
cepted move for cluster MC means that on average a num
of ^ucu& spins is flipped, wherêucu& is the mean cluster size
The practical efficiency of our algorithm is given by th
computation timett to decorrelate a configuration. The da

TABLE I. Performance of cluster algorithms for random aniso
ropy models ind52. ColumnG gives the respectiveG value for
the cluster algorithm~see text!, ‘‘M’’ means Metropolis algorithm.
The table lists acceptance ratioa, correlation timetM , average
cluster sizeŝ ucu& and computation timett per spin to performtM

steps (tt refer to CPU seconds of a HP-J282!.

L D/J T/J G a ^ucu& tM /MCS tt /s

32 0.5 0.95 M 0.296 - 270 1.0e-3
32 0.5 0.95 1 0.305 2.08 6.9 2.1e-4
32 0.5 0.95 4 0.337 3.03 1.5 6.3e-5
32 0.5 0.95 10 0.352 3.92 0.81 4.9e-5
32 0.5 0.95 40 0.368 5.63 0.55 6.4e-5
32 0.5 0.95 100 0.372 6.86 0.53 1.0e-
32 0.5 0.95 1024 0.375 8.53 0.52 4.7e-
64 0.5 0.95 M 0.296 - 2360 1.3e-2
64 0.5 0.95 1 0.305 2.08 61 2.1e-3
64 0.5 1.10 10 0.479 6.47 0.96 6.4e-5

16 4.0 1.00 M 0.224 - 516 2.3e-3
16 4.0 1.00 3 0.147 1.15 420 5.3e-3
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show a gain by more than one order of magnitude for
best algorithms for RAM’s withD/J50.5 compared to Me-
tropolis MC. There is an optimum performance at a value
G.10. For G.40, performance deteriorates leading
rather poor efficiency, as discussed above. The performa
data forD/J54.0 show the limitations of our algorithm. Th
cluster algorithms still reducetM , but practical performance
of the algorithms is worse than Metropolis MC. Figure
shows the dependence oftM and ^ucu& on temperature ind
53 dimensions for a RAM withD/J51.0 and sizeL58
using different algorithms. Again, a strong reduction oftM
due to the cluster algorithms as compared to the Metrop
single spin-flip algorithm is found. From Fig. 1~a!, it is also
seen that with increasing values ofG a further reduction of
tM is achieved, and the divergence of the correlation ti
can be suppressed. At larger anisotropy strengthsD/J;6 the
cluster algorithm does not produce spanning clusters
more in the critical region and becomes inefficient.

For RAM’s in d53 with D/J51.0, an estimate of the
critical temperatureTc /J52.20 was obtained previously.9

Figure 2 shows scaling of correlation timestM}Lz at criti-
cality for cluster algorithms and different values ofG. In-
creasingG reduces always the dynamic exponent z. But
valuesG>40 the performance of the algorithm deteriorat
At optimum values ofG&40 we havez&1.0. ForL532, we
find that the algorithm withG540 is 20 times faster than th
Metropolis algorithm.

We have applied the algorithm withG510 to derive criti-
cal properties for RAM’s ind53 with D/J51.0 by finite-
size scaling. We studied between 25 samples forL58, 12
for L548, and 6 forL564. For each sample, at least of th
order 104 statistically independent configurations near cr
cality were simulated for measurements of energy per spiE,

FIG. 1. Temperature dependence of performance data for clu
algorithms with differentG values applied to a random anisotrop
model (L58, D/J51.0) in d53. ~a! Correlation timestM—for
comparisontM for the Metropolis algorithm are included.~b! Av-
erage cluster sizeŝucu&.
e

f

ce

is

e
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magnetizationM and powers of these quantities. By hist
gram sampling,23 we calculate the specific heatCL

5N(@^E2&#av2@^E&2#av)/T2, magnetizationmL5@^M &#av ,
connected susceptibilityxL5N(@^M2&#av2@^M &2#av)/T,

disconnected susceptibilityx̃L5N(@^M2&#av , and Binder’s
fourth-order cumulantUL512@^M4&#av /(3@^M2&2#av) as
functions ofT in the critical region. Brackets denote therm
^•••& and sample@•••#av averages for fixed sizeL. By cal-
culating these various functions ofT separately for indi-
vidual realizations of the quenched disorder, we find t
these functions for the sameL do not deviate from each othe
within about 2s error bars calculated by the histogram sa
pling technique. Thus within the accuracy achieved in o
runs for individual samples their properties do not differ s
nificantly. The fourth-order cumulant takes on the scali
form UL5U@L1/n(T2Tc)# with n the correlation length
exponent.24 HenceTc is determined by the unique interse
tion of the curvesUL(T) for different L, and 1/n can be
determined from a fit (]UL /]T)(Tc)}L1/n as shown in Fig.
3. The relatively small scatter of the intersections for diffe
ent UL(T) may be seen as further corroboration that critic
properties of different RAM realizations do not diffe
strongly. With the knowledge ofTc and 1/n, finite-size scal-
ing at Tc yields other critical exponents, usingCL}La/n,
mL}L2b/n, xL}Lg/n, andx̃L}L g̃/n. We derive the following

ter

FIG. 2. Correlation time versus system size for random anis
ropy models ind53 with D/J51.0 atT52.20. Straight lines;Lz

with z5(2.1, 0.9, 0.6! are fits to the data forG5(1, 10, 40!. ~The
error of z is about60.2.!

FIG. 3. Fourth-order cumulantU for random anisotropy models
in d53 with D/J51.0. From the intersection the critical temper
ture is determined as indicated by vertical bars. The inset shows
scaling of (]UL /]T)(Tc)}L1/n, which yields 1/n51.49860.010.



ch

n
-

or
ak

o

al-
gth,
he
nt
eat

is

ion.
rk

13 580 PRB 59BRIEF REPORTS
values: Tc /J52.21460.001, n50.667260.005, a50.153
60.003, b50.33960.005g51.34160.011, andg̃51.326
60.011. Within our accuracy, the scaling relation 2b1g̃
5dn is fulfilled, and the exponents in this relation mat
those of theXY-ferromagnetic transition.25 But the specific-
heat exponenta.0 is finite, and the hyperscaling relatio
22a5(d2u)n yields a finite hyperscaling violation expo
nentu50.2360.02.

In conclusion, we presented a cluster algorithm for dis
dered magnetic systems. It is very efficient for we
strengths of the on-site potentials in random anisotropyXY
models. Critical exponents for these random anisotropy m
ts

,

n

-

d-

els ind53 dimensions were determined by a finite-size sc
ing analysis. The estimated exponents for correlation len
magnetization and susceptibility equal those of t
XY-ferromagnetic transition. But our data indicate a differe
type of transition because we find a divergent specific h
and hyperscaling violation.
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