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Kondo effect in a quantum critical ferromagnet
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We study the Heisenberg ferromagnetic spin chain coupled with a boundary impurity. Via Bethe ansatz
solution, it is found that~i! for J.0, the impurity spin behaves as a diamagnetic center and is completely
screened by 2S bulk spins in the ground state, no matter how large the impurity spin is;~ii ! the specific heat
of the local composite~impurity plus 2S bulk spins which form bound state with it! shows a simple power law
Cloc;T3/2; ~iii ! for J,0, the impurity is locked into the critical behavior of the bulk. Possible phenomena in
higher dimensions are discussed.@S0163-1829~99!02521-7#
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Kondo problem or the magnetic impurity problem in a
electron host plays a very important role in mode
condensed-matter physics. It represents a generic nonpe
bationable example of the strongly correlated many-bo
systems. Recently, with the development of research
some low-dimensional systems1 and the observation of un
usual non-Fermi-liquid behavior in some heavy fermi
compounds,2 the interest in this problem has been large
renewed. The multichannel Kondo problem3 provided an ex-
ample of impurity systems which show non-Fermi-liquid b
havior at low temperatures.4 In a Luttinger liquid, the impu-
rity behaves rather differently5,6 from that in a Fermi liquid
and may interpolate between a local Fermi liquid and so
non-Fermi liquid.7 Some quantum critical phenomena ha
also been predicted in some integrable models.8,9 Generally
speaking, these findings indicate that the quantum impu
models renormalize to critical points corresponding to c
formally invariant boundary conditions.10 Another important
progress is the study on the Kondo problem in Fermi syste
with pseudogap,11 i.e., the density of statesr(e) is power-
law dependent on the energy,r(e);e r . With
renormalization-group~RG! analysis, Withoff and Fradkin11

showed that there is a critical valueJc for the Kondo cou-
pling constantJ. For J.Jc , Kondo effect occurs at low
temperatures, while forJ,Jc , the impurity decouples from
the host. We note that all the quantum critical behavi
mentioned above only occur forT→0 and therefore fall into
the general category of quantum phase transitions.12

In an earlier publication, Larkin and Mel’nikov studie
the Kondo effect in an almost ferromagnetic metal.13 With
the traditional perturbation theory they showed that the
purity susceptibility is almost Curie-type with logarithm
corrections at intermediately low temperatures. However,
critical behavior of a Kondo impurity in a quantum critic
ferromagnet has never been touched. The main difficulty
approaching this problem is that almost all perturbation te
niques fail in the critical regime and exact results are
pected. As discussed in some recent works,14 the critical be-
havior of the impurity strongly depends on the ho
properties and seems to be nonuniversal. Typical quan
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critical ferromagnet is the Heisenberg system in reduced
mensions (d<2). These systems have long-range-orde
ground states but are disordered at any finite temperat
due to the strong quantum fluctuations. In this paper,
study the critical behavior of an impurity spin coupled with
Heisenberg ferromagnetic chain. The model Hamiltonian
shall consider reads

H52
1

2 (
j 51

N21

sj•sj 111Js1•S, ~1!

wheresj is the Pauli matrices on sitej , N is the length of
the chain,S is the impurity spin sited at one end of the cha
andJ is a real constant which describes the Kondo coupl
between the impurity and the host. The problem is intere
ing because~i! the model is not conformally invariant due t
the nonlinear dispersion relation of the low-lying excitation
e(k);k2, andr(e);e21/2, and represents a typical quantu
critical system beyond the universality of the convention
Luttinger liquid; ~ii ! the Hamiltonian is very simple~without
any superfluous term! and allows exact solution via algebra
Bethe ansatz.15 In fact, most known methods8,9 developed for
the impurity problem in a Luttinger liquid cannot be used f
the present system due to the strong quantum fluctuation

Let us first summarize the solution of Eq.~1!. Define the
Lax operatorL j t(l)[l1 i /2(11sj•t), wheret is the Pauli
matrices acting on the auxiliary space andl is the so-called
spectral parameter. For the impurity, we defineL0t[l
1 i (1/21S•t). Obviously, L j t and L0t satisfy the Yang-
Baxter equation~YBE!.16 It can be easily shown that th
doubled-monodromy matrix

Tt~l![LNt~l!•••L1t~l!L0t~l2 ic !

3L0t~l1 ic !L1t~l!•••LNt~l! ~2!

satisfies the reflection equation

Ltt8~l2m!Tt~l!Ltt8~l1m!Tt8~m!

5Tt8~m!Ltt8~l1m!Tt~l!Ltt8~l2m!. ~3!
13 561 ©1999 The American Physical Society
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From the above equation we can show that the transfer
tricesu(l)[TrtTt(l) with different spectral parameters a
commutative,@u(l),u(m)#50. Thereforeu(l) serves as a
generator of a variety of conserved quantities. The Ham
tonian Eq.~1! is given by

H5 ~ i /2! J~21!N ~]/]l! u~l!ul501 1
2 ~N112J!, ~4!

with J51/@c22(S11/2)2#. Following the standard
method15,8 we obtain the Bethe ansatz equation~BAE!

S l j2 i /2

l j1 i /2D 2N l j2 i ~S1c!

l j1 i ~S1c!

l j2 i ~S2c!

l j1 i ~S2c!

5)
lÞ j

M
l j2l l2 i

l j2l l1 i

l j1l l2 i

l j1l l1 i
, ~5!

with the eigenvalue of Eq.~1! as

E~$l j%!5(
j 51

M
1

l j
21 1

4

2
1

2
~N21!1JS, ~6!

wherel j represent the rapidities of the magnons andM the
number of the magnons.

Ground state. In the thermodynamic limit, the bulk solu
tions of l j are described by the so-calledn strings.17 How-
ever, due to the presence of the impurity, some bound
bound states may exist forc.S, which are usually called the
n2k strings:18

lb
m5 i ~c2S!1 im, m5k,k11, . . .n. ~7!

In the ground state, only somen20 strings may survive. We
call them boundaryn strings. In our case,n>0 has also an
upper boundn<2S21 sincel j56 i (c1S) are forbidden
as we can see from Eq.~5!. No bulk strings can exist at zer
temperature since they carry positive energy. Bound
bound state can exist only forc.S11/2 ~antiferromagnetic
Kondo coupling! because in this case, the boundaryn strings
carry negative energy. For zero external magnetic field,
most stable boundary string has the length of 2S with the
energy e2S52S/@S22(c21/2)2#. Therefore the impurity
contributes a magnetization of2S. Such a phenomenon ca
be understood in a simple picture. Due to the antiferrom
netic coupling between the impurity and the bulk, 2S bulk
spins are swallowed by the impurity at zero temperature
form a 2S11-body singlet. This singlet does not contribu
to the magnetization of the ground state. In this sense,
impurity is completely screened, no matter how large
impurity moment is. Such a situation is very different fro
that of the conventional Kondo problem, where the impur
moment can only be partially screened by the host wheS
.S8 (S8 the spin of the host particles!.19 This difference is
certainly due to the different properties of the hosts. In
antiferromagnetic spin chain or a normal metal, the spin c
relation of the bulk is antiferromagnetic-type which repe
more than one bulk spin or electron to screen the impur
However, in a ferromagnetic spin chain, the bulk correlat
is ferromagnetic which allows and in fact enhances so
bulk spins to form a larger moment to screen the impur
The local singlet is nothing but a bound state of 2S magnons.
The boundary string may be broken by the external field
fact, there are 2S critical fields:
a-
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Hc
n5

1

n S 2S

~c2 1
2 !22S2

2
2S2n

@c2 ~n11!/2#22~S2 n/2!2D ,

n51,2, . . . ,2S. ~8!

WhenHc
n,H,Hc

n11 , only a boundary (2S2n)-string sur-
vives in the ground state and whenH.Hc

2S , any boundary
string becomes unstable. Notice that atH5Hc

n , the ground-
state magnetization has a jumpdM51, which corresponds
to some type of quantum phase transition. The finite value
Hc

1 indicates that the zero temperature susceptibility of
local singlet is exactly zero.

Thermal BAE. Since we are interested mostly in the cri
cal behavior, we considerT,H!Hc

1 and J.0 case in the
following text. In this case, any excitations breaking t
boundary string can be plausibly omitted due to the ene
gap associated with them. With the standard thermal Be
ansatz,17 we derive the thermal BAE as

ln~11hn!5
2pan~l!1nH

T
1 (

m51

`

Amnln@11hm
21~l!#, ~9!

or equivalently,

ln h1~l!5 ~p/T! g~l!1G ln@11h2~l!#,

ln hn~l!5G$ ln@11hn11~l!#1 ln@11hn21~l!#%, n.1,
~10!

lim
n→`

~ ln hn/n! 5 H/T [2x0 ,

where an(l)5n/2p@l21(n/2)2#, Amn5@m1n#
1 2@m1n22# 1 ••• 1 2@ um2nu 1 2# 1 @ um2nu#; g(l)
51/2 cosh(pl); hn(l) are some functions which determin
the free energy of the system; and@n# and G are integral
operators with the kernelsan(l) andg(l), respectively. The
free energy is given by

F5Fbulk1Fimp ,

Fbulk5F02S N1
1

2DTE g~l!H ln@11h1~l!#

2
2pa1~l!1H

T J dl, ~11!

Fimp5
1

2
T(

n51

` E fn8~l!ln@11hn
21~l!#dl,

where an,m(l)5( l 51
min(m,n)an1m1122l(l), fn8(l)

5an,2S(l2 ic1 i )1an,2S(l1 ic2 i ); F0 is the ground-
state energy,Fbulk andFimp are the free energies of the bu
~including the bare boundary! and the impurity, respectively
Notice that Eqs.~9! and~10! are more difficult to handle than
those of the antiferromagnetic chain,17 since here allhn di-
verge as for T→0. These equations were solve
numerically20 in studying the critical behavior of the ferro
magnetic Heisenberg chain. In addition, Schlottmann g
an analytical result based on a simple correlation-len
approximation21 and the result coincides with the numeric
ones very well. As we can see from Eqs.~9! and~10!, when
T→0, hn→`. To arrive at the asymptotic solutions o
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hn(l), we make the ansatzhn(l)5exp@2pan(l)/T#fn . Sub-
stituting this ansatz into Eq.~10! we readily obtainfn;1 for
finite n andl. Therefore

hn' expS 2pan~l!

T D , T→0. ~12!

On the other hand, whenl→` or n→`, the driving term in
Eq. ~10! tends to zero. This gives another asymptotic so
tion of hn for very largel or n:17

hn5
sinh2@~n11!x0#

sinh2 x0

211OS 1

T
e2pulu D . ~13!

For intermediatel and n we have a crossover regime. W
call Eq. ~12! the strong-coupling solution, while Eq.~13! is
the weak-coupling solution. By equating them we obtain t
types of crossover scales,lc(n) for small n andnc(T):

lc~n!'S n

4T ln~11n! D
1/2

,

nc~T!'
1

4T ln~11nc!
'2

1

4T ln T
, ~14!

which characterize the crossover of the strong-coupling
gime and the weak-coupling regime. Notice that the stro
coupling solution gives the correct ground-state energy
the low-temperature thermodynamics is mainly domina
by the weak-coupling solution.22 With such an approxima
tion, the recursion forhn can be performed by substitutin
the asymptotic solutions into the right-hand side of Eq.~9!
and therefore the leading-order correction upon
asymptotic solutions can be obtained. In the following rec
sion process, we adopt the strong-coupling solution in
region ofl,lc and n,nc , while the weak-coupling solu
tion is adopted in other cases. This corresponds to an ab
crossover, which does not affect the temperature depend
of the thermodynamic quantities in leading orders but th
amplitudes. For convenience, we definezn(l)[ ln@1
1hn(l)#2@2pan(l)1nH#/T, which are responsible for th
temperature-dependent part of the free energy.

Low-temperature susceptibility of the impurity. For con-
venience, we consider 2c5 integercase. Taking the bound
ary string into account, the free energy of the impurity can
rewritten as

Fimp5
1

2
TE g~l!@z2c12S22~l!

2sgn~2c22S22!z u2c22S22u~l!#dl. ~15!

Substituting the asymptotic solutions Eqs.~12! and~13! into
Eq. ~9! and omitting the exponentially small terms, we obta

zn~l!' (
m51

nc F lnS 11
1

m~m12! D2
2

3
x0

2G
3S E

lc(m)

`

1E
2`

2lc(m) DAmn~l2l8!dl8

12nc ln@sinh~11nc!x0/sinhncx0# , ~16!
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whereAmn is the kernel ofAmn . For smalln!nc , up to the
leading order, we find that thex0

2 term of zn(l) is exactlyn
times of that ofz1(l). From Eq.~15! we easily derive

x imp522Sxbulk1subleading-order terms, ~17!

where xbulk;T22ln21(1/T) is the per-site susceptibility o
the bulk.20,21 Very interestingly, the impurity contributes
negative susceptibility, which indicates an interesting Kon
diamagnetic effect. That means the Kondo coupling do
nates always over the ‘‘molecular field’’ generated by t
bulk ferromagnetic fluctuations. Notice that Eq.~17! is only
the contribution of the bare impurity. If we take the scree
ing cloud (2S bulk spins which form the bound state with th
impurity! into account, we find that the total susceptibility
the local singlet is exactly canceled in the leading order. T
means the polarization effect of the local bound state o
occurs in some subleading order, which indicates a stro
coupling fixed pointJ* 5`. In fact, the local singlet is much
more insensitive to a small external magnetic field as
discussed for the ground state. WhenT→0, its susceptibility
must tend to zero due to the bound energy as shown in
~8!. We note that the present method is not reliable to der
the total susceptibility of the local singlet but the above p
ture must be true. The same conclusion can be achieved
arbitraryJ.0.

Specific heat of the local composite. In the framework of
the local Fermi-liquid theory,23 the Kondo effect is nothing
but the scattering effect of the rest bulk particles (N22S)
off the local-spin-singlet composite or equivalently, the p
larization effect of the local composite due to the scatteri
Taking the boundary string into account, the BAE of the bu
modes can be rewritten as

S l j2 i /2

l j1 i /2D 2(N22S)

5eif(l j ) )
lÞ j

M22S
l j2l l2 i

l j2l l1 i

l j1l l2 i

l j1l l1 i
,

~18!

eif(l)5
l2 i ~c1S21!

l1 i ~c1S21!

l1 i ~c2S21!

l2 i ~c2S21! S l1 i /2

l2 i /2D 4S

,

~19!

wheref(l) represents the phase shift of a spin-wave sc
tering off the local composite~boundary bound state!. When
S51/2,c→1101 or J→1`,f(l)50. That means one o
the bulk spin is completely frozen by the impurity and t
system is reduced to anN21-site ferromagnetic chain
WhenS51/2,1,c,3/2, onlyz1(l) is relevant and the free
energy of the local composite reads

Floc52TE g~l!@z1~l!2 1
2 z1~l2 ic1 i !

2 1
2 z1~l1 ic2 i !#dl. ~20!

Whenx050, we have

z1~l!2 1
2 z1~l2 ic1 i !2 1

2 z1~l1 ic2 i !

516~c21!2T3/2
1

p (
m51

nc

lnF11
1

m~m12!G
3m2 1/2 ln3/2~11m!1 . . . . ~21!
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The sum in the above equation is convergent for largenc .
Therefore we can extend it to infinity, which gives the low
temperature specific heat of the local composite as

Cloc;T3/2. ~22!

A similar conclusion can be arrived for arbitraryS and J
.0. As long as the Kondo coupling is antiferromagne
(c>S11/2), the low-temperature specific heat of the loc
composite is described by Eq.~22!. There is a slight differ-
ence between theS51/2 case and theS.1/2 case. For the
former whenJ→`, the local singlet is completely froze
and Cloc→0, while for the later even whenJ→`, Cloc
takes a finite value. This can be understood in a simple
ture. ForS.1, more than one bulk spin will be trapped b
the impurity. Even forJ→`, only one bulk spin~on the
nearest-neighbor site! can be completely frozen and the re
is still polarizable via the bulk fluctuation. We note the sp
cific heat of the local singlet is much weaker than that of
Kondo impurity in a conventional metal. This still revea
the insensitivity of the local bound state to the thermal a
vation. Though the anomalous power law Eq.~22! looks very
like that obtained in the Luttinger Kondo systems,8,9 they are
induced by different mechanisms. In the present case,
anomaly is mainly due to the strong quantum fluctuat
while in the Luttinger liquid, the anomaly is in fact induce
by the tunneling effect of the conduction electrons throu
the impurity.6,24,25

For the ferromagnetic coupling case (J,0), no boundary
bound state exists. Even in the ground state, the impu
spin is completely polarized by the bulk spins. At finite tem
.:

n
s

l

c-

-
e

i-

is
n

h

ty
-

perature, the critical behavior is locked into that of the bu
@Cimp;T1/2,x imp;2(T2 ln T)21#.19,20

Similar phenomena may exist in higher dimensions. T
antiferromagnetic Kondo coupling indicates a local poten
well for the magnons. Therefore some bound states of
magnons may exist in the ground-state configuration, wh
indicates the formation of the local spin-singlet. In this sen
the impurity behaves as a diamagnetic center. WhenJ,0,
the Kondo coupling provides a repulsive potential to t
magnons and no local bound state can exist at low-ene
scales. The impurity must be locked into the bulk.

In conclusion, we solve the model of a ferromagne
Heisenberg chain coupled with a boundary impurity w
arbitrary spin. It is found that as long as the Kondo coupli
is antiferromagnetic,~i! the impurity spin behaves as a dia
magnetic center and is completely screened by 2S bulk spins
in the ground state, no matter how large the impurity spin
~ii ! the specific heat of the local composite~impurity plus 2S
bulk spins which form bound state with it! shows a simple
power lawCloc;T3/2. We note that for a finite density o
impurities, the local bound states are asymptotically
tended to an impurity band of the magnons, which is ve
similar to that of a ferrimagnetic system. The critical beha
ior may be different from that of the single impurity cas
When the impurity densityni;1/(2S), we expect a spin sin-
glet ground state.
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