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Superconductivity from a pseudogapped normal state: A mode-coupling approach
to precursor superconductivity
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We derive a phase diagram for the pseudogap onset temperatureT* ~associated with the breakdown of the
Fermi-liquid state, due to strong pairing correlations! and the superconducting instabilityTc as a function of
variable pairing strengthg. Our diagrammatic approach represents a systematic application of the pairing
decoupling scheme of Kadanoff and Martin to arbitraryg and temperaturesT.Tc . This self-consistent,
conserving scheme reveals a delicate competition between the growth~with increasingg! of the pseudogap
magnitude and that ofTc . @S0163-1829~99!03802-3#
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It is generally agreed that the pseudogap state of the
derdoped cuprates represents some type of pairing abovTc

which is postulated to derive from neutral spinon pairs,1 spin
density wave states,2 or from some form of (2e) Cooper
pairing which foreshadows the ultimate superconduct
state. Each of these scenarios must not only address th
ture of the exotic~i.e., pseudogapped! normal state but also
the transition from this state to its associated supercond
ing instability. In this paper we investigate these issues un
the presumption that the normal state spectral function ga
associated with superconducting correlations which set i
temperaturesT* well aboveTc . Our results are consolidate
into a quantitative phase diagram in which the pseudo
phase occupies a large temperature range in the limit of m
erately strong superconducting couplingg. Because of our
current emphasis ons-wave pairing in three dimensions, d
rect comparison with experiment will be deferred to a futu
paper.

There has been an extensive literature on the effect
variableg on Tc in the context of interpolating between th
BCS~smallg, free fermions aboveTc) and the Bose Einstein
~largeg, bound fermions aboveTc) limits.3–7 Our contribu-
tion is to approach this crossover problem using a diagr
matic formulation which is based on a Green’s function d
coupling scheme of Kadanoff and Martin.8 We refer to this
as ‘‘mode-coupling’’ theory, since it self-consistently trea
the coupling of the single particle and pair propagato
These authors have argued that such a scheme correctly
tures the physics of pairing correlations. Here our calcu
tions ofTc demonstrate that the Bose-Einstein~BE! conden-
sation temperature is approachedfrom below, with
increasingg, as is expected physically.9 Moreover, as the
system becomes progressively more two dimensionalTc
→0,10 while the chemical potentialm is properly positive at
small g. Both of these observations are in contrast to ear
work4,5 in which self-energy effects were not fully treated.
should be noted that near, but aboveTc our equations assum
a particularly simple form in which the single partic
Green’s function, the Thouless criterion~or Tc equation! and
the number equation coincide with their counterparts
tained in the standard superconducting theory but with
pseudogap playing the role of the superconducting gap.
PRB 590163-1829/99/59~2!/1354~4!/$15.00
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We have previously11 studied the Kadanoff and Martin
scheme at ‘‘lowest order,’’ in which mode-coupling effec
are neglected. This approach is suitable for addressing
breakdown of the Fermi liquid atT* , and for studies at
higherT. It was demonstrated that this breakdown coincid
with the onset ofresonantstructure in theT matrix.11 As a
result of pair resonances, the single particle lifetime ImS
nearkF acquires a maximum rather than the usual~quadratic
Fermi liquid! minimum, as a function of frequency. A phys
cal picture of the pseudogap phase thus emerges: this
consists of long lived~but not preformed! pairs which intro-
duce a gap in the electronic spectral function by block
available single particle states around the Fermi surface.
resonant state is naturally intermediate between the free
mions of weak coupling, and the bound fermions of t
strong coupling limits.

Our approach is based on a generic three-dimensio
~3D! Hamiltonian consisting of fermions in the presence
an s-wave attractive interaction,Vk,k85gwkwk8 , wherewk
5(11k2/k0

2)21/2 and g,0 is the coupling strength ex
pressed in units ofgc524p/mk0 .12 In the present decou
pling scheme the three fundamental coupled equations
obtained by combining the number equation constraint w
the self-energy andT-matrix equations appropriate to th
pairing decoupling approximation13,8,14

Sk,iv l
5T (

q,Vm

tq,iVm
Gq2k,iVm2 iv l

~0! wk2q/2
2 , ~1!

tq,iVm

21 5g211T(
k,v l

Gk,iv l
Gq2k,iVm2 iv l

~0! wk2q/2
2 , ~2!

where the Green’s function is given byGk,iv l

21 5Gk,iv l

(0)21

2Sk,iv l
,Gk,iv l

(0)215 iv l2ek ,Vm /v l are the even/odd Matsub

ara frequencies, and the electronic dispersion isek5k2/2m
2m.

These equations must be solved numerically. For te
peratures at and aboveT* , the ‘‘lowest order’’ theory is
adequate and all Green’s functions in Eqs.~1! and~2! may be
replaced by bare propagators.11 The transition from the
Fermi-liquid breakdown to the well established pseudog
phase is difficult to treat and its detailed characterization w
1354 ©1999 The American Physical Society
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PRB 59 1355SUPERCONDUCTIVITY FROM A PSEUDOGAPPED . . .
be deferred to a future paper. From the well-establis
pseudogap state, down toTc , the numerics again becom
tractable.

In this paper we address this last regime, beginning
rectly with Tc . We use two numerical algorithms which a
both based on a convergence scheme associated with
rametrization of the unknown functions of momentum a
frequency in Eqs.~1! and ~2!. This parametrization is justi
fied by numerical studies. A direct numerical attack on
problem using the full equations is difficult to implement
well as assess because of restriction to a finite set of Mat
ara frequencies; the present work will lay the necess
ground work for such a future program.

For the purposes of calculatingTc , the largest contribu-
tion to the self energy in Eq.~1!, may be seen to come from
the low frequency, long wavelength phase space reg
where theT matrix is large. As will be justified numerically
below, the integral is well approximated by15

Sk,v'2Dpg
2 wk

2Gk,2v
~0! . ~3!

It follows from this equation that

t0,0
215g211(

k

122 f ~Ek!

2Ek
wk

2 , ~4!

where Ek5Aek
21Dpg

2 wk
2. The pseudogap parameter whic

appears in Eq.~3! is defined to be

Dpg
2 5(

q
E

2`

` dV

p
b~V!Im tq,V , ~5!

wheref (v),b(v)5@exp(v/T)61#21. It is evident thatDpg
2 in

Eq. ~5! coincides with the square amplitude of pairing flu
tuationsg2^c†c†cc& which can be defined more general
away fromTc .

In order to evaluateTc , Eq. ~5! must be combined with
the Thouless criterion from Eq.~4!, along with the number
equation. The three fundamental equations forTc are Eq.~5!,
along with

11g(
k

122 f ~Ek!

2Ek
wk

250, ~6!

2(
k

Fvk
21

ek

Ek
f ~Ek!G5n, ~7!

wherevk
25(12ek /Ek)/2.

It should be noted that Eqs.~3!, ~6!, and~7! show that the
single particle Green’s function, the Thouless criterion a
the number equation assume a particularly simple fo
which coincides which their~below Tc) counterparts ob-
tained in the standard superconducting theory but with
pseudogap playing the role of the superconducting gap. T
simplicity ~as well as the related BCS-like behavior, at sm
g, below8 Tc) would not obtain if fully renormalized Green’
functions are used everywhere.9,16,17

Equations~5!–~7! can be viewed as a simple~one vari-
able,Dpg) parametrization of Eqs.~1! and~2!. As an impor-
tant check on our numerical results and on the approxima
in Eq. ~3!, we have implemented an alternative numeri
scheme. We study Eqs.~1! and ~2! slightly aboveTc , and
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thereby characterize the self-energy and divergingT matrix.
This method is facilitated by introducing a parametriz
form for the latter

tq,V
model5

g~a08!21

V2Vq1 iGq
, ~8!

as well as an additional variational parameter,g, in the self-
energy of Eq.~3!

Sk,v
model52

Dpg
2 wk

2

v1ek1 ig
. ~9!

Equation~8! reflects the analytic form~at low V andq) of
the divergence in theT matrix in the immediate vicinity of
the superconducting instability. It is justified only as an a
proximation for computingS, not as representing the fu
complex structure of theT matrix. Here we introduce three
parametric variables:a08 is a real number of order unity, an
the real parametersVq andGq .

The coupled equations forSk,v andtq,V
21 , as a function of

temperature, were solved numerically using the model s
energy andT matrix of Eqs.~9! and~8!. In a given iteration
Dpg,g were used to computetq,V via Eq.~2! which was then
approximated by Eq.~8! for use in Eq.~1!. The output of the
latter was then used to extractDpg andg via ~least squares!
fits to Eq.~9! and the procedure repeated until convergen
of the parametrization was obtained. In this way, we find t
asTc is approached the parameterg in Eq. ~9! converges to
zero, as is implied by Eq.~3!. In additionTc can be extracted
as the point at which theT matrix diverges so thatVq , and
Gq simultaneously vanish.18 This value agrees to within
about 0.90 with that obtained from Eqs.~5!–~7!. It should be
stressed that this maximum in ImSk,v is a continuation of
the ~much weaker! peak atv52ek which was found in Ref.
11 as the Fermi liquid breaks down nearT* . With lower T
this peak grows progressively sharper until the instability
Tc is reached.@For a typical self-energy curve, nearTc , see
inset to Fig. 3~a! below.#

Our numerical results from Eqs.~5!–~7! are presented
first as a phase diagram in Fig. 1. Also shown is the temp
tureT* at which the Fermi liquid first breaks down, as foun
in Ref. 11. The dotted line indicates the superconduct
instability temperatureT0 computed in the absence of mod
coupling. When there is an appreciable pseudogap,Tc and

FIG. 1. Pseudogap phase diagram, which indicates the Fe
liquid breakdown corresponding to pair resonance onset, atTres

5T* , the fully self-consistentTc and the transition temperatureT0

in the absence of mode coupling.
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T* vary in an inverse fashion withg/gc . This is a conse-
quence of the pseudogap which suppressesTc , but is not
present atT* . In this way the pseudogap regime is grea
enhanced by mode-coupling contributions.

The overall behavior ofTc is compared with that obtaine
from the approximation of Ref. 4, as well as that of str
BCS theory in Fig. 2. The nonmonotonic behavior ofTc
results from the facts that~1! the highg asymptote must be
approached from below9 and ~2! as in Ref. 4, the lowg
exponential dependence tends to overshoot this asymp
Here, the overshoot is even more marked than in Re
because of self-energy effects which pinEF at m. Point ~1!
above is a consequence of the decreasing pair size and
comitant reduction of the Pauli principle repulsion. Wh
not shown here, it can be seen, that the maximum inTc is
associated withm;Dpg and the minimum withm50. In-
deed, the complex behavior ofTc shown in Fig. 2 can be
understood on general physical grounds. A local maxim
appears in theTc curve as a consequence of a growing~with
increased coupling! pseudogapDpg in the fermionic spec-
trum which weakens the superconductivity. However, ev
asDpg grows, superconductivity is generally sustained. In
present scenario, superconductivity is preserved by the
version of an increasing fraction of fermions to boson
states, which can then Bose condense. Once the ferm
conversion is complete (m50),Tc begins to increase agai
with coupling.

The behavior ofTc on an expanded coupling consta
scale, for different ranges of the interaction~parametrized by
k0 /kF) is shown in the inset to Fig. 2. The limiting value o
Tc for large values ofg/gc approaches the ideal Bose
Einstein condensation temperatureTBE50.218EF as k0
→`. The qualitative shape of theTc curve, however, is re-
tained as long ask0 /kF is greater than about 0.5.

Results for the behavior away fromTc obtained by itera-
tive solution of the parametrized form of Eqs.~1! and~2! are
represented in Figs. 3~a! and 3~b!, as plots of the character
istic parameters for the electronic and pair propagators,
spectively. The shaded regions indicate where theS param-
etrization breaks down, and the insets plot the calcula
imaginary parts ofS and theT matrix, obtained following
the iterative prescription discussed earlier. At higherT, be-

FIG. 2. Comparison of theTc curves in BCS theory, the Gauss
ian approximation of Nozie`res and Schmitt-Rink~NSR!, and our
mode coupling theory~MC!. The inset plots the variation ofTc for
three different pairing interaction ranges with variablek0 /kF ~51,
solid!, ~54, dashed!, ~51/4, dotted!.
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yond the shaded region, the solutions are given by the low
order theory. For the pair parameters we extrapolate thro
this region to join onto the lowest order theory. It can be se
that feedback effects, associated with a pseudogap in
single particle spectrum, lead to a~slightly smeared! gap in
the imaginary part of the inverseT matrix so that whenVq
,Dpg,Gq remains small. This latter parameter reflects,
turn, the small size of the single particle inverse lifetimeg,
which by iteration is conveyed back to constrainGq . Thus
mode coupling leads to astabilizationof resonance effects
and, thereby, an amplification of pseudogap behavior. Th
results lead to the conclusion that, upon heating, the we
ening of the pseudogap in the spectral function arises v
reduction inDpg, while the single particle inverse lifetime
(g) remains relatively small, at least for some substan
range ofT.

In summary, within a BCS–Bose-Einstein crossover p
ture, we have presented aquantitativephase diagram which
compares the temperature onset of the pseudogap with
onset of a superconducting state, associated w
pseudogapped fermions. Mode-coupling effects, which w
important for this analysis, considerably enhance
pseudogap regime. We have demonstrated~for the s-wave
case! that this pseudogap in the spectral function disappe

FIG. 3. Evolution of the parameters~in units of EF) which
characterize the electronic self-energy~a! of Eq. ~9! and T matrix
~b! of Eq. ~8!. Shaded region represents the breakdown of Eq.~9! as
well as lowest order theory. The latter is valid to right of shad
region. The values ofDpg

2 /g divided by a factor of 10,g/gc51.2.
Calculated imaginary components of self-energy andT matrix are
plotted in the insets, for generalT/Tc near 1.0, along with their
Lorentzian~dashed line! fitted curves, so that at anyT/Tc the units
on the figure can be deduced. For example, for~a!, Lorentzian
width5g, height5Dpg

2 /g.
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with temperature, as it evolves into a Fermi-liquid state, pr
cipally by a reduction in the gap sizeDpg. While we have
not established detailed connections to the cuprates, s
aspects about the hole concentration dependence ca
noted.19 Of additional importance for the cuprates is the p
diction that the effective inverse lifetime in the electron
self-energyg, which can be deduced experimentally,20 var-
ies continuously to zero atTc . Finally changes in our result
associated with thed-wave, layered structure of the high-Tc
systems can be anticipated: the nodal structure ofd-wave
pairs will weaken the gap in theT matrix which played an
important role in determining the detailed temperature e
lution of Dpg(T) and g(T) aboveTc . Moreover,quasi-two
-

n
,

re

ic
,

2D
-

me
be

-

-

dimensionality will considerably lower the energy scalesand
enhance the pseudogap regime, particularly as the insu
is approached. Despite these omissions, our physical pic
of the interplay of the pseudogap and superconducting in
bility is expected to be qualitatively general and should ap
to thed-wave, quasi-2D case, as well.
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