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We derive a phase diagram for the pseudogap onset tempefdtuessociated with the breakdown of the
Fermi-liquid state, due to strong pairing correlatipaad the superconducting instabilify. as a function of
variable pairing strengtly. Our diagrammatic approach represents a systematic application of the pairing
decoupling scheme of Kadanoff and Martin to arbitragryand temperature3>T.. This self-consistent,
conserving scheme reveals a delicate competition between the gfaitithincreasingg) of the pseudogap
magnitude and that of ;. [S0163-182€09)03802-3

It is generally agreed that the pseudogap state of the un- We have previoushk studied the Kadanoff and Martin
derdoped cuprates represents some type of pairing above scheme at “lowest order,” in which mode-coupling effects
which is postulated to derive from neutral spinon paispin  are neglected. This approach is suitable for addressing the
density wave statesor from some form of () Cooper breakdown of the Fermi liquid aT*, and for studies at
pairing which foreshadows the ultimate SuperconductinwigherT. It was demonstrated that this breakdown coincides
state. Each of these scenarios must not only address the n4ith the onset ofresonantstructure in theT matrix'* As a
ture of the exotid(i.e., pseudogappesormal state but also result of pair resonances, the single particle lifetimeXim
the transition from this state to its associated superconducfl€@'Kr acquires a maximum rather than the usigpladratic
ing instability. In this paper we investigate these issues unddreMi liquid minimum, as a function of frequency. A physi-
the presumption that the normal state spectral function gap gl picture of the_ pseudogap phase thus_emerges; this state
associated with superconducting correlations which set in a onsists of Io_ng livedbut not_preformeai pa|rs_wh|ch |ntro-_
temperature3* well aboveT,. Our results are consolidated uce a gap in the glectronlc spectral funcnon'by blocking

available single particle states around the Fermi surface. The

nto a quantlitatwe phase diagram in Wh'C.h the 'ps'eudoga esonant state is naturally intermediate between the free fer-
phase occupies a large temperature range in the limit of moq-

| ducti oo B ¢ ions of weak coupling, and the bound fermions of the
erately strong superconducting coupligg Because of our strong coupling limits.

current emp_hasis (_)srwave pairing i_n three dimensions, di- Our approach is based on a generic three-dimensional
rect comparison with experiment will be deferred to a future(3D) Hamiltonian consisting of fermions in the presence of

paper. o an s-wave attractive interactiorVy ,»=geyey:, Where ¢y
There has been an extensive literature on the effects o;(lJrkz/kg)fl/z and g<O0 is the coupling strength ex-
variableg on T in the context of interpolating between the pressed in units ofj.= —4m/mk,.*? In the present decou-
BCS(smallg, free fermions abov&,) and the Bose Einstein pling scheme the three fundamental coupled equations are
(largeg, bound fermions above,) limits.~" Our contribu-  optained by combining the number equation constraint with

tion is to approach this crossover problem using a diagramihe self-energy and-matrix equations appropriate to the
matic formulation which is based on a Green’s function deajring decoupling approximatioh®*

coupling scheme of Kadanoff and Marfinwe refer to this

as “mode-coupling” theory, since it self-consistently treats 0 )

the coupling of the single particle and pair propagators. Ek,iw,=T% tq,iQmGg—k,iQm—iwl‘Pk—q/Z! 1)
These authors have argued that such a scheme correctly cap- &%m

tures the physics of pairing correlations. Here our calcula-

tions of T, demonstrate that the Bose-EinstéBE) conden- taia, =9 "+ T2 GrinGCkin, —iw@k-qz
sation temperature is approachefilom below with ko)

increasingg, as is expected physicalfyMoreover, as the
system becomes progressively more two dimensiohal 0)-1_ .
0, while the chemical potentiak is properly positive at  ~ >kiiw:Ck,fw, = 1@~ €. {Qm/w are the even/odd Matsub-
small g. Both of these observations are in contrast to earlieara frequencies, and the electronic dispersios,is k?/2m
work*® in which self-energy effects were not fully treated. It — .

should be noted that near, but abdyeour equations assume  These equations must be solved numerically. For tem-
a particularly simple form in which the single particle peratures at and abovE*, the “lowest order” theory is
Green’s function, the Thouless criterigor T, equation and  adequate and all Green'’s functions in E@s.and(2) may be

the number equation coincide with their counterparts obreplaced by bare propagatdfsThe transition from the
tained in the standard superconducting theory but with théermi-liquid breakdown to the well established pseudogap
pseudogap playing the role of the superconducting gap. phase is difficult to treat and its detailed characterization will

(0)-1

where the Green’s function is given b@[,ilw,:Gk,.w,
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be deferred to a future paper. From the well-established Phase Diagram
pseudogap state, down ., the numerics again become 0.6 - T
tractable.

In this paper we address this last regime, beginning di-
rectly with T,. We use two numerical algorithms which are 0.4r1
both based on a convergence scheme associated with a pa- & § g
rametrization of the unknown functions of momentum and E
frequency in Eqgs(1) and(2). This parametrization is justi- 0.2+
fied by numerical studies. A direct numerical attack on the
problem using the full equations is difficult to implement as
well as assess because of restriction to a finite set of Matsub-
ara frequencies; the present work will lay the necessary 0.5 7.0 1.5 2.0
ground work for such a future program. 9/9.

For the purposes of calculating., the largest contribu- _ o _
tion to the self energy in Eq1), may be seen to come from FIG. 1. Pseudogap phase_dlagram,_whlch indicates the Fermi-
the low frequency, long wavelength phase space regiquuLd breakdown corre;pondlng to pair resonance onsef at
where theT matrix is large. As will be justified numerically ~ T the fully self-consisterT, and the transition temperatuig
below, the integral is well approximated By in the absence of mode coupling.

Superconductor

thereby characterize the self-energy and diverdingatrix.

~_—A2 2c3(0) . . . . . .
0™ Abg®ikGic” o - ©) This method is facilitated by introducing a parametrized
It follows from this equation that form for the latter
ry—1
o 1-2f(Ey) mode__9(30)
too=0 "+ ——g ¢k, (4) fq.0 Q-Qq+ily’ ®
K k

as well as an additional variational parameterjn the self-
where E, = \/Ezk-i-Anggozk. The pseudogap parameter which energy of Eq(3)
appears in Eq(3) is defined to be

A2 <P2
del pgTk
= dQ e E T )
AZ=3 f —b(Q)Imtgq, (5) o eactly
q Joe T Equation(8) reflects the analytic fornfat low () andq) of

_ - : . 2 . the divergence in th& matrix in the immediate vicinity of
wheref(w),b(w)=[exp@/T)=1]"L. Itis evident thatd ;4 in 9 y

Eq. (5) coincides with the square amplitude of pairing fluc- the s_upe_rcor}ductlng |ns_tab|l|ty. It is justified only ash ar} iTlp-

tuationsg%(c'c’cc) which can be defined more generally proximation for computingz., not as representing the fu

away fromT complex structure of th& matrix. Here we introduce three
c-

In order to evaluatd’,, Eq. (5) must be combined with parametric variablesy is a real number of order unity, and
(o} .

the Thouless criterion from Ed4), along with the number the real parametei®, andl q

. . The coupled equations far ,, andt;}) , as a function of
Z%L:]e;]tlf/)vri]t.hThe three fundamental equationsfioare Eq.(5), temperature, were solved numerically using the model self-

energy andl matrix of Egs.(9) and(8). In a given iteration
1-2f(Ey) Apg, Y were used to comput«g,g.via Eq.(2) which was then
1+g>, —"@E:o, (6)  approximated by Eq8) for use in Eq(1). The output of the
ko 2k latter was then used to extratth, and y via (least squargs
fits to Eq.(9) and the procedure repeated until convergence
of the parametrization was obtained. In this way, we find that
22;:’ =n, (@) asT, is approached the parametgiin Eq. (9) converges to
zero, as is implied by Eq3). In additionT can be extracted
wherevZ=(1— e/Ey)/2. as the point at which th& matrix diverges so tha,, and
It should be noted that Eg&3), (6), and(7) show thatthe I'; simultaneously vanistf This value agrees to within
single particle Green’s function, the Thouless criterion andabout 0.90 with that obtained from Ed5)—(7). It should be
the number equation assume a particularly simple fornstressed that this maximum in [ , is a continuation of
which coincides which theibelow T.) counterparts ob- the(much weakéerpeak atw = — €, which was found in Ref.
tained in the standard superconducting theory but with thd 1 as the Fermi liquid breaks down négf. With lower T
pseudogap playing the role of the superconducting gap. Thithis peak grows progressively sharper until the instability at
simplicity (as well as the related BCS-like behavior, at smallT, is reached[For a typical self-energy curve, nedg, see
g, below? T) would not obtain if fully renormalized Green’s inset to Fig. 3a) below]
functions are used everywher&5’ Our numerical results from Eq$5)—(7) are presented
Equations(5)—(7) can be viewed as a simplene vari- first as a phase diagram in Fig. 1. Also shown is the tempera-
able,A,) parametrization of Eqgl) and(2). As an impor-  tureT* at which the Fermi liquid first breaks down, as found
tant check on our numerical results and on the approximatioin Ref. 11. The dotted line indicates the superconducting
in Eq. (3), we have implemented an alternative numericalinstability temperaturd, computed in the absence of mode
scheme. We study Eq$l) and (2) slightly aboveT., and  coupling. When there is an appreciable pseudodapand

€
u§+E—kkf(Ek)
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FIG. 2. Comparison of th&_ curves in BCS theory, the Gauss- 0.03
ian approximation of Nozies and Schmitt-RinKNSR), and our
mode coupling theoryMC). The inset plots the variation df, for
three different pairing interaction ranges with variaklgkg (=1,
solid), (=4, dasheyl (=1/4, dotted. 0.02

T* vary in an inverse fashion witly/g.. This is a conse- |
guence of the pseudogap which suppreskgs but is not 001+ Q. _ .
present afl*. In this way the pseudogap regime is greatly I
enhanced by mode-coupling contributions.

The overall behavior of ; is compared with that obtained 0.0 . ,
from the approximation of Ref. 4, as well as that of strict 1.0 1.1 1.2 1.3 1.4 15
BCS theory in Fig. 2. The nonmonotonic behavior Tf T/T,
results from the facts thdfl) the highg asymptote must be ) ) _ )
approached from beloand (2) as in Ref. 4, the lowg FIG. 3. Evolution of the parameter@n units of Eg) which

exponential dependence tends to overshoot this asymptotg_]aracterize the electronlic self-ener@y of Eq. (9) and T matrix
Here, the overshoot is even more marked than in Ref. 4 Of Ed.(8). Shaded region represents the breakdown of s

because of self-energy effects which g at . Point (1) well as lowest order theory. The latter is valid to right of shaded
: ; 2 i —

above is a consequence of the decreasing pair size and Corgglon. The_ valu_es oA;4/ v divided by a factor of 10g/gc_— 1.2.

comitant reduction of the Pauli principle repulsion. While alculated imaginary components of self-energy andatrix are

not shown here. it can be seen. that the maximuri ifis plotted in the insets, for generd/T. near 1.0, along with their
. e T . ¢ Lorentzian(dashed lingfitted curves, so that at anly/ T, the units
associated withu~A, and the minimum withy =0. In-

- ) h on the figure can be deduced. For example, @¢ Lorentzian
deed, the complex behavior a@f, shown in Fig. 2 can be Width='ygheight=Azgly ple., @
) od V-

understood on general physical grounds. A local maximum

appears in th@ curve as a consequence of a growimgth  yond the shaded region, the solutions are given by the lowest
increased couplingpseudogap , in the fermionic spec- order theory. For the pair parameters we extrapolate through
trum which weakens the superconductivity. However, evenhis region to join onto the lowest order theory. It can be seen
asApg grows, superconductivity is generally sustained. In thethat feedback effects, associated with a pseudogap in the
present scenario, superconductivity is preserved by the comingle particle spectrum, lead to(slightly smearegigap in
version of an increasing fraction of fermions to bosonicthe imaginary part of the inversematrix so that wher)
states, which can then Bose condense. Once the fermioniﬁApg,rq remains small. This latter parameter reflects, in
conversion is completei(=0),T. begins to increase again turn, the small size of the single particle inverse lifetime
with coupling. which by iteration is conveyed back to constrdig. Thus

The behavior ofT, on an expanded coupling constant mode coupling leads to stabilizationof resonance effects
scale, for different ranges of the interactigrarametrized by  and, thereby, an amplification of pseudogap behavior. These
Ko/Kg) is shown in the inset to Fig. 2. The limiting value of results lead to the conclusion that, upon heating, the weak-
T, for large values ofg/g. approaches the ideal Bose- ening of the pseudogap in the spectral function arises via a
Einstein condensation temperatuie=0.218&¢ as ko  reduction inA,,, while the single particle inverse lifetime
—o. The qualitative shape of thE; curve, however, is re- () remains relatively small, at least for some substantial
tained as long ak,/kg is greater than about 0.5. range ofT.

Results for the behavior away froin. obtained by itera- In summary, within a BCS—Bose-Einstein crossover pic-
tive solution of the parametrized form of Ed4) and(2) are  ture, we have presentedgaantitativephase diagram which
represented in Figs.(8 and 3b), as plots of the character- compares the temperature onset of the pseudogap with the
istic parameters for the electronic and pair propagators, reenset of a superconducting state, associated with
spectively. The shaded regions indicate whereXhgaram-  pseudogapped fermions. Mode-coupling effects, which were
etrization breaks down, and the insets plot the calculateimportant for this analysis, considerably enhance the
imaginary parts of%, and theT matrix, obtained following pseudogap regime. We have demonstrafed the s-wave
the iterative prescription discussed earlier. At higfiebe-  case that this pseudogap in the spectral function disappears
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with temperature, as it evolves into a Fermi-liquid state, prin-dimensionality will considerably lower the energy scadesl
cipally by a reduction in the gap siz&,,. While we have enhance the pseudogap regime, particularly as the insulator
not established detailed connections to the cuprates, sonigapproached. Despite these omissions, our physical picture
aspects about the hole concentration dependence can Béthe interplay of the pseudogap and superconducting insta-
noted!® Of additional importance for the cuprates is the pre-bility is expected to be qualitatively general and should apply
diction that the effective inverse lifetime in the electronic to thed-wave, quasi-2D case, as well.
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