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A previously established general framework for the description of long-wavelength quantum states of elec-
trons in a crystal with topological defects is used to discuss the scattering of electrons on a screw dislocation.
The corresponding Schro¨dinger equation contains contributions of the type of a vector potential as well as of
a repulsive scalar potential. Together they give rise to modified Aharonov-Bohm interferences in the scattering
amplitude, for which the far-field expression is calculated exactly.@S0163-1829~99!01121-2#
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In connection with investigations of residual low
temperature resistivities, the scattering cross section of e
trons on a screw dislocation has been calculated in B
approximation by Hunter and Nabarro,1 and in a partial-wave
expansion by Stehle and Seeger.2 Both approaches use th
defect-free crystal as a reference system, and the screw
location was represented by a deformation potential.3 In a
continuum version, the latter was expected to give an
equate description of the long-wavelength scattering wav

More recently it has been pointed out by Kawamura4 that
the topological nature of a screw dislocation invalidates
sumption of an ideal lattice structure at arbitrary distan
from the dislocation core. Correspondingly, an incomi
electron cannot be described by a simple plane wave. In
continuum limit of a tight-binding model, defined on a lattic
with a built-in screw dislocation, Kawamura derived
Schrödinger equation with only a kinetic term in the Ham
tonian. The Fourier transform of this equation with respec
the axial coordinate of the dislocation is reminiscent of t
for an electron moving in the vector potential of a magne
flux line. Accordingly, Kawamura predicted Aharono
Bohm interferences5 in the scattering process of an electr
on a screw dislocation. However, due to the assumption
constant transfer energies in the tight-binding model, Kaw
mura misses a long-ranged repulsive potential which
compete with the kinetic terms, and which dominates latt
corrections of the Hamiltonian in the core region.6
PRB 590163-1829/99/59~21!/13491~3!/$15.00
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In a recent general treatment of the long-range quan
states of an electron in a crystal with topological defects7 we
also used the tight-binding approximation as an intermed
step. For constant transfer energies this led in the continu
limit to a covariant Schro¨dinger equation which, in the lan
guage of the continuum theory of defects,8 lives on a
Riemann-Cartan manifold. Additional noncovariant term
show up in this equation when the transfer energies, i.e.,
tunneling rates of the particle, are assumed to depend on
local lattice deformations caused by the defects.

Applied to the case of a single straight screw dislocati
the covariant part immediately reproduces Kawamura’s fo
of the Schro¨dinger equation. The noncovariant contribution
arising from the most natural and most simple deformat
dependence of the transfer energies, include a repulsive
tential which has the same long-distance behavior as the
variant kinetic terms. This invalidates any kind of perturb
tion expansion for the scattering amplitude which theref
in the following is calculated without such approximation

Before continuing, we mention an alternative way to d
rive the Schro¨dinger equation for a particle moving in a me
dium with topological defects.9 This approach uses the ide
of a gauge-field theory of topological defects,10 and in prin-
ciple allows to avoid the tight-binding approximation.

Within our approach7 we have explicitly derived the
Schrödinger equation for a spinless electron moving in
13 491 ©1999 The American Physical Society
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simple-cubic crystal with a single screw-dislocation li
along thez axis. In terms of cylinder coordinatesx5(r ,z),
with r5(r cosf,r sinf), the result reads

i\] tc~x,t !52
\2

2m S 1

r
] r r ] r1

1

r 2
]f

2 1]z
2

1
b

pr 2
]f]z2

b2

2p2a2r 2D c~x,t !, ~1!

wherem is the effective mass of the electron,b5b•ez is the
magnitude of the Burgers vector of the dislocation, anda is
the lattice constant of the undistorted lattice. The Ham
tonianH in this equation has the same form as that used
Stehle and Seeger,2 but will here be split in a different way
into a kinetic and a potential part.

After adding and subtracting a term (\2/2m)(b/2pr )2]z
2

in Eq. ~1!, the separation c(r ,z,t)5exp(2iEt/
\)exp(ikz)x(r ) leads to the equation

F1

r
] r r ] r1

1

r 2
~]f1 ia!22b2

1

r 2
1q2Gx~r !50. ~2!

Here a[kb/(2p) and b2[@22(ka)2#(b/2pa)2 formally
enter as the strengths of a vector and of a scalar poten
andq is determined byE5(\2/2m)(q21k2). The scalar po-
tential just arises from the deformation-dependent tran
energies and is repulsive, since the continuum limit impl
ka,1, i.e.,b2.0.

If in Eq. ~2! a andb temporarily are considered as ind
pendent parameters, then the caseb50 just corresponds to
the model discussed by Kawamura.4 For the corresponding
scattering problem he adopted the Aharonov-Bohm solut5

xa~r !5 (
n52`

`

~2 i !k(n)Jk(n)~qr !einf, ~3!

whereJk(n) is a Bessel function withk(n)[A(n1a)2. As-
ymptotically, forr→`, one finds~after a minor correction in
Ref. 5!

xa~r !→e2 i (qr cosf1af)

1
eikr

~2p iqr !1/2
sin~pa!

ei ~a/2uau!(f2p)

cos~f/2!
, ~4!

which shows that Eq.~3! describes a wave function, comin
in from the positivex axis.

In the context of our approach,7 the caseb50 originates
from the covariant part of the Hamiltonian where t
Laplace-Beltrami operator determines the kinetic ener
The potential}b2 stems from noncovariant terms in th
Hamiltonian, which follows from distortion-dependent tran
fer energies in a tight-binding model.7 It is purely repulsive
and has, in a similar form, been proposed by Kosevich11 on a
phenomenological basis.

Since this potential is of the same order as the vec
potential terms in Eq.~2!, it is not advisable to use a pertu
bation expansion inb. Instead, we use the full Green fun
tion G(r ,r 8)5^r u1/(H2E2 i e)ur 8& to write the exact
solution of Eq.~2! in the form
-
y

al,

er
s

y.

-

r-

x~r !5xa~r !2b2
\2

2mE d2r 8G~r ,r 8!
1

r 82
xa~r 8!. ~5!

For the Green function one finds

G~r ,r 8!5Q~r 82r !F~r ,r 8!1Q~r 2r 8!F~r 8,r !, ~6!

where, in terms of Bessel and Hankel functionsJl(m) ,Hl(m)
(1)

with l(m)5A(m1a)21b2,

F~r ,r 8!5 i
m

\2 (
m52`

`

Jl(m)~qr !Hl(m)
(1) ~qr8!eim(f2f8).

~7!

Insertion of Eq.~3!, and of Eqs.~6! and~7! into Eq.~5!, and
use of the asymptotic form

Hl
(1)~qr !→A 2

pqr
ei (qr2lp/22p/4) ~8!

for r→`, leads to the behavior

x~r !2xa~r !→2 ib2
1

A2p iqr
eiqr (

m52`

`

ei [mf2l(m)p/2]

3 (
n52`

`

~2 i !k(n)E
0

2p

df8ei (n2m)f8

3E
0

`dr

r
Jl(m)~r!Jk(n)~r!. ~9!

The integral overf8 yields 2p dmn , which makes the sum
over n trivial. Subsequent use of the identity

E
0

`dr

r
Jl~r!Jk~r!5

2

p~l22k2!
sinFp2 ~l2k!G ~10!

leads, together with Eq.~4!, to the final result:

c~r !→e2 i (qr cosf1af2kz)1 f ~f!
ei (qr1kz)

A2p iqr
~11!

with the scattering amplitude

FIG. 1. Scattering cross section, following from Eq.~12! for
ka5qa50.7 andb5a. The dashed line represents Kawamura
result for the same values of the parameters.
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f ~f!5sin~pa!
ei ~a/2uau!(f2p)

cos~f/2!

22 (
m52`

`

eimf~e2 ipk(m)2e2 ipl(m)!, ~12!

which corrects the expression given in Ref. 7. The rela
differential scattering cross section per unit length of the d
location line ds/df51/(2pq)u f (f)u2 is plotted in Fig. 1
for the values ofa andb, given below Eq.~2!. Also shown
is the result for the artificial caseb50, i.e., for the cross
section calculated by Kawamura.4 In both cases the far-field
approximation toc breaks down close tof5p, which will
r.

c.
d
-

lead to quantitative corrections in these regions.5 The essen-
tial result, however, is that the inclusion of the repulsi
deformation potential obviously breaks the symmetryf→
2f in Kawamura’s differential cross section, reflecting t
chiral nature of the screw dislocation.

ACKNOWLEDGMENTS

We gratefully acknowledge helpful discussions with A
nold M. Kosevich. This work has been supported by t
Deutsche Forschungsgemeinschaft under SFB 237 and
the KBN Grant No. 2 P03B 117 12.
-

1S.C. Hunter and F.R.N. Nabarro, Proc. R. Soc. London, Se
220, 542 ~1953!.

2H. Stehle and A. Seeger, Z. Phys.146, 217 ~1956!.
3J. Bardeen and W. Shockley, Phys. Rev.80, 72 ~1950!.
4K. Kawamura, Z. Phys. B29, 101 ~1978!.
5Y. Aharonov and D. Bohm, Phys. Rev.115, 485 ~1959!.
6K. Kawamura, Z. Phys. B30, 1 ~1978!; Y. Yosida and K. Kawa-

mura, ibid. 32, 355 ~1979!; K. Kawamura and Y. Yosida,ibid.
34, 369 ~1979!.

7R. Bausch, R. Schmitz, and L/ .A. Turski, Phys. Rev. Lett.80,
2257 ~1998!; Ann. Phys.~Leipzig! 8, 181 ~1999!.

8K. Kondo, Jpn. Nat. Congr. Appl. Mech.: Proc.~Tokyo! 2, 41
~1952!; B.A. Bilby, R. Bullough, and E. Smith, Proc. R. So
A London, Ser. A231, 263 ~1955!; E. Kröner, in Physics of De-
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