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A previously established general framework for the description of long-wavelength quantum states of elec-
trons in a crystal with topological defects is used to discuss the scattering of electrons on a screw dislocation.
The corresponding Schidinger equation contains contributions of the type of a vector potential as well as of
a repulsive scalar potential. Together they give rise to modified Aharonov-Bohm interferences in the scattering
amplitude, for which the far-field expression is calculated exaf89163-18209)01121-7

In connection with investigations of residual low- In a recent general treatment of the long-range quantum
temperature resistivities, the scattering cross section of elegtates of an electron in a crystal with topological defeats
trons on a screw dislocation has been calculated in Borajso used the tight-binding approximation as an intermediate
approximation by Hunter and Nabartand in a partial-wave  step. For constant transfer energies this led in the continuum
expansion by Stehle and See§dBoth approaches use the jiit'to 3 covariant Schmdinger equation which, in the lan-
defect-free crystal as a reference system, and the screw d'al]age of the continuum theory of defebtsives on a

location was represented by a deformation poterital-a Riemann-Cartan manifold. Additional noncovariant terms

continuum version, the latter was expected to give an ad-h i thi i hen the t f ies e th
equate description of the long-wavelength scattering waves; '©W UP 1N NS eguation when the transter energies, 1.e., the

More recently it has been pointed out by Kawanfutet tunneling rates of the_ particle, are assumed to depend on the
the topological nature of a screw dislocation invalidates aslocal lattice deformations caused by the defects. ,
sumption of an ideal lattice structure at arbitrary distances APplied to the case of a single straight screw dislocation,
from the dislocation core. Correspondingly, an incomingthe covariant part immediately reproduces Kawamura’s form
electron cannot be described by a simple plane wave. In thef the Schrdinger equation. The noncovariant contributions,
continuum limit of a tight-binding model, defined on a lattice arising from the most natural and most simple deformation
with a built-in screw dislocation, Kawamura derived a dependence of the transfer energies, include a repulsive po-
Schralinger equation with only a kinetic term in the Hamil- tential which has the same long-distance behavior as the co-
tonian. The Fourier transform of this equation with respect tovariant kinetic terms. This invalidates any kind of perturba-
the axial coordinate of the dislocation is reminiscent of thattion expansion for the scattering amplitude which therefore
for an electron moving in the vector potential of a magneticin the following is calculated without such approximations.
flux line. Accordingly, Kawamura predicted Aharonov-  Before continuing, we mention an alternative way to de-
Bohm interferencésin the scattering process of an electronrive the Schrdinger equation for a particle moving in a me-
on a screw dislocation. However, due to the assumption oflium with topological defectd This approach uses the idea
constant transfer energies in the tight-binding model, Kawaef a gauge-field theory of topological defettsand in prin-
mura misses a long-ranged repulsive potential which cawiple allows to avoid the tight-binding approximation.
compete with the kinetic terms, and which dominates lattice Within our approach we have explicitly derived the
corrections of the Hamiltonian in the core regfon. Schralinger equation for a spinless electron moving in a
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simple-cubic crystal with a single screw-dislocation line

h? 1
along thez axis. In terms of cylinder coordinates=(r,z), X(f)ZXa(r)—Bzz—f dzr’G(r,r’)TZXa(r’). 5)
with r=(r cos¢,r sin ¢), the result reads m r
52 For the Green function one finds
. _ 2, 22
ihdah(X,t)=— ﬁ(;ﬁrfé’ﬁ r—2(9¢+ [ G(r,r")=0("—=n)F(r,r")y+0(r—r")F(r',r), (6

b b2 where, in terms of Bessel and Hankel functidiyg,, ,H&l&)

+mﬁ¢§z— —2772a2r2) wxt), (0  With A M(p)=V(pta)™+p7
m o . :

wherem is the effective mass of the electrdm=b- e, is the F(rr=i— 2 Jyw@)H{,(ar)e#e=¢),
magnitude of the Burgers vector of the dislocation, arid he ==
the lattice constant of the undistorted lattice. The Hamil- (7)
tonianH in this equation has the same form as that used bynsertion of Eq.(3), and of Eqs(6) and(7) into Eq.(5), and
Stehle and Seegérbut will here be Sp'lt in a different way use of the asymptotic form

into a kinetic and a potential part.

After adding and subtracting a ternk3/2m) (b/27r)252

in Eq. (1), the separation y(r,zt)=exp(iEt/
h)exp(ik2)x(r) leads to the equation

2 .
H&l)(ql’)—> 71-_qrel((Z]rf)\71'/2771'/4) (8)

for r—oo, leads to the behavior

[

glar 2 gllud—N(w)7/2]

i n2
_ .

x(N=xa(r)——ip aart W=
Here a=kb/(27) and B2=[2—(ka)?](b/2wa)? formally .
enter as the strengths of a vector and of a scalar potential, 2 ) em (=)'
andq is determined by = (42/2m)(g?+k?). The scalar po- X (=1 0 do’e
tential just arises from the deformation-dependent transfer
energies and is repulsive, since the continuum limit implies >dp
T o 0, < |30, ©

If in Eq. (2) @ and B8 temporarily are considered as inde-

pendent parameters, then the c@se0 just corresponds to The integral overg’ yields 2w 6,,, which makes the sum
the model discussed by Kawamdr&or the corresponding OVver v trivial. Subsequent use of the identity
scattering problem he adopted the Aharonov-Bohm soltition

1 1 _ 1
=919+ = (dg+ia)’= B2 +0% | x(r)=0. (2
r I.2 r2

p=—o0

T
E()\— «)| (10

| NP p——
o —Ihp)lp)=—"—=—5sIn
el - p A2—
Xe)= 2 (=113, (@ane’, ®) ° A =)
=T leads, together with Ed4), to the final result:

Whe;eg,((,,l)l isfa Bessel fungtigr;vx;ittrk(v)zl V(v+ a)z.t_As-_
ymptotically, forr — o, one findg(after a minor correction in F)—s e i(arcosgrad=—kd 4 £( )
Ref. 5 W (¢ 2miar

Xo(r)—eiarcosdrad) with the scattering amplitude

ei(qr+kz)

(11)

elkr el(al2al)(d—m)

)= coddi2)

which shows that Eq.3) describes a wave function, coming
in from the positivex axis.

In the context of our approactthe case3=0 originates
from the covariant part of the Hamiltonian where the
Laplace-Beltrami operator determines the kinetic energy.
The potentialx? stems from noncovariant terms in the
Hamiltonian, which follows from distortion-dependent trans-
fer energies in a tight-binding modeélt is purely repulsive
and has, in a similar form, been proposed by KoseVioh a
phenomenological basis.

Since this potential is of the same order as the vector-_
potential terms in Eq(2), it is not advisable to use a pertur-
bation expansion iB. Instead, we use the full Green func-  FIG. 1. Scattering cross section, following from E42) for
tion G(r,r')=(r|lI/(H—E—ie)|r') to write the exact ka=qga=0.7 andb=a. The dashed line represents Kawamura’s
solution of Eq.(2) in the form result for the same values of the parameters.

(4)

+ Si
(2miqr)*?
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. gl (al2|al)(¢—m) lead to quantitative corrections in these regioi$e essen-
f(p)=sin(ma) —————=— tial result, however, is that the inclusion of the repulsive
coq ¢/2) . . .
deformation potential obviously breaks the symmetry-
— ¢ in Kawamura’s differential cross section, reflecting the

—ZM;x e'#?(e ! —e ™) - (12)  chiral nature of the screw dislocation.

©

which corrects the expression given in Ref. 7. The related
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