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We study thek dependence of the gap function of a bilayer superconductor, using standard mean-field
techniques applied to a two-dimensional extended Hubbard model, in the presence of coherent interlayer
pair-tunneling and quenched coherent single-particle tunnelingintitaayer pairing potential thus defined is
expandable in a finite number (5) of basis functions for the irreducible representations of the point-group of
the perfectly square latticE,, . This gives rise to a competition betwesnand d-wave symmetry, as the
chemical potential is increased from the bottom to the top of a realistic band for most cuprates. It allows for
mixed-symmetry paired state at temperatures béelgwbut never aff . on a square lattice. Inclusion of the
interlayer pair tunneling into the effective pairing potential leads to highly nontrksgppace structures, such
as pronounced maxima along the Fermi line not seen in the absence of interlayer pair tunneling. We show how
such a gap structure evolves with temperature and with band filling, and how it affects various observables. In
particular, a nonuniversal value of the normalized jump in the specific h@atvaill be evidenced, at variance
with the conventional universal BCS resyl80163-182@09)03502-X]

I. INTRODUCTION location of the nodal lines may not B&his is in agreement
with the fact that both the critical temperaturg itself and
The identification of the character of the asymptotic low-the maximum gap alf =0 change considerably from one

energy excitations of the highz superconductoréHTCS'’s) material to another, as well as within a given material class,
continues to present a formidable challenge to theorists an@n varying the doping level.
experimentalists in condensed matter physics. These excita- We Wwill in this paper try to bring out a few peculiale-
tions are presumably a key feature in understanding the ba@ils of some properties of the superconducting state within
sics of the phenomendnAlthough the superconducting state the interlayer pair-tunneling mechanisiLPT), which
of the cuprates to a large extent in the recent past has be§§€MS t0 be almost unique to this pairing mechanism. It is at

considered conventional, it is becoming increasingly cleaf"y rate becoming clear that the determination of the loca-

that such a statement requires certain modifications, to sa%n of nodal lines in the superconducting OP, i.e., its trans-

the least The latter statement is supported by recent experi- rmation properties under the symmetry operations of the
mental findingS* underlying lattice, by no means suffices to unambiguously

Th i th trv of th ired stat determine the unconventional pairing mechanism. In this
€ controversy over tne symmelry ot the paired state ( sense, thaymmetryof the OP is perhaps not a central issue,
and extendeds-wave vs higher order waves, particularly

) [though it certainly has been the focus of much research
d-wave and the coupling strength can nowadays be restategjng the last few years. Moreover, the controversy over the

in more precise terms, due to the availability of samples Wiﬂbymmetry of the OP has initiated some of the most sophisti-
adequately pure composition and structure, and of improvegated experiments in condensed matter physics to°d4te.
ments of experimental techniques. A central tool in this con- | this paper, we shall mainly consider the issue of gap
text is angle-resolved photoemission spectroscopwnisotropy and competition between different symmetry
(ARPES,” with which one is able to extract, if not thghase  channels in the two-dimensiond2D) extended Hubbard

of the superconducting order-paramet@P), then at least model, characterized by a realistic band dispersion, including
thek dependence of its modulus at various temperatures angeares{N) and next-nearegsNN) neighbors hopping within
chemical compositions. Herd is a wave vector ranging the CuO planes, and a small-range in-plane potential, allow-
over the first Brillouin zon€1BZ) of the appropriate inverse ing for in-site, N and NN neighbors interaction, in the pres-
lattice for the cuprate compound under consideration. In parence of pair tunneling between adjacent layers.

ticular, there is a growing consensus on the occurrence of The issue of the competition among symmetries in the
nodes of the OP along thg =k, direction in the 1BZ for  gap function arising from the superconducting instability of
optimally doped BjSr,CaCyOg (Bi2212).% However, some an extended Hubbard model at a given band filling has pre-
contradictory claimfor different samples seem to support, viously been considered in the literatdfe® and has been

in a parallel way, the idea that the detailegpace shape of recently addressed with renewed attention from both the the-
the OP could be a material specific property, although theretical and experimental points of view, in connection with
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the Cooper pair instability problem in lattice fermion structure, its inherent anisotropy, its maximum values and
systems; and with the issue of material specific phenom-locations thereof will be included. Calculations of the super-
enology in the cupratésrespectively. conducting density of staté®0O9) reveal remarkable struc-

The ILPT mechanism of high- superconductivity has tures, due to the gap anisotropy, which are believed to be
been proposed as a possible natural explanation for the okelevant to the observed anomalous phenomenology in tun-
served high values of . in layered cuprates, as well as a nelmg junction chargc_terlstuf’%.lr_]_Sec. IV we shall address
number of other more difficult but related aspects of theirthe issue of determining the critical temperature, as well as
complex phenomenolog¥-2°0n the other hand, neither the the temperature at which symmetry mixing occurs, as a func-
microscopic origin of the in-plane pairing nor the nature oftion of the chemical potential. At exactly=T, the full k
the pairs has to be specified. Several unconventional propeflependence of the gap function will be derived analytically,
ties of these materials, due to strong correlations already itP9ether with the critical exponents of the OP. The resulting
the normal state, support the idea of a breakdown of FermigXpression for the gap function in a closed form will serve as
liquid theory. In particular, the absence of a Drude peak iré" evidence for the npntnwal anisotropic character anq'for
the low frequency normal stateaxis optical conductivity, as the symmetry properties of the OP already at the critical
observed in YBCO(Ref. 21 and LSCC? would rule out pomt._l_n SQC. V we shall con5|_der various thermodynamlc_al
metallic transport along the axis in the cuprates. As a con- ql_Jantltles in the supercondu_ctmgl pha;e. Partlculgr attention
sequence, it has been suggested todierentsingle-particle will be_ Qevoteq to thg normallzgd jump in the specific heat at
interlayer tunneling is suppressed, due to the Anderson ofhe critical point, which, at variance with the BCS conven-
thogonality catastrophé;2***whereas coherent pair tunnel- tional result, turns out to be a nonuniversal nur_nber, due to
ing in the superconducting phase is not restricted. symmetry competition and to the ILPT mechanism. In Sec.

Among the mechanisms which would prevent single-V| we summarize our results and present our conclusions.
particle tunneling, spin-charge separafibihas been pro-
posed. The tunneling process of one fermion would in fact Il. THE MODEL
require hopping of both spin and charge degrees of freedom,
whereas a singlet object, such as a Cooper pair, would carry
charge 2 but no spin. The model Hamiltonian we are going to consider in the

Therefore, coherent pair tunneling does not suffer fromfollowing describes tightly bound interacting fermions in a
such restrictions, and enters the total Hamiltonian as a sedilayer complex:
ond order effect in the single particle hopping matrix ele-
ment,t, (k), whose dependence on the in-plane wave-vector
k [see Ref. 19 and Ed7) below| has recently been con-
firmed by detailed band structure calculatiéhsThe main o
aspect of the ILPT mechanism is that Josephson tunneling ofherecy! (ci,) creates(destroy$ a fermion on the layet
Cooper pairs between adjacent CuO layers dramatically an{i =1,2), with spin projectionr along a specified direction,
plifies the superconducting pairing within each layer, by acwave-vectork belonging to the first Brillouin zon€lBZ) of
cessing the normal-state frustratedxis kinetic energy. a 2D square lattice, and band dispersiF e, —u, mea-

The addition of such a term to the total Hamiltonian doessured relative to the chemical potential The second term
not only greatly enhancé&., but has also been able to de- in Eqg. (1) describes an effective pair interaction, already re-
scribe the observed absence of the Hebel-Slichter coherenstricted to the spin singlet channel only, with
peak in NMR relaxation rat#, as well as the recent neutron
scattering experiments in optimally doped YBEDIt was i 1
also recognized some time &Jo°that, in the same way as Viger =g Ykr 8ij = Ta(K) S (1= 65y, 2
the ILPT mechanism very efficiently boosts the magnitude of
T, arising from the incipient pairing within the planes, es-where N is the number of sites in the square lattitg,,
sentially due to its nede-space diagonality, the amplitude as measures the coupling interaction within each plane, and
well as the maximum value of the gap function are alsoT,(k) is the tunneling matrix element between adjacent lay-
dominated by the effective coupling induced by the ILPTers, motivated by Chakravaret al!® Equation(2) shows, in
mechanismlts actual transformation properties under the particular, how the tunneling mechanism can be equivalently
symmetry operations of o are however governed exclu- described by an interlayer effective interaction term, al-
sively by the intralayer contribution to the pairing kernel.  thoughlocal in k space.

In this paper, we shall make the latter statement more The main feature of this model is unusual. Although it can
guantitative, showing how the interlayer coupling determineshe cast in the form of a standard BCS-like effective Hamil-
the detailedk dependence of the gap, and actually tends tdonian, the second term in the pairing potential arises from
stabilize one symmetry channel compared to other possiblustrated kinetic energy along the axis of the cuprates,
ones, as the chemical potential is varied within the band. unaccessed in the normal state of the higheuprates. How-

This paper is organized as follows. In Sec. 1l we introduceever, it isloweredon going into the superconducting state.
our model and review the basic formalism employed to de-This is a situation which has no counterpart in conventional
rive the gap equations. In Sec. Il we discuss the nontriviaFermi-liquid based superconductors, where the kinetic en-
numerical problems arising from the solution of the latterergy isenhancedipon going into the superconducting state,
equations, due to the presence of theliagonal effective while being overcompensated by a reduction in potential en-
interlayer interaction. A full discussion of the gap symmetryergy. In the above model superconductivity arises via a dia-

A. Hamiltonian

_ i AT Al /i it it i j
H_kzzi fkckocka+ 2 ka'CkTC*klcfk’le’T’ (1)
a Kk 'ij
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metrically opposite mechanism: Instead of having the gain irwhile the DOS at the upper band-edge is given jy
potential energy overcome the loss of kinetic energy, it is the=2t(2—b)]=[4#t(1—b)] 1. These features of the DOS
gain in kinetic energy that is the driving mechanism. There isare important in stabilizing various symmetry channels of the
ample experimental evidence that the kinetic energy is lowOP as the doping level is variéd A value of the nearest-
ered in the superconducting state of the cuprates. Although eighbors hopping parameter ranging arotird.25 eV sat-
confusing point has been that extracted values ofcthgis  isfactorily models the band structure and the shape of the
penetration length has been consistent with estimates dfermi surface of the majority of the cuprate compouftfefs.
Anderson based on gain in kinetic enefgythey have also It is not among the main aims of this work to specify the
been consistent witb-axis conductivity sum rule arguments microscopic origin of the in-plane potential,, . .*> How-
ignoring the gain in kinetic energy. This is traceable to ever, any potential with the symmetry of the underlying lat-
subtleties in applications afaxis conductivity sum rules in tice may be expanded as a bilinear combination of basis
unconventional metals, and a nice discussion clearing up thiginctions for the irreducible representations of the crystal
crucial point has recently been presented by Chakravarty. point group, which i<C,, for the 2D square lattic& Assum-
Comparison of band structure calculatibheith ARPES  ing a finite-ranged potential, a finite subset of all the basis
results for various cuprates suggest that the main hybridizedunctions(an infinite orthonormal sgwill suffice. Retaining
single particle band crossing the Fermi level can be correctlyherefore only on-site, nearest- and next-nearest-neighbors
described in the case of perfectly isotropic crystal symmetryn-plane interactions, and projecting out interaction terms in
by the tight-binding dispersion relatiora (being the lattice  the spin triplet channel, one obtains the following expression

step for U, which isseparablein k space:
ex=—2t[cogka) + cog kya)]+4t’ cogk,a)cogk,a), 4
(3) U= 2 2,8,(K)g,(k"), (6)
=

where it has been recogniZ&dhat at least nearest neighbors
(t>0) as well as next-nearest neighbot$>0) hoppings where
have to be retained, in order to reproduce the most relevant
properties common to the mainly 2D band structure of the
majority of the cuprate compounds. First and foremost, we
have in mind theshapeof the Fermi surface, but also such g2(k) =cogk,a)cogkya),
features as the Van Hove singularity in the density of states,

go(k) =1, ga(k) = z[cogka) +cogk,a)],

g3(k) =3[ cogk,a) - cogk,a)],
1
(1= gy % e w) @ 04(K) =sin(k,a)sin(k,a),

at uyy = — 4t’, shifted towards the band bottom with respect@nd

to the midband. We hasten to add that we rogin any way N(7=01,....4
implying that the Van Hove singularities in the single-
particle density of states are important features in explaining;;nedi(,ﬂmy recognizegyo(k),g;(K),go(k) to display (ex-

the large critical temperatures in these compoufid®3’ tended swave symmetry, whereag(k) andg,(k) display
General, and it seems to us very robust arguments_for Why_\wave symmetry. In the, following, we shall assume repul-
the Van '30"9 scenario IS n_ot viable, has been given b3§ive on-site and attractive intersite coupling parametegs (
Andersort. Th_ese conS|derat|or_1$ restr_ithtS_O.S, e_md ) and\ 1,A3<<0), choosing their actual values in order to
ply a flat minimum at thel" point, which gives rise 10 @ o544 ce the correct order of magnitude for the critical tem-
pronounced, though finite, peak in the DOS at the band boi-’)’

. . . , erature and gap maximum &i=0 for the cuprates.
tom. This band has a single-particle DOS which can be ca hroughout thisgpgper we keep=»\,=0 P
in closed form a¥"* ’ A

Monte Carlo simulations support the idea that short-range
antiferromagnetic fluctuations may produceatractivein-
1 1 1-[(b+w)/2]? tersite interactionsee Ref. 44 for a review In our work,
n(e)=_——F——=K — = |, (®  however, such an interaction is takengtgenomenological,
27t \J1-bw 1-bw in the sense that an intersite attraction is at least required
_ within an extended Hubbard model if one expecd\mave
for [(w+b)/2|<1, and zero elsewhere. In E€5) we have contribution to the OP from the lowest lattice harmonics.
definedb=—2t'/t, w=¢/(2t), andK(«) is a complete el- Remarkably, a perfectly tetragonal lattice requikgs=As;.
liptic integral of the first kind, with modulus..®*® The DOS  Therefore, if one looks fod-wave coupling, i.e., a contribu-
has a logarithmic singularity tion fromgs(k) to Uy, , then one should be also prepared to
competition with extended-wave contributions, coming at
n(e)=(272t) 11— bXIn[8/(|®—b|)]+In(yI—b?)} least fromg,(k). _
Finally, we assume the local dependence of the interlayer
at e =2bt, a finite cusp at the lower band-edge pair tunneling matrix element a@(k)=tf(k)/t, ie., a
second-order perturbation in the hopping matrix element
nfe=—2t(2+b)]=[4mt(1+b)] 1, t, (k) orthogonal to the CuO layers. Recent detailed band

are phenomenological effective coupling constants. One im-
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structure calculatiorf§ formally confirm the original choice
of functional form made by Chakravargt al°

t
ti (k)= Z[COS{kxa)—COS(kya)]z, (@)

which was arrived at by inspection of ARPES data combinecﬂ

with analyticity arguments. In particulak diagonality ex-
presses conservation of the momentum compokepéral-
lel to the CuQ plane during the hopping process.

We shall see in the numerical cases below that a fine
tuning oft, in the range 0.1-0.15 eV is the main ingredient
to reproduce the observed critical temperatures and zero-
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Av=—2 Ugoxic Ay, (11
k/

wherey, = (2E,) ~ltanh(BE,/2) denotes the pair susceptibil-
ity, B=(kgT) "%, andE,= \/&€2+|AJ? the upper band of the
uasiparticle gapped spectrum. In Efjl) the pairing poten-
tial Uy =(1/N)U . —T3(k) 8 includes the finite-range
intralayer as well as the local interlayer effective interac-
tions. More explicitly, Eq.(11) reads

1

A= 1Eu A 12
=TT, N 2 ki Xk A - (12

temperature gap maxima in different compounds. Such g.ying use of Eq(2) for the intralayer potential allows us to

range is, however, consistent with band structure calculation

of t, .26

B. Mean-field treatment

A straightforward mean-fieldMF) treatment of the total
Hamiltonian Eq.(1) yields the approximate expressfon

Hue= 2 &ciiCi,+ 2 [Aigle!y +Hel,  (®
kal ki

where the auxiliary complescalar field (i.e., the gap func-

tion)

s Uierbj = To(k)b(1= ),
©

has been introduced. The gap function for thie layer is
thus seen to depend on the pair amplitimje=(c_, c};) in
the same layer, through the intralayer poteritig. , and on
the pair amplitude in the adjacent layr through the inter-
layer tunneling amplitudd;(k), which acts as an effective
potential, local ink space.

Equation(9) explicitly shows that, in general, the inter-

éxpress the gap function as

1
A= T g 2 94, (13)

with

1 !
A,]:—xm%) 9, (K ) xi A - (14)

At a generic temperaturg, Eq. (13) does not yield im-
mediately the explicik dependence ak, as it would in the
limit of no interlayer tunneling T;—0). This is due to the
unusual prefactof 1—T,(k) x«] %, which includes|A,|
self-consistently via the pair susceptibility . However, this
prefactor manifestly displays-wave symmetry, sincéA,|
enters the pair susceptibility, via the quasiparticle disper-
sion E,, which is an eigenvalue of e, and T;(k) has
swave symmetry by itselfEq. (7)]. Therefore, the complex
parametersd ,, which weigh the basis functiong, (k) in
Eq. (13), measure the contributions from the different sym-
metry channels to the full gap functiak, at a given tem-
peratureT. We emphasize that such parametersrereorder
parameters in themselves. Only, as a whole serves as an

layer tunneling mechanism endows the gap function with &P for the superconductive instability, whose onset tempera-
nontrivial, nonlocal structure in the direction orthogonal toture T, is well defined and uniquéesee Sec. IV beloyv How-
the CuO layers. Such a dependence is of course relevant @ver, a vanishing value of some of th, is a signal for the

the more general case of multilayered compounds, and itg8bsence of the symmetry contribution which they represent
consequences of. have been studied, to some extent, byto the full gap function. In addition, the set of parameters
one of the present authof$A generalization of the methods {A,} is not unique. Coefficients of any other complete or-
of the present work to multilayered systentmlow T, is  thonormal set of functions would also suffice as a basis for
straightforward, and is expected to unveil further features irexpanding the gap function. The above choice of basis func-
the gap anisotropy, due to the coupling of the gap functiongions is convenient, since the expansion of the in-plane pair-

in adjacent layers.

In the case of a simple bilayer<£1,2), the simplifying
hypothesis that the pair ampli_tudhi: as well as the in-plane
single-particle band dispersig@g and gap functior} do not
depend on the layer indexallows us to decouple the MF
Hamiltonian Eq.(8) into a sum of independent Hamiltonians
within each layer®

o R
(10

ing kernel used in this paper as bilinear combination of basis
functions truncates after just five termg=<0, . .. ,4).How-
ever, irrespective of the choice of basis functions made,
when all contributions are summed up with appropriate
weight factors, the resuls unique. Moreover, the use of
several parameters, does not attribute ta the structure

of a multicomponenti.e., vectorial OP. We reserve the use
of multicomponent OP to situations encountered in systems
such as®He and possibly URt*¢*” The OP of hight, cu-
prates is much simpler, with only an amplitude and a phase.
On occasions, the s¢n,} is referred to, incorrectly, as the
components of a multicomponent OP of the cuprates.

Standard diagonalization techniques in each layer then yield We finally remark that the self-consistent expressib®)

for A, the BCS-like gap equation at the finite temperaftire

endows A, with an inherently anisotropi& dependence,
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which is modulated by thé& harmonicsg,(k), displaying 02 ' ' Ao R—
explicit symmetry. This is best seen in the limit=T.—0, 5 0157 n=l -
where the gap is vanishingly small, so thgtin the right- E o1} bed4 =

hand side of Eq(14) can be approximated by its normal g S
state value, viz,)({fc:(2§k)‘1tanh(BC§k/2). Only in such a
limit, Eq. (14) already yields the explicit expression for tke
dependence of the gap function, as a product of the aniso-
tropic prefactor[l—TJ(k)XEc]*l and a superposition df
harmonics, weighted with vanishingly small coefficieats. _
We shall precise the latter statement in Sec. IV B below, 0 - . s
where the fullk dependence of an incipiently opening gap 0 S 10 15 20
function at T=T, will be derived analytically. It will be ‘ T

shown in Sec. IV that aT =T, the presence of a given g 1 Temperature dependence of the gap paramgeyls
symmetry contribution to thejust opening gap function (top) and of the gap maximum,, (bottom, at = — 0.4850 eV.
generally excludes mixing with other symmetries. The lattefchosen values of the in-plane coupling parameters and of the inter-
is possible at lower temperatures, due to the highly nonlineagyer tunneling amplitude  are {\g,A;,A»,\3, A5} =1{0.01,
structure of the gap equations below the critical temperature, 9.2125,0.0- 0.2125,0.) eV and t, =0.08 eV, respectively,
at least within a given range of the band filling. The mutualyielding a critical temperaturgé.~13.4 K, at whichA, opens with
exclusion of orthogonal symmetries in the gap function atd-wave symmetry, and a mixing temperatdrg~0.2 K, whereA,
T=T, is a well-known result in the case of nonlocal, sepa-acquires ars-wave contribution. The inset in the top figure shows
rable potential§®4® We therefore recover this result also that A displays the expected critical behavior, with critical expo-
with k-diagonal contributions to the potential, such as thenent 1/2, only very close td@.

interlayer pair-tunneling effective interaction.

self-consistently by finding\,, ordinary numerical proce-
1Il. GAP FUNCTION ANISOTROPY AND SYMMETRY dures used to solve BCS-like gap equations in the presence
of separable potentidis!**3>0are not applicable to the
present case. Therefore, remarkably, the gap paramgters
SubstitutingA ,, from Eq. (14) into Eq. (13) yields are not enough to define the gap function completely: They
yield information only about its overall symmetry, on the
. degree of admixture of the various symmetry channels in the
2 (G TAGM o)A =0, (15 gap function, and on their relative phase. The solution for
_ 7 Ay, therefore, has to be obtained iteratively for each wave-
with vector k of interest. The iterative numerical procedure em-
1 ployed to solve the gap equations is briefly outlined in Ap-
=—>7 ) pendix A.

Mar =N ; Xi8y(K)Gy (), 19 We can now proceed with the solution of the gap equation
~ ) for each given value of the chemical potentialand tem-
where y, = x/[1—Ts(k) xi] clearly acquires the role of a peratureT. We first keepu at a fixed value. By slowly de-
“renormalized” pair susceptibility"® Thgse equations are in creasing the temperature from a relatively high value, we
general coupled transcendental equationsXQr and thus  gpgerve the appearance of a nontrivial solution to the gap
define a highly nonlinear problem. Only &t=Tc will the  gquationsA, at a critical temperaturd,=T.(x), whose
situation simplify considerably, as will be discussed below. ya|ye has been made comparable to the critical temperatures

However, once self-consistency has been achieved, Eqgpserved in the cuprates, by a suitable tuning of parameters.

(15) areformally linear and homogeneous in tiasesof  This onset is signaled by a nonvanishing valusaheof the

the complex parametets,, which are responsible for the parameters\ ,, corresponding to a nonzero contribution of
overall complex phase afy, as shown by Eq13). Due to  gnesymmetry channefFig. 1). We shall later show that only
symmetry considerations, as remarked in Sec. IV A belowgne orthogonal channéfestricting ourselves in this work
Eq. (15 reduces to twdormally independent sets of equa- gjther tos or to d wave can contribute ta\, at T=T, (see
tions, with real coefficients, one for each group of parametergec |v and Ref. 48 Upon further decreasing below
belonging to eithes- or d-wave symmetry. This means that Tc.|A,(T)| increasesFig. 1. Together with|A, |, we plot

the complex parameters, belonging to the same symmetry iy Fig. 1 the maximum value of the gap function over the
are all defined up to aame commophase factor. One can 1g7

therefore speak of a relative phase betwseand d-wave
contributions. In particular, it follows that there cannot be Ap(p;T)=max|Ag(w;T))|. 17
anisotropies irk space of thephaseof the order parameter, k
other than the(trivial) one arising from eventual relative
phase differences between two different symmetry contribu- One immediately recognizes thA, is considerably en-
tions. (This justifies the widely used terminology sf+id hanced with respect t|(zA,7|, which are representative of the
symmetry, for example. values it would have had, in the absence of ILPT.

Due to the presence of the unusual prefacfdr We shall later show analyticallysee Sec. IV B beloyw
—T,(k)xk] ™! in Eq. (13), which itself must be determined that A, and Ay, behave as-(T.—T)"? at T=T.—0, as

A. The auxiliary gap parameters A ,
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it is expected in any mean-field theory for an OP. However, | Al [meV]
Fig. 1 shows that the behavior of some as functions off
may soon depart from its critical limit close ., depend-
ing on the value of the chemical potential. This is to be
contrasted with the dependence on temperatureA gf,
which closely resembles the conventional one in BCS theory.
The unconventional temperature dependence of the param-
etersA,, below T, directly stems from their definition, Eq. 0
(14). A different choice of parametefd ,} would in general
lead to a different temperature dependence, except their criti-
cal behavior afT.. On the contrary, we expect the result . ,
obtained forA,, to be unique, as its value depends more on, G- 2. Dependence dfA,| overk in the first quarter of the
the ILPT amplitude than on the parametrization employed-o2: 3lw= —0:4892 eViandr=0. Same values of the parameters
as in Fig. 1. Notice the maxima structure along the=0 locus,
for the symmetry character of the OP.

D di h | h h | including peaks at the intersection thereof with=0 and k,
epending on the value qi, other symmetry channels =q/a, and symmetry related points, whose height is enhanced as

may begin contributing to the full order parametef asT ¢ decreases, due to the prefadtarT,(k) y.]~* in Eq. (12).
decreases. This is signaled by a nonzero value of the remain-

ing parameters\,, and by an enhancement of the param-channels, which then to an even stronger degree will sup-
etersA, corresponding to the symmetry channel already acpress competing channels. The consequences of a possible
tive, as in the numerical example shown in Fig. 1. Thesymmetry mixing on observables will be analyzed below in
critical exponent with which the new s open at the criti-  Sec. V. We note, however, that due to the specific choice of
cal temperature is again 1/2, as can be shown analytitally. nand structure and intraplane coupling constants, it is well
The temperatur@,,= Tpy(u) at which this happens do@®t  established that-wave pairing will dominate in the vicinity
correspond to any new instability: The system is already &f half filling, while swave pairing wins out for low filling
superconductor, with massive gauge fluctuations and a finitgactions. Hence, in the cuprate¥; will tend to stabilize
superconducting coherence length. No remarkable feature {g\wave pairing compared to competing channels, were

to be observed i as a function ofT. Its value depends d.wave pairing to be the dominant intralayer channel.
more on the anisotropy induced by the interlayer tunneling

mechanism than on the intralayer potential. At the mean-field
level, the OP enhances its overall amplitude and its anisot-
ropy character, by allowing pairs to condense in more sym- Primarily, the interlayer tunneling amplitudg(k) in Eg.
metry channels. (12) affects the overall anisotropic structure of the gap func-
Symmetry mixing is made possible by the nonlinear chartion, and not its symmetry character. To show this, the de-
acter of the gap equations themselves, which becomes irendence ofA, on T at a given chemical potential does
creasingly more relevant as the temperature decreases taot suffice alone. Therefore, in Fig. 2 we show the overall
wardsT=0, given our choice of an extended in-plane real-dependence dfA,| over the whole 1BZ aT =0, for a fixed
space pairing potential. Such a possibility has been alreadyalue of u. We choose to plotA,| along the family of
studied in detail by Spathist al,**who used a description in mutually orthogonal lines defined by,=const and y
terms of a bifurcation of the gap parameters, and by=const, wherey, is a harmonic conjugate of,. Such a
O’Donovan and Carbot?®in the case of an extended Hub- choice is best suited to exhibit and highlight the structure of
bard model without interlayer pair tunneling. Consistent re-maxima in the gap function along,=0.
sults have also been obtained by Otnes and one of the presentFrom the numerical analysis, one clearly observes a nodal
authors’ for the Cooper problem in presence of an extendedine along the ky=ky direction for T,,<T<T., which
intralayer Hubbard potential. evolves into a line of local minima as symmetries mix below
Inclusion of ak-diagonal interlayer pair-tunneling term in T, down to T=0. Moreover, what is more apparent is the
such a model preserves this feature. An effect of the interpresence of rather pronounced lines of maxima whose loca-
layer pair-tunneling is that it strongly influences the compe-tion in the 1BZ follow the locus of the dispersionless wave
tition betweens- andd-wave symmetry channels in the OP, vectors for the normal state quasiparticles, i.e., the would-be
enhancing a dominant symmetry channel compared with theermi line, defined by, = 0. Absolute maxim&sharp peaks
subdominant other one. The matrix elem&gtk) generally are located at the intersection of tigg=0 locus withk,
reduces the region of symmetry mixing in the,[) phase =0 for u<uyy [corresponding to a Fermi line closed
diagram, as will be discussed more in detail in Sec. IV. Thearound thel’ point), or with k,=m/a for u> uyy (corre-
reason is that when a gap amplitude starts to growl at sponding to a Fermi line closed aroumd=(=/a,w/a)].
=T, the dominant channel will initially suppress pairing in Such features are of course produced by the enhancing pref-
other channels. This is generic to any superconductor allowactor[ 1—T;(k) x«] 1 in Eq. (12), which gives its maximum
ing mixed symmetries to appear in the OP, also conventionatontribution where T (k) x,~1, i.e., exactly as quoted
ones. Furthermore, it is important to note that the gap at above® The reason for theharpnes®f these features is the
certaink point in the BZ depends on the gap at all ottker Kk diagonality of the interlayer pair-tunneling term. Similar
points via the nonlocality of the intralayer part of the pairing spikes are difficult to obtain with more conventional, ile.,
kernel, even though the interlayer part is local. The result isiondiagonal, contributions to the pairing kerAgin such
a strong enhancement of the gap amplitudes in the dominagases we do not get the unusual enhancement fadtor

(= oo YN
owmoh o

B. The order parameter |A,|
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FIG. 3. Superconducting DOBs(w), corresponding to an an- FIG. 4. Dependence of the gap parameters(T=0)| and of
isotropic k-dependent gap in the presence of ILPdontinuous the gap maximum at zero temperatrg on the chemical potential
line), andnd(w), corresponding to a purelg-wave gap, without #- Same values of the parameters as in Fig. 1.

ILPT (dashed ling at u=—0.47 eV, T=0 K. Same values of the

parameters as in Fig. 1. perconducting spectrunk, with fully anisotropic, preva-
lently d-wave gap functiom\,, obtained self-consistently at

—T,(K)xk] "1 in the effective pairing susceptibility respon- T=0, and the analogous quantityl(w), where a pure

sible for the peaks, and anisotropies in the pairing kernel-wave gap functiomg:Adgg(k) has been used, with¢

tend to be smeared by integrations. We suggest that im= max|Ay|.

proved energy resolution in ARPES is a useful tool to look | poth cases, a gap opens in the SC spectrum-ad

for sharp features in the gap on the Fermi surface, whichj e  around the Fermi levelHowever, the minimum ai

appears to be a hallmark of the ILPT mechanism. =0 innY(w) is flatter than img(w), and the features around

The maxima distribution and values df, along the ,—q are quite less pronounced and less asymmetric with
Fermi line is in qualitative and quantitative agreement W'threspect to the Fermi level. Such behavior in the supercon-
high-resolution photoemission data available for the bilaye"ciucting DOS is peculiar to the interlayer tunneling mecha-
Bi2212f3_lt is gratifying to recover such results, without mak- nism, and is promisirg in order to explain the anomalous
ing detailed reference to the bilayer band struc’f‘dr&.rej features observed in tunneling junctions experiments with
quires invoking the ILTP mechanism, where the amplitudegjy51257
Ty(k) depends oik through Eq/(7) (Ref. 19 in a way which To complete our picture of the competition of gap sym-
is confirmed by band structure calculatidfis. metries and anisotropy in the ILPT mechanism, we evaluated

Together with a remarkable dependence of the order A aiT—0 for chemical potentigk ranging from the bottom
parameter,_one observes a dlffergnt temperature varlgtlon @ the top of the band. In Fig. 4, we pI¢A,,(M;T=0)|
Ay depending on the location &f in the 1BZ, and particu-  5gainsty. One observes thatwave symmetry prevails at
larly along the Fermi linef, =0, where anisotropy is en- |6\ pand filling, andd-wave symmetry at higher filling,
hanced. This is in qualitative agreement with recent ARPEShich is consistent with earlier resufs:3%°17|n a rather

measurements Of\y in_underdoped Bi2212 at different narrow region, an OP with mixed symmetry occurs. Numeri-

. . . 5
points of the Fermi liné’ cal analysis revealed that the ILPT mechanism reduces the
extension of the latter with respect to the linlij—0, thus
C. Superconducting DOS showing that a local nonseparable contribution to the pairing

One consequence of such a peculiar anisotropy is e_gpotential frustrates, in general, the coexistence of orthogonal

given by the superconductive density of state3 &0 symmetries at low temperatures. We argue, therefore, that a
true, generally nonseparable potential, of which Ej.is

1 only a truncated expansion over a reduced set of basis func-
ns(w) = > [UBs(w—E)+vid(w+EY)], (18  tions, could even suppress symmetry mixing entirely. We
K have however no formal proof of a such a statement, at
where present.
From a numerical analysis of the gap maximumTat
=0, AY () =An(u,T=0) [Eq. (17)], as a function ofu
i (193 (Fig. 4, we moreover conclude that the ILPT mechanism
yields reasonably large values of the gap maximum, as ob-
1 & served experimentally in the HTC8,and that the actual
( - ) (19D  values of the intralayer coupling constants, contribute
only in a minor way. Furthermore, Fig. 4 shows that the
are the usual expressions for the coherence factors in BC$argest gaps correspond to prevalentiywave symmetry,
like theories® which hold for an interacting Fermi liquid, in and are obtained for~ w\y (the exact location depending
the absence of spectral anomalfit&quation(18) obviously  weakly on\ »),» where the enhancement duelig(k) is high-
reduces tm(w), Eq. (4), in the limit A,—0. In Fig. 3, we  est, once more showing the relevance of the 2D character of
plot the superconducting DO&(w) corresponding to a su- the single particle dynamics in the normal state through their
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dispersion relation, and the importance of the actual value of The condition for Eq.(20) to have a nontrivial solution
the next-nearest-neighbors hopping amplitatén Eq. (3),  {A,} is that

which fixes the value ofx at which the Fermi line changes

its topology. det 8, +\, M7 )

0. (22)

IV. CRITICAL TEMPERATURE Due to theswave symmetry character gf and the definite

. . 0 .
Among the many experimental facts concerning theSymmetry character of the basis functiag(k), Mnn’ 1S

HTCS phenomenology that the ILPT mechanism is able idlock diagonal. Its elements are nonzero if and only ii_nd
describe, probably the most apparent is the ease with which denote symmetry channels belonging to the same irreduc-
the high value of the critical temperature itself is explained.iPle representation of the crystal point group. Therefore, Eq.
This is first and foremost due to tHe diagonality of the (22 for T¢ at a givenu factorizes into

intralayer part of the kernel, and has previously been inves-

tigated in some detail by Chakravarty al,'® when consid- DQS(M,T)ng(M,T)IO, T=T,. (23
ering the ILPT mechanism for bilayer compounds such as

Bi2212. Of course, it is a matter of some importance to in-Here, Dg (1, To)=det(s, ,»+\, MmO ) (h=s,d) de-
vestigate the effect of inelastic scattering, ikespace broad- h ho T

ening, of the interlayer term, to investigate how detrimentalf[)hend? on:jy on al suttr)]se;[ of me’f("t:. @QTLm?rirlzatllon
effect it has onT.. Preliminary resul®® show thatT, is eretore decouples the two symmetrie o 1N SO

fairly robust to a broadening of the interlayer term. tion correponding to the largest value B from Eq. (23)

In this section, we generalize the results of Ref. 19 tc)corresponds to the true superconducting transition tempera-

arbitrary doping, conveniently reparametrized by the chemilure: The transformation properties of the corresponding

cal potential ranging within the dispersion bandwidth, ex_er:ge;ve(_:torstdetermlnedln ;/_vhlc(_lsmtgIgl_symmetry_;g?nel
tending the analysis to the case of the intralayer potentiatl e dominant superconducting instabliity occurs. C

proposed in Eq(6). The dependence af; on u is a relevant Ijhe tpthe_r S,[Olbu.}.'ton co(;rgpo;:ds_ to”a _sutl)domltnac?t super”con—
point in itself, since it allows to clarify the role of the 2D ucting instability, and 1s physically irrelevant. >enencaty,

hole dynamics and that of the incoherent, interlayer pairpremsely aff=T;, we thus cannot have an instability into a

tunneling mechanism in determining the shape and extensio'f’\“xed stgte, e, a superconducting instapility With. eigenyec-
of the (u,T) region allowed for the superconductive insta- tors having components belonging to different irreducible
bility to o,ccur representations o€,,. A mixing of symmetries can only

A separate question, in the present context, concerns tHgFCur below the physical,, as discussed more in detail in

,T) region allowed to superconductivity characterized b >€C. lll. The exception to this statement occurs W_taeis
(n.T) reg P y y&ne-tuned such that the zeroes of ttheind s determinants

a symmetry order parameter. Due to the structure of the ga| found at th ¢ ¢ The oh for thi
equation(12), such a question involves considerable numeri- re found at the same temperature. The pnase space for this

cal difficulties, in comparison with previous work of some of to occur is, however, vanishingly smal!. Such a result is a
the present authorS which will be dealt with in some detail. generalization of a known theorem, which applies to 'purely
nonlocal separable extended potentf&t® The generaliza-

o o tion has been made possible by the definite symmetry char-
A. Superconducting instability: pure symmetry acter & wave of the effective local potential induced by the
At T=T,, the mean-field gap functiof, is vanishingly interlayer tunneling amplitudd (k) in Eq. (2), and is of
small everywhere in thi& space. Therefore, Eq15) linear-  course extendible to potentials supporting an arbitrary num-
izes to ber of symmetry channels in the 3PWe emphasize that
these statements pertain to the square lattice only. In systems
with pronouncedab-plane orthorhombicity, such as YBCO,

0
Z (8 tA M W,)A,,,=0, (20) a certain amount of mixing is expected on quite general

K grounds, and is indeed inevitable. The underlying lattice

where the linearized matrix elements point group isC,, , and thus an expansion in terms of basis

functions forC,, will yield several terms.
1 X0 The issue of determinind.=T.(«) and the symmetry
MO =1lmM,, =— —kg (k)g,, (k) channel in which the instability occurs, proves therefore to
nn nn N X 1—T.(k 097 7 . . .
Ay—0 3(K) Xk be equivalent to comparing the two solutions of E2). It

(21) must be noted, however, that at variance with the case of no

do not depend o\, any more. These matrix elements areinterlaygr tunnelin.gt Fhe Iinea:)rized matr?x elemem_%”, in-
analogs of the well-known logarithmically divergent inte- ¢luded in the definitions oDy (x,Tc) display a divergent
grated pairing susceptibility in the BCS theSfHere, what  behavior at some valu&.=T*(u), due to the presence of
appears are integrated, effective pairing susceptibilities, prathe denominator 4 T;(k) x? in the summand of Eq21). It
jected down on various symmetry channels. Symmetry dichas already been emphasiZethat the self-consistency con-
tates that only basis functions having the same transformatition Eq.(12) for a nonvanishing gap, below the truerT,

tion properties, albeit belonging to different irreducible prevents the occurrence of such a singularity. The singularity
representations o€C,,, can yield a finite effective pairing is due only to the mathematical artifact of extending the
susceptibilityM ?m,. definitions of the determinanl@fh(,u,Tc) to a domain be-
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100 - - - = R swave symmetry prevails near the bottom of the band,
whereag-wave symmetry wins out gs increases. A robust
qualitative argument for this was given in Ref. 17. The criti-
cal temperaturd . reaches its optimal value near= vy,

the exact location depending on the set of valjleg actu-
ally chosen for the intralayer coupling parameters.

TIK]

B. Gap anisotropy at the critical point

The ILPT mechanism is seen to strongly enhance the
0 : : ' k-space anisotropy of the gap function alsoTat T, re-
085 08 045 04 035 03 gardless of the symmetry character that the OP takes on,
n[eV] which at the critical point is unambiguosly defingtb mix-
FIG. 5. Lower bound temperatufié () (dashed lingand criti-  ing). This is already apparent from E¢L3), and can be
cal temperaturd () (continuous ling as functions of the chemi- proved by exhibiting the full analyticd dependence of the
cal potentialw. Same values of the parameters as in Fig. 1. gap functionA,, atT=T.—0.

For T<T., one may Taylor expand all quantities of in-
low their zeroes. This is not physically meaningful, since theterest in powers 0B?|A,|?<1, safely retaining the first non-
opening ofA, modifies their very definitions. zero term only. From Eq.16), one obtains

The occurrence of such an unusual singularity in the in-
tegrated effective pairing susceptibility, projected on various 1 d(BEI2)
symmetry channels, has a physical meaning. It shows how W,:M(f],,/—ﬂ3ﬁ ; mgﬂ(k)gﬂk)muz
the action of an interlayer pair-tunneling mechanism bounds I Xk
the critical temperature from below, and therefore enhances +(’)([32|Ak|2), (25)
it. Given an intraplane contribution to the pairing kernel, a
lower bound o, is set by the matrix elemeflt, ; the lower ~ Where
bound roughly given byl';/4 [see Eq.(24) below]. Beyond
this, the actual value df . is fixed by the intralayer coupling
symmetry and strength. As already notq&ﬁ, is maximum
along the Fermi line, where IimﬂTCIimékﬂoxf(’:ﬁCM.

1
d(X)= @(tanh Xx—Xx sechx), (26)

R and a superscript zero denotes that the lilnit>0 has been
Therefore, the renormalized susceptibiliw{z along the taken. At T=T,, only one symmetry channel is active,
Fermi line is maximum wher& (k) is maximum, i.e., atthe therefore Eq(23) is satisfied by the vanishing of one block
intersection of the Fermi line with thE-X-M path in the  determinant, sayDg (#,To)=0, (h=s or d). Expanding
1BZ (and symmetry related pointd.ooking for the highest D, (1,T) aroundBZIhAklzzo and making use of Eq25),
temperaturel*(u«) at which the maximum of((k’ diverges, on(; finds

one has therefore to distinguish between the two possible

topologies for the Fermi line arising from E@). One finds, 1 B(BEJ)
analytically, D T)=D? (u,T)—83= > —=—
4 (D= (w1 =BG 2 TR
D( By~ B = p<
e e <[ S0, 080,00 |4
kBT (/"L): T _ 4 (24) nn’
Ny HTT M <<
64w —2t) MVHS =M, +0(32|Ak|2), 27

where u, ,u+ denote the bottom and the top of the band,where W, ,, denotes the cofactor for the elemeast,,,

respectively, which generalizes the expression given in Reff A ,M . in Dy, and a superscrigt restricts the sum tay

19. At the Van Hove singularityT*(u) is maximum, with  and 7' corresponding to th@-wave channel only. We ob-

keT*(uvn) =T/4=t2/4t, yielding a lower boundksT.  serve, then, that close ., Egs.(20) factorize into two

=<0.01 eV (T,=110 K), which is a representative value for separate, independent sets of linear homogeneous equations

most bilayer cuprates. for the parameterd\, representing either symmetries, re-
Figure 5 shows our results far* and T, as functions of spectively. In the proximity of T, therefore, since

. The values of the parameters have been chosen as quotatgh(M,T) =0 atT=T¢(u), only the set of equations fa¥,,

in order to yield a critical temperature at optimal doping ;qresponding to the incipiemtwave channel admits a non-
whose value is representative of the bilayer cuprate SUPe¥ivial solution, readily given by

conductors. Superconductivity appears restricted predomi-

nantly to the lower part of the band, even though a nonvan- |A
ishing lower bound T*(u) assures a nonzero, albeit

decreasingT., asu increases towards the top of the band.\yhere; <{0,1,2, if h=s, or 7e{3,4, if h=d, ande is an
In that regime, however, we showed numerically thgf  homogeneity factor, common for aif's, which vanishes as
is vanishingly smallcf. Fig. 4). As previously observe®’!’  T—T.—0, as specified in the following. In deriving E@8),

0
Wwe, (28)

77|:
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we made use of the fact that, in the absence of symmetrwhere
mixing, such as at the critical point, all the, belonging to
a given symmetry channel share the same complex phase

factor. Insertir!g Eq(13) into Eq. (27), and making use of (1IIN)D {g2(K)/[1—T,(K)x212 sech[ (1/2) Beé]
Eq. (28), one finds ) K
a,=
L1 D% (IN) 2 {g2 (1= Ta(k)xie T} oL (12 Beid
€=——, 29
B CR(m.T) 29 (35)
where From Egs.(33), one also recovers the critical exponent
1 (BES2) 1/2 analytically, which is typical for an order parameter at
Co (u,T)=— > & the critical point, within a mean-field theory. Moreover, Eq.
h N % [1—TJ(k)XE]4 (33b) clearly shows that no symmetry mixing is allowed at
T=T., by explicitly exhibiting which basis functiong, (k)
X[ 3\, g, (kW g, (k) contribute toA,, and their weights. The role of the ILPT
el e mechanism is furthermore made evident by the presence of
5 the l‘actor[1—TJ(k))(‘,2°]*l in Eq. (33b). This provides the
% Ehwg 9.k . (30) gap functionA, with a remarkable anisotropy already &t
T =T,, thus showing that such an anisotropy is neither due to

self-consistency(at T=T., the values ofA, at different

We finally observe that, by construction, l“mTcD%h(""T) points in the BZ are independent of each othaor to non-

=0. Therefore, the expansion of E@9) aroundT=T; be- linearity (at T=T,, the gap equations can be linearizedn
gins from the linear term in—T.), and one straightfor- the contrary, gap anisotropy is robust against both self-
wardly obtains consistency and nonlinearity, whose relevance increas€és as
72 decreases, as our numerical study beldw has demon-
e—ap E( 1- 1) (31) strated.
2 T, From Eq.(33b) one is able to predict a line of relative

maxima for|A,| along the& =0 locus already aT=T,.
Absolute maxima occur at the intersection of #he=0 locus
with the I'-X-M path, and symmetry related points. The

where

aﬁ:% hMHOC,WOC” (329  sharpness pf_the_ maxima is guaranteedm{(k), and is
Cx; 7' KA therefore distinctive of the ILPT mechanism. Away from

£.=0, the gap function isapidly vanishing over the rest of

1 the 1BZ, as an effect of the renormalization of the pair sus-
secﬁ(—ﬁgk), (32b) ceptibility, induced by the ILPT mechanism. Moreover,

2 moving along theg,=0 line in k space, the gap function
|Ay| is seen to decreasmore than linearlyas one ap-
proachesk,=k,, where |A,| attains a minimum value,
which is finite and very small, in thewave case, or zero, in
thed-wave case. This has to be contrasted with the case of a
conventionald-wave gapA,«gs(k). In such a limit(corre-

0 :i g’/](k)gr]’(k)
7N - Tyoxe)?

and a superscript denotes that the limiT—T. has been
taken. Making use of Eq31) in the expansions fda\ | and
|Ayl, Egs.(28) and (13), respectively, at the critical point,
one explicitly obtains

T T\ sponding toT;—0 in our mode), A, would vanishlinearly
|A7]|=ah?C 1—- T_> VV%;, (338 ask approaches perpendicularly the nodal likg=k,. A
c flat minimum (node ling along k,=k, is indeed strongly
suggested by ARPES results for Bi2212 single crystalsd
hyp/2C has been earlier proposed as a “smoking gun” for the ILPT
Te T 1’2271 Wc’)”’g"(k) mechanism by Aﬁderr)soq"?. 99
Al “dhy 1- T_c) m' (33D The sharp anisotropic features |df,| are robust against

nonlinearity, whose relevance increasesTadecreases, as

Equation (33b) analytically yields thek dependence of Shown by Eqs(13) and (14). Correspondingly, the normal
the gap function at the critical point. In order to exhibit more State spectrum &t=T, gets gapped whetd,| is maximum
clearly the role of the ILPT amplitud®,(k) in establishing ~far more significantlythan elsewhere. A3 decreases, one
such dependence, one may consider the limiting case 2" think of th'e Fermi line as remaining practically un-
which only one basis functiofsay, =) contributes to the gapped along disconnected arcs of ever smaller length. These

expansion ofA, . On taking the limit|\, /X, | —o,¥ 7+ * arcs shrink and eventually collapse into a single point along
. * 77 ) 1 -
one recovers the resulsee also Ref. 62 line, asT—0. , , _ _
Recent ARPES experiments in underdoped Bi2212 single
T T\¥2  g,(k) crystals by Normamet al®* are suggestive of such a scenario.
[A =0, 1= —— (349 A progressive ‘erosion’ of the Fermi line as temperature de-
2 Te) 1-Tyk)x® i i
IUK) Xk creases has been related to the opening of an unconventional
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pseudogap, precursor of the superconducting gap whicperhaps not surprising, as this quantity involves a double
opens aff.. integration overk-space vectors. Another matter altogether
is the situation where we consider quantities involving only
onek-space integration, and in addition alsalerivativesof
the gap>
In mean-field theory, the superconducting paired state is Specific heatHere, we will consider the specific heat
microscopically fully characterized by the gap functiap, ~ anomalies of the model. The entropy per particle in the su-
which we now have access to over the whole 1BZ as a fundP€erconducting state is given
tion of band filling and temperature. In this section, we will
discuss how the solution to the gap equations can be em- 1
ployed in the calculation of some specific thermodynamic  SS(u,T)=—2kg— 2 [fIn fe+(1—f)In(1—f)],
properties of the system. A number of physical quantities of N &
interest have previously succesfully been considered with (36)
various such solutions, such as for instance the anomalously
large gap anisotropy observed in Bi222he nonconven- wheref,=[1+exp(BE,)] ! is the Fermi function evaluated
tional features in the NMR relaxation rateT}/observed in  with the superconducting spectrugy .
YBCO,*' the variation ofT; with the number of layer$) the Differentiating S°(«, T), Eq. (36), with respect taT one
unusual features in the neutron scattering rates observed abtains the specific heédt
YBCO,?® and a possible explanation of the spin gap, or
pseudogaf® All of the above quoted calculations utilize the s
special features of the gap that arise as a consequence of the CS(u T)=T§
interlayer pair-tunneling mechanism. In particular, the calcu- Vi aT
lations of the gap anisotropy, the variationTgfwith the size 1 1
of the unit cell, the neutron scattering peak, and the spin gap = _kBBZ_E Ek( E.+ 8
utilize the unique and shalpspace features that arise in the 2 Nk
solution to the gap equations due to the unusual renormaliza-
tion of the pairing susceptibility,— xi /[ 1— T 3(K) x«]- < sech
We choose to consider quantities that have the promise of
being sensitive to thk-space features of the gap, which are
relatively readily obtained, and which are possible to con‘whenever E,, i.e., A, contains discontinuities in its
front straightforwardly with experiments. In the following, temperature-derivative as a function Bf the specific heat
we shall mainly focus on the specific heat anomalies of theeq. (37) displays a finite peak. This is typical of the mean-
model, although work is currently in progress concerning theield approximation, as mentioned above. In the presence of
in-plane coherence length and the thermal conductiity. a competition between several symmetry channels, several
These quantities are either sensitive to the presence of thgich discontinuities may occur, &=T, and atT=T,,.
particularT; term in the Hamiltonian such as specific heatHowever, we expect the height of the second peaK at
anomalies, or involve the derivative of the gap such as the- T, to be exponentially reduced with respect to the peak at
coherence length and the thermal conductivity. Moreover wer=T,_, due to the presence of the hyperbolic secant in Eq.
choose, for application to the highs compounds, param- (37).
eters such that the critical temperature at optimum doping is Making use of the gap equations it is possible to derive a
given by T,=90 K. straightforward expression foEJE,/dB, valid at all T
Although several of the properties of the superconducting< T, which turns out to be linear id|A,|?/dB8 (see also
state in the hight, compounds which in one way or another Appendix B. Such a quantity is numerically accessible, in
probe thek-space structure of the gap are unusual, the therprinciple, from the solution to the gap equations. Therefore,
modynamics seems to be remarkably similar to ordinary suEquation(37) directly yields the temperature dependence of
perconductors. This is true for instance for the entropy of thec$ also belowT,. However, such dependence turns out to
system. Is a gap arising from an unconventional gap equatiope conventional, and will not be shown hegee also Ref.
such as the one considered in this paper, giving rise to unsuafy),
k-space features id,, consistent with standard thermody- At exactly T=T., the knowledge of th& dependence of
namic results otherwise normally associated with convena, in a closed form allows us instead to study analytically
tional superconductor8?Although not shown here, we have the jump in the specific heat, normalized with respect to the

calculated these quantitites and found that they are remarlg-peciﬁc heat in the normal sta@}, i.e., in the absence of
ably similar to those found in any conventional e gap, at the same temperature

superconductot® This is basically because quantities such as

entropy involve &-space integration over smooth functions

of the gap. The detailekl-space features are then washed out 8CYy  Cy(u,To)—CU(u,To)
and the results are to some extent quite insensitive to these ne n

features inA,. The same also pertains to some extent to Cv Culn.Te)
guantities such as the NMR relaxation rat& 1/ which ex-
hibits features in it dependence which are reproducible by Making use of Eq(33b) corresponding to the opening of a
a gap with a number of different symmetrfé€8 This is  generich-wave symmetry gaph=s,d), one readily obtains

V. APPLICATIONS

é’Ek)
B

1
EﬂEk)- (37)

(39
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3 : - ' BC3 problem.This second anomaly in the specific heat therefore
does not represent a new superconducting phase transition,
25 . 9 "
but merely condensation of Cooper pairs into additional
o 2 ] symmetry channels. The true order parameter of the problem
':0> A becomes finite once and for all &=T_, and this point
o, 18] ] represents the only zero-field phase transition. This appears
2 | to be a widely misunderstood point in the literat(teAs
mentioned previously, the parameteXs, do not represent
0.5 r 1 order parameters for this problem. Note that the second
anomaly in the specific heat, at low temperatures, is expected
0 : : - . i :
-0.55 0.5 -0.45 0.4 -0.35 0.3 to be well captured by mean-field theory. It is locatedside
nlevl the critical region of the normal metal-superconductor tran-

) _ _ - sition, while this is not the case for the first anomaly in the
FIG. 6. Normalized jumpsCy/Cy’ in the specific heat al  gpecific heat located dt=T, . Therefore, our results for the
=T, Wlthln the ILF_’T mecha_mlsm, asa func_tlon of the chemical main anomaly in the specific heat, the prominent stispon-
potential . (continuous ling Like in Fig. 1, we used ity at the critical point, should be replaced by a near-
{:7‘8 '())\81’);i/‘)\ié);‘;)}ez(:ii?/écl)j'_ghilzséoéﬁgisirzssef'Fi)m?tvﬁ?gﬁ logarithmicsingularity characteristic of the 3DXY model’?
:1'42613 ’is also shownl for comparisaashed ling This reflects the fact that for optimally doped and under-
' ' doped systems, phase fluctuations in the problem appears to
be strong, such that the true superconducting transition oc-

z h\/2° (k) 2 curs well below the mean-field transition.
c ,1 > T Our main conclusion of this subsection is that in slightly
5CV:EkB“hN; [l_TJ(k)XEC]Z secft §Bc§k ' overdoped compounds the main normalized specific heat

anomaly will be mean-field-like, butonuniversadue to the
appearance of a renormalized pairing susceptibiify[ 1
—T;(K) x«], in contrast to the standard BCS result.

(393

2 1
secﬁ(zﬁcgk). (39b)

1 1
C{]/CZZkBN Ek: (Eﬁcfk
VI. SUMMARY AND CONCLUDING REMARKS

We explicitly observe thaonly at T=T. one is able to in- We have addressed the issue of the mixing of symmetry
clude in Eq.(37) for Cy the analytical expressions fad,  channels in the superconducting order parameter for a bilayer
and itsT derivatives: Numerics are Only needed in perform'superconductor in the presence of an inter|ayer pair-
ing the integrations over the 1BZ where requif@&mploy-  tunneling mechanisHi as a possible framework for under-
ing the value ofT;=T¢(u) numerically obtained as in Sec. standing numerous unconventional features exhibited by the
IV A (Fig. 5), we are eventually able to evaluate the normal-HTCS compounds. Incipient superconductivity has been
ized jumpSCy/Cy° in the specific heat & =T, as a func-  generated within each individual CyOayer through a
tion of the chemical potentigh. We display our results in  Hubbard-like in-plane potential, including primarily an on-
Fig. 6, and compare them with the conventional resulisite repulsion and nearest-neighbor interaction, which has
SCYICY =12[7¢(3)]=1.42613, derived within the BCS been strongly enhanced through the inclusion of the inter-
theory for ans-wave, uniform gap functior®°® layer tunneling amplitudd@ ,(k), as suggested by ARPES as
We find a remarkable agreement with the BCS limit overwell as by detailed band structure calculations.
an extended plateau, corresponding to sheave region in A mean-field treatment in the bilayer case allowed a com-
w. On the contrary, a considerably lower value is obtainedputation of thek dependence of the in-plane order parameter
on the average, in the-wave region, including optimal dop- A, . A suitable numerical procedure has been devised in or-
ing. On the overall, we are thus able to predictanuniver-  der to solve the inherently nonlinear gap equations. It has
sal ratio 5C/C\°, to be contrasted with the universal BCS been possible to study the evolution of the symmetry char-
value, valid for Fermi-liquid based superconductSrghis  acter of the gap function versus temperature and chemical
is due to the widely anisotropik dependence of the gap potential, and unveil a competition betwesrwave and
function (also close to the critical poiptwhich is mainly  d-wave character im\, . In this descriptionAy is a single
traceable to the renormalization of the pairing susceptibility complex scalaorder parameter. No multicomponent OP has
and is thus a manifestation of the special nature of the inteto be claimed for, which would imply the existence of
layer pair tunneling mechanism. “more” condensates with different “features,” as elsewhere
One slightly unusual feature is the possible appearance aéported in the literaturin particular, no transition of the
a second peakn the specific heat at low temperatures. Suchnormal-to-superconductor kind is expected when symmetries
a feature is not found in a superconductor with an ordeiare allowed to mix: The system is already a superconductor
parameter transforming exclusively as a single basis functiowith an open energy gap, whose structurekispace only
for an irreducible representation of the crystal point groupevolves, thus allowing pairs to condense into more symmetry
C., - The result we find originates from the fact that at low channels.
temperatures, new symmetry channels couple in to the super- Moreover, a surprisingly anisotropis{vave pattern ap-
conducting order, as shown in Fig. 1. This leads to a cusp ipeared to be modified by the underlying symmetry character.
the specific heathut not to any new diverging length in the This is evidenced by a strongly pronounced line of maxima
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along the Fermi linet, =0, which closely reflected the an- can be employed in evaluating several quantities of interest.
isotropick dependence of the interlayer tunneling amplitude.In particular, we have focussed our attention to entropy and
Such a structure is both qualitatively and quantitatively inthe specific heat anomalies of the model at the critical point.
agreement with the available ARPES gap measurements ihh€ entropy in the superconducting state is found to have a
Bi2212 (Ref @ and recent phenomeno'ogica| gap Ca|cu|a_temperature VE-ll’Iatlon very similar to a.n)./ anVenUOﬂal super-
tions starting from the multiband structure of the bilayerconductor, mainly due to the fact that it is given b-apace
compounds? Moreover, it is essentially embedded in the integral over smooth functions involving the gap. The spe-
dependence of ;(k), whereas suitable tuning of the intra- cific hea_lt_ls founql to have_ two unusual fe_atures. First, for
layer coupling parameters can producesamave contribu- certain filling fractions, a mixing of symmetries may occur at
tion which shifts the nodes of the gap function slightly away@ low temperaturd =T, leading to an anomaly in the spe-
from the I-M direction (,=k,), as reported for ARPES cific heat,not associated with any true phase transitiGec-
experiments in bilayer Bi2212 at a given hole confent. ondly, there is an anomaly at the superconducting transition

The gap obtained within the interlayer pair-tunneling T=Tc, for which our mean-field description is argued to
mechanism appears to us to be quite promising in explainin§ive a reasonable description on the slightly overdoped side.
a number of unusual properties of the superconducting statd nis anomaly is analagous to the well-known step disconti-
such as, for instance, the anomalous tunneling response oBuity found in BCS. The normalized discontinuity turns out
served in HTCS junction¥:®? Within the present approach, t0 benota universal number, not only due to the different
such unusal properties are associated with skespace fea- POSsible symmetries at the critical point, put also depending
tures of the gap due to the presence of the renormalized pa@ the value off;, and is thus a manifestation of the unusual
susceptibility xi /[ 1— T;(K) xi]. pairing kernel in the gap equation.

The role of the interlayer tunneling mechanism in enhanc-
ing the value of the critical temperature for the normal-to-
superconducting instabilit}, as produced by a purely 2D ACKNOWLEDGMENTS
correlation, has been discussed and generalized for a generalyseful discussions with P. Falsaperla, J.O. Fjeerestad,

doping level, qualitatively reproducing the universal non-a k. Nguyen, J. Nyhus, and E. Otnes are gratefully acknowl-
monotonic dependence 3%, on the hole conterlt! edged. One of the authof6.G.N.A) also thanks the NTNU
The issue of the competition in the symmetry character ofor warm hospitality during a visiting term in Trondheim,
the gap function has been addressed both numerically anghd the Istituto Nazionale di Fisica Nucleare for financial
analytically in the context of the interlayer pair-tunneling support. One of the authom.S.) thanks the Norwegian
mechanism. We were able to verify that in the presence of aResearch Council for financial support under Grants No.

interlayer pair-tunneling matrix element, the gap symmetry;10566/410 and 10569/410.
is pure and cannot be mixed on an underlying square lattice,

at the critical point. The gap symmetry belongotwe of the
irreducible representations @f,,, and cannot be expressed APPENDIX A: NUMERICAL SOLUTION
as a linear combination of several basis functions of such OF THE GAP EQUATIONS
irreducible representations. The one exception to this is when ] ) ]
the chemical potential is fine-tuned to a value such that ac- For any fixed value of the chemical potentjaland tem-
cidental degeneracies occur. At exactly the critical pointferatureT, as well as of the coupling parameters, and
moreover, the fulk dependence and the critical exponent ofinterlayer tunneling amplitudg; , the gap parametets, are
the OP can be derived analytically, thus exhibiting its unconf@ndomly initialized, and the nonlinear equat|(§m3) is
ventionalk-space sharp structure and symmetry properties.Solved forA,, for each wave vectok belonging to a suit-

At temperatures well below,, and for certain filling ab.Iy chosen fine mesh over the irreducible sector of the first
fractions, mixing of symetry channels may occur. We stud-Brillouin zone {k:0<k,= m,0<ky<k,;. The values ofA,
ied the location and width of theu(T) region allowing a thus obtained are employed to evaluade,, through Eqg.
mixed symmetry superconducting ground state on varying16). Equation(15) eventually defines the values af,, to
the coupling parameters and interlayer tunneling amplitudg?€ used at the successive steps in the iteration procedure. The
In particular, we recovered prevalence sfvave (d-wave  Iterative procgdgre terminates when. §elf—con5|stency is
symmetry at low(high) band filling. This is due to the fact achieved to within a preset tolerance limit fi,|. Special
that thesymmetryof the gap is determined by the dominant ¢are had to be used near the nodes of the gap function. We
intralayer pairing symmetry, or equivalently the dominantVerified the stability of the convergence procedure against
intralayer dimensionless coupling constant. The “symmetry-the initial choice ofA ,, and also by varying the number lof
projected” single-particle densities of states of this problemPoints in the mesh employed in the integrations.
are such thas-wave coupling constant dominates at low High accuracy and a resonably small computation time in
band fillings, whiled-wave coupling constants always domi- the integration understood in E€L6), and elsewhere in the
nate close to half fillind” Both swave andd-wave symme- Present paper, is made possible by using an adaptation to the
tries are enhanced by increasing the intersite attractiorgD case of the analytical tetrahedron metﬁg)An adaptive
whereass-wave superconductivity is disfavored by increas-routine is suitable, due to the rapid variatiomgfin Eq. (16)
ing the on-site repulsion. However, the DOS argument giverfor k belonging to the locus defined ly=0 (i.e., the Fermi
above also shows that the symmetry of the superconductingurface for noninteracting electron®Ve carefully checked
order parameter is highly dependent on doping. these routines by comparing the numerically evaluated DOS

Finally, we outlined how the solution to the gap equationwith available exact expressiohs®®
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APPENDIX B: GAP PARAMETERS
AT THE MIXING TEMPERATURE X

1 -1
1—TJ<k>[xE—2ﬁ%¢(§ﬁmEE) lAk|2H

Following a procedure analogous to that outlined in Sec.
IV B, one is able to derive a critical exponent 1/2 also for the %
gap componentd , which open at the mixing temperature
T=T,,, thus endowing the gap function with an additional
contribution with a generib-wave symmetry, orthogonal to
the one already present. Such a result is consistent with the
conventional casel;—0), and is illustrated by the numeri- | 9,(k)g, (k)
cal example shown in Fig. 1. The calculations are more in- N T mua2
volved, although straightforward, and will not be shown here K [1-To(k)xic]
in detail. They must however take into account that a gap is 1 VL
already open atT=T,. Generalizing the notation intro- +4Bm¢(_BmErkn)< K ) . (B4)
duced in Sec. IV B, the final result is 2 IT 1ot 1o

2
> “xﬂgﬂ(k>W’;,,g7,,<k>)(En“w?;,?g,xk)) ,

r
nn

!

1
secl"r( 5 ﬂmEk’“)

Tm( T ) 1/2 "
[451= 7 2|1 Tm Wo B1) An indexm denotes the inclusion of the gap function without
where the newh-wave contribution, and that the limit—T,, has
been taken afterwards.
1 The above equations reduce to the analogous ones derived
Vo= 2N HT WD (B2)  in Sec. IVB atT=T, andA,=0. The latter expressions are
C)‘h 7’ analytical but not in closed form, since they require the
and knowledge of 8(9|A,|%/dT), at T=T,+0, which can be
accessed only numerically. However, one expects such quan-
o1 2 d(BmERI2) tity to be vanishingly small foiT ,<T., as in the conven-
G TN = [1-T, (0T (B3)  tional case(It would be exactly zero iff,,=0.)
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