
PHYSICAL REVIEW B 1 JANUARY 1999-IIVOLUME 59, NUMBER 2
Sharp k-space features in the order parameter within the interlayer pair-tunneling
mechanism of high-Tc superconductivity
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We study thek dependence of the gap function of a bilayer superconductor, using standard mean-field
techniques applied to a two-dimensional extended Hubbard model, in the presence of coherent interlayer
pair-tunneling and quenched coherent single-particle tunneling. Theintralayer pairing potential thus defined is
expandable in a finite number (5) of basis functions for the irreducible representations of the point-group of
the perfectly square latticeC4v . This gives rise to a competition betweens- and d-wave symmetry, as the
chemical potential is increased from the bottom to the top of a realistic band for most cuprates. It allows for
mixed-symmetry paired state at temperatures belowTc , but never atTc on a square lattice. Inclusion of the
interlayer pair tunneling into the effective pairing potential leads to highly nontrivialk-space structures, such
as pronounced maxima along the Fermi line not seen in the absence of interlayer pair tunneling. We show how
such a gap structure evolves with temperature and with band filling, and how it affects various observables. In
particular, a nonuniversal value of the normalized jump in the specific heat atTc will be evidenced, at variance
with the conventional universal BCS result.@S0163-1829~99!03502-X#
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I. INTRODUCTION

The identification of the character of the asymptotic lo
energy excitations of the high-Tc superconductors~HTCS’s!
continues to present a formidable challenge to theorists
experimentalists in condensed matter physics. These ex
tions are presumably a key feature in understanding the
sics of the phenomenon.1 Although the superconducting sta
of the cuprates to a large extent in the recent past has
considered conventional, it is becoming increasingly cl
that such a statement requires certain modifications, to
the least.2 The latter statement is supported by recent exp
mental findings.3,4

The controversy over the symmetry of the paired states-
and extendeds-wave vs higher order waves, particular
d-wave! and the coupling strength can nowadays be resta
in more precise terms, due to the availability of samples w
adequately pure composition and structure, and of impro
ments of experimental techniques. A central tool in this c
text is angle-resolved photoemission spectrosc
~ARPES!,5 with which one is able to extract, if not thephase
of the superconducting order-parameter~OP!, then at least
thek dependence of its modulus at various temperatures
chemical compositions. Here,k is a wave vector ranging
over the first Brillouin zone~1BZ! of the appropriate inverse
lattice for the cuprate compound under consideration. In p
ticular, there is a growing consensus on the occurrenc
nodes of the OP along thekx5ky direction in the 1BZ for
optimally doped Bi2Sr2CaCu2O8 ~Bi2212!.6 However, some
contradictory claims7 for different samples seem to suppo
in a parallel way, the idea that the detailedk-space shape o
the OP could be a material specific property, although
PRB 590163-1829/99/59~2!/1339~15!/$15.00
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location of the nodal lines may not be.8 This is in agreement
with the fact that both the critical temperatureTc itself and
the maximum gap atT50 change considerably from on
material to another, as well as within a given material cla
on varying the doping level.

We will in this paper try to bring out a few peculiarde-
tails of some properties of the superconducting state wit
the interlayer pair-tunneling mechanism~ILPT!, which
seems to be almost unique to this pairing mechanism. It i
any rate becoming clear that the determination of the lo
tion of nodal lines in the superconducting OP, i.e., its tra
formation properties under the symmetry operations of
underlying lattice, by no means suffices to unambiguou
determine the unconventional pairing mechanism. In t
sense, thesymmetryof the OP is perhaps not a central issu
although it certainly has been the focus of much resea
during the last few years. Moreover, the controversy over
symmetry of the OP has initiated some of the most soph
cated experiments in condensed matter physics to date.9–12

In this paper, we shall mainly consider the issue of g
anisotropy and competition between different symme
channels in the two-dimensional~2D! extended Hubbard
model, characterized by a realistic band dispersion, includ
nearest~N! and next-nearest~NN! neighbors hopping within
the CuO planes, and a small-range in-plane potential, all
ing for in-site, N and NN neighbors interaction, in the pre
ence of pair tunneling between adjacent layers.

The issue of the competition among symmetries in
gap function arising from the superconducting instability
an extended Hubbard model at a given band filling has p
viously been considered in the literature,13–16 and has been
recently addressed with renewed attention from both the
oretical and experimental points of view, in connection w
1339 ©1999 The American Physical Society
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the Cooper pair instability problem in lattice fermio
systems,17 and with the issue of material specific pheno
enology in the cuprates,8 respectively.

The ILPT mechanism of high-Tc superconductivity has
been proposed as a possible natural explanation for the
served high values ofTc in layered cuprates, as well as
number of other more difficult but related aspects of th
complex phenomenology.18–20On the other hand, neither th
microscopic origin of the in-plane pairing nor the nature
the pairs has to be specified. Several unconventional pro
ties of these materials, due to strong correlations alread
the normal state, support the idea of a breakdown of Fer
liquid theory. In particular, the absence of a Drude peak
the low frequency normal statec-axis optical conductivity, as
observed in YBCO~Ref. 21! and LSCO,22 would rule out
metallic transport along thec axis in the cuprates. As a con
sequence, it has been suggested thatcoherentsingle-particle
interlayer tunneling is suppressed, due to the Anderson
thogonality catastrophe,19,23,24whereas coherent pair tunne
ing in the superconducting phase is not restricted.

Among the mechanisms which would prevent sing
particle tunneling, spin-charge separation25 has been pro-
posed. The tunneling process of one fermion would in f
require hopping of both spin and charge degrees of freed
whereas a singlet object, such as a Cooper pair, would c
charge 2e but no spin.

Therefore, coherent pair tunneling does not suffer fr
such restrictions, and enters the total Hamiltonian as a
ond order effect in the single particle hopping matrix e
ment,t'(k), whose dependence on the in-plane wave-vec
k @see Ref. 19 and Eq.~7! below# has recently been con
firmed by detailed band structure calculations.26 The main
aspect of the ILPT mechanism is that Josephson tunnelin
Cooper pairs between adjacent CuO layers dramatically
plifies the superconducting pairing within each layer, by
cessing the normal-state frustratedc-axis kinetic energy.

The addition of such a term to the total Hamiltonian do
not only greatly enhanceTc , but has also been able to d
scribe the observed absence of the Hebel-Slichter coher
peak in NMR relaxation rate,27 as well as the recent neutro
scattering experiments in optimally doped YBCO.28 It was
also recognized some time ago29–31 that, in the same way a
the ILPT mechanism very efficiently boosts the magnitude
Tc arising from the incipient pairing within the planes, e
sentially due to its neark-space diagonality, the amplitude a
well as the maximum value of the gap function are a
dominated by the effective coupling induced by the ILP
mechanism.Its actual transformation properties under th
symmetry operations of C4v are however governed exclu
sively by the intralayer contribution to the pairing kernel.

In this paper, we shall make the latter statement m
quantitative, showing how the interlayer coupling determin
the detailedk dependence of the gap, and actually tends
stabilize one symmetry channel compared to other poss
ones, as the chemical potential is varied within the band

This paper is organized as follows. In Sec. II we introdu
our model and review the basic formalism employed to
rive the gap equations. In Sec. III we discuss the nontriv
numerical problems arising from the solution of the lat
equations, due to the presence of thek-diagonal effective
interlayer interaction. A full discussion of the gap symme
-
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structure, its inherent anisotropy, its maximum values a
locations thereof will be included. Calculations of the sup
conducting density of states~DOS! reveal remarkable struc
tures, due to the gap anisotropy, which are believed to
relevant to the observed anomalous phenomenology in
neling junction characteristics.32 In Sec. IV we shall address
the issue of determining the critical temperature, as wel
the temperature at which symmetry mixing occurs, as a fu
tion of the chemical potential. At exactlyT5Tc the full k
dependence of the gap function will be derived analytica
together with the critical exponents of the OP. The result
expression for the gap function in a closed form will serve
an evidence for the nontrivial anisotropic character and
the symmetry properties of the OP already at the criti
point. In Sec. V we shall consider various thermodynami
quantities in the superconducting phase. Particular atten
will be devoted to the normalized jump in the specific hea
the critical point, which, at variance with the BCS conve
tional result, turns out to be a nonuniversal number, due
symmetry competition and to the ILPT mechanism. In S
VI we summarize our results and present our conclusion

II. THE MODEL

A. Hamiltonian

The model Hamiltonian we are going to consider in t
following describes tightly bound interacting fermions in
bilayer complex:

H5(
ks i

jk
i cks

i† cks
i 1 (

kk8i j

Ṽkk8
i j ck↑

i† c2k↓
i† c2k8↓

j ck8↑
j , ~1!

wherecks
i† (cks

i ) creates~destroys! a fermion on the layeri
( i 51,2), with spin projections along a specified direction
wave-vectork belonging to the first Brillouin zone~1BZ! of
a 2D square lattice, and band dispersionjk

i 5«k
i 2m, mea-

sured relative to the chemical potentialm. The second term
in Eq. ~1! describes an effective pair interaction, already
stricted to the spin singlet channel only, with

Ṽkk8
i j

5
1

N
Ukk8d i j 2TJ~k!dkk8~12d i j !, ~2!

where N is the number of sites in the square lattice,Ukk8
measures the coupling interaction within each plane,
TJ(k) is the tunneling matrix element between adjacent l
ers, motivated by Chakravartyet al.19 Equation~2! shows, in
particular, how the tunneling mechanism can be equivale
described by an interlayer effective interaction term,
thoughlocal in k space.

The main feature of this model is unusual. Although it c
be cast in the form of a standard BCS-like effective Ham
tonian, the second term in the pairing potential arises fr
frustrated kinetic energy along thec axis of the cuprates
unaccessed in the normal state of the high-Tc cuprates. How-
ever, it is loweredon going into the superconducting stat
This is a situation which has no counterpart in conventio
Fermi-liquid based superconductors, where the kinetic
ergy isenhancedupon going into the superconducting sta
while being overcompensated by a reduction in potential
ergy. In the above model superconductivity arises via a d
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metrically opposite mechanism: Instead of having the gain
potential energy overcome the loss of kinetic energy, it is
gain in kinetic energy that is the driving mechanism. There
ample experimental evidence that the kinetic energy is lo
ered in the superconducting state of the cuprates. Althou
confusing point has been that extracted values of thec-axis
penetration length has been consistent with estimate
Anderson based on gain in kinetic energy,33 they have also
been consistent withc-axis conductivity sum rule argumen
ignoring the gain in kinetic energy. This is traceable
subtleties in applications ofc-axis conductivity sum rules in
unconventional metals, and a nice discussion clearing up
crucial point has recently been presented by Chakravart34

Comparison of band structure calculations35 with ARPES
results5 for various cuprates suggest that the main hybridiz
single particle band crossing the Fermi level can be corre
described in the case of perfectly isotropic crystal symme
by the tight-binding dispersion relation (a being the lattice
step!

«k522t@cos~kxa!1cos~kya!#14t8cos~kxa!cos~kya!,
~3!

where it has been recognized36 that at least nearest neighbo
(t.0) as well as next-nearest neighbors (t8.0) hoppings
have to be retained, in order to reproduce the most rele
properties common to the mainly 2D band structure of
majority of the cuprate compounds. First and foremost,
have in mind theshapeof the Fermi surface, but also suc
features as the Van Hove singularity in the density of sta

n~m!5
1

2N (
k

d~«k2m! ~4!

at mVH524t8, shifted towards the band bottom with respe
to the midband. We hasten to add that we arenot in any way
implying that the Van Hove singularities in the singl
particle density of states are important features in explain
the large critical temperatures in these compounds.19,20,37

General, and it seems to us very robust arguments for
the Van Hove scenario is not viable, has been given
Anderson.20 These considerations restrictt8/t&0.5, and im-
ply a flat minimum at theG point, which gives rise to a
pronounced, though finite, peak in the DOS at the band
tom. This band has a single-particle DOS which can be c
in closed form as17,38

n~«!5
1

2p2t

1

A12bṽ
KSA12@~b1ṽ !/2#2

12bṽ
D , ~5!

for u(ṽ1b)/2u,1, and zero elsewhere. In Eq.~5! we have
definedb522t8/t, ṽ5«/(2t), andK (a) is a complete el-
liptic integral of the first kind, with modulusa.39 The DOS
has a logarithmic singularity

n~«!5~2p2t !21A12b2$ ln@8/~ uṽ2bu!#1 ln~A12b2!%

at «52bt, a finite cusp at the lower band-edge

n@«522t~21b!#5@4pt~11b!#21,
n
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while the DOS at the upper band-edge is given byn@«
52t(22b)#5@4pt(12b)#21. These features of the DOS
are important in stabilizing various symmetry channels of
OP as the doping level is varied.17 A value of the nearest-
neighbors hopping parameter ranging aroundt50.25 eV sat-
isfactorily models the band structure and the shape of
Fermi surface of the majority of the cuprate compounds.40,41

It is not among the main aims of this work to specify th
microscopic origin of the in-plane potentialUkk8 .42 How-
ever, any potential with the symmetry of the underlying la
tice may be expanded as a bilinear combination of ba
functions for the irreducible representations of the crys
point group, which isC4v for the 2D square lattice.43 Assum-
ing a finite-ranged potential, a finite subset of all the ba
functions~an infinite orthonormal set! will suffice. Retaining
therefore only on-site, nearest- and next-nearest-neigh
in-plane interactions, and projecting out interaction terms
the spin triplet channel, one obtains the following express
for Ukk8 , which isseparablein k space:

Ukk85 (
h50

4

lhgh~k!gh~k8!, ~6!

where

g0~k!51, g1~k!5 1
2 @cos~kxa!1cos~kya!#,

g2~k!5cos~kxa!cos~kya!,

g3~k!5 1
2 @cos~kxa!2cos~kya!#,

g4~k!5sin~kxa!sin~kya!,

and
lh~h50,1, . . . ,4!

are phenomenological effective coupling constants. One
mediately recognizesg0(k),g1(k),g2(k) to display ~ex-
tended! s-wave symmetry, whereasg3(k) andg4(k) display
d-wave symmetry. In the following, we shall assume rep
sive on-site and attractive intersite coupling parametersl0
.0 andl1 ,l3,0), choosing their actual values in order
reproduce the correct order of magnitude for the critical te
perature and gap maximum atT50 for the cuprates.
Throughout this paper, we keepl25l450.

Monte Carlo simulations support the idea that short-ran
antiferromagnetic fluctuations may produce anattractive in-
tersite interaction~see Ref. 44 for a review!. In our work,
however, such an interaction is taken asphenomenological,
in the sense that an intersite attraction is at least requ
within an extended Hubbard model if one expects ad-wave
contribution to the OP from the lowest lattice harmonic
Remarkably, a perfectly tetragonal lattice requiresl15l3 .
Therefore, if one looks ford-wave coupling, i.e., a contribu
tion from g3(k) to Ukk8 , then one should be also prepared
competition with extendeds-wave contributions, coming a
least fromg2(k).

Finally, we assume the local dependence of the interla
pair tunneling matrix element asTJ(k)5t'

2 (k)/t, i.e., a
second-order perturbation in the hopping matrix elem
t'(k) orthogonal to the CuO layers. Recent detailed ba



e

fin
n
er
h
io

l

r-
h
to
nt

by
s

i
on

s

ie

l-

c-

o

-

-

n
ra-

ent
rs
r-
for
nc-
air-
sis

de,
te

f

e
ms

se.
e

1342 PRB 59ANGILELLA, PUCCI, SIRINGO, AND SUDBO”
structure calculations26 formally confirm the original choice
of functional form made by Chakravartyet al.19

t'~k!5
t'
4

@cos~kxa!2cos~kya!#2, ~7!

which was arrived at by inspection of ARPES data combin
with analyticity arguments. In particular,k diagonality ex-
presses conservation of the momentum componentki paral-
lel to the CuO2 plane during the hopping process.

We shall see in the numerical cases below that a
tuning of t' in the range 0.1–0.15 eV is the main ingredie
to reproduce the observed critical temperatures and z
temperature gap maxima in different compounds. Suc
range is, however, consistent with band structure calculat
of t' .26

B. Mean-field treatment

A straightforward mean-field~MF! treatment of the tota
Hamiltonian Eq.~1! yields the approximate expression45

HMF5(
ks i

jk
i cks

i† cks
i 1(

ki
@Dk

i ck↑
i† c2k↓

i† 1H.c.#, ~8!

where the auxiliary complexscalar field ~i.e., the gap func-
tion!

Dk
i 5(

j k8
Ṽkk8

i j bk
j 5

1

N (
k8

Ukk8bk8
i

2TJ~k!bk
j ~12d i j !,

~9!

has been introduced. The gap function for thei th layer is
thus seen to depend on the pair amplitudebk

i 5^c2k↓
i ck↑

i & in
the same layer, through the intralayer potentialUkk8 , and on
the pair amplitude in the adjacent layerbk

j through the inter-
layer tunneling amplitudeTj (k), which acts as an effective
potential, local ink space.

Equation~9! explicitly shows that, in general, the inte
layer tunneling mechanism endows the gap function wit
nontrivial, nonlocal structure in the direction orthogonal
the CuO layers. Such a dependence is of course releva
the more general case of multilayered compounds, and
consequences onTc have been studied, to some extent,
one of the present authors.29 A generalization of the method
of the present work to multilayered systems,below Tc is
straightforward, and is expected to unveil further features
the gap anisotropy, due to the coupling of the gap functi
in adjacent layers.

In the case of a simple bilayer (i 51,2), the simplifying
hypothesis that the pair amplitudebk

i as well as the in-plane
single-particle band dispersionjk

i and gap functionDk
i do not

depend on the layer indexi allows us to decouple the MF
Hamiltonian Eq.~8! into a sum of independent Hamiltonian
within each layer:19

HMF5(
i

H(
ks

jkcks
i† cks

i 1(
k

@Dkck↑
i† c2k↓

i† 1H.c.#J .

~10!

Standard diagonalization techniques in each layer then y
for Dk the BCS-like gap equation at the finite temperatureT
d
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Dk52(
k8

Ũkk8xk8Dk8 , ~11!

wherexk5(2Ek)
21tanh(bEk/2) denotes the pair susceptibi

ity, b5(kBT)21, andEk5Ajk
21uDku2 the upper band of the

quasiparticle gapped spectrum. In Eq.~11! the pairing poten-
tial Ũkk85(1/N)Ukk82TJ(k)dkk8 includes the finite-range
intralayer as well as the local interlayer effective intera
tions. More explicitly, Eq.~11! reads

Dk52
1

12TJ~k!xk

1

N (
k8

Ukk8xk8Dk8 . ~12!

Making use of Eq.~2! for the intralayer potential allows us t
express the gap function as

Dk5
1

12TJ~k!xk
(
h

gh~k!Dh , ~13!

with

Dh52lh

1

N (
k8

gh~k8!xk8Dk8 . ~14!

At a generic temperatureT, Eq. ~13! does not yield im-
mediately the explicitk dependence ofDk as it would in the
limit of no interlayer tunneling (TJ→0). This is due to the
unusual prefactor@12TJ(k)xk#21, which includes uDku
self-consistently via the pair susceptibilityxk . However, this
prefactor manifestly displayss-wave symmetry, sinceuDku
enters the pair susceptibilityxk via the quasiparticle disper
sion Ek , which is an eigenvalue ofHMF , and TJ(k) has
s-wave symmetry by itself@Eq. ~7!#. Therefore, the complex
parametersDh , which weigh the basis functionsgh(k) in
Eq. ~13!, measure the contributions from the different sym
metry channels to the full gap functionDk at a given tem-
peratureT. We emphasize that such parameters arenot order
parameters in themselves. OnlyDk as a whole serves as a
OP for the superconductive instability, whose onset tempe
tureTc is well defined and unique~see Sec. IV below!. How-
ever, a vanishing value of some of theDh is a signal for the
absence of the symmetry contribution which they repres
to the full gap function. In addition, the set of paramete
$Dh% is not unique. Coefficients of any other complete o
thonormal set of functions would also suffice as a basis
expanding the gap function. The above choice of basis fu
tions is convenient, since the expansion of the in-plane p
ing kernel used in this paper as bilinear combination of ba
functions truncates after just five terms (h50, . . . ,4).How-
ever, irrespective of the choice of basis functions ma
when all contributions are summed up with appropria
weight factors, the resultis unique. Moreover, the use o
several parametersDh does not attribute toDk the structure
of a multicomponent~i.e., vectorial! OP. We reserve the us
of multicomponent OP to situations encountered in syste
such as3He and possibly UPt3 .46,47 The OP of high-Tc cu-
prates is much simpler, with only an amplitude and a pha
On occasions, the set$Dh% is referred to, incorrectly, as th
components of a multicomponent OP of the cuprates.

We finally remark that the self-consistent expression~13!
endowsDk with an inherently anisotropick dependence,
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which is modulated by thek harmonicsgh(k), displaying
explicit symmetry. This is best seen in the limitT→Tc20,
where the gap is vanishingly small, so thatxk in the right-
hand side of Eq.~14! can be approximated by its norm
state value, viz.xk

0c5(2jk)
21tanh(bcjk/2). Only in such a

limit, Eq. ~14! already yields the explicit expression for thek
dependence of the gap function, as a product of the an
tropic prefactor@12TJ(k)xk

0c#21 and a superposition ofk
harmonics, weighted with vanishingly small coefficientsDh .
We shall precise the latter statement in Sec. IV B belo
where the fullk dependence of an incipiently opening g
function at T5Tc will be derived analytically. It will be
shown in Sec. IV that atT5Tc the presence of a give
symmetry contribution to the~just opening! gap function
generally excludes mixing with other symmetries. The lat
is possible at lower temperatures, due to the highly nonlin
structure of the gap equations below the critical temperat
at least within a given range of the band filling. The mutu
exclusion of orthogonal symmetries in the gap function
T5Tc is a well-known result in the case of nonlocal, sep
rable potentials.48,49 We therefore recover this result als
with k-diagonal contributions to the potential, such as
interlayer pair-tunneling effective interaction.

III. GAP FUNCTION ANISOTROPY AND SYMMETRY

A. The auxiliary gap parameters Dh

SubstitutingDh from Eq. ~14! into Eq. ~13! yields

(
h8

~dhh81lhMhh8!Dh850, ~15!

with

Mhh85
1

N (
k

x̃kgh~k!gh8~k!, ~16!

where x̃k5xk /@12TJ(k)xk# clearly acquires the role of a
‘‘renormalized’’ pair susceptibility.19 These equations are i
general coupled transcendental equations forDk , and thus
define a highly nonlinear problem. Only atT5Tc will the
situation simplify considerably, as will be discussed belo

However, once self-consistency has been achieved,
~15! are formally linear and homogeneous in thephasesof
the complex parametersDh , which are responsible for th
overall complex phase ofDk , as shown by Eq.~13!. Due to
symmetry considerations, as remarked in Sec. IV A belo
Eq. ~15! reduces to twoformally independent sets of equa
tions, with real coefficients, one for each group of parame
belonging to eithers- or d-wave symmetry. This means tha
the complex parametersDh belonging to the same symmetr
are all defined up to asame commonphase factor. One ca
therefore speak of a relative phase betweens- and d-wave
contributions. In particular, it follows that there cannot
anisotropies ink space of thephaseof the order parameter
other than the~trivial! one arising from eventual relativ
phase differences between two different symmetry contri
tions. ~This justifies the widely used terminology ofs1 id
symmetry, for example.!

Due to the presence of the unusual prefactor@1
2TJ(k)xk#21 in Eq. ~13!, which itself must be determine
o-
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r
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l
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-

e
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,

rs

-

self-consistently by findingDk , ordinary numerical proce-
dures used to solve BCS-like gap equations in the prese
of separable potentials17,14,13,50 are not applicable to the
present case. Therefore, remarkably, the gap parameterDh
are not enough to define the gap function completely: Th
yield information only about its overall symmetry, on th
degree of admixture of the various symmetry channels in
gap function, and on their relative phase. The solution
Dk , therefore, has to be obtained iteratively for each wa
vector k of interest. The iterative numerical procedure e
ployed to solve the gap equations is briefly outlined in A
pendix A.

We can now proceed with the solution of the gap equat
for each given value of the chemical potentialm and tem-
peratureT. We first keepm at a fixed value. By slowly de-
creasing the temperature from a relatively high value,
observe the appearance of a nontrivial solution to the
equationsDk at a critical temperatureTc5Tc(m), whose
value has been made comparable to the critical temperat
observed in the cuprates, by a suitable tuning of parame
This onset is signaled by a nonvanishing value ofsomeof the
parametersDh , corresponding to a nonzero contribution
onesymmetry channel~Fig. 1!. We shall later show that only
one orthogonal channel~restricting ourselves in this work
either tos or to d wave! can contribute toDk at T5Tc ~see
Sec. IV and Ref. 48!. Upon further decreasingT below
Tc ,uDh(T)u increases~Fig. 1!. Together withuDhu, we plot
in Fig. 1 the maximum value of the gap function over t
1BZ,

DM~m;T!5max
k

uDk~m;T!u. ~17!

One immediately recognizes thatDM is considerably en-
hanced with respect touDhu, which are representative of th
values it would have had, in the absence of ILPT.

We shall later show analytically~see Sec. IV B below!
that Dh and DM behave as;(Tc2T)1/2 at T5Tc20, as

FIG. 1. Temperature dependence of the gap parametersuDhu
~top!, and of the gap maximumDM ~bottom!, at m520.4850 eV.
Chosen values of the in-plane coupling parameters and of the in
layer tunneling amplitude are $l0 ,l1 ,l2 ,l3 ,l4%5$0.01,
20.2125,0.0,20.2125,0.0% eV and t'50.08 eV, respectively,
yielding a critical temperatureTc'13.4 K, at whichDk opens with
d-wave symmetry, and a mixing temperatureTm'0.2 K, whereDk

acquires ans-wave contribution. The inset in the top figure show
that D3 displays the expected critical behavior, with critical exp
nent 1/2, only very close toTc .
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it is expected in any mean-field theory for an OP. Howev
Fig. 1 shows that the behavior of someDh as functions ofT
may soon depart from its critical limit close toTc , depend-
ing on the value of the chemical potential. This is to
contrasted with the dependence on temperature ofDM ,
which closely resembles the conventional one in BCS the
The unconventional temperature dependence of the pa
etersDh below Tc directly stems from their definition, Eq
~14!. A different choice of parameters$Dh% would in general
lead to a different temperature dependence, except their c
cal behavior atTc . On the contrary, we expect the resu
obtained forDM to be unique, as its value depends more
the ILPT amplitude than on the parametrization employ
for the symmetry character of the OP.

Depending on the value ofm, other symmetry channel
may begin contributing to the full order parameterDk as T
decreases. This is signaled by a nonzero value of the rem
ing parametersDh , and by an enhancement of the para
etersDh corresponding to the symmetry channel already
tive, as in the numerical example shown in Fig. 1. T
critical exponent with which the newDh’s open at the criti-
cal temperature is again 1/2, as can be shown analytical51

The temperatureTm5Tm(m) at which this happens doesnot
correspond to any new instability: The system is alread
superconductor, with massive gauge fluctuations and a fi
superconducting coherence length. No remarkable featu
to be observed inDM as a function ofT. Its value depends
more on the anisotropy induced by the interlayer tunnel
mechanism than on the intralayer potential. At the mean-fi
level, the OP enhances its overall amplitude and its ani
ropy character, by allowing pairs to condense in more sy
metry channels.

Symmetry mixing is made possible by the nonlinear ch
acter of the gap equations themselves, which becomes
creasingly more relevant as the temperature decrease
wardsT50, given our choice of an extended in-plane re
space pairing potential. Such a possibility has been alre
studied in detail by Spathiset al.,14 who used a description in
terms of a bifurcation of the gap parameters, and
O’Donovan and Carbotte50 in the case of an extended Hub
bard model without interlayer pair tunneling. Consistent
sults have also been obtained by Otnes and one of the pre
authors17 for the Cooper problem in presence of an extend
intralayer Hubbard potential.

Inclusion of ak-diagonal interlayer pair-tunneling term i
such a model preserves this feature. An effect of the in
layer pair-tunneling is that it strongly influences the comp
tition betweens- andd-wave symmetry channels in the OP
enhancing a dominant symmetry channel compared with
subdominant other one. The matrix elementTJ(k) generally
reduces the region of symmetry mixing in the (m,T) phase
diagram, as will be discussed more in detail in Sec. IV. T
reason is that when a gap amplitude starts to grow aT
5Tc , the dominant channel will initially suppress pairing
other channels. This is generic to any superconductor all
ing mixed symmetries to appear in the OP, also conventio
ones. Furthermore, it is important to note that the gap a
certaink point in the BZ depends on the gap at all otherk
points via the nonlocality of the intralayer part of the pairi
kernel, even though the interlayer part is local. The resu
a strong enhancement of the gap amplitudes in the domi
r,
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channels, which then to an even stronger degree will s
press competing channels. The consequences of a pos
symmetry mixing on observables will be analyzed below
Sec. V. We note, however, that due to the specific choice
band structure and intraplane coupling constants, it is w
established thatd-wave pairing will dominate in the vicinity
of half filling, while s-wave pairing wins out for low filling
fractions. Hence, in the cuprates,TJ will tend to stabilize
d-wave pairing compared to competing channels, w
d-wave pairing to be the dominant intralayer channel.

B. The order parameter zDkz

Primarily, the interlayer tunneling amplitudeTJ(k) in Eq.
~12! affects the overall anisotropic structure of the gap fun
tion, and not its symmetry character. To show this, the
pendence ofDh on T at a given chemical potentialm does
not suffice alone. Therefore, in Fig. 2 we show the overak
dependence ofuDku over the whole 1BZ atT50, for a fixed
value of m. We choose to plotuDku along the family of
mutually orthogonal lines defined by«k5const andgk
5const, wheregk is a harmonic conjugate of«k . Such a
choice is best suited to exhibit and highlight the structure
maxima in the gap function alongjk50.

From the numerical analysis, one clearly observes a no
line along the kx5ky direction for Tm,T,Tc , which
evolves into a line of local minima as symmetries mix belo
Tm down to T50. Moreover, what is more apparent is th
presence of rather pronounced lines of maxima whose lo
tion in the 1BZ follow the locus of the dispersionless wa
vectors for the normal state quasiparticles, i.e., the would
Fermi line, defined byjk50. Absolute maxima~sharp peaks!
are located at the intersection of thejk50 locus with ky
50 for m,mVH @corresponding to a Fermi line close
around theG point!, or with kx5p/a for m.mVH ~corre-
sponding to a Fermi line closed aroundM5(p/a,p/a)].
Such features are of course produced by the enhancing
actor@12TJ(k)xk#21 in Eq. ~12!, which gives its maximum
contribution where TJ(k)xk'1, i.e., exactly as quoted
above.52 The reason for thesharpnessof these features is the
k diagonality of the interlayer pair-tunneling term. Simila
spikes are difficult to obtain with more conventional, i.e.,k
nondiagonal, contributions to the pairing kernel;53 in such
cases we do not get the unusual enhancement facto@1

FIG. 2. Dependence ofuDku over k in the first quarter of the
1BZ, atm520.4892 eV andT50. Same values of the paramete
as in Fig. 1. Notice the maxima structure along thejk50 locus,
including peaks at the intersection thereof withky50 and kx

5p/a, and symmetry related points, whose height is enhance
T decreases, due to the prefactor@12TJ(k)xk#21 in Eq. ~12!.
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2TJ(k)xk#21 in the effective pairing susceptibility respon
sible for the peaks, and anisotropies in the pairing ker
tend to be smeared by integrations. We suggest that
proved energy resolution in ARPES is a useful tool to lo
for sharp features in the gap on the Fermi surface, wh
appears to be a hallmark of the ILPT mechanism.

The maxima distribution and values ofDk along the
Fermi line is in qualitative and quantitative agreement w
high-resolution photoemission data available for the bila
Bi2212.6 It is gratifying to recover such results, without ma
ing detailed reference to the bilayer band structure.54 It re-
quires invoking the ILTP mechanism, where the amplitu
TJ(k) depends onk through Eq.~7! ~Ref. 19! in a way which
is confirmed by band structure calculations.26

Together with a remarkablek dependence of the orde
parameter, one observes a different temperature variatio
Dk depending on the location ofk in the 1BZ, and particu-
larly along the Fermi linejk50, where anisotropy is en
hanced. This is in qualitative agreement with recent ARP
measurements ofDk in underdoped Bi2212 at differen
points of the Fermi line.55

C. Superconducting DOS

One consequence of such a peculiar anisotropy is,
given by the superconductive density of states atT50,

nS~v!5
1

N (
k

@uk
2d~v2Ek!1vk

2d~v1Ek!#, ~18!

where

uk
25

1

2S 11
jk

Ek
D , ~19a!

vk
25

1

2S 12
jk

Ek
D ~19b!

are the usual expressions for the coherence factors in B
like theories,56 which hold for an interacting Fermi liquid, in
the absence of spectral anomalies.31 Equation~18! obviously
reduces ton(v), Eq. ~4!, in the limit Dk→0. In Fig. 3, we
plot the superconducting DOSnS(v) corresponding to a su

FIG. 3. Superconducting DOSnS(v), corresponding to an an
isotropic k-dependent gap in the presence of ILPT~continuous
line!, and nS

d(v), corresponding to a purelyd-wave gap, without
ILPT ~dashed line!, at m520.47 eV,T50 K. Same values of the
parameters as in Fig. 1.
el
-

h

r

e

of

S

g.,

S-

perconducting spectrumEk with fully anisotropic, preva-
lently d-wave gap functionDk , obtained self-consistently a
T50, and the analogous quantitynS

d(v), where a pure
d-wave gap functionDk

d5Ddg3(k) has been used, withDd

5maxkuDku.
In both cases, a gap opens in the SC spectrum atv50

~i.e., around the Fermi level!. However, the minimum atv
50 in nS

d(v) is flatter than innS(v), and the features aroun
v50 are quite less pronounced and less asymmetric w
respect to the Fermi level. Such behavior in the superc
ducting DOS is peculiar to the interlayer tunneling mech
nism, and is promising32 in order to explain the anomalou
features observed in tunneling junctions experiments w
Bi2212.57

To complete our picture of the competition of gap sym
metries and anisotropy in the ILPT mechanism, we evalua
Dk at T50 for chemical potentialm ranging from the bottom
to the top of the band. In Fig. 4, we plotuDh(m;T50)u
againstm. One observes thats-wave symmetry prevails a
low band filling, andd-wave symmetry at higher filling,
which is consistent with earlier results.14,13,50,17In a rather
narrow region, an OP with mixed symmetry occurs. Nume
cal analysis revealed that the ILPT mechanism reduces
extension of the latter with respect to the limitTJ→0, thus
showing that a local nonseparable contribution to the pair
potential frustrates, in general, the coexistence of orthogo
symmetries at low temperatures. We argue, therefore, th
true, generally nonseparable potential, of which Eq.~6! is
only a truncated expansion over a reduced set of basis f
tions, could even suppress symmetry mixing entirely. W
have however no formal proof of a such a statement,
present.

From a numerical analysis of the gap maximum atT
50, DM

0 (m)5DM(m,T50) @Eq. ~17!#, as a function ofm
~Fig. 4!, we moreover conclude that the ILPT mechanis
yields reasonably large values of the gap maximum, as
served experimentally in the HTCS,19 and that the actua
values of the intralayer coupling constantslh contribute
only in a minor way. Furthermore, Fig. 4 shows that t
largest gaps correspond to prevalentlyd-wave symmetry,
and are obtained form'mVH ~the exact location dependin
weakly onlh), where the enhancement due toTJ(k) is high-
est, once more showing the relevance of the 2D characte
the single particle dynamics in the normal state through th

FIG. 4. Dependence of the gap parametersuDh(T50)u and of
the gap maximum at zero temperatureDM on the chemical potentia
m. Same values of the parameters as in Fig. 1.
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dispersion relation, and the importance of the actual valu
the next-nearest-neighbors hopping amplitudet8 in Eq. ~3!,
which fixes the value ofm at which the Fermi line change
its topology.

IV. CRITICAL TEMPERATURE

Among the many experimental facts concerning
HTCS phenomenology that the ILPT mechanism is able
describe, probably the most apparent is the ease with w
the high value of the critical temperature itself is explaine
This is first and foremost due to thek diagonality of the
intralayer part of the kernel, and has previously been inv
tigated in some detail by Chakravartyet al.,19 when consid-
ering the ILPT mechanism for bilayer compounds such
Bi2212. Of course, it is a matter of some importance to
vestigate the effect of inelastic scattering, i.e.,k-space broad-
ening, of the interlayer term, to investigate how detrimen
effect it has onTc . Preliminary results58 show thatTc is
fairly robust to a broadening of the interlayer term.

In this section, we generalize the results of Ref. 19
arbitrary doping, conveniently reparametrized by the che
cal potential ranging within the dispersion bandwidth, e
tending the analysis to the case of the intralayer poten
proposed in Eq.~6!. The dependence ofTc on m is a relevant
point in itself, since it allows to clarify the role of the 2D
hole dynamics and that of the incoherent, interlayer p
tunneling mechanism in determining the shape and exten
of the (m,T) region allowed for the superconductive inst
bility to occur.

A separate question, in the present context, concerns
(m,T) region allowed to superconductivity characterized
a symmetry order parameter. Due to the structure of the
equation~12!, such a question involves considerable nume
cal difficulties, in comparison with previous work of some
the present authors,59 which will be dealt with in some detail

A. Superconducting instability: pure symmetry

At T5Tc , the mean-field gap functionDk is vanishingly
small everywhere in thek space. Therefore, Eq.~15! linear-
izes to

(
h8

~dhh81lhMhh8
0

!Dh850, ~20!

where the linearized matrix elements

Mhh8
0

5 lim
Dk→0

Mhh85
1

N (
k

xk
0

12TJ~k!xk
0

gh~k!gh8~k!

~21!

do not depend onDk any more. These matrix elements a
analogs of the well-known logarithmically divergent int
grated pairing susceptibility in the BCS theory.60 Here, what
appears are integrated, effective pairing susceptibilities,
jected down on various symmetry channels. Symmetry d
tates that only basis functions having the same transfor
tion properties, albeit belonging to different irreducib
representations ofC4v , can yield a finite effective pairing
susceptibilityMhh8

0 .
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The condition for Eq.~20! to have a nontrivial solution
$Dh8% is that

det~dhh81lhMhh8
0

!50. ~22!

Due to thes-wave symmetry character ofx̃k
0 and the definite

symmetry character of the basis functionsgh(k), Mhh8
0 is

block diagonal. Its elements are nonzero if and only ifh and
h8 denote symmetry channels belonging to the same irred
ible representation of the crystal point group. Therefore,
~22! for Tc at a givenm factorizes into

Dls

0 ~m,T!Dld

0 ~m,T!50, T5Tc . ~23!

Here, Dlh

0 (m,Tc)5det(dhhh
h8
1lhh

Mhhh
h8

0
) (h5s,d) de-

pends only on a subset of thelh (h5hh). Linearization
therefore decouples the two symmetries atT5Tc . The solu-
tion correponding to the largest value ofTc from Eq. ~23!
corresponds to the true superconducting transition temp
ture. The transformation properties of the correspond
eigenvectors determine in which~single! symmetry channel
the dominant superconducting instability occurs. AtT5Tc ,
the other solution correponds to a subdominant superc
ducting instability, and is physically irrelevant. Genericall
precisely atT5Tc , we thus cannot have an instability into
mixed state, i.e., a superconducting instability with eigenv
tors having components belonging to different irreducib
representations ofC4v . A mixing of symmetries can only
occur below the physicalTc , as discussed more in detail i
Sec. III. The exception to this statement occurs whenm is
fine-tuned such that the zeroes of thed and s determinants
are found at the same temperature. The phase space fo
to occur is, however, vanishingly small. Such a result is
generalization of a known theorem, which applies to pur
nonlocal separable extended potentials.48,49 The generaliza-
tion has been made possible by the definite symmetry c
acter (s wave! of the effective local potential induced by th
interlayer tunneling amplitudeTJ(k) in Eq. ~2!, and is of
course extendible to potentials supporting an arbitrary nu
ber of symmetry channels in the OP.61 We emphasize tha
these statements pertain to the square lattice only. In sys
with pronouncedab-plane orthorhombicity, such as YBCO
a certain amount of mixing is expected on quite gene
grounds, and is indeed inevitable. The underlying latt
point group isC2v , and thus an expansion in terms of bas
functions forC4v will yield several terms.

The issue of determiningTc5Tc(m) and the symmetry
channel in which the instability occurs, proves therefore
be equivalent to comparing the two solutions of Eq.~23!. It
must be noted, however, that at variance with the case o
interlayer tunneling, the linearized matrix elementsMhh8

0 in-
cluded in the definitions ofDlh

0 (m,Tc) display a divergent

behavior at some valueTc5T!(m), due to the presence o
the denominator 12TJ(k)xk

0 in the summand of Eq.~21!. It
has already been emphasized52 that the self-consistency con
dition Eq. ~12! for a nonvanishing gapDk below the trueTc
prevents the occurrence of such a singularity. The singula
is due only to the mathematical artifact of extending t
definitions of the determinantsDlh

0 (m,Tc) to a domain be-
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low their zeroes. This is not physically meaningful, since
opening ofDk modifies their very definitions.

The occurrence of such an unusual singularity in the
tegrated effective pairing susceptibility, projected on vario
symmetry channels, has a physical meaning. It shows
the action of an interlayer pair-tunneling mechanism bou
the critical temperature from below, and therefore enhan
it. Given an intraplane contribution to the pairing kernel
lower bound onTc is set by the matrix elementTJ ; the lower
bound roughly given byTJ/4 @see Eq.~24! below#. Beyond
this, the actual value ofTc is fixed by the intralayer coupling
symmetry and strength. As already noted,xk

0 is maximum
along the Fermi line, where limT→Tc

limjk→0xk
05bc/4.

Therefore, the renormalized susceptibilityx̃k
0 along the

Fermi line is maximum whereTJ(k) is maximum, i.e., at the
intersection of the Fermi line with theG-X-M path in the
1BZ ~and symmetry related points!. Looking for the highest
temperatureT!(m) at which the maximum ofx̃k

0 diverges,
one has therefore to distinguish between the two poss
topologies for the Fermi line arising from Eq.~3!. One finds,
analytically,

kBT!~m!5H TJ

64S m'2m

m'12t D
4

, m'<m,mVH ,

TJ

64S mÁ2m

mÁ22t D
4

, mVH<m<mÁ ,

~24!

wherem' ,mÁ denote the bottom and the top of the ban
respectively, which generalizes the expression given in R
19. At the Van Hove singularity,T!(m) is maximum, with
kBT!(mVH)5TJ/45t'

2 /4t, yielding a lower boundkBTc

&0.01 eV (Tc&110 K!, which is a representative value fo
most bilayer cuprates.

Figure 5 shows our results forT! andTc as functions of
m. The values of the parameters have been chosen as qu
in order to yield a critical temperature at optimal dopi
whose value is representative of the bilayer cuprate su
conductors. Superconductivity appears restricted predo
nantly to the lower part of the band, even though a nonv
ishing lower bound T!(m) assures a nonzero, albe
decreasing,Tc , asm increases towards the top of the ban
In that regime, however, we showed numerically thatDM

0

is vanishingly small~cf. Fig. 4!. As previously observed,59,17

FIG. 5. Lower bound temperatureT!(m) ~dashed line! and criti-
cal temperatureTc(m) ~continuous line!, as functions of the chemi
cal potentialm. Same values of the parameters as in Fig. 1.
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s-wave symmetry prevails near the bottom of the ba
whereasd-wave symmetry wins out asm increases. A robus
qualitative argument for this was given in Ref. 17. The cr
cal temperatureTc reaches its optimal value nearm5mVH ,
the exact location depending on the set of values$lh% actu-
ally chosen for the intralayer coupling parameters.

B. Gap anisotropy at the critical point

The ILPT mechanism is seen to strongly enhance
k-space anisotropy of the gap function also atT5Tc , re-
gardless of the symmetry character that the OP takes
which at the critical point is unambiguosly defined~no mix-
ing!. This is already apparent from Eq.~13!, and can be
proved by exhibiting the full analyticalk dependence of the
gap functionDk , at T5Tc20.

For T&Tc , one may Taylor expand all quantities of in
terest in powers ofb2uDku2!1, safely retaining the first non
zero term only. From Eq.~16!, one obtains

Mhh85Mhh8
0

2b3
1

N (
k

f~bjk/2!

@12TJ~k!xk
0#2

gh~k!gh8~k!uDku2

1O~b2uDku2!, ~25!

where

f~x!5
1

32x3
~ tanh x2x sech2x!, ~26!

and a superscript zero denotes that the limitDk→0 has been
taken. At T5Tc , only one symmetry channel is active
therefore Eq.~23! is satisfied by the vanishing of one bloc
determinant, say,Dlh

0 (m,Tc)50, (h5s or d). Expanding

Dlh
(m,T) aroundb2uDku250 and making use of Eq.~25!,

one finds

Dlh
~m,T!5Dlh

0 ~m,T!2b3
1

N (
k

f~bjk/2!

@12TJ~k!xk
0#2

3S (
hh8

hlhgh~k!Whh8
0 gh8~k!D uDku2

1O~b2uDku2!, ~27!

where Whh8 denotes the cofactor for the elementdhh8
1lhMhh8 in Dlh

, and a superscripth restricts the sum toh
and h8 corresponding to theh-wave channel only. We ob
serve, then, that close toTc , Eqs. ~20! factorize into two
separate, independent sets of linear homogeneous equa
for the parametersDh representing either symmetries, r
spectively. In the proximity of Tc , therefore, since
Dlh

0 (m,T)50 atT5Tc(m), only the set of equations forDh

corresponding to the incipienth-wave channel admits a non
trivial solution, readily given by

uDhu5Wh̄h
0

e, ~28!

whereh̄P$0,1,2%, if h5s, or h̄P$3,4%, if h5d, ande is an
homogeneity factor, common for allh ’s, which vanishes as
T→Tc20, as specified in the following. In deriving Eq.~28!,
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we made use of the fact that, in the absence of symm
mixing, such as at the critical point, all theDh belonging to
a given symmetry channel share the same complex p
factor. Inserting Eq.~13! into Eq. ~27!, and making use of
Eq. ~28!, one finds

e25
1

b3

Dlh

0 ~m,T!

Clh

0 ~m,T!
, ~29!

where

Clh

0 ~m,T!5
1

N (
k

f~bjk/2!

@12TJ~k!xk
0#4

3S (
hh8

hlhgh~k!Whh8
0 gh8~k!D

3S (
h

hWh̄h
0

gh~k! D 2

. ~30!

We finally observe that, by construction, limT→Tc
Dlh

0 (m,T)

50. Therefore, the expansion of Eq.~29! aroundT5Tc be-
gins from the linear term in (T2Tc), and one straightfor-
wardly obtains

e5ah

Tc

2 S 12
T

Tc
D 1/2

, ~31!

where

ah
25

1

Clh

0c (
hh8

hlhHhh8
0c Whh8

0c , ~32a!

Hhh8
0

5
1

N (
k

gh~k!gh8~k!

@12TJ~k!xk
0#2

sech2S 1

2
bjkD , ~32b!

and a superscriptc denotes that the limitT→Tc has been
taken. Making use of Eq.~31! in the expansions foruDhu and
uDku, Eqs. ~28! and ~13!, respectively, at the critical point
one explicitly obtains

uDhu5ah

Tc

2 S 12
T

Tc
D 1/2

Wh̄h
0c , ~33a!

uDku5ah

Tc

2 S 12
T

Tc
D 1/2(

h

hWh̄h
0c

gh~k!

12TJ~k!xk
0c

. ~33b!

Equation ~33b! analytically yields thek dependence o
the gap function at the critical point. In order to exhibit mo
clearly the role of the ILPT amplitudeTJ(k) in establishing
such dependence, one may consider the limiting case
which only one basis function~say,h5!) contributes to the
expansion ofDk . On taking the limitul! /lhu→`,;hÞ!,
one recovers the result~see also Ref. 62!

uDku5a!

Tc

2 S 12
T

Tc
D 1/2 g!~k!

12TJ~k!xk
0c

, ~34!
ry

se

in

where

a!
25

~1/N!(
k

$g!
2~k!/@12TJ~k!xk

0c#2%sech2@~1/2!bcjk#

~1/N!(
k

$g!
4~k!@12TJ~k!xk

0c#4%f@~1/2!bcjk#

.

~35!

From Eqs.~33!, one also recovers the critical expone
1/2 analytically, which is typical for an order parameter
the critical point, within a mean-field theory. Moreover, E
~33b! clearly shows that no symmetry mixing is allowed
T5Tc , by explicitly exhibiting which basis functionsgh(k)
contribute toDk , and their weights. The role of the ILPT
mechanism is furthermore made evident by the presenc
the factor@12TJ(k)xk

0c#21 in Eq. ~33b!. This provides the
gap functionDk with a remarkable anisotropy already atT
5Tc , thus showing that such an anisotropy is neither due
self-consistency~at T5Tc , the values ofDk at different
points in the BZ are independent of each other!, nor to non-
linearity ~at T5Tc , the gap equations can be linearized!. On
the contrary, gap anisotropy is robust against both s
consistency and nonlinearity, whose relevance increasesT
decreases, as our numerical study belowTc has demon-
strated.

From Eq. ~33b! one is able to predict a line of relativ
maxima for uDku along thejk50 locus already atT5Tc .
Absolute maxima occur at the intersection of thejk50 locus
with the G-X-M path, and symmetry related points. Th
sharpness of the maxima is guaranteed byTJ(k), and is
therefore distinctive of the ILPT mechanism. Away fro
jk50, the gap function israpidly vanishing over the rest o
the 1BZ, as an effect of the renormalization of the pair s
ceptibility, induced by the ILPT mechanism. Moreove
moving along thejk50 line in k space, the gap function
uDku is seen to decreasemore than linearlyas one ap-
proacheskx5ky , where uDku attains a minimum value
which is finite and very small, in thes-wave case, or zero, in
thed-wave case. This has to be contrasted with the case
conventionald-wave gapDk}g3(k). In such a limit~corre-
sponding toTJ→0 in our model!, Dk would vanishlinearly
as k approaches perpendicularly the nodal line,kx5ky . A
flat minimum ~node line! along kx5ky is indeed strongly
suggested by ARPES results for Bi2212 single crystals,5 and
has been earlier proposed as a ‘‘smoking gun’’ for the IL
mechanism by Anderson.63

The sharp anisotropic features ofuDku are robust agains
nonlinearity, whose relevance increases asT decreases, as
shown by Eqs.~13! and ~14!. Correspondingly, the norma
state spectrum atT5Tc gets gapped whereuDku is maximum
far more significantlythan elsewhere. AsT decreases, one
can think of the Fermi line as remaining practically u
gapped along disconnected arcs of ever smaller length. T
arcs shrink and eventually collapse into a single point alo
line, asT→0.

Recent ARPES experiments in underdoped Bi2212 sin
crystals by Normanet al.64 are suggestive of such a scenar
A progressive ‘erosion’ of the Fermi line as temperature
creases has been related to the opening of an unconvent
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pseudogap, precursor of the superconducting gap w
opens atTc .

V. APPLICATIONS

In mean-field theory, the superconducting paired stat
microscopically fully characterized by the gap functionDk ,
which we now have access to over the whole 1BZ as a fu
tion of band filling and temperature. In this section, we w
discuss how the solution to the gap equations can be
ployed in the calculation of some specific thermodynam
properties of the system. A number of physical quantities
interest have previously succesfully been considered w
various such solutions, such as for instance the anomalo
large gap anisotropy observed in Bi2212,19 the nonconven-
tional features in the NMR relaxation rate 1/T1 observed in
YBCO,27 the variation ofTc with the number of layers,29 the
unusual features in the neutron scattering rates observe
YBCO,28 and a possible explanation of the spin gap,
pseudogap.65 All of the above quoted calculations utilize th
special features of the gap that arise as a consequence o
interlayer pair-tunneling mechanism. In particular, the cal
lations of the gap anisotropy, the variation ofTc with the size
of the unit cell, the neutron scattering peak, and the spin
utilize the unique and sharpk-space features that arise in th
solution to the gap equations due to the unusual renorma
tion of the pairing susceptibilityxk→xk /@12TJ(k)xk#.

We choose to consider quantities that have the promis
being sensitive to thek-space features of the gap, which a
relatively readily obtained, and which are possible to co
front straightforwardly with experiments. In the following
we shall mainly focus on the specific heat anomalies of
model, although work is currently in progress concerning
in-plane coherence length and the thermal conductivit32

These quantities are either sensitive to the presence o
particularTJ term in the Hamiltonian such as specific he
anomalies, or involve the derivative of the gap such as
coherence length and the thermal conductivity. Moreover
choose, for application to the high-Tc compounds, param
eters such that the critical temperature at optimum dopin
given byTc590 K.

Although several of the properties of the superconduct
state in the high-Tc compounds which in one way or anoth
probe thek-space structure of the gap are unusual, the th
modynamics seems to be remarkably similar to ordinary
perconductors. This is true for instance for the entropy of
system. Is a gap arising from an unconventional gap equa
such as the one considered in this paper, giving rise to un
k-space features inDk , consistent with standard thermod
namic results otherwise normally associated with conv
tional superconductors?66 Although not shown here, we hav
calculated these quantitites and found that they are rem
ably similar to those found in any convention
superconductor.66 This is basically because quantities such
entropy involve ak-space integration over smooth functio
of the gap. The detailedk-space features are then washed
and the results are to some extent quite insensitive to th
features inDk . The same also pertains to some extent
quantities such as the NMR relaxation rate 1/T1 , which ex-
hibits features in itsT dependence which are reproducible
a gap with a number of different symmetries.67,68 This is
ch
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perhaps not surprising, as this quantity involves a dou
integration overk-space vectors. Another matter altogeth
is the situation where we consider quantities involving on
onek-space integration, and in addition alsok derivativesof
the gap.32

Specific heat.Here, we will consider the specific hea
anomalies of the model. The entropy per particle in the
perconducting state is given by69

Ss~m,T!522kB

1

N (
k

@ f kln f k1~12 f k!ln~12 f k!#,

~36!

wheref k5@11exp(bEk)#21 is the Fermi function evaluated
with the superconducting spectrumEk .

Differentiating Ss(m,T), Eq. ~36!, with respect toT one
obtains the specific heat69

CV
s ~m,T!5T

]Ss

]T

5
1

2
kBb2

1

N(
k

EkS Ek1b
]Ek

]b D
3sech2S 1

2
bEkD . ~37!

Whenever Ek , i.e., Dk , contains discontinuities in its
temperature-derivative as a function ofT, the specific heat
Eq. ~37! displays a finite peak. This is typical of the mea
field approximation, as mentioned above. In the presenc
a competition between several symmetry channels, sev
such discontinuities may occur, atT5Tc and at T5Tm .
However, we expect the height of the second peak aT
5Tm to be exponentially reduced with respect to the peak
T5Tc , due to the presence of the hyperbolic secant in
~37!.

Making use of the gap equations it is possible to deriv
straightforward expression forEk]Ek /]b, valid at all T
<Tc , which turns out to be linear in]uDku2/]b ~see also
Appendix B!. Such a quantity is numerically accessible,
principle, from the solution to the gap equations. Therefo
Equation~37! directly yields the temperature dependence
CV

s also belowTc . However, such dependence turns out
be conventional, and will not be shown here~see also Ref.
17!.

At exactlyT5Tc , the knowledge of thek dependence of
Dk in a closed form allows us instead to study analytica
the jump in the specific heat, normalized with respect to
specific heat in the normal stateCV

n , i.e., in the absence o
the gap, at the same temperature

dCV
c

CV
nc

5
CV

s ~m,Tc!2CV
n~m,Tc!

CV
n~m,Tc!

. ~38!

Making use of Eq.~33b! corresponding to the opening of
generich-wave symmetry gap (h5s,d), one readily obtains
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dCV
c 5

1

16
kBah

2 1

N (
k

S (
h

hWh̄h
0c

gh~k! D 2

@12TJ~k!xk
0c#2

sech2S 1

2
bcjkD ,

~39a!

CV
nc52kB

1

N (
k

S 1

2
bcjkD 2

sech2S 1

2
bcjkD . ~39b!

We explicitly observe thatonly at T5Tc one is able to in-
clude in Eq.~37! for CV

s the analytical expressions forDk
and itsT derivatives: Numerics are only needed in perfor
ing the integrations over the 1BZ where required.70 Employ-
ing the value ofTc5Tc(m) numerically obtained as in Sec
IV A ~Fig. 5!, we are eventually able to evaluate the norm
ized jumpdCV

c /CV
nc in the specific heat atT5Tc , as a func-

tion of the chemical potentialm. We display our results in
Fig. 6, and compare them with the conventional res
dCV

c /CV
nc512/@7z(3)#.1.42613, derived within the BCS

theory for ans-wave, uniform gap function.56,66

We find a remarkable agreement with the BCS limit ov
an extended plateau, corresponding to thes-wave region in
m. On the contrary, a considerably lower value is obtain
on the average, in thed-wave region, including optimal dop
ing. On the overall, we are thus able to predict anonuniver-
sal ratio dCV

s /CV
nc , to be contrasted with the universal BC

value, valid for Fermi-liquid based superconductors.62 This
is due to the widely anisotropick dependence of the ga
function ~also close to the critical point!, which is mainly
traceable to the renormalization of the pairing susceptibil
and is thus a manifestation of the special nature of the in
layer pair tunneling mechanism.

One slightly unusual feature is the possible appearanc
a second peakin the specific heat at low temperatures. Su
a feature is not found in a superconductor with an or
parameter transforming exclusively as a single basis func
for an irreducible representation of the crystal point gro
C4v . The result we find originates from the fact that at lo
temperatures, new symmetry channels couple in to the su
conducting order, as shown in Fig. 1. This leads to a cus
the specific heat,but not to any new diverging length in th

FIG. 6. Normalized jumpdCV
c /CV

nc in the specific heat atT
5Tc within the ILPT mechanism, as a function of the chemic
potential m ~continuous line!. Like in Fig. 1, we used
$l0 ,l1 ,l2 ,l3 ,l4%5$0.01,20.2125,0.0,20.2125,0.0% eV and t'
50.08 eV, respectively, The BCS universal limit 12/@7z(3)#
.1.42613 is also shown, for comparison~dashed line!.
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problem.This second anomaly in the specific heat theref
does not represent a new superconducting phase transit
but merely condensation of Cooper pairs into additio
symmetry channels. The true order parameter of the prob
Dk becomes finite once and for all atT5Tc , and this point
represents the only zero-field phase transition. This app
to be a widely misunderstood point in the literature.71 As
mentioned previously, the parametersDh do not represent
order parameters for this problem. Note that the sec
anomaly in the specific heat, at low temperatures, is expe
to be well captured by mean-field theory. It is locatedoutside
the critical region of the normal metal-superconductor tra
sition, while this is not the case for the first anomaly in t
specific heat located atT5Tc . Therefore, our results for the
main anomaly in the specific heat, the prominent stepdiscon-
tinuity at the critical point, should be replaced by a ne
logarithmicsingularity characteristic of the 3DXY model.72

This reflects the fact that for optimally doped and und
doped systems, phase fluctuations in the problem appea
be strong, such that the true superconducting transition
curs well below the mean-field transition.

Our main conclusion of this subsection is that in sligh
overdoped compounds the main normalized specific h
anomaly will be mean-field-like, butnonuniversaldue to the
appearance of a renormalized pairing susceptibilityxk /@1
2TJ(k)xk#, in contrast to the standard BCS result.

VI. SUMMARY AND CONCLUDING REMARKS

We have addressed the issue of the mixing of symme
channels in the superconducting order parameter for a bila
superconductor in the presence of an interlayer p
tunneling mechanism19 as a possible framework for unde
standing numerous unconventional features exhibited by
HTCS compounds. Incipient superconductivity has be
generated within each individual CuO2 layer through a
Hubbard-like in-plane potential, including primarily an on
site repulsion and nearest-neighbor interaction, which
been strongly enhanced through the inclusion of the in
layer tunneling amplitudeTJ(k), as suggested by ARPES a
well as by detailed band structure calculations.

A mean-field treatment in the bilayer case allowed a co
putation of thek dependence of the in-plane order parame
Dk . A suitable numerical procedure has been devised in
der to solve the inherently nonlinear gap equations. It
been possible to study the evolution of the symmetry ch
acter of the gap function versus temperature and chem
potential, and unveil a competition betweens-wave and
d-wave character inDk . In this description,Dk is a single
complex scalarorder parameter. No multicomponent OP h
to be claimed for, which would imply the existence
‘‘more’’ condensates with different ‘‘features,’’ as elsewhe
reported in the literature.4 In particular, no transition of the
normal-to-superconductor kind is expected when symmet
are allowed to mix: The system is already a supercondu
with an open energy gap, whose structure ink space only
evolves, thus allowing pairs to condense into more symme
channels.

Moreover, a surprisingly anisotropic (s-wave! pattern ap-
peared to be modified by the underlying symmetry charac
This is evidenced by a strongly pronounced line of maxi

l
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along the Fermi linejk50, which closely reflected the an
isotropick dependence of the interlayer tunneling amplitud
Such a structure is both qualitatively and quantitatively
agreement with the available ARPES gap measuremen
Bi2212 ~Ref. 6! and recent phenomenological gap calcu
tions starting from the multiband structure of the bilay
compounds.54 Moreover, it is essentially embedded in thek
dependence ofTJ(k), whereas suitable tuning of the intra
layer coupling parameters can produce ans-wave contribu-
tion which shifts the nodes of the gap function slightly aw
from the G-M direction (kx5ky), as reported for ARPES
experiments in bilayer Bi2212 at a given hole content.6

The gap obtained within the interlayer pair-tunneli
mechanism appears to us to be quite promising in explain
a number of unusual properties of the superconducting s
such as, for instance, the anomalous tunneling response
served in HTCS junctions.57,32 Within the present approach
such unusal properties are associated with sharpk-space fea-
tures of the gap due to the presence of the renormalized
susceptibilityxk /@12TJ(k)xk#.

The role of the interlayer tunneling mechanism in enha
ing the value of the critical temperature for the normal-
superconducting instability,19 as produced by a purely 2D
correlation, has been discussed and generalized for a ge
doping level, qualitatively reproducing the universal no
monotonic dependence ofTc on the hole content.73

The issue of the competition in the symmetry characte
the gap function has been addressed both numerically
analytically in the context of the interlayer pair-tunnelin
mechanism. We were able to verify that in the presence o
interlayer pair-tunneling matrix element, the gap symme
is pure and cannot be mixed on an underlying square lat
at the critical point. The gap symmetry belongs tooneof the
irreducible representations ofC4v , and cannot be expresse
as a linear combination of several basis functions of s
irreducible representations. The one exception to this is w
the chemical potential is fine-tuned to a value such that
cidental degeneracies occur. At exactly the critical po
moreover, the fullk dependence and the critical exponent
the OP can be derived analytically, thus exhibiting its unc
ventionalk-space sharp structure and symmetry propertie

At temperatures well belowTc , and for certain filling
fractions, mixing of symetry channels may occur. We stu
ied the location and width of the (m,T) region allowing a
mixed symmetry superconducting ground state on vary
the coupling parameters and interlayer tunneling amplitu
In particular, we recovered prevalence ofs-wave (d-wave!
symmetry at low~high! band filling. This is due to the fac
that thesymmetryof the gap is determined by the domina
intralayer pairing symmetry, or equivalently the domina
intralayer dimensionless coupling constant. The ‘‘symmet
projected’’ single-particle densities of states of this probl
are such thats-wave coupling constant dominates at lo
band fillings, whiled-wave coupling constants always dom
nate close to half filling.17 Both s-wave andd-wave symme-
tries are enhanced by increasing the intersite attract
whereass-wave superconductivity is disfavored by increa
ing the on-site repulsion. However, the DOS argument gi
above also shows that the symmetry of the superconduc
order parameter is highly dependent on doping.

Finally, we outlined how the solution to the gap equati
.
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can be employed in evaluating several quantities of inter
In particular, we have focussed our attention to entropy a
the specific heat anomalies of the model at the critical po
The entropy in the superconducting state is found to hav
temperature variation very similar to any conventional sup
conductor, mainly due to the fact that it is given by ak-space
integral over smooth functions involving the gap. The sp
cific heat is found to have two unusual features. First,
certain filling fractions, a mixing of symmetries may occur
a low temperatureT5Tm , leading to an anomaly in the spe
cific heat,not associated with any true phase transition.Sec-
ondly, there is an anomaly at the superconducting transi
T5Tc , for which our mean-field description is argued
give a reasonable description on the slightly overdoped s
This anomaly is analagous to the well-known step disco
nuity found in BCS. The normalized discontinuity turns o
to be not a universal number, not only due to the differe
possible symmetries at the critical point, but also depend
on the value ofTJ , and is thus a manifestation of the unusu
pairing kernel in the gap equation.
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APPENDIX A: NUMERICAL SOLUTION
OF THE GAP EQUATIONS

For any fixed value of the chemical potentialm and tem-
peratureT, as well as of the coupling parameterslh and
interlayer tunneling amplitudeTJ , the gap parametersDh are
randomly initialized, and the nonlinear equation~13! is
solved forDk , for each wave vectork belonging to a suit-
ably chosen fine mesh over the irreducible sector of the
Brillouin zone $k:0<kx<p,0<ky<kx%. The values ofDk
thus obtained are employed to evaluateMhh8 through Eq.
~16!. Equation~15! eventually defines the values ofDh , to
be used at the successive steps in the iteration procedure
iterative procedure terminates when self-consistency
achieved to within a preset tolerance limit inuDku. Special
care had to be used near the nodes of the gap function.
verified the stability of the convergence procedure aga
the initial choice ofDh , and also by varying the number ofk
points in the mesh employed in the integrations.

High accuracy and a resonably small computation time
the integration understood in Eq.~16!, and elsewhere in the
present paper, is made possible by using an adaptation to
2D case of the analytical tetrahedron method.70 An adaptive
routine is suitable, due to the rapid variation ofx̃k in Eq. ~16!
for k belonging to the locus defined byjk50 ~i.e., the Fermi
surface for noninteracting electrons!. We carefully checked
these routines by comparing the numerically evaluated D
with available exact expressions.17,38
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APPENDIX B: GAP PARAMETERS
AT THE MIXING TEMPERATURE

Following a procedure analogous to that outlined in S
IV B, one is able to derive a critical exponent 1/2 also for t
gap componentsDh which open at the mixing temperatur
T5Tm , thus endowing the gap function with an addition
contribution with a generich-wave symmetry, orthogonal to
the one already present. Such a result is consistent with
conventional case (TJ→0), and is illustrated by the numer
cal example shown in Fig. 1. The calculations are more
volved, although straightforward, and will not be shown he
in detail. They must however take into account that a ga
already open at T5Tm . Generalizing the notation intro
duced in Sec. IV B, the final result is

uDhu5gh

Tm

2 S 12
T

Tm
D 1/2

Wh̄h
m , ~B1!

where

gh
25

1

Clh

m (
hh8

hlhHhh8
m Whh8

m , ~B2!

and

Clh

m 5
1

N (
k

f~bmEk
m/2!

@12TJ~k!xk
m#3

~B3!
E

ys

y
ro
‘E
o-

r-
o

g,

ev

.

T

.

l

he

-
e
is

3H 12TJ~k!Fxk
m22bm

3 fS 1

2
bmEk

mD uDku2G J 21

3S (
hh8

hlhgh~k!Whh8
m gh8~k!D S (h hWh̄h

m
gh~k! D 2

,

Hhh8
m

5
1

N (
k

gh~k!gh8~k!

@12TJ~k!xk
m#2Fsech2S 1

2
bmEk

mD
14bmfS 1

2
bmEk

mD S ]uDku2

]T D
T5Tm10

G . ~B4!

An indexm denotes the inclusion of the gap function witho
the newh-wave contribution, and that the limitT→Tm has
been taken afterwards.

The above equations reduce to the analogous ones de
in Sec. IV B atT5Tc andDk50. The latter expressions ar
analytical but not in closed form, since they require t
knowledge ofb(]uDku2/]T), at T5Tm10, which can be
accessed only numerically. However, one expects such q
tity to be vanishingly small forTm!Tc , as in the conven-
tional case.~It would be exactly zero ifTm50.)
ce
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