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Observing the Berry phase in diffusive conductors: Necessary conditions for adiabaticity
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We investigate Berry phase effects in the magnetoconductance of diffusive systems, and determine the
precise criterion for adiabaticity within the weak-localization formalism. We show that the exact solution of the
Cooperon propagator for the special case of a cylindrically symmetric texture agrees with the adiabatic ap-
proximation in the adiabatic limit characterized by (1/d)(1%/L?). We point out that orientational inhomo-
geneities in the magnetic field induce dephasing effects that can mask the Berryqihsay other phase-
coherent phenomepéor certain parameter values of system and figR0163-182@09)09119-5

[. INTRODUCTION contention in ballistic rings, e.g., for which adiabaticity is
reached whemgt,>1, wherewg is the Bohr frequencyto
The Berry phaseremains a fascinating subject with many be defined beloyy andt, is the typical time it takes the
consequences in a variety of physical systérBame time particle to go around the ring once. This situation occurs,
ago we propose€d’ a number of scenarios in condensed-e.g., in clean semiconductors.
matter settings where the Berry phase manifests itself in the But what about diffusive systems, such as normal metal
phase-coherent quantum dynamics of a particle carrying angs? It is this question that we have previously addressed in
spin and moving through orientationally inhomogeneousdetail” and that was recently reconsidered by van Langen
magnetic field8(x). Such manifestations of the Berry phase et al,? who reported a rather pessimistic conclusion about
can occur, e.g., in semiconductors or metals in the form ofhe observability of the Berry phase effect—in contrast to
persistent currents® or oscillations of the magnetoconduc- earlier findings’. Since the range of applicability of the adia-
tance or universal conductance fluctuatiéfi#\s recognized batic approximation is of central importance for experimen-
early on? all these effects share the common feature that théal investigations, it seems worthwhile to reanalyze the ques-
orbital motion of the particle is modified by the Berry phasetion of adiabaticity from an alternative point of view, and to
in very much the same way as it is in well-known phase-demonstrate explicitly the validity of our earlier results for
coherent phenomena based on the Aharonov-Bohm effect.the special case of a cylindrically symmetric textures. To this
The first experimental evidence for such a Berry phasend, we first state the problem of adiabaticity in this section
effect was recently found in semiconductBrs) which a  again, and then provide in the following sections a general
local effective magnetic field is produced via the Rashbaliscussion on the issue of dephasing induced by inhomoge-
effect. However, whereas Aharonov-Bohm effects occur reneous magnetic fields. This discussion is then followed by
gardless of the strengtB of the field, Berry phase effects explicit examples that demonstrate the observability of Berry
appear only in the adiabatic limit, i.e., for sufficiently large phase effects in diffusive systems of immediate experimental
magnetic fields. This limit requires that—roughly interest.
speaking—the typical orbital frequency of the particle carry- Now, in the context of weak-localization physics we have
ing the spin through the field is much smaller than the preadvanced detailed physical and technical arguniethiat
cession frequency of the spin around the local-field directionadiabaticity is reached more easily in diffusive than in bal-
In this limit, the spin will remain in its instantaneous eigen- listic systemgall other parameters being equarhe physi-
state, i.e., will continuously align itself along tiecal field  cal explanation for this is simple: In diffusive motion around,
direction B(x) as it moves through the magnetic-field tex- say, a ring, the particle spends on the average much more
ture. If, in addition, the particle trajectory is closed, the spintime in a given region of field direction than it would do in
will acquire a Berry phase, which is purely geometric in purely ballistic motion. Thus there is more time for the spin
character. As spin and orbital motion couple via the inhomoto execute precessions around a given field direction, and
geneity of the field, the Berry phase can ultimately enter théhus the spin will have a higher probability of aligning itself
orbital part of the effective Hamiltonian in the same way thatalong the local-field direction than it would in purely ballistic
the Aharonov-Bohm phase does. motion. Translating this picture into more concrete terms for
There seems to be general agreement that once the adwn electron diffusing aroundddimensional ring of circum-
batic limit is reached, the results found previodslyare ferencel with static random disorder, adiabaticity is reached
correct. The central question then is: What is the proper criif the Zeeman energyi wg=gugB/2 exceeds the Thouless
terion for the adiabatic regime? Again, there is no issue oknergyEr,=hD/L2. Hereg is the electrong factor, ug is
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the Bohr magnetor) =v27/d is the diffusion constant with is concluded that the exact solution does not contain the
ve being Fermi velocity,r=1/v is the elastic mean free Berry phase effect, and thus that the regime of adiabaticity,
time, andl is the elastic mean free path. More generally, wegiven in Eq.(1), is invalid. Instead, adopting a suggestion
can also allow for the case in which the field reoriditimes ~ made first by Sterfit it is argued that it is necessary for the
as the particle goes around once the ring. Whereas the caggich more stringent conditon,

of f=1 is physically realizablé,it seems very difficult to
implement cases witH>1 experimentally. Still, as some

recent conclusiorisare based on the cade=5, we shall wgT>1, 2
include this possibility, and the criterion for adiabaticity as
found in Ref. 7 then reads to be satisfied in diffusive systems before adiabaticity is
) reached, and thus before the Berry phase effect can become
fl observable in the magnetoconductance. However, in contrast
wpT> d L2y 1=INJ. (@) {0 this we will find that the adiabaticity criterion given above

[Eqg. (1)], is indeed appropriate for diffusive systems, and
Here the texture-dependent vectdris some average of the that the observability or nonobservability of the Berry phase
direction of the magnetic fieltiThe factory1—|N| accounts  crucially depends on the choice of physical paramefers
for nonuniformity in the direction of the magnetic field, and the adiabatic regime given by E¢L)]. In particular, in the
encodes the fact that the adiabatic approximation becomasrealistic situation that the field winds five times around the
exact, regardless abg, in the limit of a homogeneous field, ring (i.e.,f=5), and as dephasing effects grow strongly with
for which |[N|=1. In the following discussion, however, we f (as f2; see below, it is not surprising that Berry phase
shall—for the sake of simplicity—omit this factor, noting oscillations are not discernible in this extreme case. How-
that its inclusion would render the criterion even lessever, upon choosing=1—the physically most relevant
stringent!® As in metals, one typically has on the order of case—not only do Berry phase effects show up in the exact
10 14s, g=2, andl =10"8m, we should have, for a ring of solution, but also they agree well with previously obtained
circumference. = 10~® m, magnetic fields at least of the or- adiabatic predictions.
der of 100-1000 G to be within the adiabatic regime. Note  The issue of adiabaticity has also been studied in terms of
that without the diffusive factorl(L)2=10"4, the required Boltzmann equation$Due to the coupling of the magnetic
fields would be too large to be attainable experiment@ley,  field to the orbital motion of the charged electron, these Bolt-
on the order of 106 1000T). zmann equations are valid in the diffusive regime defined by

The regime of adiabaticity defined in Ed) follows from  w.7<1, wherew, is the cyclotron frequency. A&, and wg

a detailed derivation of the Cooperon and diffuson propagaare typically of the same order of magnitude in metals, the
tor based on weak-localization techniques and an adiabati®egime wg7>1 lies outsidethe physical regime to which
approximation schemeThis adiabatic approximation is per- Boltzmann equations can legitimately be applied. Still, even
formed in the path integral representation for the Cooperoiif we ignore such orbital effect§.e., set the electron charge
(diffuson). As emphasized in an analogous discussion of théo zerg, the regimewg7>1 is problematic for an additional
imaginary-time propagator in the context of persistentreason. If wg>1, the Zeeman ratey is large compared to
currents, the adiabatic approximation can contain additionalthe elastic collision rate #/ In this case we expect the Zee-
angle-dependent terms that are different from the Berrynan interaction to have a strong dephasing influence on the
phase, and these terms can mask the Berry phase in certairbital motion (for inhomogeneous fielflsespecially when
physical observablesgFor an explicit example of such a f>1, and the system lies outside the semiclassical regime in
case, see Sec. VIF of Ref.)5The origin of this additonal the sense of weak localization thedsee, e.g., Secs. 4 and
term can be traced back to quantum fluctuations of the partO of Ref. 12 and below/*®
ticle trajectory, which induce nonsmooth variations of the
magnetic field(and thereby violate the “smooth variation”
assumption that underlies the adiabatic approximafickn Il. BERRY PHASE AND MAGNETOCONDUCTANCE
alternative way to express this point is to say that in certain
cases the Berry phase can be masked by dephasing
effects—in very much the same way that the Aharonov- We consider a quasi-one-dimensional ring of circumfer-
Bohm phase can become unobservable if dephasing infliencel, embedded in a magnetic field texture given By
ences become too large. Such dephasing effects are difficuit Bn= B[ siny cos(2rfx/L),sin nsin(2xfx/L),cosz], wherex
to calculate for a general texture, but can sometimes be olis the location on the ringy is the tilt angle of the magnetic
tained in special cases for which an exact solution is availfield, andf(=1,2,3 . . .) is thewinding of the magnetic field
able (see Ref. 5 and belowAs suggested in Ref. 7, it is along the propagation direction. The magnitugleand, in
possible to extend the exact solution for a propagator conparticular, the tilt anglep are assumed to be constant. It is
taining a single spi- particle’ to the one containing two this special case that can be solved exagfypointed out in
spin+ particles. Indeed, by following this suggestion vanRef. 7 along the same lines as discussed in Ref. 5 for a
Langenet al® recalculated the magnetoconductance for a cysingle-spin propagator. Van Langen al® were the first to
lindrically symmetrical texture, and found deviations from write down this solution explicitly for a two-spin propagator.
our adiabatic solutioh[As we shall show, these deviations ~ The magnetoconductance resulting from weak localiza-
do not occur within the range of validity of the weak- tion corrections and in the presence of the field textBre
localization(semiclassicalregime] From this observation it derived in Ref. 7, and reads

A. Exact solution and adiabatic approximation
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e L 1 detail below. Note thaty is introduced here in a phenom-
69=— @7 > (xa.p S—h/xB.@), (3  enological way with the particulad hocchoice that it be a
@p=*1 Y ¢ number and diagonal in spin space.
where the effectivdnon-Hermitian Hamiltonianh is given We now evaluatedg explicitly, but instead of using the
by exact eigenstatésye use an alternative approach in terms of
5 5 unitary gauge transformations, which has the virtue of mak-
h= L J Fikn: (o o) 4) ing the emergence of the Berry phase immediately transpar-
(21m)2 9x2 xh-ton=a2), ent. For this purpose we define unitary transformatibhs

L : . . andV of the forms
whereo; (with i=1,2) are spiny Pauli matrices, and where

U=V e mf/Lx(o1,+02)  \y= (il n(o1y+03y) (6)
- wg L2 B g L2 c . ’ y
K= B (Za? = 8" 2l (5  with the property that
n-(o1—03)=U" (01,05, U. 0

is the dimensionless adiabaticity paramésse Eq(1)]. The
factor 3/=(L/27-rL¢)2 is a damping constant expressed inBy noting that U(—id/dx)UT=—idlox—iUaUT/x, we
terms of the dephasing length, (which is specified in more find

2

L o . .
UhU'=—| —i— _E[(O'lz+UZZ)COSW_(le'I'UZx)Smﬂ] +ik (01,7 09,). 8

27 9X

Next we rewrite the matrix elements occurringdg:

(X,a,BlUT Ulx,8,a)=(x,a,B|V' I13,V|X, a, ), 9

y—uhu' Y~ Nag

where haﬂ=UhUT[—i(LIZﬂ')(ﬁ/&X)H—i(L/27T)(<9/¢9X)+(f/2)(a-fjﬁ)] and IT,5 aB)=|Ba). The effective Hamiltonian
hag is now diagonal in the angular momentum eigenstéep) = ' @™UXi/ L, with j=0,+1,+2, ... (imposing periodic
boundary conditions and we find

S ¢ 1 >T ! I1 (10)
=——— r,———1II,,
9 mh (2m)* 4 Py—h(j) ¥
where Tk, is the trace in spin space, and
f 2 {2
h(D=—{]i—- E(Ulz+ 02,)COS| — ?(1"" leUZX)SinZ"?_ jf(oytog)sing
f2
+ Z(le022+ OxT1,)SIN 20+ ik (01,— 02,). (11

Here we have absorbed the intedéw+ 8)/2 into j. Note that two of the eigenvalues dof/@) (o, + 0,,)COS% are given by
the (geometri¢ Berry phase+ ®9= = f cosy for an effectively integral spift? The term §2/2)(1+ o140 ,)SirP7 provides a
source of dephasing that can mask the Berry phase—and more generally the Aharonov-Boh(sezffSet. 11 B beloyv All

the other off-diagonal terms turn out to be irrelevant in the adiabatic (eit Sec. Il E To proceed, we express the above
operators in ther, basis{|1,1),|1,—1),| —1,1),| —1,— 1)}. The Hamiltoniarh(j) then has matrix elements

(j—fcosp)®+a jfsing—b jfsing—b a
ifsing—b  j2+a—i2k a jfsiny+b
(a’,B'In(})] @)=~ jf sinp—b a jP+a+i2k jf sinp+b ' (12
a jfsing+b jfsiny+b (j+fcosy)’+a

wherea=(f?/2)sirfn andb=(f2/4)sin 25. Finding the inverse of—h(j) is then straightforward, and we finally obtain for
the magnetoconductance

+ oo
e2 1 2

f
5g=—%ﬁlz (y+m?+ ) (y+m?)?+ 442 y+m2+f2cos’-7;+Esin2n (y+(m=H)2][y+(m+£)2] (y
Jj=—»

+m?)2+4x?{[ y+ (m—f cosy)?][ y+ (m+f cosn)?]+ f2sirp(y+m?+f2cogn)}) L, (13
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wherem=j—®, i.e., we have allowed for an Aharonov-Bohm fld= 2 ¢/ ¢, with ¢o=h/e being the flux quantum. The
foregoing result is exact and is seen to be identical to the one obtained by van letraj@(for their choiced=2). However,
our alternati;/e derivation has led us to a form in which the Berry phase contribution is made manifest in the terms of the form
(m=f cosn)~.
Next we go over to the adiabatic limit, defined h8rey x> 1/(27)?, which, forf=1, is equivalent tawg71%/(L2d) [see
Eqg. (1)]. (Below, in Sec. Il D, we give explicit numerical values offor which adiabaticity is reachedin this limit we may
drop the terms independent sfin Eq. (13) (this is justified as terms with largegive a negligible contribution t&g). Thus,
in the adiabatic limit we finally obtain

e2 1 o= [y+ (m+ af cosy)2]+ (f2/2)sirty

oghi=—— —— : 14
9 wh (27) a;_'-l j=2—°° [ y+(m—af cosn)?][ y+ (m+ af cosn)?]+ (y+m?+f2cosy)f2sirty 19

where the sum ovetr=+1 has been introduced artificially for later convenience. Note that the Berry ph&sd cosy
couples to the momentum like the Aharonov-Bohm phase does, i.ejda— a®9. We note that the remaining depen-
dence cannot be accounted for by this type of coupling to the momentum. We particularly emphasigeattidtom the flux
appearing inm=j—®) the adiabatic limit of the magnetoconductardg? is independent of the field amplitudg thus
increasing the field further, say up tas7>1 [cf. Eq. (2)], has no effect.

It is now instructive to compare Eq14) with the one previously derivédfor arbitrary textures and in the adiabatic
approximation scheme for the Berry phase. The latter result rglaesuperscript LSG refers to Ref). 7

sgise— _ & e? L¢, sinh(L/L}) e_2 1 i = 1
mh 2L o==1 cosL/L ) —cog 2m(d + af cosn)] mh (2m)° T 7« ' +(m— af cosy)?
2 +o ’ 2
v'+(m+ af cosy)
—z , (15
wh (2w g 12—@ [y +(m—af cosn)?][y' +(m+ af cosy)?]
|
where, againm=j—®, andy'= (L/27TL¢)2 and where we field which for f>1 is so strong that the semiclassical ap-

have used some identities to facilitate comparison. Note thgtroximation on which the derivation of the Cooperon propa-
in generaly# y' (see below. The virtue ofsg-SCis thatitis ~ gator rests breaks down. We now proceed to explain this
valid for arbitrary field texturegwith the appropriate Berry Pointin detail, and then present explicit physical examples to
phasé). It is thus important to understand its relation to thelllustrate the general discussion.
special but exactly solvable case.

Now, by comparingsg“S® with 59 we see that the two B. Dephasing due to magnetic fields
expressions have the same structure with respect to the Berry

phase, ®9=f cosy, but differ in additional 7- and The ad hocchoicé of putting y=7’" and choosing them

to be independent ofy means thatg"® and 5g-5¢ do not
f-dependent terms(From now on we put the Aharonov- describe the same physical situation. This is so for the fol-
Bohm flux & to zero but shall return to nonzero flux lader. |,ing reason. First we note again that the dephasing param-
Partlcularlwnfnportﬁn.t is the additional t_erm in t.he denoml—eters% andy’ are “put in by hand” into the Cooperon to
natqr. of g™, |.e.,'f S|'r1217005277(the physmal or|g|n.0f sqch account for dephasing in a phenomenological Weys is
additional terms is discussed below in Sec. )l E is this just dictated by the complexity of the involved many-body
term that acts as dephasing sourcéor certain tilt angles problem and by our inability to address this issue in a more
and windingsf by suppressing the “resonance peaks” thatsystematic way in genepal In the derivation of g-S¢
would occur at integral values of the Berry phad€  dephasing due to the field is only taken into accoapios-

=f cosy (for small enoughy’). For f>1 the suppression teriori in terms of a phenomenological paramejér while

due to this term is so strong that all resonances except thiae exact solutiofEq. (13)] not only includes the Berry
ones atyp=0,7/2,7m become masked, i.e., these resonancephase but simultaneously also those dephasing effects that
due to the Berry phase are no longer visible in graphs ofre caused by the field through the Zeeman coupling. The
59”9 versusy, whereas they do show up i#g-S® provided  remaining dephasing effects ity or 5g*¢ are then included
one chooses’ to be independent of the tilt angle (and  via the phenomenological parameterObviously,y andy’
sufficiently small. This choice foif andy’ has been adopted are in general different for the same physical situation.

by van Langeret al.? in particular,f=5 and a constany Next, it is a well-known fact in the context of weak-
=0.4053. As in this caség"SC® and 8g*° behave differently localization phenomendathat dephasing in general depends
for y=19' (see Fig. 3 of Ref. B it is concluded that 5g*¢  on the magnetic field penetrating the samplas we must
does not show adiabatic behavior and, thus, that the adiaballow for there to be any Zeeman interaction aj.alost
ticity criterion [Eq. (1)], is not valid. However, it is prema- importantly,y’ not only depends, in general, on the magni-
ture to draw such a conclusion since there is additionatude B of the field but also on its tilt angley that the field
dephasing induced by the inhomogeneity of the magnetiecnakes with thez axis perpendicular to the ring plan@his
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is already so even without Zeeman terms; see, e.g., Sec. 2 of C. Self-consistency of the semiclassical approximation
Ref. 15. S_UCh an angle dependencg becomes Even more pro-rpe magnetoconductance correctidg is expressed in
nounced in the presence of oworuniform Zeeman interac- terms of the Cooperon propagator. The derivation of the
tion). Now, the various dephasing effects are accountzed fOEooperon s, in turn, performed within theemiclassical
phenomenolog|gally in terms of dephasing lendtha/Ly  jimit. In particular, this means that “back-reaction effects,”
=1/(L)?+1/(L5)2 where the dephasing length} con- e non-phase-coherent dynamical effects of the field-
tains all field-independent contributions, such as the Onglependent Zeeman term on thebital motion are assumed
coming from inelastic collisons of the diffusing electron tg be negligibly small throughout. This is a fundamental as-
with, say, phononsl. = \D7,, where the dephasing time sumption in weak-localization theof§,and it was explicitly
Tin IS some inelastic scattering time. The magnetic Ier@h adopted in the derivation of the Cooperon andsgtS® as
contains all effects coming from the field penetrating thewell. (This is emphasized, e.g., in Appendix A of Ref) 7.
sample. Evidently, dephasing effects such as the ones discussed in
If now L§<L for some field configurations, we no longer Sec. Il B are nothing but such back-reaction effects. Thus, if
expect to see phase coherence in general. As a matter of fadephasing becomes so lar@e turns out to be the case in the
in Sec. IV of Ref. 7 we have estimated the upper bound ofdiabatic limit and forf >1) that phase coherence is com-
the dephasing lengtiidue to the inhomogeneous Zeemanpletely suppressed in the orbital part, the semiclassical ap-
interaction in metallic films to be given by the characteristic proximation breaks down and the self-consistency of the en-
field-reorientation length 1z=|V(B/B)| 1. This estimate tire treatment is lost® Consequently, the expressions for the
follows from the observation that quantum corrections begirmagnetoconductance are no longer reliable in the case of
to be eliminated when the largest phase-coherent paths epomplete dephasing, and no weight should be put on conclu-
close roughly one quantum of Berry flux. For the symmetricsions drawn under such circumstances. Obviously, semiclas-
texture considered here, we fihg=L/(2=f|sin7). Obvi-  sical and adiabatic approximations are interconnected issues,
ously, for certain tilt angles and fde>1 this upper bound on in the sense that the semiclassical approximation might break
the dephasing length quickly becomes smaller thafirans- down in the adiabatic limit and for certain field configura-
lated into a dephasing parametgzt:(L/ZTrLi)z, this esti- tions. In other words, adiabaticity alone is not a sufficient

mate reads criterion for the observability of Berry phase effects, in ad-
y>f2sinty, (16) d|t|.on the system must be in the mesoscopic regime charac-

. . o terized by phase-coherence.

.e., we see that the dephasing becomes expligjtiyepen- To summarize our conclusions so far, we have seen that

dent and grows like 2. the adiabaticity criteriodEq. (1)] is sufficient for reaching

Thus, as expected, the exact solution confirms this generghe adiabatic limit involving the Berry phagef. Eqgs. (14)
property, in the sense that explicit dephasing terms ar@nd (15)]. However, the criterion does not guarani@ad
present indg that are field dependent and which can becomeyne should not expectithat the Berry phase will be observ-
so large, fomparticular field inhomogeneities, that they com- able under all circumstances. Indeed, it can happen that the
pletely suppress the resonances in the magnetoconductang®ase coherence, which is necessary for observing such
Eq. (13), with respect to the Berry phas&no matter how quantum phase phenomena, can be destroyed by a variety of
large wg is. Of course, as implied by above discussion lead-dephasing sources, in particular also by magnetic fields pen-
ing to Eq.(16), such a dephasing effect must also be acetrating the sample. If dephasing becomes so strong in the
counted for explicitly in6g-SC [Eq. (15)] by an appropriate  adiabatic regime that quantum phase effects of the orbital
choice for the phenomenological damping parameterin motion are completely washed out, the semiclassical ap-
particular, in view of the estimate given in E(L6), it is  proximation underlying the derivation of the Cooperon
reasonable to make the ansai? =f2sir?(27).” Then, breaks down, and results based or(stich asdg) are no
choosing the dephasing parameter &j*® to be constant longer reliable.

(i.e., » independentand much smaller than unity, say In the light of above discussion it should now be clear that
=102, we see that the qualitative discrepancy betweenhe only conclusion one can draw from the observatioh
59"-SC and 5g”Y disappears: Both expressions show no resothe absence of Berry phase effects fer5 within the semi-
nancegaway from®9=0 and 1. (We note that ay andy’ classical theory is that field textures with>1 suppress

are introduced phenomenologically anyway, there is no neeghase coherence very efficiently, and thus such extreme tex-
to obtain quantitative agreement, and it suffices to find theures cannot serve as a general test case for the existence or
same qualitative suppression of the resonancegfot in  nonexistence of the Berry phase and the associated adiaba-
both 8-S and §g*%. We shall not be making any further ticity regime—at least not within the semiclassical regime to
use of this ansatz foy'.) which the result$Egs. (13)—(15)] are confined.

The suppression of the Cooperon due to homogeneous
fields is standard® the discussion above shows that addi-
tional dephasing is induced by the field inhomogeneity. The
advantage of having the exact solution #g [Eq. (13)] at Up to now we have mainly concentrated on regimes
hand is that we can now calculate the field dependence oftheref>1. Such regimes, however, are of little experimen-
such dephasing terms explicitly; this allows us to make mordal interest(quite apart from the difficulty of how to produce
precise statements than befombout the regime in which them) since the Berry phase effect would be masked by the
one can expect to observe consequences of the Berry phasi&ong dephasing effect of the field. The situation, however,
(see Sec. II D beloy is entirely different for the case where the magnetic field

D. Observability of Berry phase effects forf=1
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FIG. 1. The(dimensionlessmagnetoconductanasy/( —e?/7#) [Eq. (13)] as a function of the tilt angle@ »=< . (a) showség in the
adiabatic limit(i.e., k=1); (b) shows &g outside the adiabatic limifi.e., «k=0.01), with a strongly reduced amplitude. The remaining
parameter values affe=1, y=0.4053/100, and> =0. (c) shows the adiabatic resusg-S®/(—e? %) [Eq. (15)] as function of tilt angle
Osnp=<mm, with f=1, y'=0.4053/100 andb=0. Note that(a) and(c) agree very well qualitatively, and show pronounced resonances at
integral values of the Berry phase®=0,1, . ...

winds only once around the ring, i.e., whés 1 (such field for y is 100 times smaller than the one chosen in Sec)ll A
textures can be produced experimenfallyndeed, we shall In Fig. 1, we plot the magnetoconductantg[Eq. (13)] as a
see now that fof =1 the dephasing is sufficiently small and function of the tilt angler in the adiabatic regimes=1, and
the Berry phase has observable consequences within an éiid pronounced resonance peaks at the Berry phase values
perimentally accessible regime. We shall illustrate this with®?=0 and 1 —in very good qualitative agreement with the
two specific examples: First we discuss resonances in th@eneral resultsgg %, given in Eq.(15), even if we simply
magnetoconductance due to the Berry phédee vanishing ~choosey’=y. For comparison, we also plééee Fig. 1 the
Aharonov-Bohm flux®); then we discuss phase shifts in the Magnetoconductancég outside the adiabatic regime, i.e.,
Aharonov-Bohm oscillations induced by the Berry phase. for «=0.01, where the resonances &reearly absent—
First we consider the magnetoconductance as a functiofiémonstrating that adiabaticity is needed for the emergence
of the Berry phase in the absence of an Aharonov-Bohn®f the Berry phase. We note that the above choice for the
flux, i.e., ®=0. We make the realistic assumption that theadiabatic parameteli.e., xo=1) corresponds towg 7
dephasing length independent of the tilt angle can be made te (27)212/(L2d)>1?/L?d. In particular, if we follow van
exceed., say,L ,=2.8_, giving y=4.053X 1072 (this value  Langenet al® and choosé /I =500(i.e., a typical ratio for a
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mesoscopic metal ringwe see thaky=1 is equivalent to =5.54um. Thus the above choide= 2Lg requires a ring of
wg, 7=1.57X 10"%/d. Note that we are orders of magnitude circumference. = 11 um. In this case, the field correspond-
below the regime of Eq(2), wherewg7>1. Translated into ing to k=1 becomesB,=335G, and the limiting case

magnetic fieldsxy=1 corresponds to =0.7 at which the phase shift emerges, correspondB to
=235G#
2(2m)2 velh 4w hD Precisely the same phase shift occursgtS® [Eq. (15)]
Bo= = (170 as shown in Fig. 2. To obtain roughly the same amplitudes as

= -
9d  pgl? e L in g we must account for they-dependent dephasing in
which, forg=2 andd=3, gives 69-°C. To this end we choose an effectiyé=y=0.1 (for
n=m/2) andy'=5y=0.5 (for »==/3). This phenomeno-
vel D logical choice is not vital for the qualitative behavior of
Bo=15x10"°—[Gs|=4.5x10°~[Gs]. (19 59-SC, but it does allow us to estimate an effective dephas-
L L ing length L[b, as we now explain. First we note that the
peak-to-peakamplitude of the magnetoconductandg for
9=1 is considerably reducefy about a factor of 25) with
respect to that fo%9=0. As is clear by now, this is due to
the #-dependent dephasing terms. Now, without such
dephasing the Aharonov-Bohm amplitudes fbF=0 and
®9=1/2 would be equdlsee, e.g., Eq15), with ay’ that is
7 independent Thus the reduction of the Aharonov-Bohm
amplitude atn= /3 (relative to that aty=0) serves as a

flux, however, can easily be compensated for by applying uanutanye measure of the;—dependent dephasmg. Ex-
field perpendicular to the ring such thiitagain becomes an Pressed_in terms Of, an effective dephasing length
integral multiple of the flux quantum. Note that the maximal =Li2m\y, we find L,=2.5um for the particular values
fields required for this compensation are about 10 G, or s§hosen abové.e., y'=0.5, andL=11um). This dephasing
for a ring of L=7 um. Thus such fields would have a neg- length should be compared with above valug=L/2
ligible effect on the inhomogeneous field required for adia-=5-5xMm (corresponding toy=0.1 andL=11um).

baticity, except ify is very close tom/2. _ Fln_al_ly, there is al_so the usuaipl_n—lndependeb_ldeph{;\s—

A further experimentally interesting scenario is that of theind arising from the field, penetrating a ring of finite width
phase shifin the Aharonov-Bohm oscillation induced by the & On the one hand, we need a sufficiently large field so as to
Berry phase. In particular, this effect is most pronounced foféach adiabaticity, and on the other hand such a field can
half-integral Berry phase®9= +1 (i.e., = /3 or 2m/3), induce _dephasmg. Thus, to satisfy these c.onfllc.tlng require-
for which we expec{see Egs(14) and (15)] to obtain a m_ents in an optimal way we should _con5|der rings with a
phase shift in the Aharonov-Bohm oscillation of the magne-Width a as small as possible. To obtain a rough estimate of
toconductance by the flux valye(i.e., by one quarter of the Such a width, we tak@®,=B cosz, E‘:OV the field and insert
flux quantumh/e). Note that in this case the sign of the this into the standard formufg, L,= V3po/2maB,. We
oscillation slope(e.g., atd=0) is reversed with respect to now require that this dephasing length should not become
the case without Berry phase. This sign reversal is reminismuch smaller thanL?b, so we choosd_'ZZ:L?b:S.Sum.
cent of similar effects induced by spin-orbit scatterifidtis  On the other hand, the field required for adiabaticity is about
actqally not une_xpecte(_j, as the Zeem_an term mdt_;ces an ek_ 500G, and, together withB2= 5.5um andy= /3, this
fective spin-orbit coupling due to the inhomogeneity of thecorres onds to a rina widtaof the order of 20 nm. Note that
magnetic field® This phase shift is shown in Figs(&2 and " P foctive d gh inq lenath is obtained vid. :
2(b), which showdg as a function of the Aharonov-Bohm as eB e2 ective dep a_smg ength s obtaine V'_ 3’)
flux @ for Berry phasesb9=0 and?, both in the adiabatic /(L) the dephasing effect due ®, penetrating the
limit (i.e., k=1), and with the choicey=0.1 (i.e., L ~ sample increases by a factor of 2(i.e., y=0.2). As seen
=2L,4). For the sake of comparison, in Fig(d2 we also from Fig. 2, the casey=0.1 and 0.2 behave in the same
show a nonadiabatic case=0.1, for which the phase shift way, i.e., with phase shift, but the amplitude 8§ for »
is absent. The phase shift remains discernible down to about 7/3 andy=0.2 is now reduced by a factor of 52 compared
xk=0.7 before disappearing. The adiabatic limit is fully with &g for =0 andy=0.1.(Note that forp=0 the mag-
reached at about=10, by which not only the phase shift netic field for the Aharonov-Bohm oscillations can be chosen
(which is the important featuyebut also the amplitude be- to be very small, so thahtgS dominates over_zZ and thusy
comes identical tag”? given in Eq.(14). The amplitude at =0.1) Finally, we note that the field componerB,
k=1 increases about by 20% upon increasing the field to=B coss gives rise to an Aharonov-Bohm phasé,
k=101 =L2B, /4 that is, in general, not equal tap, (with n inte-

To obtain realistic estimates for some physical paramgral). Therefore, this offset flu®, must be accounted for in
eters, we now concentrate on a Au ring and use the materi@rder to assign the above phase shift unambiguously to the
parameters recently determined in Ref.(80e sample Au-1 Berry phase®%=3. For instance, fol.=11um, we need
in their Table ). The relevant values areD=9 B%=4.2G in order to generate one flux quantusy=h/e
x10 3m?s ! and7$=3.41x 10 °s(at a temperature of 11 through the ring. Now considem=/3, and, say,B
mK), which for the dephasing length giVE%Z \/DTU¢ =200G, i.e..B,=100G. To compensate for the offsét,,

To illustrate this with concrete numbers we assume th
Fermi velocityvr=10° ms ! and the ring circumference
=7 um, and againL/I=500. We then find that the field
corresponding tac=1 is about 400 G. The resonance struc-
ture due to the Berry phase starts to emergexfat around
0.1, i.e., for fields of the order of 40 G. Finally, we note that
when the tilt angley is varied, then typically there will be a
concommittant change of the Aharonov-Bohm flidx This
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FIG. 2. The(dimensionlessmagnetoconductanasg/(—e?/7#) [Eq.(13)] as a function of Aharonov-Bohm flux0® =2/ pp<1. (a)
showsé&g at a vanishing Berry phase in the adiabatic regive, = 7/2), and with parameter values=1 andy=0.1; (b) shows 1@g
with a Berry phase o% in the adiabatic regime, i.ey=/3, f=1, k=1, andy=0.1. Note the phase shiftiue to the Berry phagdy the
amount® = 1/2 betweer(a) and(b). (c) shows the same db), except that here= 0.2 (this accounts for the dephasing dueByg; see the
text). (d) showssg/(—e?/wh) as a function of the Aharonov-Bohm flulk=2 ¢/ ¢, but outside the adiabatic regime: &at the Berry
phased9= % i.e., p=m/3, f=1, k=0.1, andy=0.1. Note that there is no phase shift, which shows that the Berry phase is not yet in effect.
(e) and (f) show the magnetoconductance in the adiabatic liggt>®/(—e?/ %) [Eq. (15)] as a function of the Aharonov-Bohm fluk
=2l do. (€) showssgtSC with a vanishing Berry phase, i.ep= /2, andy’ =0.1; (f) shows 13g-SC with a Berry phase of, i.e., »
=7/3, f=1, andy’=5Xx0.1 (the increased/’ accounts for thep-dependent dephasing; see the feRgain there is a phase shift by

=1/2 betweer(e) and(f), in full agreement with the adiabatic limit afg as shown in(@) and(b).

we need to increasB, by, say, 5 G tdB,=105G, in which  the parameter values given above for a Au ring andfor

caseB,/BY=®d,/ ¢, becomes an integer(25). = 7/3, we find[cf. Fig. ZAc)] that the peak-to-peak amplitude
The amplitude-reduction mentioned above demands suffiof 89 is about 5.% 10~°x (e*/wr#) for an effectivey=0.2.

cient experimental resolution, which we now estimate. ForThe relative ratiosg/ge R/R thus becomes of the order of
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104 for a ring resistanceRx1/g of the order of 30 E. Physical interpretation of the dephasing terms

X (L/um) Q,2andL=11 wm. Such sensitivity, as well as We now briefly return to the issue of the source of

all the parameters estimated above, appear to be withidephasing in the Hamiltoniam(j) given in Eq.(11), as well

present-day experimental reach. Further scenarios for thas its physical interpretation. For this purpose we assume

Berry phases in transport can be easily worked(eaé also from the outset that we are in the adiabatic regime,

Ref. 7. >1/(27)?, and simply retain the leading contributions when
It should be obvious by now that the explicit agreementfinding the inverse ofy—h(j). This allows us to identify

betweendg in the adiabatic limit andsg-S® demonstrates those terms in the Hamiltoniamthat are responsible for the

(and reinforces the general points made in the previous sulglephasing.

section$ that the adiabaticity criteriofEq. (1)] is sufficient From the matrix representatidt?) of h(j), it is straight-

for the existence of the Berry phase, and that, moreoverfprward to see that only those matrix elements are important

there exist physical regimes where this Berry phase can bia the adiabatic limit that are simultaneously either diagonal

observed in magnetoconductance oscillatiqand other or off-diagonal in both spin subspaces. No other matrix ele-

quantitie. By contrast, the far more stringent criterion Eq. ments contribute at the leading ordet for the determinant

(2) is certainly not necessary, and therefore sets unwarrantegt subdeterminants of—h(j) that are necessary to calculate

demands on experimental searches for Berry phase effectshe inverse. Thus we can replac§j) by the matrix

(j—fcosp)’+a 0 0 a
0 j>+a—i2« 0 0
- 0 0 j2+a+i2k 0 ; (19
a 0 0 (j+fcosp)’+a

and we see that it is only the termi?(2)(1+ o140, )Sinfy  reversed partner separately and independently, and all pos-

in h(j) that causes dephasing and leads to thpsiependent sible dephasing effects are included phenomenologically in

terms in 8g”Y that are absent idg-S® (apart from the dif- terms of y’ at the end. This finally explains the apparent

ferences iny and y'). Now the first term, {?/2)sirfy, has  discrepancy betweedg-S® and 5g”9. However, as shown in

already been identified in the discussion of the exact solutioprevious sections, this discrepancy vanishes when allowing

(for f=1) for a propagator containing only a single spin  for »-dependent dephasing termé in 5g-SC.

In a general path-integral approach, this term has been inter-

preted as a consequence of quantum fluctuations: The par- Ill. CONCLUSION

ticle trajectory fluctuates around its classical path and these

fluctuations in turn lead to a fluctuating local magnetic field. By using the exact solution for the Cooperon, we have

Such fluctuations, however, violate the standard assumptioshown that the Berry phase leads to observable effects in the

underlying the adiabatic approximation that the field shouldnagnetoconductance oscillation within the adiabatic regime

vary smoothly as a function of its parametgirsthe present defined by Eq.(1). This is in full agreement with previous

case the parameter is given by the positigh) of the par- findings! and in contrast to recent claimM&Ve have pointed

ticle on the rind. We have pointed out previous(gee Sec. out the role of dephasing and emphasized its angle and wind-

VIF in Ref. 5 that this term might lead to deviations from ing dependences. We have illustrated the general discussion

the adiabatic approximation, which is valid only for smooth with explicit examples which support an optimistic outlook

variations. for the experimental search of the Berry phase in diffusive
The second term, f¢/2)o,04s8irP7, is new, and de- metallic samples.

scribes an effective spin-spin interaction induced by the in-

homogenelty pf the magnetic fie(de., in 'ghe Coo_peror!, the ACKNOWLEDGMENTS
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the Berry phase. Without such information at hand, it is not?!We mention that the presence of magnetic impurities can help

possible to decide whether the obtained field effects are of dy-
namical (non-phase-coherenor geometricalBerry phasg ori-
gin, as both of them can occur in an adiabatic approximation to

the quantum dynamics. As we are interested in the Berry phase
effect associated with phase coherence and occurring in physical
observables, we shall not comment any further on the Boltz-
mann equation approach, and instead shall concentrate on the
magnetoconductance only as expressed in terms of the Cooperon
propagator(Ref. 7).
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bring the adiabatic limit to lower fields. Without going into a
detailed analysis, it seems plausible to assume that even for
small fields(say, on the order of tens of)@Ghe magnetic mo-
ments of typical impurities will align along the local magnetic-
field direction(temperatures should be smaller than the Zeeman
splitting energy, typically in the sub-Kelvin rangefter some
relaxation time(typically on the order of 10°s). These mag-
netic impurities will produce short-ranged local fields that
couple via the exchange interaction to the electrons passing by,
and thus impart information about the field inhomogeneity on to
the electron spin.



