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Observing the Berry phase in diffusive conductors: Necessary conditions for adiabaticity
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We investigate Berry phase effects in the magnetoconductance of diffusive systems, and determine the
precise criterion for adiabaticity within the weak-localization formalism. We show that the exact solution of the
Cooperon propagator for the special case of a cylindrically symmetric texture agrees with the adiabatic ap-
proximation in the adiabatic limit characterized byt@(1/d)( l 2/L2). We point out that orientational inhomo-
geneities in the magnetic field induce dephasing effects that can mask the Berry phase~and any other phase-
coherent phenomena! for certain parameter values of system and field.@S0163-1829~99!09119-5#
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I. INTRODUCTION

The Berry phase1 remains a fascinating subject with man
consequences in a variety of physical systems.2 Some time
ago we proposed3–7 a number of scenarios in condense
matter settings where the Berry phase manifests itself in
phase-coherent quantum dynamics of a particle carryin
spin and moving through orientationally inhomogeneo
magnetic fieldsB(x). Such manifestations of the Berry pha
can occur, e.g., in semiconductors or metals in the form
persistent currents3–6 or oscillations of the magnetocondu
tance or universal conductance fluctuations.4,7 As recognized
early on,4 all these effects share the common feature that
orbital motion of the particle is modified by the Berry pha
in very much the same way as it is in well-known phas
coherent phenomena based on the Aharonov-Bohm effe

The first experimental evidence for such a Berry ph
effect was recently found in semiconductors,8 in which a
local effective magnetic field is produced via the Rash
effect. However, whereas Aharonov-Bohm effects occur
gardless of the strengthB of the field, Berry phase effect
appear only in the adiabatic limit, i.e., for sufficiently larg
magnetic fields. This limit requires that—rough
speaking—the typical orbital frequency of the particle car
ing the spin through the field is much smaller than the p
cession frequency of the spin around the local-field directi
In this limit, the spin will remain in its instantaneous eige
state, i.e., will continuously align itself along thelocal field
direction B(x) as it moves through the magnetic-field te
ture. If, in addition, the particle trajectory is closed, the sp
will acquire a Berry phase, which is purely geometric
character. As spin and orbital motion couple via the inhom
geneity of the field, the Berry phase can ultimately enter
orbital part of the effective Hamiltonian in the same way th
the Aharonov-Bohm phase does.

There seems to be general agreement that once the
batic limit is reached, the results found previously3–7 are
correct. The central question then is: What is the proper
terion for the adiabatic regime? Again, there is no issue
PRB 590163-1829/99/59~20!/13328~10!/$15.00
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contention in ballistic rings, e.g., for which adiabaticity
reached whenvBto@1, wherevB is the Bohr frequency~to
be defined below!, and to is the typical time it takes the
particle to go around the ring once. This situation occu
e.g., in clean semiconductors.

But what about diffusive systems, such as normal me
rings? It is this question that we have previously addresse
detail,7 and that was recently reconsidered by van Lang
et al.,9 who reported a rather pessimistic conclusion ab
the observability of the Berry phase effect—in contrast
earlier findings.7 Since the range of applicability of the adia
batic approximation is of central importance for experime
tal investigations, it seems worthwhile to reanalyze the qu
tion of adiabaticity from an alternative point of view, and
demonstrate explicitly the validity of our earlier results f
the special case of a cylindrically symmetric textures. To t
end, we first state the problem of adiabaticity in this sect
again, and then provide in the following sections a gene
discussion on the issue of dephasing induced by inhomo
neous magnetic fields. This discussion is then followed
explicit examples that demonstrate the observability of Be
phase effects in diffusive systems of immediate experime
interest.

Now, in the context of weak-localization physics we ha
advanced detailed physical and technical arguments7 that
adiabaticity is reached more easily in diffusive than in b
listic systems~all other parameters being equal!. The physi-
cal explanation for this is simple: In diffusive motion aroun
say, a ring, the particle spends on the average much m
time in a given region of field direction than it would do i
purely ballistic motion. Thus there is more time for the sp
to execute precessions around a given field direction,
thus the spin will have a higher probability of aligning itse
along the local-field direction than it would in purely ballist
motion. Translating this picture into more concrete terms
an electron diffusing around ad-dimensional ring of circum-
ferenceL with static random disorder, adiabaticity is reach
if the Zeeman energy\vB5gmBB/2 exceeds the Thoules
energyETh5hD/L2. Here g is the electrong factor, mB is
13 328 ©1999 The American Physical Society
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PRB 59 13 329OBSERVING THE BERRY PHASE IN DIFFUSIVE . . .
the Bohr magneton,D5vF
2t/d is the diffusion constant with

vF being Fermi velocity,t5 l /vF is the elastic mean free
time, andl is the elastic mean free path. More generally,
can also allow for the case in which the field reorientsf times
as the particle goes around once the ring. Whereas the
of f 51 is physically realizable,5 it seems very difficult to
implement cases withf .1 experimentally. Still, as som
recent conclusions9 are based on the casef 55, we shall
include this possibility, and the criterion for adiabaticity
found in Ref. 7 then reads

vBt@
f

d

l 2

L2A12uNu. ~1!

Here the texture-dependent vectorN is some average of th
direction of the magnetic field.5 The factorA12uNu accounts
for nonuniformity in the direction of the magnetic field, an
encodes the fact that the adiabatic approximation beco
exact, regardless ofvB , in the limit of a homogeneous field
for which uNu51. In the following discussion, however, w
shall—for the sake of simplicity—omit this factor, notin
that its inclusion would render the criterion even le
stringent.10 As in metals, one typically hast on the order of
10214s, g52, andl 51028 m, we should have, for a ring o
circumferenceL51026 m, magnetic fields at least of the o
der of 10021000 G to be within the adiabatic regime. No
that without the diffusive factor (l /L)251024, the required
fields would be too large to be attainable experimentally~i.e.,
on the order of 10021000 T).

The regime of adiabaticity defined in Eq.~1! follows from
a detailed derivation of the Cooperon and diffuson propa
tor based on weak-localization techniques and an adiab
approximation scheme.7 This adiabatic approximation is pe
formed in the path integral representation for the Coope
~diffuson!. As emphasized in an analogous discussion of
imaginary-time propagator in the context of persiste
currents,5 the adiabatic approximation can contain addition
angle-dependent terms that are different from the Be
phase, and these terms can mask the Berry phase in ce
physical observables.~For an explicit example of such
case, see Sec. VI F of Ref. 5.! The origin of this additonal
term can be traced back to quantum fluctuations of the
ticle trajectory, which induce nonsmooth variations of t
magnetic field~and thereby violate the ‘‘smooth variation
assumption that underlies the adiabatic approximation!.5 An
alternative way to express this point is to say that in cert
cases the Berry phase can be masked by depha
effects—in very much the same way that the Aharon
Bohm phase can become unobservable if dephasing in
ences become too large. Such dephasing effects are dif
to calculate for a general texture, but can sometimes be
tained in special cases for which an exact solution is av
able ~see Ref. 5 and below!. As suggested in Ref. 7, it is
possible to extend the exact solution for a propagator c
taining a single spin-12 particle5 to the one containing two
spin-12 particles. Indeed, by following this suggestion v
Langenet al.9 recalculated the magnetoconductance for a
lindrically symmetrical texture, and found deviations fro
our adiabatic solution.7 @As we shall show, these deviation
do not occur within the range of validity of the weak
localization~semiclassical! regime.# From this observation it
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is concluded9 that the exact solution does not contain t
Berry phase effect, and thus that the regime of adiabatic
given in Eq. ~1!, is invalid. Instead, adopting a suggestio
made first by Stern,11 it is argued9 that it is necessary for the
much more stringent conditon,

vBt@1, ~2!

to be satisfied in diffusive systems before adiabaticity
reached, and thus before the Berry phase effect can bec
observable in the magnetoconductance. However, in con
to this we will find that the adiabaticity criterion given abov
@Eq. ~1!#, is indeed appropriate for diffusive systems, a
that the observability or nonobservability of the Berry pha
crucially depends on the choice of physical parameters@in
the adiabatic regime given by Eq.~1!#. In particular, in the
unrealistic situation that the field winds five times around
ring ~i.e., f 55), and as dephasing effects grow strongly w
f ~as f 2; see below!, it is not surprising that Berry phas
oscillations are not discernible in this extreme case. Ho
ever, upon choosingf 51—the physically most relevan
case—not only do Berry phase effects show up in the ex
solution, but also they agree well with previously obtain
adiabatic predictions.7

The issue of adiabaticity has also been studied in term
Boltzmann equations.9 Due to the coupling of the magneti
field to the orbital motion of the charged electron, these Bo
zmann equations are valid in the diffusive regime defined
vct!1, wherevc is the cyclotron frequency. Asvc andvB
are typically of the same order of magnitude in metals,
regime vBt@1 lies outside the physical regime to which
Boltzmann equations can legitimately be applied. Still, ev
if we ignore such orbital effects~i.e., set the electron charg
to zero!, the regimevBt@1 is problematic for an additiona
reason7. If vBt@1, the Zeeman ratevB is large compared to
the elastic collision rate 1/t. In this case we expect the Zee
man interaction to have a strong dephasing influence on
orbital motion ~for inhomogeneous fields!, especially when
f @1, and the system lies outside the semiclassical regim
the sense of weak localization theory~see, e.g., Secs. 4 an
10 of Ref. 12 and below!.13

II. BERRY PHASE AND MAGNETOCONDUCTANCE

A. Exact solution and adiabatic approximation

We consider a quasi-one-dimensional ring of circumf
enceL, embedded in a magnetic field texture given byB
5Bn5B@sinh cos(2pfx/L),sinh sin(2pfx/L),cosh#, wherex
is the location on the ring,h is the tilt angle of the magnetic
field, andf (51,2,3, . . . ) is thewinding of the magnetic field
along the propagation direction. The magnitudeB and, in
particular, the tilt angleh are assumed to be constant. It
this special case that can be solved exactly~as pointed out in
Ref. 7! along the same lines as discussed in Ref. 5 fo
single-spin propagator. Van Langenet al.9 were the first to
write down this solution explicitly for a two-spin propagato

The magnetoconductance resulting from weak locali
tion corrections and in the presence of the field textureB
derived in Ref. 7, and reads
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dg52
e2

p\

L

~2p!2 (
a,b561

^x,a,bu
1

g2h
ux,b,a&, ~3!

where the effective~non-Hermitian! Hamiltonianh is given
by

h5
L2

~2p!2

]2

]x2 1 ik n•~s12s2!, ~4!

wheresi ~with i 51,2) are spin-12 Pauli matrices, and wher

k5
vB

D

L2

~2p!2 5vBtd
L2

~2p l !2 ~5!

is the dimensionless adiabaticity parameter@see Eq.~1!#. The
factor g5(L/2pLf)2 is a damping constant expressed
terms of the dephasing lengthLf ~which is specified in more
detail below!. Note thatg is introduced here in a phenom
enological way with the particularad hocchoice that it be a
c number and diagonal in spin space.

We now evaluatedg explicitly, but instead of using the
exact eigenstates,9 we use an alternative approach in terms
unitary gauge transformations, which has the virtue of m
ing the emergence of the Berry phase immediately trans
ent. For this purpose we define unitary transformationsU
andV of the forms

U5V e( ip f /L)x(s1z1s2z), V5e( i /2)h(s1y1s2y), ~6!

with the property that

n•~s12s2!5U† ~s1z2s2z! U. ~7!

By noting that U(2 i ]/]x)U†52 i ]/]x2 iU ]U†/]x, we
find
ve

r

UhU†52S 2 i
L

2p

]

]x
2

f

2
@~s1z1s2z!cosh2~s1x1s2x!sinh# D 2

1 ik ~s1z2s2z!. ~8!

Next we rewrite the matrix elements occurring indg:

^x,a,buU†
1

g2UhU†
Uux,b,a&5^x,a,buV†

1

g2hab
P12Vux,a,b&, ~9!

where hab5UhU†@2 i (L/2p)(]/]x)→2 i (L/2p)(]/]x)1( f /2)(a1b)# and P12uab&5uba&. The effective Hamiltonian
hab is now diagonal in the angular momentum eigenstates^xu j &5ei (2p/L)x j/AL, with j 50,61,62, . . . ~imposing periodic
boundary conditions!, and we find

dg52
e2

p\

1

~2p!2 (
j

Tr12

1

g2h~ j !
P12, ~10!

where Tr12 is the trace in spin space, and

h~ j !52S j 2
f

2
~s1z1s2z!cosh D 2

2
f 2

2
~11s1xs2x!sin2h2 j f ~s1x1s2x!sinh

1
f 2

4
~s1xs2z1s2xs1z!sin 2h1 ik ~s1z2s2z!. ~11!

Here we have absorbed the integerf (a1b)/2 into j. Note that two of the eigenvalues of (f /2)(s1z1s2z)cosh are given by
the ~geometric! Berry phase6Fg56 f cosh for an effectively integral spin.14 The term (f 2/2)(11s1xs2x)sin2h provides a
source of dephasing that can mask the Berry phase—and more generally the Aharonov-Bohm effect~see Sec. II B below!. All
the other off-diagonal terms turn out to be irrelevant in the adiabatic limit~see Sec. II E!. To proceed, we express the abo
operators in thesz basis$u1,1&,u1,21&,u21,1&,u21,21&%. The Hamiltonianh( j ) then has matrix elements

^a8,b8uh~ j !ua,b&52S ~ j 2 f cosh!21a j f sinh2b j f sinh2b a

j f sinh2b j21a2 i2k a j f sinh1b

j f sinh2b a j21a1 i2k j f sinh1b

a j f sinh1b j f sinh1b ~ j 1 f cosh!21a

D , ~12!

wherea5( f 2/2)sin2h andb5( f 2/4)sin 2h. Finding the inverse ofg2h( j ) is then straightforward, and we finally obtain fo
the magnetoconductance

dg52
e2

p\

1

2p2 (
j 52`

1` H ~g1m21 f 2!~g1m2!214k2S g1m21 f 2 cos2h1
f 2

2
sin2h D J „@g1~m2 f !2#@g1~m1 f !2# ~g

1m2!214k2$@g1~m2 f cosh!2#@g1~m1 f cosh!2#1 f 2 sin2h~g1m21 f 2 cos2h!%…21, ~13!
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wherem5 j 2F, i.e., we have allowed for an Aharonov-Bohm fluxF52f/f0, with f05h/e being the flux quantum. The
foregoing result is exact and is seen to be identical to the one obtained by van Langenet al.9 ~for their choiced52). However,
our alternative derivation has led us to a form in which the Berry phase contribution is made manifest in the terms of t
(m6 f cosh)2.

Next we go over to the adiabatic limit, defined here10 by k@1/(2p)2, which, for f 51, is equivalent tovBt@ l 2/(L2d) @see
Eq. ~1!#. ~Below, in Sec. II D, we give explicit numerical values ofk for which adiabaticity is reached.! In this limit we may
drop the terms independent ofk in Eq. ~13! ~this is justified as terms with largej give a negligible contribution todg). Thus,
in the adiabatic limit we finally obtain

dgAd52
e2

p\

1

~2p!2 (
a561

(
j 52`

1`
@g1~m1a f cosh!2#1~ f 2/2!sin2h

@g1~m2a f cosh!2#@g1~m1a f cosh!2#1~g1m21 f 2 cos2h! f 2 sin2h
, ~14!

where the sum overa561 has been introduced artificially for later convenience. Note that the Berry phaseFg5 f cosh
couples to the momentum like the Aharonov-Bohm phase does, i.e., viaj 2F2aFg. We note that the remainingh depen-
dence cannot be accounted for by this type of coupling to the momentum. We particularly emphasize that~apart from the flux
appearing inm5 j 2F) the adiabatic limit of the magnetoconductancedgAd is independent of the field amplitudeB; thus
increasing the field further, say up tovBt@1 @cf. Eq. ~2!#, has no effect.

It is now instructive to compare Eq.~14! with the one previously derived7 for arbitrary textures and in the adiabat
approximation scheme for the Berry phase. The latter result reads~the superscript LSG refers to Ref. 7!

dgLSG52
e2

p\

Lf8

2L (
a561

sinh~L/Lf8 !

cosh~L/Lf8 !2cos@2p~F1a f cosh!#
52

e2

p\

1

~2p!2 (
a

(
j 52`

1`
1

g81~m2a f cosh!2

52
e2

p\

1

~2p!2 (
a

(
j 52`

1`
g81~m1a f cosh!2

@g81~m2a f cosh!2#@g81~m1a f cosh!2#
, ~15!
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where, again,m5 j 2F, andg85(L/2pLf8 )2, and where we
have used some identities to facilitate comparison. Note
in generalgÞg8 ~see below!. The virtue ofdgLSG is that it is
valid for arbitrary field textures~with the appropriate Berry
phase7!. It is thus important to understand its relation to t
special but exactly solvable case.

Now, by comparingdgLSG with dgAd we see that the two
expressions have the same structure with respect to the B
phase, Fg5 f cosh, but differ in additional h- and
f-dependent terms.~From now on we put the Aharonov
Bohm flux F to zero but shall return to nonzero flux later!
Particularly important is the additional term in the denom
nator ofdgAd, i.e., f 4sin2h cos2h ~the physical origin of such
additional terms is discussed below in Sec. II E!. It is this
term that acts as adephasing sourcefor certain tilt angles
and windingsf by suppressing the ‘‘resonance peaks’’ th
would occur at integral values of the Berry phaseFg

5 f cosh ~for small enoughg8). For f .1 the suppression
due to this term is so strong that all resonances except
ones ath50,p/2,p become masked, i.e., these resonan
due to the Berry phase are no longer visible in graphs
dgAd versush, whereas they do show up indgLSG provided
one choosesg8 to be independent of the tilt angleh ~and
sufficiently small!. This choice forf andg8 has been adopte
by van Langenet al.,9 in particular, f 55 and a constantg
50.4053. As in this casedgLSG anddgAd behave differently
for g5g8 ~see Fig. 3 of Ref. 9!, it is concluded9 that dgAd

does not show adiabatic behavior and, thus, that the adi
ticity criterion @Eq. ~1!#, is not valid. However, it is prema
ture to draw such a conclusion since there is additio
dephasing induced by the inhomogeneity of the magn
at
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field which for f .1 is so strong that the semiclassical a
proximation on which the derivation of the Cooperon prop
gator rests breaks down. We now proceed to explain
point in detail, and then present explicit physical examples
illustrate the general discussion.

B. Dephasing due to magnetic fields

The ad hocchoice9 of putting g5g8 and choosing them
to be independent ofh means thatdgAd and dgLSG do not
describe the same physical situation. This is so for the
lowing reason. First we note again that the dephasing par
etersg, andg8 are ‘‘put in by hand’’ into the Cooperon to
account for dephasing in a phenomenological way~this is
just dictated by the complexity of the involved many-bo
problem and by our inability to address this issue in a m
systematic way in general!. In the derivation of dgLSG

dephasing due to the field is only taken into accounta pos-
teriori in terms of a phenomenological parameterg8, while
the exact solution@Eq. ~13!# not only includes the Berry
phase but simultaneously also those dephasing effects
are caused by the field through the Zeeman coupling.
remaining dephasing effects indg or dgAd are then included
via the phenomenological parameterg. Obviously,g andg8
are in general different for the same physical situation.

Next, it is a well-known fact in the context of weak
localization phenomena15 that dephasing in general depen
on the magnetic fieldB penetrating the sample~as we must
allow for there to be any Zeeman interaction at all!. Most
importantly,g8 not only depends, in general, on the mag
tude B of the field but also on its tilt angleh that the field
makes with thez axis perpendicular to the ring plane.~This
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is already so even without Zeeman terms; see, e.g., Sec.
Ref. 15. Such an angle dependence becomes even more
nounced in the presence of ournonuniform Zeeman interac
tion!. Now, the various dephasing effects are accounted
phenomenologically in terms of dephasing lengths,15 1/Lf

2

51/(Lf
0 )211/(Lf

B)2, where the dephasing lengthLf
0 con-

tains all field-independent contributions, such as the
coming from inelastic collisons of the diffusing electro
with, say, phonons,Lf

in5ADt in, where the dephasing tim
t in is some inelastic scattering time. The magnetic lengthLf

B

contains all effects coming from the field penetrating t
sample.

If now Lf
B!L for some field configurations, we no longe

expect to see phase coherence in general. As a matter of
in Sec. IV of Ref. 7 we have estimated the upper bound
the dephasing length~due to the inhomogeneous Zeem
interaction! in metallic films to be given by the characterist
field-reorientation length7 l B5u“(B/B)u21. This estimate
follows from the observation that quantum corrections be
to be eliminated when the largest phase-coherent paths
close roughly one quantum of Berry flux. For the symmet
texture considered here, we findl B5L/(2p f usinhu). Obvi-
ously, for certain tilt angles and forf @1 this upper bound on
the dephasing length quickly becomes smaller thanL. Trans-
lated into a dephasing parameterg5(L/2pLf

B)2, this esti-
mate reads

g. f 2 sin2h, ~16!

i.e., we see that the dephasing becomes explicitlyh depen-
dent and grows likef 2.

Thus, as expected, the exact solution confirms this gen
property, in the sense that explicit dephasing terms
present indg that are field dependent and which can beco
so large, forparticular field inhomogeneities, that they com
pletely suppress the resonances in the magnetoconduct
Eq. ~13!, with respect to the Berry phase,16 no matter how
largevB is. Of course, as implied by above discussion le
ing to Eq. ~16!, such a dephasing effect must also be
counted for explicitly indgLSG @Eq. ~15!# by an appropriate
choice for the phenomenological damping parameterg8. In
particular, in view of the estimate given in Eq.~16!, it is
reasonable to make the ansatzg85 f 2sin2(2h).17 Then,
choosing the dephasing parameter ofdgAd to be constant
~i.e., h independent! and much smaller than unity, sayg
51022, we see that the qualitative discrepancy betwe
dgLSG anddgAd disappears: Both expressions show no re
nances~away fromFg50 and 1!. ~We note that asg andg8
are introduced phenomenologically anyway, there is no n
to obtain quantitative agreement, and it suffices to find
same qualitative suppression of the resonances forf .1 in
both dgLSG and dgAd. We shall not be making any furthe
use of this ansatz forg8.!

The suppression of the Cooperon due to homogene
fields is standard;15 the discussion above shows that ad
tional dephasing is induced by the field inhomogeneity. T
advantage of having the exact solution fordg @Eq. ~13!# at
hand is that we can now calculate the field dependenc
such dephasing terms explicitly; this allows us to make m
precise statements than before7 about the regime in which
one can expect to observe consequences of the Berry p
~see Sec. II D below!.
of
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C. Self-consistency of the semiclassical approximation

The magnetoconductance correctiondg is expressed in
terms of the Cooperon propagator. The derivation of
Cooperon is, in turn, performed within thesemiclassical
limit. In particular, this means that ‘‘back-reaction effects
i.e., non-phase-coherent dynamical effects of the fie
dependent Zeeman term on theorbital motion, are assumed
to be negligibly small throughout. This is a fundamental a
sumption in weak-localization theory,12 and it was explicitly
adopted in the derivation of the Cooperon and ofdgLSG as
well. ~This is emphasized, e.g., in Appendix A of Ref. 7!
Evidently, dephasing effects such as the ones discusse
Sec. II B are nothing but such back-reaction effects. Thus
dephasing becomes so large~as turns out to be the case in th
adiabatic limit and forf .1) that phase coherence is com
pletely suppressed in the orbital part, the semiclassical
proximation breaks down and the self-consistency of the
tire treatment is lost.18 Consequently, the expressions for th
magnetoconductance are no longer reliable in the cas
complete dephasing, and no weight should be put on con
sions drawn under such circumstances. Obviously, semic
sical and adiabatic approximations are interconnected iss
in the sense that the semiclassical approximation might br
down in the adiabatic limit and for certain field configur
tions. In other words, adiabaticity alone is not a sufficie
criterion for the observability of Berry phase effects, in a
dition the system must be in the mesoscopic regime cha
terized by phase-coherence.

To summarize our conclusions so far, we have seen
the adiabaticity criterion@Eq. ~1!# is sufficient for reaching
the adiabatic limit involving the Berry phase@cf. Eqs. ~14!
and ~15!#. However, the criterion does not guarantee~and
one should not expect it! that the Berry phase will be observ
able under all circumstances. Indeed, it can happen that
phase coherence, which is necessary for observing s
quantum phase phenomena, can be destroyed by a varie
dephasing sources, in particular also by magnetic fields p
etrating the sample. If dephasing becomes so strong in
adiabatic regime that quantum phase effects of the orb
motion are completely washed out, the semiclassical
proximation underlying the derivation of the Coopero
breaks down, and results based on it~such asdg) are no
longer reliable.

In the light of above discussion it should now be clear th
the only conclusion one can draw from the observation9 of
the absence of Berry phase effects forf 55 within the semi-
classical theory is that field textures withf .1 suppress
phase coherence very efficiently, and thus such extreme
tures cannot serve as a general test case for the existen
nonexistence of the Berry phase and the associated ad
ticity regime—at least not within the semiclassical regime
which the results@Eqs.~13!–~15!# are confined.

D. Observability of Berry phase effects forf 51

Up to now we have mainly concentrated on regim
wheref .1. Such regimes, however, are of little experime
tal interest~quite apart from the difficulty of how to produc
them! since the Berry phase effect would be masked by
strong dephasing effect of the field. The situation, howev
is entirely different for the case where the magnetic fie
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FIG. 1. The~dimensionless! magnetoconductancedg/(2e2/p\) @Eq. ~13!# as a function of the tilt angle 0<h<p. ~a! showsdg in the
adiabatic limit ~i.e., k51); ~b! showsdg outside the adiabatic limit~i.e., k50.01), with a strongly reduced amplitude. The remaini
parameter values aref 51, g50.4053/100, andF50. ~c! shows the adiabatic resultdgLSG/(2e2/p\) @Eq. ~15!# as function of tilt angle
0<h<p, with f 51, g850.4053/100 andF50. Note that~a! and ~c! agree very well qualitatively, and show pronounced resonance
integral values of the Berry phaseFg50,1, . . . .
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winds only once around the ring, i.e., whenf 51 ~such field
textures can be produced experimentally5!. Indeed, we shall
see now that forf 51 the dephasing is sufficiently small an
the Berry phase has observable consequences within an
perimentally accessible regime. We shall illustrate this w
two specific examples: First we discuss resonances in
magnetoconductance due to the Berry phase~for vanishing
Aharonov-Bohm fluxF); then we discuss phase shifts in th
Aharonov-Bohm oscillations induced by the Berry phase

First we consider the magnetoconductance as a func
of the Berry phase in the absence of an Aharonov-Bo
flux, i.e., F50. We make the realistic assumption that t
dephasing length independent of the tilt angle can be mad
exceedL, say,Lf52.5L, giving g54.05331023 ~this value
ex-
h
he

n
m

to

for g is 100 times smaller than the one chosen in Sec. II!.
In Fig. 1, we plot the magnetoconductancedg @Eq. ~13!# as a
function of the tilt angleh in the adiabatic regime,k51, and
find pronounced resonance peaks at the Berry phase va
Fg50 and 1 —in very good qualitative agreement with t
general resultdgLSG, given in Eq.~15!, even if we simply
chooseg85g. For comparison, we also plot~see Fig. 1! the
magnetoconductancedg outside the adiabatic regime, i.e
for k50.01, where the resonances are~nearly! absent—
demonstrating that adiabaticity is needed for the emerge
of the Berry phase. We note that the above choice for
adiabatic parameter~i.e., k051) corresponds tovB0

t

5(2p)2l 2/(L2d)@ l 2/L2d. In particular, if we follow van
Langenet al.9 and chooseL/ l 5500 ~i.e., a typical ratio for a
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mesoscopic metal ring!, we see thatk051 is equivalent to
vB0

t51.5731024/d. Note that we are orders of magnitud

below the regime of Eq.~2!, wherevBt@1. Translated into
magnetic fields,k051 corresponds to

B05
2~2p!2

gd

vFl\

mBL2
5

4p

gmB

hD

L2 , ~17!

which, for g52 andd5319, gives

B051.531026
vFl

L2
@G s#54.531026

D

L2 @G s#. ~18!

To illustrate this with concrete numbers we assume
Fermi velocityvF5106 ms21 and the ring circumferenceL
57 mm, and againL/ l 5500. We then find that the field
corresponding tok51 is about 400 G. The resonance stru
ture due to the Berry phase starts to emerge fork at around
0.1, i.e., for fields of the order of 40 G. Finally, we note th
when the tilt angleh is varied, then typically there will be a
concommittant change of the Aharonov-Bohm fluxF. This
flux, however, can easily be compensated for by applyin
field perpendicular to the ring such thatF again becomes an
integral multiple of the flux quantum. Note that the maxim
fields required for this compensation are about 10 G, or
for a ring of L57 mm. Thus such fields would have a ne
ligible effect on the inhomogeneous field required for ad
baticity, except ifh is very close top/2.

A further experimentally interesting scenario is that of t
phase shiftin the Aharonov-Bohm oscillation induced by th
Berry phase. In particular, this effect is most pronounced
half-integral Berry phases,Fg56 1

2 ~i.e., h5p/3 or 2p/3),
for which we expect@see Eqs.~14! and ~15!# to obtain a
phase shift in the Aharonov-Bohm oscillation of the magn
toconductance by the flux value12 ~i.e., by one quarter of the
flux quantumh/e). Note that in this case the sign of th
oscillation slope~e.g., atF50) is reversed with respect t
the case without Berry phase. This sign reversal is remi
cent of similar effects induced by spin-orbit scattering;15 it is
actually not unexpected, as the Zeeman term induces a
fective spin-orbit coupling due to the inhomogeneity of t
magnetic field.3,5 This phase shift is shown in Figs. 2~a! and
2~b!, which showdg as a function of the Aharonov-Bohm
flux F for Berry phasesFg50 and 1

2 , both in the adiabatic
limit ~i.e., k51), and with the choiceg50.1 ~i.e., L
52Lf). For the sake of comparison, in Fig. 2~d! we also
show a nonadiabatic case,k50.1, for which the phase shif
is absent. The phase shift remains discernible down to a
k50.7 before disappearing. The adiabatic limit is fu
reached at aboutk510, by which not only the phase shi
~which is the important feature! but also the amplitude be
comes identical todgAd given in Eq.~14!. The amplitude at
k51 increases about by 20% upon increasing the field
k510.19

To obtain realistic estimates for some physical para
eters, we now concentrate on a Au ring and use the mat
parameters recently determined in Ref. 20~see sample Au-1
in their Table I!. The relevant values areD59
31023 m2 s21 andtf

0 53.4131029 s ~at a temperature of 11
mK!, which for the dephasing length giveLf

0 5ADtf
0

e

-

t

a

l
o

-

r

-

s-

ef-

ut

o

-
ial

55.54mm. Thus the above choiceL52Lf
0 requires a ring of

circumferenceL511mm. In this case, the field correspond
ing to k051 becomesB05335 G, and the limiting casek
50.7 at which the phase shift emerges, corresponds tB
5235 G.21

Precisely the same phase shift occurs indgLSG @Eq. ~15!#
as shown in Fig. 2. To obtain roughly the same amplitudes
in dg we must account for theh-dependent dephasing i
dgLSG. To this end we choose an effectiveg85g50.1 ~for
h5p/2) andg855g50.5 ~for h5p/3). This phenomeno-
logical choice is not vital for the qualitative behavior o
dgLSG, but it does allow us to estimate an effective deph
ing length Lf8 , as we now explain. First we note that th
~peak-to-peak! amplitude of the magnetoconductancedg for
Fg5 1

2 is considerably reduced~by about a factor of 25) with
respect to that forFg50. As is clear by now, this is due to
the h-dependent dephasing terms. Now, without su
dephasing the Aharonov-Bohm amplitudes forFg50 and
Fg51/2 would be equal@see, e.g., Eq.~15!, with ag8 that is
h independent#. Thus the reduction of the Aharonov-Bohm
amplitude ath5p/3 ~relative to that ath50) serves as a
quantitative measure of theh-dependent dephasing. Ex
pressed in terms of an effective dephasing lengthLf8
5L/2pAg8, we find Lf8 52.5mm for the particular values
chosen above~i.e., g850.5, andL511mm). This dephasing
length should be compared with above valueLf5L/2
55.5mm ~corresponding tog50.1 andL511mm).

Finally, there is also the usual~spin-independent! dephas-
ing arising from the fieldBz penetrating a ring of finite width
a. On the one hand, we need a sufficiently large field so a
reach adiabaticity, and on the other hand such a field
induce dephasing. Thus, to satisfy these conflicting requ
ments in an optimal way we should consider rings with
width a as small as possible. To obtain a rough estimate
such a width, we takeBz5B cosh, for the field and insert
this into the standard formula,15 Lf

Bz5A3f0/2paBz . We
now require that this dephasing length should not beco
~much! smaller thanLf

0 , so we chooseLf
Bz5Lf

0 55.5mm.
On the other hand, the field required for adiabaticity is ab
B5200 G, and, together withLf

Bz55.5mm andh5p/3, this
corresponds to a ring widtha of the order of 20 nm. Note tha
as the effective dephasing length is obtained via 1/(Lf

0 )2

11/(Lf
Bz)2, the dephasing effect due toBz penetrating the

sample increasesg by a factor of 2~i.e., g50.2). As seen
from Fig. 2, the casesg50.1 and 0.2 behave in the sam
way, i.e., with phase shift, but the amplitude ofdg for h
5p/3 andg50.2 is now reduced by a factor of 52 compar
with dg for h50 andg50.1. ~Note that forh50 the mag-
netic field for the Aharonov-Bohm oscillations can be chos
to be very small, so thatLf

0 dominates overLf
Bz and thusg

50.1.! Finally, we note that the field componentBz
5B cosh gives rise to an Aharonov-Bohm phaseFz
5L2Bz/4p that is, in general, not equal tonf0 ~with n inte-
gral!. Therefore, this offset fluxFz must be accounted for in
order to assign the above phase shift unambiguously to
Berry phaseFg5 1

2 . For instance, forL511mm, we need
Bz

054.2 G in order to generate one flux quantumf05h/e
through the ring. Now considerh5p/3, and, say,B
5200 G, i.e.,Bz5100 G. To compensate for the offsetFz ,
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FIG. 2. The~dimensionless! magnetoconductancedg/(2e2/p\) @Eq. ~13!# as a function of Aharonov-Bohm flux 0<F52f/f0<1. ~a!
showsdg at a vanishing Berry phase in the adiabatic regime~i.e., h5p/2), and with parameter valuesk51 andg50.1; ~b! shows 10dg
with a Berry phase of12 in the adiabatic regime, i.e.,h5p/3, f 51, k51, andg50.1. Note the phase shift~due to the Berry phase! by the
amountF51/2 between~a! and~b!. ~c! shows the same as~b!, except that hereg50.2 ~this accounts for the dephasing due toBz ; see the
text!. ~d! showsdg/(2e2/p\) as a function of the Aharonov-Bohm fluxF52f/f0, but outside the adiabatic regime: 10dg at the Berry
phaseFg5

1
2 , i.e.,h5p/3, f 51, k50.1, andg50.1. Note that there is no phase shift, which shows that the Berry phase is not yet in e

~e! and ~f! show the magnetoconductance in the adiabatic limit,dgLSG/(2e2/p\) @Eq. ~15!# as a function of the Aharonov-Bohm fluxF
52f/f0. ~e! showsdgLSG with a vanishing Berry phase, i.e.,h5p/2, andg850.1; ~f! shows 10dgLSG with a Berry phase of12 , i.e., h
5p/3, f 51, andg85530.1 ~the increasedg8 accounts for theh-dependent dephasing; see the text!. Again there is a phase shift byF
51/2 between~e! and ~f!, in full agreement with the adiabatic limit ofdg as shown in~a! and ~b!.
uf
o

e

f

we need to increaseBz by, say, 5 G toBz5105 G, in which
caseBz /Bz

05Fz /f0 becomes an integer (525).
The amplitude-reduction mentioned above demands s

cient experimental resolution, which we now estimate. F

fi-
r

the parameter values given above for a Au ring and forh
5p/3, we find@cf. Fig. 2~c!# that the peak-to-peak amplitud
of dg is about 5.3310233(e2/p\) for an effectiveg50.2.
The relative ratiodg/g}dR/R thus becomes of the order o
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1024 for a ring resistanceR}1/g of the order of 30
3(L/mm) V,20 andL511 mm. Such sensitivity, as well a
all the parameters estimated above, appear to be w
present-day experimental reach. Further scenarios for
Berry phases in transport can be easily worked out~see also
Ref. 7!.

It should be obvious by now that the explicit agreeme
betweendg in the adiabatic limit anddgLSG demonstrates
~and reinforces the general points made in the previous
sections! that the adiabaticity criterion@Eq. ~1!# is sufficient
for the existence of the Berry phase, and that, moreo
there exist physical regimes where this Berry phase can
observed in magnetoconductance oscillations~and other
quantities!. By contrast, the far more stringent criterion E
~2! is certainly not necessary, and therefore sets unwarra
demands on experimental searches for Berry phase effe
tio

te
p
e
ld
ti
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E. Physical interpretation of the dephasing terms

We now briefly return to the issue of the source
dephasing in the Hamiltonianh( j ) given in Eq.~11!, as well
as its physical interpretation. For this purpose we assu
from the outset that we are in the adiabatic regime,k
@1/(2p)2, and simply retain the leading contributions whe
finding the inverse ofg2h( j ). This allows us to identify
those terms in the Hamiltonianh that are responsible for th
dephasing.

From the matrix representation~12! of h( j ), it is straight-
forward to see that only those matrix elements are impor
in the adiabatic limit that are simultaneously either diago
or off-diagonal in both spin subspaces. No other matrix e
ments contribute at the leading orderk2 for the determinant
or subdeterminants ofg2h( j ) that are necessary to calcula
the inverse. Thus we can replaceh( j ) by the matrix
2S ~ j 2 f cosh!21a 0 0 a

0 j 21a2 i2k 0 0

0 0 j 21a1 i2k 0

a 0 0 ~ j 1 f cosh!21a
D , ~19!
pos-
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o-
and we see that it is only the term (f 2/2)(11s1xs2x)sin2h
in h( j ) that causes dephasing and leads to thoseh-dependent
terms indgAd that are absent indgLSG ~apart from the dif-
ferences ing andg8). Now the first term, (f 2/2)sin2h, has
already been identified in the discussion of the exact solu
~for f 51) for a propagator containing only a single spin1

2 .5

In a general path-integral approach, this term has been in
preted as a consequence of quantum fluctuations: The
ticle trajectory fluctuates around its classical path and th
fluctuations in turn lead to a fluctuating local magnetic fie
Such fluctuations, however, violate the standard assump
underlying the adiabatic approximation that the field sho
vary smoothly as a function of its parameters@in the present
case the parameter is given by the positionx(t) of the par-
ticle on the ring#. We have pointed out previously~see Sec.
VI F in Ref. 5! that this term might lead to deviations from
the adiabatic approximation, which is valid only for smoo
variations.

The second term, (f 2/2)s1xs2xsin2h, is new, and de-
scribes an effective spin-spin interaction induced by the
homogeneity of the magnetic field~i.e., in the Cooperon, the
path and its time-reversed partner are interacting with e
other via their respective spins!. This interaction between
spin 1 and spin 2 is transmitted via the orbital motion, and
this sense involves a back-reaction of the Zeeman term
the orbital motion. However, as pointed out in Sec. II C, su
back-reactions that act to suppress the phase coherenc
consistently assumed to be negligible in the semiclass
treatment. Thus, in Ref. 7 we performed an adiabatic
proximation on propagators for the path and for its tim
n

r-
ar-
se
.
on
d

-

ch

n
n

h
are
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-

-

reversed partner separately and independently, and all
sible dephasing effects are included phenomenologically
terms of g8 at the end. This finally explains the appare
discrepancy betweendgLSG anddgAd. However, as shown in
previous sections, this discrepancy vanishes when allow
for h-dependent dephasing termsg8 in dgLSG.

III. CONCLUSION

By using the exact solution for the Cooperon, we ha
shown that the Berry phase leads to observable effects in
magnetoconductance oscillation within the adiabatic reg
defined by Eq.~1!. This is in full agreement with previous
findings,7 and in contrast to recent claims.9 We have pointed
out the role of dephasing and emphasized its angle and w
ing dependences. We have illustrated the general discus
with explicit examples which support an optimistic outloo
for the experimental search of the Berry phase in diffus
metallic samples.
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